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Abstract. We prove anO(n(k + 1)1/3) upper bound for planark-sets. This is the first
considerable improvement on this bound after its early solution approximately 27 years
ago. Our proof technique also applies to improve the current bounds on the combinatorial
complexities ofk-levels in the arrangement of line segments,k convex polygons in the
union ofn lines, parametric minimum spanning trees, and parametric matroids in general.

1. Introduction

The problem of determining the optimum asymptotic bound on the number ofk-sets
is one of the most tantalizing open problems in combinatorial geometry. Due to its
importance in analyzing geometric algorithms [8], [9], [19], the problem has also caught
the attention of computational geometers [5], [14], [18], [27], [29]. Given a setP of n
points in<d, ak-set is a subsetP′ ⊆ P such thatP′ = P ∩ H for a half-spaceH , and
|P′| = k where 0≤ k ≤ n. A close to optimal solution for the problem remains elusive
even in<2. In spite of several attempts, no considerable improvement could be made
from its early bound ofO(n(k+1)1/2) given by [20] and [24]. Several proofs exist for this
well-known upper bound [3], [5], [17], [29] which is quite distant from the best-known
lower bound ofÄ(n log(k+ 1)) [17]. Pach et al. made the first dent in this upper bound
improving it toO(n(k+1)1/2/log∗(k+1)).1 Even such a small improvement in<2 was
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1 log∗ k is the number of times the logarithm has to be applied to reducek to a constant.
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a distinguished result [25]. Recently Agarwal et al. [3] attacked the problem in the dual
setting with a fresh look. Although they could not improve the worst-case upper bound,
several new approaches were put forward to estimate the complexity ofk-levels in the
arrangement ofn lines. By a well-known duality these results also apply tok-sets. One
of the approaches of [3], based on “convex chains,” inspired our proof for the new upper
bound ofO(n(k+ 1)1/3) in <2.

Our proof technique is surprisingly simple. It uses the concept ofcrossingsin geomet-
ric graphs [1] which was first used by us to prove anO(n8/3) bound on three-dimensional
k-sets [14]. Crossings in geometric graphs have been successfully used for many prob-
lems in combinatorial geometry. See, for example, [12], [15], [16], [28]. It is expected
that our approach would open up new avenues to solve thed-dimensionalk-set problem,
which remains largely unsolved ford > 3. The only nontrivial bound known ford > 3
is insignificantly better than the trivial bound [4], [9], [30]. In spite of the miserable state
of the problem, an exact asymptotic bound is known for the number ofi -sets summed
over all i ≤ k. Alon and Győri [2] showed that this number is2(nk) in <2. Clarkson
and Shor [11] generalized the bound to2(nbd/2ckdd/2e) for <d.

Our proof technique also applies to establish a newO(nk1/3 + n2/3k2/3) complexity
bound fork convex polygons whose edges are nonoverlapping and lie in the union of
n lines. A number of other results follow from this bound. An optimal2(nk1/3) bound
on the complexity ofn-element parametric matroids with rankk follows due to a result
by Eppstein [21]. As an immediate consequence, we obtain anO(EV1/3) bound on
the number of parametric minimum spanning trees of a graph withE edges andV
vertices whose edge weights vary linearly with time. A newO(n4/3) bound fork-levels
in arrangement withn line segments can also be derived from the aforesaid bound.

The paper is organized as follows. We develop major tools for our proof in Section 2.
A new bound fork-sets in<2 is proved in Section 3. Section 4 describes the application
of our proof technique to other related problems. Finally, we conclude in Section 5.

2. Convex Chains

Let P be a set of points in general position in<2. This assumption of general position
is safe since the number ofk-sets is maximized for point sets in general position [17].
A k-set edgeis a line segment connecting two pointsp,q in P whose supporting line
contains exactlyk points ofP on one side. It is known that the number of(k + 1)-sets
equals the number ofk-set edges [2]. Orient eachk-set edge from left to right and letEk

be the set of orientedk-set edges whose supporting oriented line has exactlyk points on
its left-hand side. Consider the directed graphGk = (P, Ek). Without loss of generality
assume that the cardinality ofEk is at least as large as half the number ofk-set edges.
Otherwise, the entire analysis can be performed for the rest of thek-set edges whose
supporting oriented lines have exactlyk points on their right-hand side. Let`(e) and
r (e) denote the left and right endpoint of an edgee∈ Ek. By a suitable rotation we can
assume that no edge inEk is vertical.

