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Abstract. We study the problem of the maximum number of unit distances among
points in the plane, under the additional restriction that we count only those unit distances
that occur in a fixed set dfdirections, taking the maximum over all setsxgfoints and all

sets ok directions. We prove that, for fixddand sufficiently large > nq(k), the extremal

sets are essentially sections of lattices, bounded by edges parallektditeetions and of
equal length.

1. Introduction

The problem of the maximum number of unit distances is perhaps the simplest-sounding
of Erdds’s many combinatorial geometry problems; nonetheless it turned out to be a very
difficult problem which is still far from solution. The question “How often can the same
distance appear amomgpoints in the plane?” was first studied by Bsdifi his 1946
paper [9], where he constructed an upper bound of o@i@®?) and a lower bound

of order Q2 (neflogn/loglogmy " the |ast by taking a square section of a properly scaled
integer lattice. The upper bound was then reduced in several steps [1], [D2ht&)

[16]. Since the first proof was very complicated, alternative proofs were sought ([5] by
“random resampling,” [13] by use of the VC-dimension) until 1996I&ty found a very
elegant proof using a crossing-number argument [17].

There has been no change in the lower bound: although triangular lattice sections
seem to give slightly better numbers than square lattice sections, they have the same
asymptotics, and lattice sections are still the best-known constructioos Eegéatedly
offered $250 for an upper bound which @(n**) for all ¢ > 0 and $500 for an
upper boundO (nefloan/loglogmy - Exact values and extremal sets for up to 14 points
(Fig. 1) were determined by Schade [15] (see also [2]). Also many related problems
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Fig. 1

were discussed, e.g., the maximum number of unit distances in other metric spaces,
higher dimensions, convex or general positions, of smallest or largest distances, etc. (see
[3] for further references).

The original problem, however, seems to have exhausted the available methods with
the O(n*3)-bound. All known proofs of this upper bound used as main geometric in-
formation the fact that any two unit circles intersect in at most two points; and this
information is used best possible in that bound, since there are strictly convex norms on
R? (which have the same intersection pattern) for whiof/® unit distances among
points are possible [3]. Attempts to enumerate the small excluded substructures of unit
distance graphs [8], [14] did not yield any other excluded substructure that could be used
to reduce this upper bound. Also the Schade sets do not support the implicit belief that
lattice sections are extremal sets, since the larger sets are not subsets of any lattice [3],
although the rational dimension is still small (they are generated by four unit vectors).

In the following all points will be in the plane, and we will distinguish pointsets only
up to isometry.
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2. The Result

In the following we try to avoid these difficulties by proving structural results for the
extremal sets. Since a lattice subset structure in itself is rather useless (for it may be a
very thin subset), we aim for a lattice section structure. We call &setl" a section
of T if there is a convex seK such that all points of* that are in the interior oK
belong toS, and all points of” that are in the exterior oK do not belong taS. We
make no assumption on the lattice points on the boundaky; dfiis allows incremental
construction of sections for all numbers of pointsSn

To obtain results, we introduce an additional structure on the pointsets with many unit
distances by counting only those unit distances that occur in a few fixed directions. Let
S C R? be a set of points and lefT C R? be a set ok unit vectors withT N (—=T) = ¢
(we count each direction only once), and let

f(ST):={(X,y) e SxS|x—yeT}

be the number of unit distances $which occur in directions fronT. We study now

the functionf (n, k) defined as the maximum df(S, T) over all such setS of n points

andT of k unit vectors. Trivially f (n, 1) = n — 1. The unit distance graphs with unit
distances in two directions are subgraphs of the union of disjoint copies of the square
lattice graph; the maximum edge-number of a subgraph of the square-lattice graph was
determined by Harary and Harborth [10], so we hdw@, 2) = [2n — 2,/n]. The
maximum number of edges in the triangular-lattice graph follows from a disk-packing
theorem by Harborth [11]; this suggests thah, 3) = [3n — /12n — 3]. We prove:

Theorem. For each fixed k we have(ii, k) = kn — ®(,/n), and for k> 3 there is a
finite number of nonisometric lattic€% 1, . . ., [k, such that for each sufficiently large
n > ng(k) each extremal set pairg, Tk is & pair of subsets of one of tig;;.

