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Abstract. We study the problem of the maximum number of unit distances amongn
points in the plane, under the additional restriction that we count only those unit distances
that occur in a fixed set ofk directions, taking the maximum over all sets ofn points and all
sets ofk directions. We prove that, for fixedk and sufficiently largen > n0(k), the extremal
sets are essentially sections of lattices, bounded by edges parallel to thek directions and of
equal length.

1. Introduction

The problem of the maximum number of unit distances is perhaps the simplest-sounding
of Erdős’s many combinatorial geometry problems; nonetheless it turned out to be a very
difficult problem which is still far from solution. The question “How often can the same
distance appear amongn points in the plane?” was first studied by Erd˝os in his 1946
paper [9], where he constructed an upper bound of orderO(n3/2) and a lower bound
of orderÄ(nec(logn/ log logn)), the last by taking a square section of a properly scaled
integer lattice. The upper bound was then reduced in several steps [1], [12] toO(n4/3)

[16]. Since the first proof was very complicated, alternative proofs were sought ([5] by
“random resampling,” [13] by use of the VC-dimension) until 1996 Sz´ekely found a very
elegant proof using a crossing-number argument [17].

There has been no change in the lower bound: although triangular lattice sections
seem to give slightly better numbers than square lattice sections, they have the same
asymptotics, and lattice sections are still the best-known construction. Erd˝os repeatedly
offered $250 for an upper bound which isO(n1+ε) for all ε > 0 and $500 for an
upper boundO(nec(logn/ log logn)). Exact values and extremal sets for up to 14 points
(Fig. 1) were determined by Schade [15] (see also [2]). Also many related problems
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Fig. 1

were discussed, e.g., the maximum number of unit distances in other metric spaces,
higher dimensions, convex or general positions, of smallest or largest distances, etc. (see
[3] for further references).

The original problem, however, seems to have exhausted the available methods with
the O(n4/3)-bound. All known proofs of this upper bound used as main geometric in-
formation the fact that any two unit circles intersect in at most two points; and this
information is used best possible in that bound, since there are strictly convex norms on
R2 (which have the same intersection pattern) for whichcn4/3 unit distances amongn
points are possible [3]. Attempts to enumerate the small excluded substructures of unit
distance graphs [8], [14] did not yield any other excluded substructure that could be used
to reduce this upper bound. Also the Schade sets do not support the implicit belief that
lattice sections are extremal sets, since the larger sets are not subsets of any lattice [3],
although the rational dimension is still small (they are generated by four unit vectors).

In the following all points will be in the plane, and we will distinguish pointsets only
up to isometry.
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2. The Result

In the following we try to avoid these difficulties by proving structural results for the
extremal sets. Since a lattice subset structure in itself is rather useless (for it may be a
very thin subset), we aim for a lattice section structure. We call a setS⊂ 0 a section
of 0 if there is a convex setK such that all points of0 that are in the interior ofK
belong toS, and all points of0 that are in the exterior ofK do not belong toS. We
make no assumption on the lattice points on the boundary ofK ; this allows incremental
construction of sections for all numbers of points inS.

To obtain results, we introduce an additional structure on the pointsets with many unit
distances by counting only those unit distances that occur in a few fixed directions. Let
S⊂ R2 be a set ofn points and letT ⊂ R2 be a set ofk unit vectors withT ∩ (−T) = ∅
(we count each direction only once), and let

f (S, T) := |{(x, y) ∈ S× S | x − y ∈ T}|
be the number of unit distances inS which occur in directions fromT . We study now
the function f (n, k) defined as the maximum off (S, T) over all such setsSof n points
andT of k unit vectors. Trivially f (n, 1) = n − 1. The unit distance graphs with unit
distances in two directions are subgraphs of the union of disjoint copies of the square
lattice graph; the maximum edge-number of a subgraph of the square-lattice graph was
determined by Harary and Harborth [10], so we havef (n, 2) = b2n − 2

√
nc. The

maximum number of edges in the triangular-lattice graph follows from a disk-packing
theorem by Harborth [11]; this suggests thatf (n, 3) = b3n−√12n− 3c. We prove:

Theorem. For each fixed k we have f(n, k) = kn−2(√n), and for k≥ 3 there is a
finite number of nonisometric lattices0k,1, . . . , 0k,lk such that for each sufficiently large
n > n0(k) each extremal set pair Sn,k, Tn,k is a pair of subsets of one of the0k,i .

