Discrete Comput Geom 19:265-290 (1998)

Geometry

© 1998 Springer-Verlag New York Inc.

How to Cut Pseudoparabolas into Segments

Hisao Tamaki and Takeshi Tokuyama

IBM Research Division, Tokyo Research Laboratory,
1623-14 Shimo-tsuruma, Yamato, Kanagawa 242, Japan

Abstract. LetI" beacollection of unboundedmonotone Jordan arcs intersecting at most
twice each other, which we call pseudoparabolas, since two axis parallel parabolas intersect
at most twice. We investigate how to cut pseudoparabolas into the minimum number of
curve segments so that each pair of segments intersect at most once. We Gige/dn

lower bound andd(n%3) upper bound on the number of cuts. We give the same bounds
for an arrangement of circles. Applying the upper bound, we giv®arr¥?) bound on

the complexity of a level in an arrangement of pseudoparabolas, a@dré#®) bound on

the complexity of a combinatorially concave chain of pseudoparabolas. We also give some
upper bounds on the number of transitions of the minimum weight matroid base when the
weight of each element changes as a quadratic function of a single parameter.

1. Introduction

Arrangements of curves in a plane is a major research target in computational geometry.
Combinatorial complexities of parts of arrangements such as a cell, mankedelg|s,
< k-levels, andk-monotone chains play key roles in designing algorithms on geometric
optimization and motion planning problems [4], [7], [14], [15].

Although arrangements of lines and line segments are most popular, an arrangement
of curves that satisfy the condition that each pair of curves intersect atanimses
for a given constans, is also important in both theory and applications [11], [16]. If
each pair of curves intersects at most once, the arrangement is called an arrangement of
pseudolines, to which many results on an arrangement of lines generalizes. For example,
the complexity of thé-level of an arrangement afpseudolines is known to b@(+/kn)
[19], [4].

We focus on the case= 2 in this paper. A familiar example of such an arrangement
is that of axis-parallel parabolas (Fig. 1), in which two curves intersect at most twice.
An arrangement of axis-parallel parabolas is used in dynamic computational geometry,
since it shows the transition of the list of pairs of points among a set of linearly moving
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Fig. 1. Arrangement of parabolas.

points sorted with respect to theip distances. The complexity of the lower envelope and
thek-level of an arrangement of parabolas gives the number of combinatorial changes
on the nearest pair and th¢h nearest pair, respectively [1]. Also, the complexity of
topological change on the, minimum spanning tree can be formulated into a problem
on an arrangement of parabolas [10].

More generally, we consider an arrangement of unbouremdnotone Jordan curves
intersecting each other at most twice. Such an arrangement is called an arrangement of
2-intersecting curves in the literature; however, for convenience’s sake, we call it an
arrangement gbseudoparabolas

It is often more difficult to analyze the complexity of an arrangement of curves than
an arrangement of lines or pseudolines. For example, the only upper bound previously
known on thek-level complexity of an arrangement of parabola®id&n), which is the
same as the bound fer k-levels [16].

The aim of this paper is to link the complexity of an arrangement of pseudoparabolas
to that of an arrangement of pseudolines. Our approach is to split pseudoparabolas by
cut points, generating an arrangemenpséudosegmenits which each pair of pseudo-
segments intersect at most once. For example, the arrangements of Fig. 1 can be converted
into an arrangement of pseudo-segments by introducing seven cuts (Fig. 2). We call the
minimum number of cuts required to make an arrangerfieimto an arrangement of
pseudosegments tleatting numbeof I'.

Fig. 2. Cut points.



How to Cut Pseudoparabolas into Segments 267
Our main results are the following two theorems:

Theorem 1.1. There exists an arrangement of axis parallel parabolas whose cutting
number isQ2 (n¥3).

Theorem 1.2. An arrangement of pseudoparabolas can be cut into an arrangement of
pseudosegments with(6%/3) cuts

We also give the same bounds for the cutting number of an arrangement of circles.

The lower bound of Theorem 1.1 is derived from the lower-bound example [4], [5]
on the complexity of cells in an arrangement of lines.

The upper bound of Theorem 1.2 is derived from an inequality ofilsais used in the
proof of his fractional-covering theorem [13], combined with extremal graph theory [2]
and a probabilistic method [3], [16]. A greedy algorithm outputs cuts attaining this upper
bound.

Combining Theorem 1.2 with the known upper bound on the level complexity of
an arrangement of pseudolines, we derive a nontri@ia®®¥?) upper bound on the
complexity of a level of an arrangement of pseudoparabolas. The technique used here
is such that any improved upper bound for pseudolines will lead to an improved upper
bound for pseudoparabolas. Thus, Theorem 1.2 establishes an important link between
the complexities of arrangements of these two types.

We also give some upper bounds on the number of transitions of the minimum weight
matroid base when the weight of each element changes as a quadratic function of a single
parametet.

2. Preliminaries

Let I be an arrangement of pseudoparabolas. The arrangement subdivides the plane
into faces. We use the terrasll, edge andvertexfor two-, one-, and zero-dimensional
faces, respectively. When two pseudoparabolas intersect twice, they form a closed curve
consisting of a segment of each pseudoparabola: we call this closed dansfamed

by these two pseudoparabolas.

The boundaries of the shaded regions in Fig. 3 are lenses. We say a lens is a 1-lens
if no curve crosses the lens. Consequently, a 1-lens consists of exactly two edges of the
arrangement. There exist no 1-lens in Fig. 3.

We define a hypergrapH (I"), whose node set is the set of edges of the arrangement
I'. A set of nodes oH (I') forms a hyperedge if and only if its corresponding set of
edges of the arrangement forms a lens.

A node covering of a hypergragh is a subset of the node set df such that every
hyperedge contains at least one node of the set.