There is always an extremal sefSthat is with the exception of at most (Qn)
points a section of thal' ; which is bounded by edges parallel to the vectors frgm T

So for a fixed number of directions and a large number of points the extremal sets
have a lattice section structure, and they are “equilateral sections” (see Lemma 2) like
the setin Fig. 2. If the numbenrg (k) were small, this would imply the Ead"conjecture,
since each extremal set for the unrestricted maximum number of unit distances must be
an extremal set for some number of directiinbut the Schade sets show that we cannot
do without the lower boundsg (k).

3. The Proof

In the following we denote for any pointsat the unit distance graph of ¢ R? by
G(X), and if additionally a seY c RR? of vectors is given, and the graph of vertex pairs
from X with a difference inY by Gy (X). The edge-number of gragh is written as
e(G).

The lower boundf (n, k) > kn — O(y/n) is simple: Just select sontesuch that
the unit-distance grap@(r Z?) is regular of degree at leask,2e.g.,r = 5~ &/2Tk/41,
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Fig. 2

Then we can select a set bfunitvectorsT c rz? (with T N (=T) = ¢) and a set
of n points S := r(Z? N [1, /n]?). In this setS, each point with distance at least 1
to the boundary of the section (each point in4f 1,r./n — 1]?) has a neighbor in
Sin each direction ofT, so each of these points has degr&a2G+(S). Therefore
f(n, k) > e(G1(9) > k(n — (4/r)/n).

The theorem is now obtained from the following two lemmas:

Lemmal. Foreachk> 3thereisafinite numberof nonisometriclattidgs, . . ., Ik,
such that for all n> ng(k) each extremal pai€S, «, Tn k) is isometric to a pair of subsets
of one of thd'y;.

Lemma 2. LetI' c R?be alattice and let Tc I'\ {0} be a set of vectors such that the
generated graph (') is connectedand T U (—T) does not contain three collinear
vectors Letk:= 3|T U (-T)|.

Let f(n) denote the maximum number of edges of a subgraph @f Bwvith n vertices
and let h(n) denote the maximum edge-number in an n-vertex subgraph that is generated
by a section of". Then for n> no(T, I') the extremal sections for(h) are sections
bounded by edges parallel to the graph-edges which are of rel@re@h) lengths that
differ by at most oneand the extremal subsets forrf) differ from the extremal sections
by at most @./n) points Also f(n) = h(n) + O(1) = kn—crrv/n+ O (D).
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The assumption of no collinear generating vectors is necessary for the “almost equi-
lateral structure” of the extremal sections, as can be seen by the graph generated on
by the vectorq(1, 0), (0, 1), (0, 2)}. We conjecture that fan > no(T, I') the extremal
subsets are sections, $6n) = h(n).

Proof of Lemmadl. Let(S, T) denote an extremal pair fdr(n, k). By translation in-
variance we may assume0S. If Gt (S) were not connected, we could move one of the
connected components against the others until a new unit vecioooturs; but then
the set was not extremal. So for extrensathe graphG+ (S) is connected. Therefore
each point ofS can be reached from the point 0 by following tiieedges; thus each
point of Sis an integer linear combination dfvectors:S C (T)z.

LetT = {t1,..., %}, soGt(S) has maximum degreek2For each decomposition
T = T; U--- U T, into disjoint subsets we have

|
kn—e(Gr(S)) = Y _(ITin — e(G7,(9)),
i=1

and each summand is positv&G+, (S)) < f(|S], |Ti]) < |Ti||S|. Since each; is a
unit vector, andl N (=T) = @, any two distinctt; # t; are rationally independent.
Therefore each grapBy, 1(S) is ann = |§-vertex subgraph of the classical square
lattice graphG(Z?) = Py, x Ps. By the theorem of Harary and Harborth [10] we have
&G (9) < [2n - 2,/n]. Taking the sum over all 2-element subsetd aofie find

e(Gr(S) < kn—ky/n.