There is always an extremal set Sn,k that is, with the exception of at most O(
√

n)
points, a section of that0k,i which is bounded by edges parallel to the vectors from Tn,k.

So for a fixed number of directions and a large number of points the extremal sets
have a lattice section structure, and they are “equilateral sections” (see Lemma 2) like
the set in Fig. 2. If the numbersn0(k)were small, this would imply the Erd˝os conjecture,
since each extremal set for the unrestricted maximum number of unit distances must be
an extremal set for some number of directionsk; but the Schade sets show that we cannot
do without the lower boundsn0(k).

3. The Proof

In the following we denote for any pointsetX the unit distance graph ofX ⊂ R2 by
G(X), and if additionally a setY ⊂ R2 of vectors is given, and the graph of vertex pairs
from X with a difference inY by GY(X). The edge-number of graphG is written as
e(G).

The lower boundf (n, k) ≥ kn− O(
√

n) is simple: Just select somer such that
the unit-distance graphG(r Z2) is regular of degree at least 2k, e.g.,r = 5−(1/2)dk/4e.
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Fig. 2

Then we can select a set ofk unitvectorsT ⊂ r Z2 (with T ∩ (−T) = ∅) and a set
of n points S := r (Z2 ∩ [1,

√
n]2). In this setS, each point with distance at least 1

to the boundary of the section (each point in [r + 1, r
√

n − 1]2) has a neighbor in
S in each direction ofT , so each of these points has degree 2k in GT (S). Therefore
f (n, k) ≥ e(GT (S)) > k(n− (4/r )√n).

The theorem is now obtained from the following two lemmas:

Lemma 1. For each k≥ 3there is a finite number of nonisometric lattices0k,1, . . . , 0k,lk
such that for all n> n0(k) each extremal pair(Sn,k, Tn,k) is isometric to a pair of subsets
of one of the0k,i .

Lemma 2. Let0 ⊂ R2 be a lattice and let T⊂ 0\{0} be a set of vectors such that the
generated graph GT (0) is connected, and T∪ (−T) does not contain three collinear
vectors. Let k := 1

2|T ∪ (−T)|.
Let f(n)denote the maximum number of edges of a subgraph of GT (0)with n vertices,

and let h(n) denote the maximum edge-number in an n-vertex subgraph that is generated
by a section of0. Then for n≥ n0(T, 0) the extremal sections for h(n) are sections
bounded by edges parallel to the graph-edges which are of relative(graph-) lengths that
differ by at most one, and the extremal subsets for f(n) differ from the extremal sections
by at most O(

√
n) points. Also f(n) = h(n)+ O(1) = kn− cT,0

√
n+2(1).



On Point Sets with Many Unit Distances in Few Directions 359

The assumption of no collinear generating vectors is necessary for the “almost equi-
lateral structure” of the extremal sections, as can be seen by the graph generated onZ2

by the vectors{(1, 0), (0, 1), (0, 2)}. We conjecture that forn ≥ n0(T, 0) the extremal
subsets are sections, sof (n) = h(n).

Proof of Lemma1. Let (S, T) denote an extremal pair forf (n, k). By translation in-
variance we may assume 0∈ S. If GT (S)were not connected, we could move one of the
connected components against the others until a new unit vector ofT occurs; but then
the set was not extremal. So for extremalS the graphGT (S) is connected. Therefore
each point ofS can be reached from the point 0 by following theT-edges; thus each
point of S is an integer linear combination ofT-vectors:S⊂ 〈T〉Z .