A node covering with minimum size (number of nodes) is called a minimum covering.
The size of a minimum covering is called the covering number.

The following is a key lemma for our upper bound of the cutting number:

Lemma 2.1. The cutting number df is equal to the covering number of(R).
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Fig. 3. Lenses.

Proof. Given a minimum coverin@ of H(I"), we cut all edges of* associated with
nodes inC. Then all lens are cut, that means all pairs of curve segments after the cut
intersect at most once. On the contrary, given a minimum ciif obnsider the collection

of the edges cut. Then the associated node skit(®Y) is a covering. O

Corollary 2.2. The cutting number df is not less than the number dflenses

3. Lower Bound

We give a proof of Theorem 1.1 in this section. We use the following well-known fact
(see [4] and [5]):

Theorem 3.1. There exists a highly degenerate arrangemdrf lines which has a
set V of n vertices with total degrée(n®/3).

Due to the construction given in [4], we can further assume that each line of the
arrangement has a positive slope which is not larger than a given constant,.Say 0

Proposition 3.2. There exists an arrangement of(I) parabolas whose cutting num-
ber isQ2 (n*3).

Proof. Let.4 be the line arrangement introduced above. We consider an axis-parallel
parabolay, defined byy = cx? for a positive constarg, and draw a copy (v) which
has its peak at for eachv in V. Hence, we hava parabolas in total.

Now, we translate each line, so that the degeneracy f resolved, and each line
through a pointv = (x,, ¥,) in V is translated so that it is tangent qv). More
precisely, each line with a slogeis translated with a vectaia,/2c, a/4c), so that the
liney —y, = a(x — x,) is translated ty — y, + a%/4c = a(x — X,), which is tangent
to y (v). Note that the translation vector is independent.of
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We consider the union of the above perturbationdoénd the parabolas. Then the
number of vertices in this arrangement at which two curves are tangeiinfs®). If we
replacey (v) with its translated copy with the (infinitesimal) translation vedtir—e¢)
for a very small positives, the arrangement ha@(n*3) 1-lenses. The arrangement
hasn lines, as well a1 parabolas. However, we can replace each cyrve f(x)
with y = f(x) + x? to convert into an arrangement of parabolas with the same
combinatorial property. O

4. Upper Bound

It suffices to give an upper bound for the covering number of hypergkdgh). We
recall some notations on hypergraphs. The ded(eg of a nodex of a hypergraph is
the number of hyperedges containingThe maximum degree in a hypergraphis
denoted byd(H).

A simple k-matchingf H is a setM of hyperedges such that each node belongs
to at mostk of them. The maximum number of hyperedges in a sinkpheatching is
denoted by (H) (this is denoted byy(H) in [13]). Note thatvyn)(H) is the number
of hyperedges i . We remove the argumeht from functionsd andv if no confusion
arises. A greedy algorithm for computing a covering is the following:

1. Find a node of maximum degree;

2. Insert the node into the covering, and remove the node and all hyperedges con-
taining it fromH;

3. Ifall hyperedges are covered, Exit; Else GOTO 1;

Lovasz [13] shows that the greedy algorithm achieves a covering of size at most
logd(H) + 1 times the size of the covering bf. The following is the key inequality in
his proof. Lett be the size of the covering &f obtained by the greedy algorithm. Then

)

V1 V2 Vd—1 Vd
t< — - [ —.
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Consequently, the minimum covering numbeibfs also bounded by the right-hand
side of (1). Therefore, we want to estimatgH (I')) fork = 1,2, ..., d.

Suppose we have a simple 1-matchittjof H (I') of sizeM. Recall that a hyperedge
in H(") isalensinr.

We define a bipartite grapB(M). The vertex set i§ U S, whereS, and S, are
disjoint,| S| = |S| = |I'| = n, with associated bijectiong: S — 'andy,: S — T.

We draw an edge between a nadef S andv of S if and only if the associated
curvesy;(u) andy,(v) form a lens which is associated with a hyperedge\iiy and
y1(u) is abovey,(v) within the lens. Here, a curve is aboveanother curve: within
their lensL if the vertical downward ray from a point gnU L intersectsu.

By definition,G(M) has 2 vertices. It is clear that the number of edge&itiV) is
the size of the matching/.

First, we bound the size; (H (I'")) of the maximum simple 1-matching.

Lemma4.1. SupposéM isasimplel-matching of HI"). Then GM) does not contain
K34 as a subgraph
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Proof. Assume thaG (M) contains a copy 0K3 4. Then we have three curv€s, C,

Cz and four curveds, D, D3, D4 such that each paiC;, Dj) makes a lens, in which

Ci is aboveDj, for 1 <i < 3,1 < j < 4. Furthermore, becauske( is a 1-matching,

no edge in the arrangement constructed from these seven curves is contained in more
than one such lens. Le&(C) denote the arrangement (€,, C,, C3} and A(D) that

of {D3, Dy, D3, Dy4}. If an edgee of the arrangement is located @, ande is below

two curvesC; andC,, e must be on both lens€€,, D1) and(C,, D;). This means that

the two arrangement&(C) and A(D) intersect each other only at points that are on
the upper envelope oA(C). Similarly, those intersection points must also be on the
lower envelope ofA(D). Since there must be 12 lenses, the number of intersections
must be at least 24. However, the upper envelopeA@E) has at most 5 edges,

and the lower envelope @f(D) has at most 7 edges [1]. Because each pair of curves inter-
sects at most twice, the number of intersecting points cannot exceed 22, which is a
contradiction. O

Remark. With a more careful analysis, we can also show tBat1) does not con-
tain K3’3.

We use the following result in extremal graph theory, which can be found in [2] in a
more general form (p. 73, Lemma 7).