This provesf (n, k) = kn— @(/n).

Suppose now that contains three rationally independent unit vecter$, t3. Then
the graphGy, 1,1, (S) is isomorphic to a subgraph of the unit distance gr&&?)
of the three-dimensional integer lattice. For we can assign each poigtimfeach
connected component @y, 1, ,;(S) integer coordinates relative to the basisty, t3
and an arbitrary starting point of that component, with the edges corresponding to the
point pairs with only one coordinate differing by exactly one. Buharertex subgraph
of the three-dimensional lattice gra@(Z®) contains less tham3- (37)%/°n?? edges
(the exact maximum number is not known; probably cubic sections are optimal. An upper
bound on the numberof unit distances in a sé¢ ¢ Z2 of n points is easily obtained by
considering the Minkowski suM := X 4+[—1/2, 1]3. If Ais the surface area df, then
3n — %A > e. The volume ofY is at leasi, so by the isoperimetric theorem we have
A > (367n?)¥3, and thuse < 3n — (37)Y/3n?32.). So if for an extremal paiS, T) the
setT contains three rationally independent vectors, tfiem, k) < kn — (37)3n?/3;
thisis forn > ng(k) a contradiction to our lower boun(n, k) > kn—cy./n. Therefore
the set of integer combination§ ) 7 is for fixedk and sufficiently large always a lattice
(rational dimension 2), an8 is a subset of this lattice.

Next we will show that for each fixekl > 3 there are only finitely many nonisometric
lattices that can occur as the underlying lattite= (T ), of the extremal setéS, T)
(which we again assume to be an extremal pair fign, k)). I' is the thinnest lattice
that containsS. Now lett,, t, € T be two distinct directions frorit, then 2y — 2,/n >



360 P. Brass

e(G.1,1(9) > 2n — c/N, since the defect in two directions is smaller than the total
defectcys/n. The vectorst,, th, generate a sublattic,, ty)z € T, and '/ (ta, tb) 2
consists of a finite number=r (t,, t,) of cosetd 4, ..., I';, which are translates of the
sublattice(ty, ty)z. The remaining unit vectotts (i # a, b) of T operate on these cosets,
since they are lattice vectorslih so for eacHj, t; the sum sefj +t; is another of those
finitely many cosets. But at leas$NT';| — |SN ('j + t)| of the points ofSN T'; have

no neighbor inSin the directiont;. Taking the sum over all coselly and all directions

ti we find

r k
Y S Tsnry— SN @ + 1)l < kn— f(n,k) < /N,

i=1i=1

SinceT generate§’, the graph generated by theon the cosets is connected; so we get
from the previous inequality, especially,

r
Max SN Ii| — Min SN Ti| < cev/n.
I= 1=

Now letn; := |SNTj|. Then the grapiGy, 1, (SN T) contains between thg vertices
at most|2n; — 2,/n;| edges. Sinc&y, 1, (S) contains at leastr2— cc/n edges, we
have

Z;wis%Jﬁ )

We now look for the minimum of"}_, ./ni under the restrictiony_; ni = n,
ni >0, fori =1,...,r and mak_, nj — minf_, nj < c/n. Since /X is a concave
function, for the extremal choice of thg each variable (with at most one exception)
will meet a restriction of the admissible set. So amonghthere are only two distinct
values,

n r n
mralxni == + ac/n and minn; =: " + (@ — D/,
I= I=
where the last has to be nonnegative.

If min{_, nj > n/2r, then we have

! r n r
;«/n—i > ryfminn > /o =\Eﬁ.

By (x) we find that in this case is bounded by a constant for fixédand sufficiently
largen.