Let T = {t1, . . . , tk}, so GT (S) has maximum degree 2k. For each decomposition
T = T1 ∪ · · · ∪ Tl into disjoint subsets we have

kn− e(GT (S)) =
l∑

i=1

(|Ti |n− e(GTi (S))),

and each summand is positive,e(GTi (S)) ≤ f (|S|, |Ti |) < |Ti | |S|. Since eachti is a
unit vector, andT ∩ (−T) = ∅, any two distinctti 6= tj are rationally independent.
Therefore each graphG{ti ,tj }(S) is ann = |S|-vertex subgraph of the classical square
lattice graph.G(Z2) = P∞× P∞. By the theorem of Harary and Harborth [10] we have
e(G{ti ,tj }(S)) ≤ b2n− 2

√
nc. Taking the sum over all 2-element subsets ofT we find

e(GT (S)) ≤ kn− k
√

n.

This provesf (n, k) = kn−2(√n).
Suppose now thatT contains three rationally independent unit vectorst1, t2, t3. Then

the graphG{t1,t2,t3}(S) is isomorphic to a subgraph of the unit distance graphG(Z3)

of the three-dimensional integer lattice. For we can assign each point ofS in each
connected component ofG{t1,t2,t3}(S) integer coordinates relative to the basist1, t2, t3
and an arbitrary starting point of that component, with the edges corresponding to the
point pairs with only one coordinate differing by exactly one. But ann-vertex subgraph
of the three-dimensional lattice graphG(Z3) contains less than 3n− ( 9

2π)
1/3n2/3 edges

(the exact maximum number is not known; probably cubic sections are optimal. An upper
bound on the numbereof unit distances in a setX ⊂ Z3 of n points is easily obtained by
considering the Minkowski sumY := X+ [−1/2, 1

2]3. If A is the surface area ofY, then
3n− 1

2 A ≥ e. The volume ofY is at leastn, so by the isoperimetric theorem we have
A ≥ (36πn2)1/3, and thuse≤ 3n− ( 9

2π)
1/3n2/3.). So if for an extremal pair(S, T) the

setT contains three rationally independent vectors, thenf (n, k) ≤ kn− ( 9
2π)

1/3n2/3;
this is forn > n0(k) a contradiction to our lower boundf (n, k) > kn−ck

√
n. Therefore

the set of integer combinations〈T〉Z is for fixedk and sufficiently largen always a lattice
(rational dimension 2), andS is a subset of this lattice.

Next we will show that for each fixedk ≥ 3 there are only finitely many nonisometric
lattices that can occur as the underlying lattice0 := 〈T〉Z of the extremal sets(S, T)
(which we again assume to be an extremal pair forf (n, k)). 0 is the thinnest lattice
that containsS. Now let ta, tb ∈ T be two distinct directions fromT , then 2n− 2

√
n ≥
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e(G{ta,tb}(S)) ≥ 2n− ck
√

n, since the defect in two directions is smaller than the total
defectck

√
n. The vectorsta, tb generate a sublattice〈ta, tb〉Z ⊂ 0, and0/〈ta, tb〉Z

consists of a finite numberr = r (ta, tb) of cosets01, . . . , 0r , which are translates of the
sublattice〈ta, tb〉Z . The remaining unit vectorsti (i 6= a, b) of T operate on these cosets,
since they are lattice vectors in0; so for each0j , ti the sum set0j + ti is another of those
finitely many cosets. But at least|S∩ 0j | − |S∩ (0j + ti )| of the points ofS∩ 0j have
no neighbor inS in the directionti . Taking the sum over all cosets0j and all directions
ti we find

r∑
j=1

k∑
i=1

||S∩ 0j | − |S∩ (0j + ti )|| ≤ kn− f (n, k) ≤ ck
√

n.

SinceT generates0, the graph generated by theti on the cosets is connected; so we get
from the previous inequality, especially,

r
max
i=1
|S∩ 0i | −

r
min
i=1
|S∩ 0i | ≤ ck

√
n.

