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Abstract. We prove anO(n(k + 1)%/®) upper bound for planak-sets. This is the first
considerable improvement on this bound after its early solution approximately 27 years
ago. Our proof technique also applies to improve the current bounds on the combinatorial
complexities ofk-levels in the arrangement of line segmemtssonvex polygons in the
union ofn lines, parametric minimum spanning trees, and parametric matroids in general.

1. Introduction

The problem of determining the optimum asymptotic bound on the numblersefs

is one of the most tantalizing open problems in combinatorial geometry. Due to its
importance in analyzing geometric algorithms [8], [9], [19], the problem has also caught
the attention of computational geometers [5], [14], [18], [27], [29]. Given &set n
points in%i?, ak-set is a subse®’ < P such thatP’ = P N H for a half-spaceH, and

|P’| = k where 0< k < n. A close to optimal solution for the problem remains elusive
even in%R2. In spite of several attempts, no considerable improvement could be made
fromits early bound 0© (n(k+1)%/2) given by [20] and [24]. Several proofs exist for this
well-known upper bound [3], [5], [17], [29] which is quite distant from the best-known
lower bound o2 (nlog(k + 1)) [17]. Pach et al. made the first dent in this upper bound
improving it toO(n(k + 1)*/2/log* (k 4+ 1)). Even such a small improvementitf was

* The author acknowledges the support of NSF Grant CCR9321799, USA, and DST Young Scientist Grant,
India.

1log* k is the number of times the logarithm has to be applied to reltce constant.
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a distinguished result [25]. Recently Agarwal et al. [3] attacked the problem in the dual
setting with a fresh look. Although they could not improve the worst-case upper bound,
several new approaches were put forward to estimate the complexXtiewéls in the
arrangement of lines. By a well-known duality these results also applkisets. One

of the approaches of [3], based on “convex chains,” inspired our proof for the new upper
bound ofO(n(k + 1)*3) in R2.

Our prooftechnique is surprisingly simple. It uses the concepiossingsn geomet-
ric graphs [1] which was first used by us to prove@m®3) bound on three-dimensional
k-sets [14]. Crossings in geometric graphs have been successfully used for many prob-
lems in combinatorial geometry. See, for example, [12], [15], [16], [28]. It is expected
that our approach would open up new avenues to solve-tlimensionak-set problem,
which remains largely unsolved fdr> 3. The only nontrivial bound known fat > 3
is insignificantly better than the trivial bound [4], [9], [30]. In spite of the miserable state
of the problem, an exact asymptotic bound is known for the numbissefs summed
over alli < k. Alon and Gyfi [2] showed that this number ®(nk) in %2. Clarkson
and Shor [11] generalized the boundaenl®/21k9/21) for 99,

Our proof technique also applies to establish a @wkY® + n%3k?3) complexity
bound fork convex polygons whose edges are nonoverlapping and lie in the union of
n lines. A number of other results follow from this bound. An optir@ghk3) bound
on the complexity oh-element parametric matroids with rakifollows due to a result
by Eppstein [21]. As an immediate consequence, we obtai®&@aVY/3) bound on
the number of parametric minimum spanning trees of a graph Bi#dges and/
vertices whose edge weights vary linearly with time. A @én*/?) bound fork-levels
in arrangement witlm line segments can also be derived from the aforesaid bound.

The paper is organized as follows. We develop major tools for our proof in Section 2.
A new bound fok-sets ini? is proved in Section 3. Section 4 describes the application
of our proof technique to other related problems. Finally, we conclude in Section 5.