The edges ofGk incident to a vertexp ∈ P have some nice properties that are crucial
for our analysis. By our construction,p is the right endpoint of all incoming edges to it,
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Fig. 1. Lovász’s property:s(b) > s(e) > s(a) ands(d) > s(b) > s(e).

and it is the left endpoint of all outgoing edges from it. Theslopeof an edgee is denoted
s(e). The next property, discovered by Lov´asz, appears in [20].

Property 1. Let a, b be two incoming edges top wheres(b) > s(a). There must exist
an outgoing edgee from p such thats(b) > s(e) > s(a). Similarly, let d, e be two
outgoing edges fromp wheres(d) > s(e). There must exist an incoming edgeb to p
such thats(d) > s(b) > s(e). Refer to Fig. 1 for an illustration.

We wish to partition the edge setEk such that each partition forms a convex chain.
Define a relationR on Ek as follows. For an incoming edgee and an outgoing edgef
incident with the same vertex, we sayeR f if and only if s(e) > s( f ) and there does not
exist any outgoing edgef ′ with s(e) > s( f ′) > s( f ). For example, in Fig. 2,a R b is
true buta R cis not true. First, we show a property of the relationR.

Lemma 2.1. There is no edge f such that e R f and g R f where e6= g.

Proof. Suppose such anf exists. Lets(e) > s(g). By definition s(e) > s( f ) and
s(g) > s( f ). By Property 1 there exists an outgoing edgef ′ wheres(e) > s( f ′) > s(g).
Hences(e) > s( f ′) > s(g) > s( f ). But this violates thate R f.

Let R∗ denote the reflexive, symmetric, and transitive closure ofR. The equivalence
relation R∗ partitionsEk. Each class of this partition forms a chain of nonoverlapping
directed edges going from left to right due to Lemma 2.1 and the definition ofR.
Further, each such chain is convex since we turn only right at each vertex according to
the definition ofR. See Fig. 2 for an illustration. We prove that there are at mostk + 1
such convex chains.

Lemma 2.2. Let C1,C2, . . . ,Cj be the convex chains obtained by partition of Ek with
R∗. Each Ci has a unique leftmost endpoint which is one of the k+ 1 leftmost points
of P.

Proof. Suppose the leftmost endpoint ofCi is pm wherepm is themth point from the

Fig. 2. Convex chainC going through the vertexv wherea R b.
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left with m> k+1. Further letf be the edge ofCi with `( f ) = pm. SinceCi ends with
pm on the left, there is no edgee with r (e) = pm ands(e) > s( f ). Consider rotatingf
anticlockwise aroundpm. At the beginning of this rotation its supporting oriented line
` f has exactlyk points on its left. When it is rotated up to the vertical position, it has
exactlym− 1 > k points on its left. This means that its supporting line has gained at
least one point on its left during this rotation. Observe that` f gains a point to its left
only if the left segment going frompm to x = −∞ hits a point. Also the number of
points on the left of̀ f changes in every step by at most one. This means there exists a
pointx such that the oriented edgeewith `(e) = x andr (e) = pm must be ak-set edge.
Further,s(e) > s( f ) which leads to a contradiction.

To prove that each left endpoint of convex chains is unique, assumeCi1,Ci2 have a
common left endpointp. By Property 1 there is an edgee with r (e) = p and that has a
slope in between the slopes of the edges ofCi1,Ci2 incident withp. By our construction,
bothCi1 andCi2 cannot havep as their left endpoint in that case.

Corollary 2.3. There are at most k+ 1 convex chains partitioning Ek.