Now letni := |S∩ 0i |. Then the graphG{ta,tb}(S∩ 0i ) contains between theni vertices
at mostb2ni − 2

√
ni c edges. SinceG{ta,tb}(S) contains at least 2n − ck

√
n edges, we

have
r∑

i=1

√
ni ≤ ck

2

√
n. (∗)

We now look for the minimum of
∑r

i=1
√

ni under the restrictions
∑r

i=1 ni = n,
ni ≥ 0, for i = 1, . . . , r and maxri=1 ni − minr

i=1 ni ≤ ck
√

n. Since
√

x is a concave
function, for the extremal choice of theni each variable (with at most one exception)
will meet a restriction of the admissible set. So among theni there are only two distinct
values,

r
max
i=1

ni =:
n

r
+ αck

√
n and

r
min
i=1

ni =:
n

r
+ (α − 1)ck

√
n,

where the last has to be nonnegative.
If minr

i=1 ni ≥ n/2r , then we have

r∑
i=1

√
ni > r

√
r

min
i=1

ni ≥ r

√
n

2r
=
√

r

2

√
n.

By (∗) we find that in this caser is bounded by a constant for fixedk and sufficiently
largen.

If 0 ≤ minr
i=1 ni < n/2r , that is, 0≤ n/r + (α − 1)ck

√
n < n/2r , we obtain

maxr
i=1 ni = minr

i=1 ni + ck
√

n ≥ ck
√

n, and(1− α) ≥ √n/2ckr . Since
∑r

i=1 ni = n
holds, the smaller value of theni must occurαr times and the larger value(1− α)r
times. Therefore we have

r∑
i=1

√
ni = (1− α)r

√
r

max
i=1

ni + αr

√
r

min
i=1

ni
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≥ (1− α)r
√

ck
√

n ≥
√

n

2ckr
r
√

ck
√

n

≥ 1

2
√

ck
n3/4.

By (∗) we find that this case cannot occur for largen.
So for fixedk and sufficiently largen there are only finitely many possible values for

r (0, T) = maxr (ta, tb). To show now that for boundedr (0, T) andk ≥ 3 there are only
finitely many nonisometric lattices0 possible, we look at the sublattices of0 generated
by the three vectorsti1, ti2, ti3. If all these sublattices are known (up to isometry), then0

is determined (up to isometry), since0 is generated byT . Sinceti1, ti2, ti3 are vectors of
a lattice, they are rationally dependent, so there are relatively prime integersa1,a2,a3

such thata1ti1 + a2ti2 + a3ti3 = 0. These integersai are nonzero, sinceT ∩ (−T) = ∅,
ti 6= ±tj for i 6= j . By the coefficientsa1,a2,a3 and the fact that allti are unit vectors,
the lattice〈ti1, ti2, ti3〉Z is determined up to isometry, since‖ti1‖ = 1, ‖ti2‖ = 1, and
cos(∠ti1, ti2) = (ti1, ti2) = (a2

3 − a2
2 − a2

1)/2a1a2. We now take the sublattice generated
by the two vectorsti1 and ti2 of the lattice generated by all three vectors〈ti1, ti2, ti3〉Z ,
which itself is a sublattice of0. The number of cosets of〈ti1, ti2〉Z in 0 is at least as
large as the number of cosets of〈ti1, ti2〉Z in 〈ti1, ti2, ti3〉Z ; but that is|a3|. Therefore the
coefficientsa1,a2,a3 are bounded in absolute value byr . So for each sublattice of0
generated by three unit vectors there are at most(2r )3 nonisometric possibilities. So
for fixed k and sufficiently largen there are only finitely many nonisometric lattices0
possible. This proves Lemma 1.