2. Convex Chains

Let P be a set of points in general positiondi?. This assumption of general position
is safe since the number kfsets is maximized for point sets in general position [17].
A k-set edgas a line segment connecting two poirgsqg in P whose supporting line
contains exactlk points of P on one side. It is known that the number(&f+ 1)-sets
equals the number &fset edges [2]. Orient eadtiset edge from left to right and I&;
be the set of orienteklset edges whose supporting oriented line has exkgttints on
its left-hand side. Consider the directed gr&ph= (P, Ex). Without loss of generality
assume that the cardinality & is at least as large as half the numbekedet edges.
Otherwise, the entire analysis can be performed for the rest d-det edges whose
supporting oriented lines have exacklypoints on their right-hand side. Léte) and
r (e) denote the left and right endpoint of an edge Ex. By a suitable rotation we can
assume that no edge Ey is vertical.

The edges o6y incident to a vertexp € P have some nice properties that are crucial
for our analysis. By our constructiop,is the right endpoint of all incoming edges to it,
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Fig. 1. Lovasz’s propertys(b) > s(e) > s(a) ands(d) > s(b) > s(e).

and it is the left endpoint of all outgoing edges from it. Hhepeof an edgee is denoted
s(e). The next property, discovered by LasZ, appears in [20].

Property 1. Leta, b be two incoming edges tpo wheres(b) > s(a). There must exist
an outgoing edge from p such thats(b) > s(e) > s(a). Similarly, letd, e be two
outgoing edges fronp wheres(d) > s(e). There must exist an incoming edgeo p
such thas(d) > s(b) > s(e). Refer to Fig. 1 for an illustration.

We wish to partition the edge s& such that each partition forms a convex chain.
Define a relatiorR on Ey as follows. For an incoming edgeand an outgoing edgé
incident with the same vertex, we saR f if and only if s(e) > s(f) and there does not
exist any outgoing edgé’ with s(e) > s(f’) > s(f). For example, in Fig. 2a R bis
true buta R cis not true. First, we show a property of the relatign

Lemma?2.1. Thereisnoedge f suchthate R f and g R f whegeg

Proof. Suppose such af exists. Lets(e) > s(g). By definitions(e) > s(f) and
s(g) > s(f). By Property 1 there exists an outgoing edgavheres(e) > s(f’) > s(g).
Hences(e) > s(f’) > s(g) > s(f). But this violates tha¢ R f. |

Let R* denote the reflexive, symmetric, and transitive closurR.ofhe equivalence
relation R* partitionsEx. Each class of this partition forms a chain of nonoverlapping
directed edges going from left to right due to Lemma 2.1 and the definitioR. of
Further, each such chain is convex since we turn only right at each vertex according to
the definition ofR. See Fig. 2 for an illustration. We prove that there are at rkastl
such convex chains.

Lemma2.2. LetGC, C,, ..., Cj be the convex chains obtained by partition @fviith

R*. Each G has a unique leftmost endpoint which is one of the k leftmost points
of P.

Proof. Suppose the leftmost endpoint®©f is py, where pp, is themth point from the

Fig. 2. Convex chairC going through the vertex wherea R h
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left with m > k+ 1. Further letf be the edge oF; with £(f) = pn. SinceC; ends with

Pm On the left, there is no edgewith r (e) = py ands(e) > s(f). Consider rotatingf
anticlockwise arounghy,. At the beginning of this rotation its supporting oriented line

¢ has exactlyk points on its left. When it is rotated up to the vertical position, it has
exactlym — 1 > k points on its left. This means that its supporting line has gained at
least one point on its left during this rotation. Observe thagains a point to its left

only if the left segment going fronp,, to X = —oo hits a point. Also the number of
points on the left of+ changes in every step by at most one. This means there exists a
pointx such that the oriented edgevith £(e) = x andr (e) = pm must be &-set edge.
Further,s(e) > s(f) which leads to a contradiction.

To prove that each left endpoint of convex chains is unique, as§ime€;, have a
common left endpoinp. By Property 1 there is an edgavith r () = p and that has a
slope in between the slopes of the edgeSipfCi, incident with p. By our construction,
bothC;, andC;, cannot havep as their left endpoint in that case. O

Corollary 2.3.  There are at most k- 1 convex chains partitioning £

3. Newk-Set Bound

Our goal is to bound the number of pairs of edgesgfthat intersect each other in
their interiors. These intersections are catteassingsAn upper bound on this crossing
number, together with a lower bound [1], gives the rkeset bound. Leeand f be two
edges inEy that cross. Obviously, the convex chains, $gyyandC; that contaire and

f, respectively, cross &N f. Each of these crossings is uniquely charged to a common
tangent taC; andC; according to the following charging scheme.