If 0 < min_;ni < n/2r, thatis, 0< n/r + (¢ — 1)ck/N < n/2r, we obtain
max_, ni = mini_; nj + ck/N > c/N, and(1 — ) > /n/2¢r. Sinced i, ni =n
holds, the smaller value of thg must occurxr times and the larger valug — a)r
times. Therefore we have

r r
Z‘/ni = Q- /mralxni +ar‘/mi{mi
i—1 = =
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By (x) we find that this case cannot occur for large

So for fixedk and sufficiently large there are only finitely many possible values for
r (I, T) = maxr (ta, tp). To show now that for boundedI’, T) andk > 3 there are only
finitely many nonisometric latticels possible, we look at the sublatticeslofjenerated
by the three vectors , ti,, ti,. If all these sublattices are known (up to isometry), tRen
is determined (up to isometry), sinfeis generated by . Sincet;,, t;,, ti, are vectors of
a lattice, they are rationally dependent, so there are relatively prime integets as
such thaiyt;, + aot;, + asti, = 0. These integerg are nonzero, sincé N (—T) = ¢,
ti # £t; fori # j. By the coefficientsy, ay, az and the fact that ali are unit vectors,
the lattice(t; , ti,, ti,) z is determined up to isometry, sindé&, || = 1, ||t,|| = 1, and
cos/ti,, ti,) = (ti,, ti,) = (a3 — a2 — a?)/2a;a. We now take the sublattice generated
by the two vectord;, andt;, of the lattice generated by all three vectdts, t;,, ti,) 7,
which itself is a sublattice of. The number of cosets df;,, t,)z in " is at least as
large as the number of cosets(tf, t,,)z in (t, ti,, ti,)z; but that is|ag|. Therefore the
coefficientsay, ap, ag are bounded in absolute value bySo for each sublattice df
generated by three unit vectors there are at ni@st nonisometric possibilities. So
for fixed k and sufficiently largen there are only finitely many nonisometric latticés
possible. This proves Lemma 1. O

Proof of Lemm&. LetS, and X, denote the extremal subset and section pbints,
respectively. Each point of an extremal skt (; or S, ;) that is a vertex of the convex
hull of that set has degree at mdsin the graph, since all it U (—T)-neighbors
are on one side of a supporting line through that point. Removing that point gives
f(n+1) < f(n)+kandh(n+1) < h(n)+k for all n. We are therefore most interested
in the numbers for which f or h grow by at mosk — 1.

In the first step we show that in the extremal seg 0r S,) most points have a big
neighborhood in which no point df is missing in the extremal set.

A square section of gives a lower bound (n) > h(n) > kn— O(,/n). Therefore
in S, as well as inX, all points with O(,/n) exceptions have full degre&2i.e., if p
belongs to the extremal set, then a§gatt; | i = 1,..., k}. For each fixed distanak;
in the graph, thé(,/n) points that do not have full degree have ofily,/n) neighbors
with graph-distance (i1 (I")) at mostdg; so for each fixedg all but O(y/n) points
in the extremal sets are centers of balls of radigién the graph-metric o661 (T")) that
completely belong to the extremal sets. For each Euclidean ball with Euclideanmradius
around a point of there is a numbei; such that the ball of radiug in the graph-metric
contains the Euclidean ball of radiug. Therefore the same statement also holds for
the Euclidean metric: for each fixed Euclidean distaskeall but O(,/n) points of the
extremal set have distance at ledsto the nearest lattice point outside the extremal set.

In the next step we show that in each extremal set most points are contained in sections
that are bounded by edges parallel to the vectois. of
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Let P denote the open 0-symmetric convéx@on, whose edgevectors are the vectors
of T U (=T) and letZ be the union of all those translates Bfthat do not contain a
lattice point from outside the extremal s&t\(X,, or I'\ §,, respectively). Sinc® has
finite Euclidean diameter, all bud(,/n) points of the extremal set are centers of a
translate ofP which is completely inside the extremal set,Agontains all buO (\/n)
points of the extremal seZ consists of finitely many connected components, each of
which is an open polygon, bounded by edges parallel to the directiohs\we denote
these connected componentsdy, ..., Z;. In the following we denote as the relative
length of a segment with directidne T the ratio of its length to that af

We claim that for thosa for which the function associated with the extremal beir(
f) grows by less thak, these connected components must indeed be convex polygons.
For by the construction oP we have the property that ¢ is a point outsideP and
t € T U (=T) is a vector such that the ray with directibrstarting inq intersects the
interior of P, then at least one of the poimis+t, q + 2t,q + 3t, ... is in the interior
of P. This property carries over to any union of translate$pfo especially to each
connected component & + P.