Proof of Lemma2. Let Sn andXn denote the extremal subset and section ofn points,
respectively. Each point of an extremal set (Xn+1 or Sn+1) that is a vertex of the convex
hull of that set has degree at mostk in the graph, since all itsT ∪ (−T)-neighbors
are on one side of a supporting line through that point. Removing that point gives
f (n+1) ≤ f (n)+k andh(n+1) ≤ h(n)+k for all n. We are therefore most interested
in the numbersn for which f or h grow by at mostk− 1.

In the first step we show that in the extremal sets (Xn or Sn) most points have a big
neighborhood in which no point of0 is missing in the extremal set.

A square section of0 gives a lower boundf (n) ≥ h(n) ≥ kn− O(
√

n). Therefore
in Sn as well as inXn all points withO(

√
n) exceptions have full degree 2k, i.e., if p

belongs to the extremal set, then also{p± ti | i = 1, . . . , k}. For each fixed distancedG

in the graph, theO(
√

n) points that do not have full degree have onlyO(
√

n) neighbors
with graph-distance (inGT (0)) at mostdG; so for each fixedrG all but O(

√
n) points

in the extremal sets are centers of balls of radiusrG (in the graph-metric ofGT (0)) that
completely belong to the extremal sets. For each Euclidean ball with Euclidean radiusr E

around a point of0 there is a numberrG such that the ball of radiusrG in the graph-metric
contains the Euclidean ball of radiusr E. Therefore the same statement also holds for
the Euclidean metric: for each fixed Euclidean distancedE all but O(

√
n) points of the

extremal set have distance at leastdE to the nearest lattice point outside the extremal set.
In the next step we show that in each extremal set most points are contained in sections

that are bounded by edges parallel to the vectors ofT .
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Let P denote the open 0-symmetric convex 2k-gon, whose edgevectors are the vectors
of T ∪ (−T) and letZ be the union of all those translates ofP that do not contain a
lattice point from outside the extremal set (0\Xn or 0\Sn, respectively). SinceP has
finite Euclidean diameter, all butO(

√
n) points of the extremal set are centers of a

translate ofP which is completely inside the extremal set, soZ contains all butO(
√

n)
points of the extremal set.Z consists of finitely many connected components, each of
which is an open polygon, bounded by edges parallel to the directions ofT . We denote
these connected components byZ1, . . . , Zl . In the following we denote as the relative
length of a segment with directiont ∈ T the ratio of its length to that oft .

We claim that for thosen for which the function associated with the extremal set (h or
f ) grows by less thank, these connected components must indeed be convex polygons.
For by the construction ofP we have the property that ifq is a point outsideP and
t ∈ T ∪ (−T) is a vector such that the ray with directiont starting inq intersects the
interior of P, then at least one of the pointsq + t,q + 2t,q + 3t, . . . is in the interior
of P. This property carries over to any union of translates ofP, so especially to each
connected component ofZ + P.

Suppose now that one of the connected componentsZi is not convex, and increase
the extremal set by all those points inside the smallest open convex polygon that contains
Zi and is bounded by edges parallel to the directions ofT . Letν be the number of added
vertices andη the number of added edges; we claimη ≥ kν, so f (n+ ν) ≥ f (n)+ kν
which contradicts the assumption onn. To count the number of additional edges we
note that each edge{q,q+ ti } belongs to exactly one infinite sequence(q+ati )∞a=−∞ (a
one-dimensional sublattice), and each such sequence that intersects the enlarged polygon
already intersects the original polygonZi . So if such a sequence contains new points, it
already contained at least one old point of the extremal set, but the points of the enlarged
set form an interval in that sequence. Then in that sequence there are at least as many
new edges as new points. But each new point belongs to exactlyk such sequences, and
each new edge to exactly 1, soη ≥ kν, which proves the claim.