Lemma4.2. Let G be a bipartite graphwith n vertices on each sidevhich does

not contain K; as a subgraphSuppose G contains i yn edgesThen n(BS/) <

n
(1)

Theorem 4.3. G(M) contains Qn®?) edgesHence vy (H (I")) = O(n%3).
Proof. We substitutes = 3 andt = 4 in the above lemma, and obtajn= O(n%3). 0

Next, we show thaby(H (")) = O(n%3kY3) for generalk. In the following, we
assume X k < n/7:the casé& = 1is already dealt with and the cdse- n/7 is trivial.
We apply the probabilistic argument similar to the one Sharir [16] used for analyzing
the complexity of the< k level of curves.

Suppose we have a simdanatchingM, and associated sét. M) of lenses. Assume
M hasyy hyperedges (i.e£ (M) hasy lenses).

For each len& bounded by two curveS; andC,, an arrangement edge bns called
extremalif it contains one of the intersection points©f andC,. Obviously, there are
at most four extremal edges associated With

Now, we choose a samp¥ofr = [n/k] curves fromI". We say a len& is anear
1-lensin the sample if (1)L is a lens consisting of two curves ¥fand (2) for each
arrangement edgeof I' that is extremal irL, L is the only lens which consists of two
curves ofY and containg (not necessary as an extremal edge).
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We consider the set of near 1-lenses of the saviplnd consider the associated set
of hyperedges\p of H(Y).

Lemma4.4. M, is a simplel-matching of HY).

Proof. Suppose an edgeof the arrangement of is contained in two near 1-lensks
andL’. LetC be the curve on whickis located. The. andL’ contain intervald and

I” of C. Both intervals must contaig thus, at least one endpoint of eitHeor | " must

be contained in the other interval. Without loss of generality, we assume an endpoint of
| is contained in’. This means that an extremal edgelLoih the original arrangement

is contained irL’, which contradicts the definition of a near 1-lens. O

Now, analyze the expected number of near 1-lenses in the random SérpiensL
of L(M) becomes a near 1-lens if (1) both of its bounding curves are in the sample and
(2) no other curve contributing a lens containing an extremal edge®in the sample.
SinceM is ak-matching, the number of such curvesin (2) is at nkdst each extremal
edge. For a fixed., the number of sampleé of sizer satisfying these conditions is at
n _r 4_k2_ 2), so the probability that the lerisbecomes a near 1-lens is at least

(n _r ‘ikz_ 2)/ <p> By a standard calculation (see [3] and [16]), we have

least

)

(n—4k—2> N
r—2 >r(r—1)<1 r—2 ) -

(n) “nn-1)\" n-4k-1
]

Sincer = |n/k] and we are assuming < n/7, we have(r — 2)/(hn —4k — 1) <

2/k andr (r — 1)/n(n — 1) > k=2/2 and hence the right-hand side of (2) is at least
Tk2(1 — (2/k)* = Q(k™?). Therefore, the expected number of near 1-lenses in
Y is Q(k~2v¢). On the other hand, the bound on the size of a simple 1-matching in
the sample implies that the number of near 1-lense¥ imust beO(r®?). Solving
Q(k2v) < O((n/k)%3) for vy, we have:

Lemma 4.5. v = O(n*3kY3).

Now, we compute the right-hand side of lasz’s inequality (1):

n 13
V1 Vo Vd—1 Vg 5/3 k
T e S Rl B
12 23" T d-pnd'd (” Z: k(k+1)>

This proves Theorem 1.2.
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5. Applications
Level Complexity

LetT" be an arrangement afpseudoparabolas. Thevelof an edges of the arrangement

I is the number of edges that intersect with the vertical half-line downward from an
internal point ore. This notion is well-defined since the above number is independent
of the choice of any internal point &f It is well-known that the closure of the union of

all edges with a given levédis a connected curve and separates the plane. This curve is
called thek-level of T". The complexity of thé-level of T is the number of edges whose
level isk.

Theorem 5.1. The complexity of the k-level bfis O(n?¥/12),

Proof. Without loss of generality, we assume that the arrangement is simple, that is,
no three curves intersect at a point. We consider th&#tcutting points that cut the
pseudoparabolas @finto segments. We know that = |P| = O(n®?3). We subdivide
the plane intan + 1 slabs withm vertical lines through points d®. Inside a slab, the
arrangement can be considered as an arrangement of pseudolines.

Let X; be the number of vertices of the arrangement located intthelabS. Then
YMEX = 0m?).

Suppose that exactly curves contribute to thie-level in §. Thek-level of I' inside
S is a level of thes@; curves.

Suppose a curve is on thek’-level at the left end of the sla, and contributes to
thek-level in §. Theny must have at leagk — k’| vertices on itself in§. Therefore,
the arrangement must have at Ie@?S/tZ vertices in§. This means that, = O(/X;).

The complexity of a level ofi; pseudolines i©(n; ,/n;) [4], which is O(Xf‘/“).

Thus, the complexity of the-level of I" is O(3_™ ! X¥*) = O(m(n2/m)3/4). Since
m = O(n*?), we obtainO(n?%¥/12), O

Note that this result improves the known bounddxkn) [16] whenk > n'¥12, Also
note that the bound would be automatically improved further, if we had a better bound
either on the level complexity of an arrangement of pseudolines or on the cutting number
of pseudoparabolas.

Complexity of Combinatorial Concave Chains

Given an arrangemerf of x-monotone curves, aombinatorial concave chaifcc-
chain for short)c is anx-monotone chain in the arrangemeénsatisfying the following
concave condition: If two curves andy; intersects at a point and the chairw lies on
y; to the left of p and ony; to the right of p, respectively, them; stabsy, from below
at p (curves are directed from left to right). See Fig. 4.