Suppose now that one of the connected compongnis not convex, and increase
the extremal set by all those points inside the smallest open convex polygon that contains
Zi and is bounded by edges parallel to the directionB.dfet v be the number of added
vertices and; the number of added edges; we clajre kv, so f(n+v) > f(n) + kv
which contradicts the assumption anTo count the number of additional edges we
note that each edde, q + t;} belongs to exactly one infinite sequerigerat)3>_ (a
one-dimensional sublattice), and each such sequence that intersects the enlarged polygon
already intersects the original polygdh. So if such a sequence contains new points, it
already contained at least one old point of the extremal set, but the points of the enlarged
set form an interval in that sequence. Then in that sequence there are at least as many
new edges as new points. But each new point belongs to exastlgh sequences, and
each new edge to exactly 1, 8> kv, which proves the claim.

Now we investigate the structure of the boundary of such a section component.

Since eacty; is convex and is the union of translates®feach edge oE; (which
is the direction of some vectdre T) contains at least one edge of the translat® of
touching that edge of;, so itis at least as long as that vectovVe call this edge oZ;
trivial if it is exactly as long as, and nontrivial if it is longer. A nontrivial edg&(a + ot)
must contain lattice pointp from the complement of the extremal set in each part of
relative length greater than 1, since there are points that block movemeénaarfoss
that edge in each part of the edge. Sipds a lattice point andl is a lattice vector, there
is at least one one-dimensional sublatticep —t, p, p + t, ... of which a segment
Y:={p+zt|ze Z}na(a+ot)of |o] or o] + 1 points is contained in the edge (if
t is not a primitive lattice-vector, there will be several such sublattiGeslefines a path
in Gt (I"), and each of the points &f (with the possible exception of the endpcardand
a + ot of the segment) has alreally- 1 neighbors in the extremal set. So if there is a
point of X already belonging to the extremal set, and it has a neighbBr(that is not
one of the endpoints of the segment), then this neighbor could be added to the extremal
set givingk new edges. So for thosein which the associated functiorf (or h) grows
only byk — 1, each sucft must either completely belong to the extremal set (possibly
excepting the endpoints), or completely belong to its complement; and each nontrivial
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edge of &; will contain at least one such that completely belongs to the complement of
the extremal set (since there are missing points on the edge that stop movement across it).
We also note that the existence of nontrivial edges implies the possibility to add a
point of degree at leaét— 1; and in an extremal set there have to be nontrivial edges.
For a connected component with only trivial edges contains @) points, among
them several that are not of full degrek i the graph of the extremal set. But there
are at mosO(,/n) such points, so not afl points of the extremal set can be contained
in connected components with only trivial edges. So fornalk no(T, ") we have
k>fn+1) - f(n)>k—-1andk>h(n+1) —h(n) >k-1.
With this information we can now determine the structure of the extremal sec¢tipns
and thus prove the first statement of the lemma. Since the extremal sections are generated
by convex sets, they can contain only one connected comp@hdhthere are points
of X, in the exterior of this component, then any edge of the component that separates
these points fronZ must have relative length at most 2, for otherwise the convexity of
the generating set would force a segment of relative length 1 of the edge to contain only
points of X,,, contradicting the existence of points Bf X, in every edge-segment of
relative length 1. But there are ony(1) points beyond such a short edge possible, since
they must lie in the triangle bounded by the lines through the previous and following
edges. So we can remove théseoints beyond the short edge (losing at nlostlges
per points, since we can remove them in the order in which they become available as
vertices of the convex hull) as well as thgoints on the short edge (losing at mklst— 1
edges, since they form a union of paths, each point with1 neighbors on the other
side of the short edge), with + |1, = O(1). But sinceZ contains all buO(,/n) points
of X,, there must be a side of lengfh(,/n), along which we can select a missing one-
dimensional sublatticE as described above. Thizdetermines a path of lengh(,/n)
in Gt (I"\ Xp,), of which we can add a subpath of lendgitht |, to the setX,, (replacing
the points on and beyond the short-edge we removed). This giveslagiainl,) — 1
new edges, it therefore does not decrease the edge-number, but the new graph allows
extension by further points, each givikghew edges (extending the subpathehf So
for thosen > no(T, I') with h(n + 1) = h(n) + (k — 1) this cannot happen. For those
n the extremal sections are generated by a polygon Witfarallel edges, and for the
othern in between we can obtain extremal sections by removing points along an edge.
For thosen with h(n + 1) = h(n) + (k — 1) the edges of the extremal sets must have
almost equal relative lengths: it cannot happen that we remove a patieices along
one edge o (losingkl — 1 graph-edges) and find another edgeZadn which there
is a missing patft of lengthl* > | + 1 (in which case we could add+ 1 points with
k(l + 1) — 1 new edges, contradicting the assumptioh@m-+ 1)).
So the extremal sections, are generated by polygons wilhparallel edges of al-
most equal relative length (as a multiple of the corresponding veciby.&o each edge
has a length of;/n + ®(1). To count the number of edgesi,, we note that outside
the neighborhoods of thé&Xertices of the generating polygon, we lose edges only along
the polygon-edges, at a rate proportional to the length of the edge (the constant of course
also depending on the direction). This gives the asymptotics claimed in the lemma