Now we investigate the structure of the boundary of such a section component.
Since eachZi is convex and is the union of translates ofP, each edge ofZi (which

is the direction of some vectort ∈ T) contains at least one edge of the translate ofP
touching that edge ofZi , so it is at least as long as that vectort . We call this edge ofZi

trivial if it is exactly as long ast , and nontrivial if it is longer. A nontrivial edgea(a+ σ t)
must contain lattice pointsp from the complement of the extremal set in each part of
relative length greater than 1, since there are points that block movement ofP across
that edge in each part of the edge. Sincep is a lattice point andt is a lattice vector, there
is at least one one-dimensional sublattice. . . p − t, p, p + t, . . . of which a segment
6 := {p+ zt | z ∈ Z} ∩ a(a+ σ t) of bσc or bσc+ 1 points is contained in the edge (if
t is not a primitive lattice-vector, there will be several such sublattices).6 defines a path
in GT (0), and each of the points of6 (with the possible exception of the endpointa and
a+ σ t of the segment) has alreadyk− 1 neighbors in the extremal set. So if there is a
point of6 already belonging to the extremal set, and it has a neighbor in6 (that is not
one of the endpoints of the segment), then this neighbor could be added to the extremal
set givingk new edges. So for thosen in which the associated function (f or h) grows
only byk− 1, each such6 must either completely belong to the extremal set (possibly
excepting the endpoints), or completely belong to its complement; and each nontrivial
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edge of aZi will contain at least one such6 that completely belongs to the complement of
the extremal set (since there are missing points on the edge that stop movement across it).

We also note that the existence of nontrivial edges implies the possibility to add a
point of degree at leastk − 1; and in an extremal set there have to be nontrivial edges.
For a connected component with only trivial edges contains onlyO(1) points, among
them several that are not of full degree 2k in the graph of the extremal set. But there
are at mostO(

√
n) such points, so not alln points of the extremal set can be contained

in connected components with only trivial edges. So for alln ≥ n0(T, 0) we have
k ≥ f (n+ 1)− f (n) ≥ k− 1 andk ≥ h(n+ 1)− h(n) ≥ k− 1.

With this information we can now determine the structure of the extremal sectionsXn

and thus prove the first statement of the lemma. Since the extremal sections are generated
by convex sets, they can contain only one connected componentZ. If there are points
of Xn in the exterior of this component, then any edge of the component that separates
these points fromZ must have relative length at most 2, for otherwise the convexity of
the generating set would force a segment of relative length 1 of the edge to contain only
points of Xn, contradicting the existence of points of0\Xn in every edge-segment of
relative length 1. But there are onlyO(1) points beyond such a short edge possible, since
they must lie in the triangle bounded by the lines through the previous and following
edges. So we can remove thesel1 points beyond the short edge (losing at mostk edges
per points, since we can remove them in the order in which they become available as
vertices of the convex hull) as well as thel2 points on the short edge (losing at mostkl2−1
edges, since they form a union of paths, each point withk − 1 neighbors on the other
side of the short edge), withl1+ l2 = O(1). But sinceZ contains all butO(

√
n) points

of Xn, there must be a side of lengthÄ(
√

n), along which we can select a missing one-
dimensional sublattice6 as described above. This6 determines a path of lengthÄ(

√
n)

in GT (0\Xn), of which we can add a subpath of lengthl1 + l2 to the setXn (replacing
the points on and beyond the short-edge we removed). This gives againk(l1 + l2) − 1
new edges, it therefore does not decrease the edge-number, but the new graph allows
extension by further points, each givingk new edges (extending the subpath of6). So
for thosen > n0(T, 0) with h(n+ 1) = h(n) + (k − 1) this cannot happen. For those
n the extremal sections are generated by a polygon withT-parallel edges, and for the
othern in between we can obtain extremal sections by removing points along an edge.

For thosen with h(n+ 1) = h(n)+ (k− 1) the edges of the extremal sets must have
almost equal relative lengths: it cannot happen that we remove a path ofl vertices along
one edge ofZ (losingkl − 1 graph-edges) and find another edge ofZ on which there
is a missing path6 of lengthl ∗ ≥ l + 1 (in which case we could addl + 1 points with
k(l + 1)− 1 new edges, contradicting the assumption onh(n+ 1)).