Given an arrangemeiit of pseudoparabolas and a Sedf cc-chains of that arrange-
ment, achain vertexof C is a vertex ofl" at which a cc-chain of switches from one
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Fig. 4. Combinatorial concave chain.

curve of" to another; ahain edgeof C is the segment of a curve between two consec-
utive chain vertices of a cc-chain 6f To avoid confusion, we refer to an edge of the
given arrangement as anrangement edgé\Ve define théengthof a cc-chain to be the
number of chain edges of the cc-chain. We also refer to the length of a cc-chain as the
complexityof the cc-chain.

Theorem 5.2. The worst-case complexity of a cc-chain in an arrangement of n pseu-
doparabolas i2 (n*3) and O(n/6).

Proof. The lower bound can be obtained from the degenerate arrangement which was
used in Proposition 3.2. This arrangement k@) lines and2(n) “heavy” nodes
to each of which2(n/®) lines are incident. Moreover, the heavy vertices are lattice
points in an,/n x /n integral lattice of the plane (see p. 112 of [4]). We rotate the
arrangement clockwise with a suitable small angle, so that the vertical column of the
lattice is transformed into a line with a positive slope. Each “heavy” vertex is replaced by
a tiny concave chain by using a suitable perturbation. We connect the rightmost vertex of
this tiny chain with the leftmost vertex of the tiny chain of the next (from top to bottom)
lattice vertex in the same column with a very steep parabola. Moreover, we connect the
topmost lattice point in a column with the bottom lattice point in the next column using a
very sharp parabola, so that the parabola joins two concave chains into one concave chain.
See Fig. 5. Then this arrangement has a combinatorial concave chain ofdamjth).

The upper bound can be obtained by subdividing the planentol = O(n%3)
slabs given in the proof of Theorem 5.1. If there aesegments in théth slab,
the complexity of the cc-chain within the slab @(n;). SinceY\™{'n2 = O(n?),
S ™In = O(ny/m) = O(nY8), O

Theorem 5.3. The worst-case complexity of a cc-chain of n curves where each pair of
curves intersects at most three timeS2ig?/logn).

Proof. We can make any-monotone chain in a pseudoline arrangement into a combi-
natorial concave chain af 3-intersecting curves by using local changes (Fig. 6). Thus,
the theorem follows from Mata@gk’s Q (n?/logn) lower bound on the length of an
Xx-monotone chain [14] in an arrangement of pseudolines. O
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concave chain
7‘4 associated with
a heavy vertex

Fig. 5. Construction of a concave chain of sizgn®/3).

We call a set of cc-chains of an arrangemedge-disjointf no arrangement edge
is shared by more than one cc-chain in the set. We are interested in bounding the total
complexity ofk edge-disjoint cc-chains.

Theorem 5.4. LetI be an arrangement of n pseudoparabol@appose k< n~? for

some positive constaidt < 1% Then the total number of chain edges in any set of k

edge-disjoint unbounded cc-chainslbfs O(n>~¢) wheres = §/12.

Since the proof of this theorem is rather long, we delegate it to Section 7.

Transitions of Minimum Matroid Base and MST

Let E be a finite set and lgf be a family of subsets dE. The pair(E, B) is called a
matroid M(E, B), and the elements & are thebasef M (E, B), if the following two
axioms hold [18]:

(A1) ForanyB,C c EwithB#C,if Be BandC c B,C ¢ B.

Fig. 6. Local change of am-monotone chain of lines for a concave chain of 3-intersecting curves.
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(A2) ForanyB, B’ ¢ Bwith B # B’ andforanye € B— B’, there existe’ € B'—B
such that B — {e}) U {€} € B.

For instance, letl be a set of spanning trees in an undirected connected graph
G = (V, E); then(E, 7)) forms a matroid and is a set of bases [18].

The numbelB| of elements of a basB € B is independent of the choice 8f[18],
and is denoted by. Letm = |E|, and assume the elementsiBfto be indexed from
1 throughm. We assume that each elemeritas a real-valued weight; (t) that is a
function in the parametdr. The minimum (resp. maximum) weight base is the one in
which the sum of weights of elements is minimum (resp. maximum).

If the weight functions of two elements have a constant number of intersections, we
have anO(m?) trivial upper bound on the number of transitions of the minimum weight
base ofM(E, B). If w;(t) is linear, this was improved t@(mmin{,/p, /m — p})

[8], [9]. Recently, Eppstein [6] constructed a matroid with linear weights for which the
number of transitions of the minimum matroid bas&ien?3p?3).

If the weight functions are quadratic, it is not even clear if @@np) upper bound
holds. From Theorem 5.4, we have the following bound:

Theorem 5.5. If the weight functions are quadrafithe number of transitions of the
minimum weight base is @?¥*?p¥/1?) if p > m®11, and O(M?~¥??) if p < m>1%,

Proof. The locusy = wij(t) is a parabola on the-y plane for each = 1,2,..., m.
Hence, we have an arrangemennoparabolas. We assume without loss of generality
that the arrangement of parabolas is simple; otherwise, we can perturb it to obtain a
simple arrangement without decreasing the number of transitions.
Let Bmin(t) be the minimum weight &t and letl i, (t) be the set of indice$ such
thate; € Bmin(t). LetY (t) be the trajectorf(t, wj (t)) : j € Imin(t)} on thet—y plane.
Suppose that a transition occurd at tg. Then there must be a pair of badgsind
B’ such that both attain the minimum weightt@tMoreover, we can assume that there
exists an infinitesimally small positive real numbeuch thaB andB’ are the minimum
weight bases dp — ¢ andtp + ¢, respectively.
Then, from axiom (A2), there exisés ande; in E such thaB’ = (B — {&}) U {g}.
Since bothB and B’ are minimum basesy; (to) = w;j (to), and the chain
_Jwi ) for t <ty
- {wj (t) for t>tp
is combinatorial concave. Thus, we can observeYtatis a union ofp combinatorial
concave chains, so that the number of transitions is the sum of complexities of these
chains. Note that this is not the complexitydt ), since we ignore intersections between
concave chains. Hence, the theorem follows from Theorem 5.4. O

Corollary 5.6. Let G be a graph with m edges and n nodmsd suppose that each
edge has a weight function which is quadratic in a parametdriten the number of
transitions in its minimum spanning tree iS(®¥*2n1/1?) In particular, the number of
transitions of the minimum spanning tree of a complete grapskO(n*-1/12),
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Remark. For atrivial matroid, wheres is the set of all subsets of sizeof E, the
number of transitions of the minimum weight base equals the complexity qi-tbeel
of the arrangement of parabolas, and, hence, we ha@(an{mp, m?¥12}) bound by
combining Theorem 5.1 with an upper bound of complexity of the at-rpdetels [16].