3. Newk-Set Bound

Our goal is to bound the number of pairs of edges ofEk that intersect each other in
their interiors. These intersections are calledcrossings. An upper bound on this crossing
number, together with a lower bound [1], gives the newk-set bound. Leteand f be two
edges inEk that cross. Obviously, the convex chains, say,Ci andCj that containe and
f , respectively, cross ate∩ f . Each of these crossings is uniquely charged to a common
tangent toCi andCj according to the following charging scheme.

A common tangentto a pair of chainsCi , Cj is a line segment that connects two
vertices, one from each ofCi andCj and has the rest of theCi andCj strictly below its
supporting line. LetCi andCj intersect atx1, x2, . . . , xm. Consider the upper hull of the
vertices ofCi andCj together. The vertical line passing through eachx`, 1 ≤ ` ≤ m,
intersect a unique edge of this upper hull. This edge, a common tangent toCi andCj ,
is charged forx`. It is a simple geometric fact that two such crossing points betweenCi

andCj cannot charge the same common tangent. See Fig. 3. Next, we show that even
two crossings from different pairs of chains cannot charge the same tangent.

Lemma 3.1. Each common tangent is charged only once for crossings over all pairs
of chains.

Fig. 3. Common tangents for a pair of convex chains.
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Fig. 4. Illustration for Lemma 3.1.

Proof. Let us assume on the contrary that a tangentT is charged for two pairs of chains,
Ci1,Cj1 andCi2,Cj2. Let p be an endpoint ofT which is not an endpoint of one chain,
sayCi1. Such ap must exist, otherwise Lemma 2.2 is violated. Letei1 and fi1 be the
incoming and outgoing edge ofCi1 incident with p. Consider the outgoing edge ofCi2
incident with p. Let this edge befi2. See Fig. 4. SinceT is a tangent toCi1 andCi2,
it must be true that eithers(ei1) > s( fi2) > s( fi1) or s(ei1) > s( fi1) > s( fi2). The
first possibility is contradicted by the fact thatei1 R fi1. For the second possibility to be
realized there must be an incoming edgeei2 of Ci2 such thats( fi1) > s(ei2) > s( fi2) due
to Property 1. However, in that caseT cannot be tangent toCi2.

Lemma 3.2. There are at most n(k+ 1) common tangents that are charged.

Proof. Each vertexp of Gk occurs at most once as the left endpoint of a tangent to
each convex chain not containingp. Since there are at mostk+1 such chains, the claim
follows.

Comment. In fact, each common tangent is an`-set edge for̀ < k. This can be proved
using an argument similar to that used to prove Lemma 2.2. The total number of such
edges is2(nk) due to a result in [2].

Now we are ready to prove the main theorem.

Theorem 3.3. The number of(k + 1)-sets that are possible with n points in<2 is at
most6.48n(k+ 2)1/3.

Proof. Each crossing between two edges ofEk appears as a crossing between the
two convex chains containing those two edges. By Lemmas 3.1 and 3.2 this crossing
number cannot be more thann(k + 1). Let t = |Ek|. For t > 4n, we must have at
leastÄ(t2/n3) pairs of edges intersecting in their interiors according to the result of
Ajtai et al. [1]. The best constant for this result is given by Pach and T´oth [26] who
show a(1/33.75)t3/n2 − 0.9n lower bound on the crossing number for all values oft .
Applying this result we get(1/33.75)t3/n2 − 0.9n < n(k + 1). Simple algebra gives
t < 3.24n(k+ 2)1/3. The worst-case number ofk-sets is not more than 2t and hence the
bound follows.
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4. Related Problems

A point setP can be mapped to a set of lines through duality. This duality maps a point
p = (a, b) to a line p∗ : y = ax− b and a linè : y = ax− b to a point`∗ = (a, b).
The set of dual lines, denotedP∗, form a line arrangementA(P∗). A k-levelinA(P∗) is
defined as the closure of all points on given lines that have exactlyk lines strictly below
them. It is known that the worst-case complexity of thek-levels is within a constant
factor of the worst-case number ofk-sets in point sets. Hence our new bound onk-sets
also provides the same upper bound on the complexity ofk-levels. In fact, the entire
proof can be carried out in this dual setting using properties ofk-levels. Such a proof is
provided in [13].