So the extremal sectionsXn are generated by polygons withT-parallel edges of al-
most equal relative length (as a multiple of the corresponding vector ofT). So each edge
has a length ofαt

√
n+2(1). To count the number of edges inXn, we note that outside

the neighborhoods of the 2k vertices of the generating polygon, we lose edges only along
the polygon-edges, at a rate proportional to the length of the edge (the constant of course
also depending on the direction). This gives the asymptotics claimed in the lemma

h(n) = kn− cT,0
√

n+2(1).
We also note that if we have a set consisting of a section ofn ≥ n0(T, 0) vertices and
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any number of arbitrary further vertices, we can extend this set by any given numberm
of vertices in such a way that we gain at leasth(n + m) − h(n) − 1 additional edges.
To prove this, we extend at the same time the section in the given set and the optimal
section and compare the numbers of edges. The points are added in several stages using
m0+m1+ · · · +mr = m points, each going until either there are no further points left
or we have reached a number of pointsn+m0 + · · · +mi for which h grows only by
k−1 (so a path along the boundary of the extremal section has been completed). We first
disregard the further points outside the given section, and count only those edges going
from the added points to the section. Letm0 = min{ j ≥ 0 | h(n+ j +1) < h(n+ j )+k}
andmi+1 = min{ j ≥ 1 | h(n+m0+· · ·+mi + j +1) < h(n+m0+· · ·+mi + j )+k}.
The extremal section of a given number of points minimizes the maximum relative length
of its boundary edges, so the section of the given set always has an edge of at least the
length of the edge of the extremal set. This edge may already contain some points of the
section, after filling it up we can start a new edge, so we can always add themi points in
such a way that we gain at leastkmi − 1 new edges. For alli > 0 we have by definition
h(n+m0+· · ·+mi )−h(n+m0+· · ·+mi−1) = kmi−1. Onlyh(n+m0)−h(n) = km0.
This proves the claim, if there are no further points. For each further point we have met
in our construction, we have to add a point to the final section with as many edges going
to the section as we counted for the point when we met it. We met these points as parts
of edge-paths being filled up, and since the edges of the final section are at least as long
as the edge-length when we met them, we can just add such paths again, which proves
the claim.

Now we have to determine the structure of the extremal subsets; of these we already
know that they consist of someT-parallel convex sectionsZ1, . . . , Zl and at mostO(

√
n)

further scattered points.
Letni := |0∩Zi | be the number of points ofSn in Zi . By the isoperimetric inequality

we find that the boundary ofZi has lengthÄ(
√

ni ), so there are at leastÄ(
√

ni ) points
in Zi ∩ Sn which do not have the full degree inGT (Sn). Since the total number of these
points inSn is O(

√
n), we have

∑l
i=1
√

ni ≤ α√n. Using
∑

i ni = n− O(
√

n) we find
maxi ni ≥ εn; so there is a big connected component. Also we note that there are only
O(
√

n) connected components, since each summand is at least 1.
All those points ofSn that do not lie in any of theZi will nonetheless be near one of

the Zi , the distance will remain bounded by a constantδ. For each point ofSn that does
not belong to any of theZi has a graph-distance at mostd to a point ofSn that does not
have full degree inGT (Sn). So if in the graph-metric ofGT (Sn) there is a ball with a
big radiusρ around a point ofSn that contains only points which do not belong to any
Zi (n̂ ≥ ρ such points), then the average degree in the interior of that ball is at most
2k − ε(d), and the number of edges leaving the ball is at mostO(

√
n̂). It follows that

f (n− n̂) ≥ f (n)− (2k− ε)n̂− O(
√

n̂); for sufficiently largen̂, i.e., sufficiently large
radiusρ, this gives a contradiction tof (n) ≥ f (n−n̂)+ f (n̂) ≥ f (n−n̂)+kn̂−O(

√
n̂).

So the maximum distanceρ of a point not belonging to anyZi to the nearest point in a
Zi stays bounded:ρ = O(1).