6. Related Topics
Arrangement of Circles

We are given an arrangementrotircles. Although a pair of circles intersects at most
twice, a circle is not ax-monotone curve. However, we can cut each circle with its
horizontal diameter, and divide it into an upper half-circle and a lower half-circle. We
can connect two vertical downward (resp. upward) rays to an upper (resp. lower) half-
circle at its two endpoints, and obtain amonotone curve separating the plane. It is
easy to see that every pair of curves intersects at most twice.

Thus, we have a family of pseudoparabolas. We can now apply our upper bound
results in the previous section. Also, the lower bound example for the cutting number of
pseudoparabolas in Section 3 can be easily adapted to an arrangement of circles. Indeed,
we place a unit circle at each heavy vertex of the arrangemeint Proposition 3.2,
translate lines and circles so tf@tn*?) 1-lenses are created. We can replace lines with
a circle with a very large diameter without changing the combinatorial structure.

Thus, we have the following:

Theorem 6.1. Using O(n>3) cuts an arrangement of circles can be transformed to
an arrangement of pseudosegmeifftsere exists an example for whighn*3) cuts are
required

Cutting a2t Intersecting Family

Itis desired to extend the upper bound on a cutting number to that for an arrangement of
curves such that each pair of curves intersect at irtirsies. Unfortunately, in the worst
case, we need to cut &(n?) points in order to make an arrangement of 3-intersecting
curves into an arrangement of 2-intersecting curve segments. The lower-bound example
is obtained as follows: Consider an arrangemenn ¢ihes. At each vertex of the
arrangement, we locally replace one of the lines meeting there with a curve intersecting
the other line three times to make a pair of two 1-lenses as in Fig. 6. In order to cut the
curve so that each pair of curve segments intersect at most twice, we must cut one of the
pair of lenses for eact;, hence, we neef (n?) cuts.

More generally,©2(n?) cuts are needed to mak@t + 1)-intersecting family to
2t-intersecting family in the worst case. On the other hand, for a family with even
intersecting-numbers, we have the following result:

Theorem 6.2. Given an arrangement of curves in which every pair of curves intersects
at most2t times we can cut it at @n?>~Y/#®) points to make it an arrangement of curve
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segmentsn which every pair of segments intersects at n2st 1 times Here B(t) is
the minimum positive number y satisfyingysy 4tix (y), whererx (y) is the length of
a Davenport—Schinzel sequence of de@teen y characters

Proof. Consider two curveB andP’ such that is aboveP’ atx = —oo. We consider

the regionR(P, P’) of all points which is belowP’ and aboveP. Then R(P, P’)
consists oft connected components. Thel2nsL (P, P’) is the set of arrangement
edges boundindr(P, P’). It suffices to cut at least one edge in evetyléhs. Now,

we defineM and G(M) analogously to Section 3 for the hypergraph associated with
the set of 2-lenses. The only difference from the case whete 1 is the analogue of
Lemma 4.1, in which we can prove tha{M) does not contait g gt). This implies

the theorem. O

7. Proof of Theorem 5.4

Lets < 1% be a positive constant and ket= §/12. Supposk < con'~? for a sufficiently
small constanty defined later. Let” be an arrangement of pseudoparabolas and let
C be a set ok edge-disjoint unbounded cc-chainsIin Let £(I") denote the set of
lenses ofl" and E(C) the set of chain edges 6f Our goal in this section is to prove
|[E(C)| < 7n?~¢. The proof is by contradiction: we suppod&(C)| > 7n?>~¢ and devote
the whole section to derive a contradiction.

In this section, for brevity, we often refer to pseudoparaboldssimply as “parabo-
las.” We use the following notation and definitions. We say a paraBadtssteeper than
a parabola if and only if P is aboveQ at the left-infinity. If two parabola® andQ of
I, P steeper tha®, intersect at two points and thus form a lens, we denote this lens by
lens(P, Q); note thatP forms the lower boundary of this lens. For each E(C), we
denote byparab(e) the parabola of* of which e is a segment. Similarly, we denote by
chain(e) the cc-chain of that containg. For each chain edge or arrangement ezjge
denote byeft(e) (respright(e)) the left (resp. right) endvertex ef We also writdeft(L )
andright(L) to denote the left and right endvertices of lénd-or two pointsu andv in
the plane such thatlies to the left ofv (i.e., thex-coordinate ofi is smaller than that of
v), we denote bglab[u, v] the vertical closed slab whose left boundary contaimnd
whose right boundary contaims We denote byglab(u, v], slab[u, v), or slab(u, v) the
similar slab which is open at the left, right, or both boundaries, respectively. We also use
the notationslab[u, co), slab(u, co), slab(—oo, u], andslab(—oo, u) to denote slabs
unbounded in the specified direction. Moreover, when the left end of the slab is specified
by theright endvertex of an edge or leixs we abbreviatslab(right(X), -) toslab(X, -).
Similarly we abbreviatalab(-, left(X)) to slab(-, X), and use the same convention for
closed slabs.