4.1. Convex Polygons and Matroid Optimization

Consider a set ofk convex polygons whose edges are nonoverlapping and are drawn
from n lines. The complexity of these polygons is the total number of vertices they
have altogether. If they are interior-wise disjoint, an optimal2(n2/3k2/3 + n) bound is
known [10], [23]. However, these analysis techniques fail if the polygons overlap in their
interiors. Our proof technique can be used to establish an optimal2(nk1/3 + n2/3k2/3)

bound for this case.
First, we split each convex polygon into an upper chain and a lower chain. The upper

chain consists of all points of the boundary that do not have any point of the polygon
strictly above it. Similarly define the lower chains. Without loss of generality, we carry
out the analysis for the upper chains only. The leftmost and rightmost edges of all upper
chains are extended along their supporting lines tox = −∞ andx = +∞, respectively.
With this modification, each convex upper chain is mapped in the dual to a convex chain
passing through dual points. Hence we havek convex chains whose vertices are drawn
from n points. Since the polygons in the primal have nonoverlapping edges, there is no
edgeg incident with a vertexp such thats(e) > s(g) > s( f ) wheree, f are two edges
of a convex chain passing throughp. Also, for the same reason, the convex chains are
edge disjoint. However, the convex chains may not have unique endpoints now. Due
to all these properties, Lemma 3.1 remains valid except for the fact that a tangentT
may be charged more than once only if it connects points that are endpoints of many
convex chains. In that caseT is charged for each pair of chains that have an endpoint
coinciding with an endpoint ofT . This count cannot be more than

(k
2

) = O(k2)altogether.
Thus the total crossings among all convex chains isO(nk+k2). Using this in combination
with the lower bound result on crossing [1], we obtain the desiredO(nk1/3 + n2/3k2/3)

complexity bound for convex chains. This bound is tight since, fork < n, the first term
nk1/3 dominates and a matching lower bound is proved in [21]. Fork > n, the second
termn2/3k2/3 dominates and a matching lower bound is established by the many-faces
result of [10].

Theorem 4.1. A set of k convex polygons whose edges are nonoverlapping and lie in
the union of n lines have2(nk1/3+ n2/3k2/3) edges.
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In [21] Eppstein showed that an upper bound on the complexity of the class of the
aforesaid convex polygons also provides an upper bound on the complexity of general
parametric matroid optimization problems. He showed anÄ(nk1/3) lower bound for the
generaln-element parametric matroid optimization problem with rankk. Theorem 4.1
establishes a tight upper bound for it. An immediate implication of this result is the case
of parametric minimum spanning trees of a graph withV vertices andE edges where the
edge weights vary linearly with time. The previousO(EV1/2) bound of Gusfield [22] is
improved toO(EV1/3) by our result.

4.2. Complexity of j Consecutive Levels

Let Lk, Lk−1, . . . , Lk− j+1 be j > 0 consecutive levels in an arrangement ofn lines. We
are interested in determining the complexity of thesej levels altogether. By duality, this
complexity is within a constant factor of the total number of`-sets in the set of dual
points wherek− j + 1≥ ` ≥ k. Consider the convex chains partitioningE` for each̀
wherek− j + 1≥ ` ≥ k. We use the proof technique of Sections 2 and 3 on these sets
of O( jk) convex chains. Since each common tangent is anm-set edge form < k, we
haveO(nk) tangents that are charged. Further, we argue that each tangent is charged at
mostO( j 2) times. A tangentT cannot be charged for two pairs(C1,C2) and(C3,C4)

where eitherC1,C3 (passing through the left endpoint ofT) or C2,C4 (passing through
the right endpoint ofT) come from the partition of the same setE` for some`. This is
due to Lemma 3.1. This only means that at most

( j
2

)
different pairs can chargeT . Now

setting the inequalityt3/n2 < c · nj2(k + 1) for some appropriate constantc > 0, we
obtaint = O(n(k+ 1)1/3 j 2/3).

Theorem 4.2. There are at most O(n(k + 1)1/3 j 2/3) `-sets summed over k≥ ` ≥
(k− j + 1).