A common tangento a pair of chaing;, C; is a line segment that connects two
vertices, one from each @ andC; and has the rest of th& andC; strictly below its
supporting line. LeC; andC; intersect aky, x», ..., Xm. Consider the upper hull of the
vertices ofC; andC; together. The vertical line passing through eaghl < ¢ < m,
intersect a unique edge of this upper hull. This edge, a common tangéntatw C;
is charged fox,. It is a simple geometric fact that two such crossing points betWgen
andC; cannot charge the same common tangent. See Fig. 3. Next, we show that even
two crossings from different pairs of chains cannot charge the same tangent.

Lemma 3.1. Each common tangent is charged only once for crossings over all pairs
of chains

Fig. 3. Common tangents for a pair of convex chains.
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Fig. 4. lllustration for Lemma 3.1.

Proof. Letusassume onthe contrary that a tangeistcharged for two pairs of chains,
Ci,, Cj, andC;,, C;,. Let p be an endpoint of which is not an endpoint of one chain,
sayC;,. Such ap must exist, otherwise Lemma 2.2 is violated. egtand f;, be the
incoming and outgoing edge @, incident with p. Consider the outgoing edge ©f,
incident with p. Let this edge bef;,. See Fig. 4. Sinc@ is a tangent tcC;, andC;,,
it must be true that eithes(e,) > s(fi,) > s(fi,) ors(e,) > s(fi,) > s(fj,). The
first possibility is contradicted by the fact thaf R f,. For the second possibility to be
realized there must be an incoming eégef C;, such thas( fi,) > s(e,) > s(fi,) due
to Property 1. However, in that caSecannot be tangent G;,. O

Lemma 3.2. There are at most(k + 1) common tangents that are charged

Proof. Each vertexp of Gk occurs at most once as the left endpoint of a tangent to
each convex chain not containimpg Since there are at mdst+ 1 such chains, the claim
follows. O

Comment. Infact, each common tangentisésetedge fof < k. This can be proved
using an argument similar to that used to prove Lemma 2.2. The total number of such
edges i (nk) due to a result in [2].

Now we are ready to prove the main theorem.

Theorem 3.3. The number ofk + 1)-sets that are possible with n pointsit? is at
most6.48n(k + 2)1/3.

Proof. Each crossing between two edgesHyf appears as a crossing between the
two convex chains containing those two edges. By Lemmas 3.1 and 3.2 this crossing
number cannot be more tharik + 1). Lett = |Ek|. Fort > 4n, we must have at
least$2 (t2/n?) pairs of edges intersecting in their interiors according to the result of
Ajtai et al. [1]. The best constant for this result is given by Pach aoith T26] who

show a(1/33.75)t3/n? — 0.9n lower bound on the crossing number for all values.of
Applying this result we get1/33.75t3/n?> — 0.9n < n(k 4 1). Simple algebra gives

t < 3.24n(k + 2)V/3. The worst-case number kfsets is hot more thart 2nd hence the
bound follows. O
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4. Related Problems

A point setP can be mapped to a set of lines through duality. This duality maps a point
p=(a,b)ytoalinep*:y=ax—bandalinel : y =ax — btoapointt* = (a, b).

The set of dual lines, denotd?t, form a line arrangememd (P*). A k-levelin A(P*) is
defined as the closure of all points on given lines that have exadtigs strictly below
them. It is known that the worst-case complexity of #xevels is within a constant
factor of the worst-case number lofsets in point sets. Hence our new boundkesets

also provides the same upper bound on the complexiflefels. In fact, the entire
proof can be carried out in this dual setting using propertidslefels. Such a proof is
provided in [13].