Let E € E(C) be a set of chain edges 6f An adjacent pairof E is an ordered pair
(e, f) € E x E suchthakand f are segments of the same parabelés to the left of
f, andparab(e) = parab( f) does not contain any chain edge®fwithin slab(e, f).
We call E fully wedgedf, for every adjacent pai¢e, ) of E, there is a parabola df
that is steeper thaparab(e) and forms a lens witlparab(e) completely contained in
slab(e, f). We call a set of lense c £(I") upper-disjointf, for any two distinct lenses
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of £ whose upper boundaries are defined by the same parabola, their upper boundaries
are disjoint from each other. Given a set of chain edgetheweightof a lensL with

respect toE, denoted byweightg (L), is defined to be the number of chain edgeof

that overlap the lower boundary bf Here, and throughout this section, we say that two
curve segments overlap each other if they have an intersection of positive arc-length.
The following is our main lemma to the proof of Theorem 5.4.

Lemma7.1. GivenT andC as in the beginning of this sectipthere exist a fully
wedged set of chain edges E E(C) and an upper-disjoint set of lens€$ c L(I")
such that

> weightg. (L) > n?. )
Lel*

The subsections that follow are devoted to the proof of this lemma. The following
simple lemma directly contradicts the above lemma and completes our proof by contra-
diction.

Lemma 7.2. Let F € E(C) be any fully wedged set of chain edges and’let £(I")
be any upper-disjoint set of lens@en) | _. weightz (L) < n2.

Proof. ForeachparaboRof I, let£P denote the set of lenses®fvhose upper bound-
ary is defined byP. SinceL is upper-disjoint, the upper boundaries of the lense¥ adre
mutually disjoint. To prove the lemma, it suffices to show that_.» weightz (L) < n
for each parabol® of I.

Fix P. For each parabol@ such thatens(Q, P) € £LP, let Fq denote the set of chain
edges inF that overlap the lower boundary lehs(Q, P). Thus,|Fg| is the weight of
lens(Q, P) with respect toF. Consider a parabol@ such thatens(Q, P) € £ and
let the chain edges dfg enumerated agy, €, ..., g in the left-to-right order, where
j = |Fgl. SinceF is fully wedged, we havg — 1 distinct parabola®, . .., Pj_1 such
that eachP,, 1 < i < j — 1, is steeper tha® and forms a lens witl) completely
contained irslab(e, g 11). Thesej — 1 parabolas form lenses with with their upper
boundaries contained in the upper boundarien$(Q, P). See Fig. 7.

Thus, for eachQ such thatens(Q, P) € L7, we have a sePq of |Fg| — 1 dis-
tinct parabolas. These sely,, for Q such thatens(Q, P) € LP, are mutually dis-
joint, since the intersections of each parabol&Pi with P is confined in the upper
boundary oflens(Q, P). CollectingPq for all Q with lens(Q, P) € LP, we have
altogether(}"\ens(o.pyecr |Fol) — |£P| distinct parabolas. These parabolas must also
be distinct fromP and from eachQ such thatens(Q, P) € £F. Therefore, we have
Ylens@.prece |Fol = 1LP <n—1—|LP|, or }", e weighte (L) <n —1. O

7.1. Wedges and Scopes

In this subsection we introduce the notionsngfdgesandscopeghat will form a basis
for definingF* and£* of Lemma 7.1.
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Fig. 7. Proof of Lemma 7.2: paraboR and lense<" .

We start with a basic observation on pseudoparabolas. The following lemmais obvious
if our arrangement” consists of axis-parallel geometric parabolas: we prove it based
only on the property of pseudoparabolas.

Lemma 7.3. Let C be a cc-chain consisting of chain edgese, ..., ey in this
order from left to right Suppose thatarab(e)) is the steepest among all the parabolas
parab(g), 1 <i < m. Then C is strictly belowarab(g;) except on g

Remark. Parabolagarab(g), 1 <i < m, in the lemma above may not be mutually
distinct. The lemma impliea posteriorj however, that the steepest parabudeab(e))
is distinct fromparab(eg ) for everyi # j.

Proof. By induction onm. Form = 1 the claim is obvious. Suppose > 2 and lete,
be as in the lemma. Since the definition of a cc-chain impliesGhatbelowparab(g;)
in the neighborhood o, it suffices to show tha€ does not intersegtarab(e;) except
one;. Suppose to the contrary th@tintersectsparab(e;) in, say,slab(ej, oo) at vertex
v. We assume that is the leftmost such vertex if there are more than one. T@us,
strictly belowparab(g)) in slab(g;, v). Lete,, j < h < m, be the chain edge & that
containsv. Let parab(g) be the steepest parabola amquagab(ej;1), ..., parab(en).
By the induction hypothesiparab(e ) stays strictly above€ in slab[g;, v] except org.
In particular,parab(g) is strictly aboveright(ej) andv, which are orparab(g;). On the
other handparab(g) is strictly belowparab(gj) ong. See Fig. 8. Thereforgarab(e)
must be steeper thaarab(e; ) contradicting the assumption thatrab(e; ) is the steepest
among all the parabolasrab(g), 1 <i < m, and completing the induction step.O

This observation will be used often in the following form. See Fig. 9.

Corollary 7.4. Let P be a parabola and let,w be points on Pwith u lying to the
left of v. Let C be a bounded cc-chain from u #csuch that C is strictly below P in
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Fig. 8. Lemma 7.3parab(g;) is supposedly the steepest.

slab(u, v). Then the steepest parabola Q among those contributing chain edges to C
forms a lens with P completely containedsiab[u, v].

Letebe a chain edge @f. We say that a lenk of the arrangemertt is aleft wedge
of g, if

e the upper boundary df is defined byparab(e),
o L liesto the left ofe, more preciselyl. is contained irslab(—oo, €], and
o the lower boundary oE overlaps some chain edgedfain(e).