h(n) =kn—crrv/n+0(1).

We also note that if we have a set consisting of a sectionzefng(T, I') vertices and
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any number of arbitrary further vertices, we can extend this set by any given number

of vertices in such a way that we gain at leagt + m) — h(n) — 1 additional edges.

To prove this, we extend at the same time the section in the given set and the optimal
section and compare the numbers of edges. The points are added in several stages using
mo + M + - - - + m, = m points, each going until either there are no further points left

or we have reached a number of pointg- mg + - - - + m; for which h grows only by

k — 1 (so a path along the boundary of the extremal section has been completed). We first
disregard the further points outside the given section, and count only those edges going
from the added points to the section. b& = min{j > 0| h(n+j+1) < h(n+j)+k}
andmj,; =min{j > 1| h(n+mp+---+mi+j+1) <hh+me+---+mj+j)+Kk}.

The extremal section of a given number of points minimizes the maximum relative length
of its boundary edges, so the section of the given set always has an edge of at least the
length of the edge of the extremal set. This edge may already contain some points of the
section, after filling it up we can start a new edge, so we can always addg fha@nts in

such a way that we gain at ledsth, — 1 new edges. For aill> 0 we have by definition
h(n+mg+---+mj)—h(n4+mg+- - -+m;_;) = km —1. Onlyh(n+mg) —h(n) = kmy.

This proves the claim, if there are no further points. For each further point we have met
in our construction, we have to add a point to the final section with as many edges going
to the section as we counted for the point when we met it. We met these points as parts
of edge-paths being filled up, and since the edges of the final section are at least as long
as the edge-length when we met them, we can just add such paths again, which proves
the claim.

Now we have to determine the structure of the extremal subsets; of these we already
know that they consist of somfeparallel convex sectiongy, . . ., Z and at mosO(,/n)
further scattered points.

Letn; := |I'N Z;| be the number of points &, in Z;. By the isoperimetric inequality
we find that the boundary &f; has lengtr2(,/ni), so there are at lea&t(,/n;) points
in Z; N §, which do not have the full degree (B (S,). Since the total number of these
points inS, is O(y/n), we haveZ!:l JNi < ay/N.Using)"; nj = n— O(/n) we find
max n; > en; so there is a big connected component. Also we note that there are only
O(4/n) connected components, since each summand is at least 1.