4.3. k-Levels in Arrangement of Line Segments

Let S be a set ofn line segments in<2 and letA(S) denote the corresponding arrange-
ment. For anyk, where 0≤ k ≤ n− 1, thek-level inA(S) is defined as the closure of
all points on given line segments that have exactlyk line segments strictly below them.
Notice that thek-level in this case may have discontinuities. These discontinuities are
caused by the endpoints of the line segments where thek-level jumps vertically up or
down. See Fig. 5 for an illustration. It is easily observed that the number of such discon-
tinuities is at most 2n. The technique of [3] shows anO(n3/2) bound on the complexity
of thek-level. We employ the technique of Section 4.1 to improve this bound toO(n4/3).
To apply this technique we consider a set ofO(n) convex chains2 as defined in [3]. For
anyk, where 0≤ k ≤ n− 1, let Vk denote the set of vertices ofA(S) in the interior of
thek-level that have exactlyk segments strictly below them. We assumeV−1 = Vn = ∅.

2 In [3], these chains are called concave.
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Fig. 5. (a) First level in a line segment arrangement. (b) A convex chain is shown with broken lines.

It is known that the set of vertices of thek-level where two segments intersect either
belong toVk or Vk−1. Thek-level, when traversed from left to right, makes a left turn at
the vertices ofVk−1, and it makes a right turn at the vertices ofVk. For example, in Fig. 5,
v is a vertex inV0 where the 1-level makes a left turn. We count the vertices inVk−1. An
upper bound on|Vk−1| also gives an upper bound on|Vk| since the entire analysis can
be done for any value ofk where 0≤ k ≤ n− 1.

Let Lk = {e} denote the set of edges in the union of the segments inS satisfying the
following properties:

• e is incident with a vertex inVk−1. The other endpoint ofecomes either fromVk−1,
or from the set of vertices resulting from discontinuities of thek-level, or from the
set of endpoints of the given line segments.
• The interior ofe does not intersect thek-level.

The edges ofLk lie below thek-level and cover all vertices ofVk−1. For an illustration,
see Fig. 5(b). See [3] for details. We define a relationR on Lk as follows. We saye R f
for any two edgese, f in Lk if and only if e and f share an endpoint. The reflexive,
symmetric, and transitive closureR∗ of R partitionsLk into a set of convex chains. This
is because each pair of edgese, f , wheree R f, belong to a chain that turns right at the
vertexv = e∩ f . See Fig. 5(b) for an illustration. Several interesting properties of these
convex chains are observed in [3]. For example, all vertices of a chain lie on the lower
envelope of the lines supporting its edges.

We are now ready to apply the result of Section 4.1. There are at mostO(n) convex
chains that cover all vertices ofVk−1 since the endpoints of these chains are defined by
the endpoints of the given line segments or the discontinuities of thek-level. Extend
the leftmost and rightmost edges of all chains on their supporting lines tox = −∞
andx = +∞, respectively. LetL denote the set ofn lines that support the edges inS.
We have at mostO(n) convex chains in the union of the lines inL whose edges are
nonoverlapping. Applying the arguments for the proof of Theorem 4.1 in Section 4.1 we
immediately have the following theorem.

Theorem 4.3. The complexity of the k-level in line segment arrangement is O(n4/3).

The new bound onk-levels in line segment arrangement improves the current best
bound on thek-levels in the arrangement of triangles in<3. This follows from a result
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of [3]. Plugging in our new bound into the analysis of [3], anO(n25/9) bound can be
established on the complexity of thek-levels in arrangements of triangles in<3.

5. Conclusions

In this paper we provide a considerable improvement of the upper bound of planark-sets
which has defied all such attempts so far, except for a small improvement in [25] by
a factor of log∗(k + 1). The technique is further employed to improve the current best
bounds of several other related problems. It remains to be seen if the technique can be
used in higher dimensions, albeit with necessary modifications. The generalization of the
result of [1] exists [12], [15]. However, the concept of convex chains do not generalize
in higher dimensions in a straightforward manner. The author believes that the technique
developed in this paper would make further inroads into the challenge ofk-set problems
and probably into other related combinatorial problems.
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