See Fig. 10. When is a left wedge ofe, we define thdeft scope of e delimited
by L, denoted byscope(e, L), to be the open segment pdirab(e) in slab(left(L), ).
We call a left wedgd. of e theclosest left wedgef e, and denote it bywedge(e), if
Iscope(e, L) is the minimal among all the left wedgesefThen we define thieft scope
of e, denoted byscope(e), to belscope(e, lwedge(e)), the left scope oé delimited by
the closest left wedge d; if there is no left wedge o#, thenlwedge(e) is undefined
and we selscope(e) to be the unbounded segmentpafab(e) in slab(—oo, €). Theleft
hingeof e, denoted byhinge(e) is the rightmost chain edge offiain(e) that overlaps the
lower boundary of lensvedge(e). We define the notions of right wedges, right scopes,
and right hinges analogously, with “left” and “right” swapped in the above definitions,

Fig. 9. Corollary 7.4.
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Fig. 10. L is aleft wedge ot and the dashed segmentpzfrab(e) is Iscope(e, L).

and use analogous notationedge(), rscope(), andrhinge(). Finally, we say that a set
of chain edge& < E(C) is left-sparsgresp.right-sparseg if the left scope (resp. right
scope) of anye € E does not overlap any € E.

To motivate the technical developments on wedges and scopes in the subsequent sub-
sections, we sketch how these notions will be used in defiRingnd£* of Lemma 7.1.
The definition of£* is via some left- or right-sparse st c E(C). SupposeE* is
left-sparse. Note that eaehe E* has a left wedge unless it is theftmostchain edge
of E* on a parabola, i.e., as long as there is sdme E* such that(f, e) is an adja-
cent pair ofE*, because thelscope(e) must excludef and hence is bounded. We set
L* = {lwedge(e) | e € E* andiwedge(e) is defined. Since the upper boundary of each
lens in£* is contained in one of the mutually disjoint left scopes of the chain edges of
E*, £* thus defined is upper-disjoint as required by Lemma Z*lis defined similarly
whenE* is right-sparse.

The set~* is chosen to be yet another left- or right-sparse subsE{@f. ThenF* is
fully wedged as required by Lemma 7.1. To see this(detf ) be an arbitrary adjacent
pair from F*. If F* is left-sparse, then leriwedge( ) is contained irslab(e, f) and
therefore the parabola of its lower boundary gives the parabola required in the definition
of a fully wedged set. IfF* is right-sparse, then lensvedge(e) gives the required
parabola.

More specific choices d&* andF* should be made in such a way that the weight con-
dition (3) in Lemma 7.1 is satisfied. This is the goal of the rather involved developments
in the remaining subsections.

7.2. Finding a Large Left- or Right-Sparse Set

The goal of this subsection is to find a left- or right-sparse subsEi{Gj that is large
enough for our purposes. Recall that we are suppd&iig)| > 7n=.

Lemma 7.5. There is a set of chain edges & E(C) with |E| > 8n*~% that is either
left- or right-sparse
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To prove this lemma, consider the following setoaderedpairs fromE(C):

Gleft {(e, f) € E(C) x E(C) | parab(e) = parab( f) andright(e) € Iscope(f)};
Giight = {(e, f) € E(C) x E(C) | parab(e) = parab(f) andleft(f) e rscope(e)}.

If we regardGe; as arundirectedgraph on node sé(C) (ignoring the order in each
pair), thenE € E(C) is left-sparse if and only iE is an independent set &¢. A
similar claim holds for independent sets®fgyn:. Thus, to prove Lemma 7.5, it suffices
to show that the size of the maximum independent set of e@gror Giig is at least
8n%=2¢, We achieve this via showing th@&es N Giignt has a large independent set. To
this end, we want to bound the number of pair§ig: N Grignt. We need some facts on
wedges and scopes.

Lemma 7.6. Letee E(C) be achain edgéhenchain(e), the cc-chain of containing
e, does notintersect the left or right scopes ¢ard hence stays strictly beldsecope(e)
andrscope(e)).

Proof. Suppose there is an intersectioncbhin(e) andparab(e) to the left ofe, i.e.,
in slab(—oo0, €). Let v be the rightmost such intersection. We show thas not in
the left scope of. Let C be the subchain ofhain(e) betweenv andleft(e), C =
chain(e) N slab[v, €]. By the choice ofv, C stays strictly belowparab(e) in slab(v, ).
By Corollary 7.4, there is a parabadfof ', contributing a chain edge ©, that forms a
lensL with parab(e) within slab[v, €]. Thus,L is a left wedge o€ such thaw is outside
of Iscope(e, L) D Iscope(e). An intersection othain(e) andparab(e) to the right ofe
is dealt with similarly. O

Lemma7.7. Let(e, f) be a pair in Gert N Grign. Then the cc-chainshain(e) and
chain( f) are distinct and intersect withislab(e, f).

Proof. Let(e, f) € Giert N Grignt. By the definition ofGier, right(e) is in the left scope
of f and hence, by Lemma 7.6hain( f) stays strictly belowparab( f) in slab[e, f).
Similarly, chain(e) stays strictly belowparab(e) = parab( f) inslab(e, f].In particular,
chain(e) is strictly abovechain( f) atright(e) and is strictly belowchain( f) atleft(f).
It follows that these two chains are distinct and must intersesitlne, f). |

The proof above implies that, for each pédy f) € Giert N Giignt, there is a vertex
v in slab(e, f) at whichchain(e) crosseshain( f) downward, i.e.chain(e) is above
chain( f) on the left neighborhood afand is belowchain( f) on the right neighborhood
of v. We call suchv acharge vertexf the pair(e, f). A pair in Gjert N Gyigne may have
more than one charge vertex. On the other hand, we have:

Lemma 7.8. Each vertex of I' is a charge vertex of at most one pair inefsN Giignt.