4.1. Convex Polygons and Matroid Optimization

Consider a set ok convex polygons whose edges are nonoverlapping and are drawn
from n lines. The complexity of these polygons is the total number of vertices they
have altogether. If they are interior-wise disjoint, an optiah?3k?3 + n) bound is
known [10], [23]. However, these analysis techniques fail if the polygons overlap in their
interiors. Our proof technique can be used to establish an opérfrat}/® 4 n?/3k%/3)
bound for this case.

First, we split each convex polygon into an upper chain and a lower chain. The upper
chain consists of all points of the boundary that do not have any point of the polygon
strictly above it. Similarly define the lower chains. Without loss of generality, we carry
out the analysis for the upper chains only. The leftmost and rightmost edges of all upper
chains are extended along their supporting lines £ —oo andx = +o0, respectively.

With this modification, each convex upper chain is mapped in the dual to a convex chain
passing through dual points. Hence we hkwamnvex chains whose vertices are drawn
from n points. Since the polygons in the primal have nonoverlapping edges, there is no
edgeg incident with a vertexp such thas(e) > s(g) > s(f) wheree, f are two edges

of a convex chain passing through Also, for the same reason, the convex chains are
edge disjoint. However, the convex chains may not have unique endpoints now. Due
to all these properties, Lemma 3.1 remains valid except for the fact that a tahgent
may be charged more than once only if it connects points that are endpoints of many
convex chains. In that cadeis charged for each pair of chains that have an endpoint
coinciding with an endpoint of . This count cannot be more thé;) = O(Kk?) altogether.

Thus the total crossings among all convex chaii(sk+k?). Using this in combination

with the lower bound result on crossing [1], we obtain the desDeak/3 + n%/3k?/3)
complexity bound for convex chains. This bound is tight sincekfer n, the first term

nk'/3 dominates and a matching lower bound is proved in [21].Ksr n, the second
termn?3k?? dominates and a matching lower bound is established by the many-faces
result of [10].

Theorem 4.1. A set of k convex polygons whose edges are nonoverlapping and lie in
the union of n lines have (nkY/3 + n%3k%3) edges
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In [21] Eppstein showed that an upper bound on the complexity of the class of the
aforesaid convex polygons also provides an upper bound on the complexity of general
parametric matroid optimization problems. He showe&ank'/®) lower bound for the
generaln-element parametric matroid optimization problem with r&anKheorem 4.1
establishes a tight upper bound for it. An immediate implication of this result is the case
of parametric minimum spanning trees of a graph Withertices and edges where the
edge weights vary linearly with time. The previcD$E V*/?) bound of Gusfield [22] is
improved toO(E VY/3) by our result.

4.2. Complexity of j Consecutive Levels

LetLk, Lx—1,..., Lx—j+1 bej > O consecutive levels in an arrangemenndihes. We

are interested in determining the complexity of th¢$evels altogether. By duality, this
complexity is within a constant factor of the total numbertedets in the set of dual
points wherek — j + 1 > ¢ > k. Consider the convex chains partitionigg for each¢
wherek — j +1 > ¢ > k. We use the proof technique of Sections 2 and 3 on these sets
of O(jk) convex chains. Since each common tangent imeset edge fom < k, we
haveO(nk) tangents that are charged. Further, we argue that each tangent is charged at
mostO(j?) times. A tangen cannot be charged for two paif€;, C,) and(Cs, Cs)
where eithelCy, C3 (passing through the left endpoint©j or C,, C,4 (passing through

the right endpoint off ) come from the partition of the same g8t for some(. This is

due to Lemma 3.1. This only means that at mg@$tifferent pairs can charge. Now
setting the inequality®/n? < ¢ - nj?(k + 1) for some appropriate constamt- 0, we
obtaint = O(n(k + 1)1/3j%/3).

Theorem 4.2. There are at most Qi(k + 1)¥3j2/3) ¢-sets summed over k ¢ >
K—j+1).