Let Yi ⊂ R2 denote the set of points with distance at mostρ to Zi . The union
⋃l

i=1 Yi

contains all points ofSn. Two setsYi , Yj can overlap, but for any setYi the total area
overlapped by otherYj is bounded by a constant. For ifYi is overlapped along an edge
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with directionta by other setsYj with a total lengthλ, then we can increaseSn by all
those points on parallels to that edge that lie betweenZi and Zj . These points can be
partitioned as above in arithmetic progressions with a differenceta (one-dimensional
sublattices), where the number of distinct such progressions that fits betweenZi andZj

is bounded by the distanceO(ρ) = O(1). In each such sequencep, p+ ta, p+ 2ta, . . .
the first point generates at leastk−1 new edges, and all further points (till the end ofZi )
generate at leastk new edges. But as soon as these parallels reachZj , each point gives
at least one further edge across toZj , which givesÄ(λ) further edges. So if we added a
total ofµ new points, we got at leastkµ− O(ρ)+Ä(λ) additional edges, which gives
a contradiction tof (n+ µ) ≤ f (n)+ kµ unlessλ stays bounded by a constant.

If there is only one connected component, the claim of the lemma follows directly. So
we assume there are several componentsZ1, Z2, . . ., which are ordered with decreasing
sizeni . Also letmi := |(Yi \Zi )∩Sn|. For each constantσ the claim of the proof follows
for sufficiently bign > n0(σ ), if n2 < σ holds, since there are only at mostO(

√
n)

components. So we can assume thatn2 gets arbitrarily big.
Suppose now thatm2 ≤ 1

2n2 holds. Each setYi contains at mosth(ni )+ kmi + O(1)
edges: at mosth(ni ) within Zi , at mostkmi edges by shelling those points ofYi \Zi

which are not overlapped by anotherYj , and at mostO(1) edges from thoseO(1) points,
in whichYi is overlapped by otherYj .

If we now remove then2+m2 points ofSn∩Y2, and extendZ1 by this number of points
we lose at mosth(n2)+km2+O(1)edges inY2 and gain at leasth(n2+m2+n1)−h(n1)−1
edges aroundZ1. But usingm2 ≤ 1

2n2 we find

(h(n2+m2+ n1)− h(n1)− 1)− (h(n2)+ km2+ O(1))

= (kn2+ km2− ck(
√

n2+m2+ n1−√n1)+ O(1))

− (kn2+ km2− ck
√

n2+ O(1))

= −ck
n2+m2√

n1+ n2+m2+√n1
+ ck
√

n2− O(1)

> −ck
n2+m2

2
√

n1
+ ck
√

n2− O(1)

>
ck

4

√
n2− O(1),

so for sufficiently bign2 this increased the number of edges, a contradiction to the
maximality ofSn.

And finally, if m2 >
1
2n2 holds andn2 is sufficiently large, then the setZ2 is not

“round,” but in one direction of lengthÄ(n2), and orthogonal to that of width bounded
by a constant. In that case a positive fraction of the points ofZ2 do not have full degree
2k; by removing the points ofY2 we therefore lose at mostkm2+ (k− ε)n2 edges, and
by increasingZ1 we gain again, at least,

kn2+ km2− ck(
√

n1+ n2+m2−√n1) ≥ kn2+ km2− O(
√

n2)

edges (m2 = O(n2)), which again generates for sufficiently largen2 a contradiction.
So all butO(

√
n) points ofSn are in the first connected component, which was shown

to be a convex polygonal section of0 bounded by edges parallel toT . Since we can
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remove them= O(
√

n) outside points as they become available as vertices of the con-
vex hull of the set, we have at mosth(n−m)+kmedges; since

√
n−√n−m= O(1),

we havef (n) = h(n)+ O(1). But this implies that the edge-lengths of that component
can differ by at mostO(1) from the edge-lengths of the optimal section, so the optimal
subset differs from the optimal section by at mostO(

√
n) points.

This completes the proof of Lemma 2 and the theorem.
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