All those points ofS, that do not lie in any of th&; will nonetheless be near one of
the Z;, the distance will remain bounded by a constarior each point of, that does
not belong to any of th&; has a graph-distance at malsto a point ofS, that does not
have full degree irG1(S,). So if in the graph-metric 061 (S,) there is a ball with a
big radiusp around a point 0f, that contains only points which do not belong to any
Z; (h > p such points), then the average degree in the interior of that ball is at most
2k — e(d), and the number of edges leaving the ball is at n@sYA). It follows that
f(n—n) > f(n) — (2k — &) — O(V/N); for sufficiently larged, i.e., sufficiently large
radiusp, this gives a contradictiontb(n) > f(n—A)+ f (A) > f(n—A)+kA—O/N).

So the maximum distangeof a point not belonging to an¥; to the nearest point in a
Z; stays boundedy = O(2).

LetY; c R? denote the set of points with distance at most Z;. The uniorU::l Yi
contains all points of,. Two setsY;, Y; can overlap, but for any s&t the total area
overlapped by otheY; is bounded by a constant. For¥f is overlapped along an edge
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with directiont, by other setsy; with a total lengthi, then we can increasg, by all
those points on parallels to that edge that lie betwg&eand Z;. These points can be
partitioned as above in arithmetic progressions with a differén¢ene-dimensional
sublattices), where the number of distinct such progressions that fits befyvaad Z;

is bounded by the distan&2(p) = O(1). In each such sequengep+ty, p+2t,, ...
the first point generates at le&st 1 new edges, and all further points (till the end®j
generate at leagtnew edges. But as soon as these parallels réackach point gives
at least one further edge acrosszg which gives (1) further edges. So if we added a
total of x new points, we got at leakix — O(p) + Q(A) additional edges, which gives
a contradiction tof (n + u) < f(n) + ku unlessi stays bounded by a constant.

If there is only one connected component, the claim of the lemma follows directly. So
we assume there are several compongni<,, . . ., which are ordered with decreasing
sizen;. Also letm; := |(Yi\ Zi) N S,|. For each constamt the claim of the proof follows
for sufficiently bign > ng(c), if N < o holds, since there are only at ma3{/n)
components. So we can assume thagets arbitrarily big.

Suppose now thah, < %nz holds. Each séf; contains at modt(n;) + km + O(1)
edges: at modh(n;) within Z;, at mostkmy edges by shelling those points f\ Z;
which are not overlapped by anothgr and at mosO(1) edges from thos®(1) points,
in whichY; is overlapped by othey;.

If we now remove tha,+my points ofS,NY,, and extend; by this number of points
we lose at mogi(nz)+kmp+0O(1) edgesirY; and gain atleast(n,+my+n;)—h(ny)—1
edges around;. But usingm, < Zn, we find

(h(nz + my 4+ ny) — h(ny) — 1) — (h(ny) + kmy 4 O(1))

= (knp + kmp — c(+/Nz + My + Ny — /1) + O(1))
— (knp + kmp — ¢4/Nz + O(1))

N2 + My
= —C + cka/N2 — O(1
ka/n1+n2+m2+«/n1 e @
Ny +m
> —Cx 2+ 2+ck4/n - 001

2/
> 2V - 0,

so for sufficiently bign, this increased the number of edges, a contradiction to the
maximality of §,.

And finally, if my, > %ng holds andn; is sufficiently large, then the sét, is not
“round,” but in one direction of lengtk (n;), and orthogonal to that of width bounded
by a constant. In that case a positive fraction of the poin%,afo not have full degree
2k; by removing the points of, we therefore lose at moktn, + (k — ¢)n, edges, and
by increasingZ; we gain again, at least,

knp + kmp — c(+/N1 + Nz + My — /Np) > knp + kmp — O(/ny)

edges i, = O(ny)), which again generates for sufficiently langea contradiction.
So all butO(/n) points ofS, are in the first connected component, which was shown
to be a convex polygonal section Bfbounded by edges parallel To. Since we can
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remove then = O(4/n) outside points as they become available as vertices of the con-
vex hull of the set, we have at mdstn — m) + kmedges; sincg/n — /n —m = O(1),
we havef (n) = h(n) + O(1). But this implies that the edge-lengths of that component
can differ by at mos© (1) from the edge-lengths of the optimal section, so the optimal
subset differs from the optimal section by at m@xt,/n) points.

This completes the proof of Lemma 2 and the theorem. O
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