4.3. k-Levels in Arrangement of Line Segments

Let S be a set of line segments iM? and letA(S) denote the corresponding arrange-
ment. For ank, where 0< k < n — 1, thek-level in A(S) is defined as the closure of

all points on given line segments that have exaktine segments strictly below them.
Notice that thek-level in this case may have discontinuities. These discontinuities are
caused by the endpoints of the line segments wher&-teeel jumps vertically up or
down. See Fig. 5 for an illustration. It is easily observed that the number of such discon-
tinuities is at most 8. The technique of [3] shows aB(n®?) bound on the complexity

of thek-level. We employ the technique of Section 4.1 to improve this bou{(td/3).

To apply this technique we consider a setQin) convex chainsas defined in [3]. For
anyk, where 0< k < n — 1, let Vi denote the set of vertices gf(S) in the interior of
thek-level that have exactly segments strictly below them. We assuvhe = V, = ¢.

2n [3], these chains are called concave.
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Fig. 5. (a) Firstlevel in a line segment arrangement. (b) A convex chain is shown with broken lines.

It is known that the set of vertices of thelevel where two segments intersect either
belong toVy or Vk_1. Thek-level, when traversed from left to right, makes a left turn at
the vertices oWx_1, and it makes a right turn at the verticesf For example, in Fig. 5,
v is a vertex inVp where the 1-level makes a left turn. We count the verticd&in. An
upper bound onVk_1| also gives an upper bound ¢¥vk| since the entire analysis can
be done for any value &fwhere O< k < n—1.

Let Ly = {e} denote the set of edges in the union of the segmerfssiatisfying the
following properties:

e eisincident with a vertex itvi_;. The other endpoint af comes either fronv_1,
or from the set of vertices resulting from discontinuities ofktHevel, or from the
set of endpoints of the given line segments.

e The interior ofe does not intersect tHelevel.

The edges of i lie below thek-level and cover all vertices &_;. For an illustration,
see Fig. 5(b). See [3] for details. We define a relafibon L as follows. We sag R f
for any two edge®, f in Lg if and only if e and f share an endpoint. The reflexive,
symmetric, and transitive closuR of R partitionsLy into a set of convex chains. This
is because each pair of edged , wheree R f, belong to a chain that turns right at the
vertexv = eN f. See Fig. 5(b) for an illustration. Several interesting properties of these
convex chains are observed in [3]. For example, all vertices of a chain lie on the lower
envelope of the lines supporting its edges.

We are now ready to apply the result of Section 4.1. There are at@@stconvex
chains that cover all vertices ¥ _; since the endpoints of these chains are defined by
the endpoints of the given line segments or the discontinuities okbgel. Extend
the leftmost and rightmost edges of all chains on their supporting lings=o—oo
andx = +o0, respectively. LefC denote the set af lines that support the edgesdh
We have at mos©(n) convex chains in the union of the lines fhwhose edges are
nonoverlapping. Applying the arguments for the proof of Theorem 4.1 in Section 4.1 we
immediately have the following theorem.

Theorem 4.3. The complexity of the k-level in line segment arrangement(is/@).

The new bound oik-levels in line segment arrangement improves the current best
bound on thek-levels in the arrangement of trianglesdi. This follows from a result
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of [3]. Plugging in our new bound into the analysis of [3], @n®>°) bound can be
established on the complexity of tkdevels in arrangements of trianglesis.

5. Conclusions

In this paper we provide a considerable improvement of the upper bound of plapts

which has defied all such attempts so far, except for a small improvement in [25] by
a factor of log(k + 1). The technique is further employed to improve the current best
bounds of several other related problems. It remains to be seen if the technique can be
used in higher dimensions, albeit with necessary modifications. The generalization of the
result of [1] exists [12], [15]. However, the concept of convex chains do not generalize
in higher dimensions in a straightforward manner. The author believes that the technique
developed in this paper would make further inroads into the challengsetfproblems

and probably into other related combinatorial problems.
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