Proof. Suppose to the contrary that a verieis a charge vertex of two distinct pairs
(e1, f1) and(ey, f2) in Giert N Giignt. Let Ce andCs be the cc-chains crossingatwith
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Fig. 11. Case 1 of Lemma 7.&; intersects the right scope ef.

Ce aboveC; on the left ofv. Then from the definition of a charge vertex aboe,=
chain(e;) = chain(e;) andC¢ = chain(f;) = chain(f,). Let P, denoteparab(e;) =
parab( f;) and P, denoteparab(e;) = parab( f,).

Since(ey, f1) and(e,, f,) are distinct, eithee; # &, or f; # f,. We assume without
loss of generality that; # & and furthermore thag lies to the left ofe; on chainCe.

Casel: P, = P,. Sincee; ande; are to the left ofv and f; is to the right ofv, e, lies
betweere; and f; on Py. Since(ey, f1) € Gyignt, the right scope oé; containdeft( f1)
and hences,. In other words, chailC, intersects the right scope ef, contradicting
Lemma 7.6. See Fig. 11.

In the remaining two cases, we assume ai P,.

Case2: f; is to the left of § on chain G. Becausdey, f1) € Giign, chainCe stays
strictly below Py in slab(e;, f1). Similarly, becausée,, f2) € G, chainC; stays
strictly below P, in slab(e,, f;). Therefore,e, is strictly below P, and f; is strictly
below P, implying thatP; intersectsP; in slab(e,, f1). Letu denote this intersection.
Let C denote the cc-chain fromight(e;) to u that first followsC up to e and then
continue onP, up tou. By Corollary 7.4, there must be a parab&a&ontaining an edge
of C that forms a lens withP; within slab(ey, u). lens(P, P;) is a right wedge of;
and hencdéeft( f1) is outside of the right scope ef, a contradiction to the assumption
(e1, f1) € Giignt. See Fig. 12.

Case3: fy is to the right of § on chain G. Since(ey, f1) isin Giest N Grighy, right(ey) is
in the left scope off; andleft( f;) is in the right scope oé;. Therefore, by Lemma 7.6,
both C, and C;s stay strictly belowP; in slab(e;, f;). Consider a cc-chai€ from
right(ey) to left( f1) obtained by first followindCe up toe,, then follow P, up to f,, and
finally follow C; up toright(fy). See Fig. 13. IfP, intersectsP; within slab(e;, f,),
then, similarly, to Case 2, we have a right wedgeoih slab(e;, f;) contradicting the
assumption thateft( f;) is in the right scope o&;. Therefore,P, does not intersed?;
within slab(e,, f,) and hence chai@ stays strictly belowP;. By Corollary 7.4, thereis a
parabolaP containing a chain edg® of C that forms a lens withP; within slab(ey, f1).
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Fig. 12. Case 2 of Lemma 7.8eft(f1) is outside ofrscope(e;) because oP.

If eitherep € C, or P = P,, thenlens(P, Py) is a right wedge foe;, contradicting the
assumption thate;, f1) € Giignt. Otherwisegp € Cr and hencdens(P, Py) is a left
wedge off;, contradicting the assumption th@, f1) € Gies. O

Since the number of vertices Ihis at most 2(2) =n(n—1), Lemmas 7.7 and 7.8

imply that|Giest N Grigntl < n(n — 1).

We are now ready to prove Lemma 7.5. Eett. E(C) denote amaximum independent
set of Gier N Grignt regarded as an undirected graphB(C). To bound the size oE
from below, we use the following well-known fact that follows from @ois theorem
[17], [12].

v

Fig.13. Case 3of Lemma7.8&ns(P, Py) is aleftwedge off; and henceight(e;) is outside ofscope( f1).
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Lemma 7.9. The size of the maximum independent set of a graph with N nodes and
M edges is at least & (2M + N).

Applying this bound tdGet N Gright, With N = |E(C)| > 7n%~¢ (our supposition in
this section), a trivial bountl < n?, and the bound/ < n? obtained above, we have

|E| > 49n%?9 /(2n? + n?) > 160> %,

We still need to translate this bound to a bound on the size of the maximum independent
set of eitheiGiert Or Gright.

Let (e, ) be an adjacent pair dE. We say thatf is left-activeif (e, f) € Giet and
thate is right-activeif (e, f) € Gyignt. Let Ejert (resp. Eigny) be obtained fromE by
removing all the left-active (resp. right-active) chain edges. We claimEhat(resp.
Eiignt) is an independent set @ert (resp.Giight). TO see this, suppose to the contrary
that(e, f) € G, for somee, f € Ee. Let€ be the chain edge @ such thate, f)
is an adjacent pair of. Since the left scope of overlapse, it overlapse’ and hence
(¢, f) € Geeg. This means thaf is left-active, a contradiction to the definition Bf..

The proof thatEgn: is an independent set Giign: is similar.

We next show that eithdEen| > |I§|/2 or |Erignt > |I§|/2. For each adjacent pair
(e, f) of E, we cannot have bothleft-active andf right-active, because thé&eg, f)isin
Giert N Grignt contradicting the choice @& asan independent setGfer N Gyight. Because
there are fewer thaE| adjacent pairs of, it follows that either fewer tharE|/2 chain
edges ofE are left-active or fewer thatE|/2 chain edges oE are right-active. Thus,
either|Ejer| > |E|/2 or |Eqignt| > |E|/2: at least one of them has size at least &,

This completes the proof of Lemma 7.5. From now on, we assume without loss of
generality thatEjer| > 8n%~%.

7.3. DefiningL*

For a set of chain edgds C E(C), letlwedge(E) denote the set of lens@svedge(e) |
e € E has a left wedge Thenlwedge(Eiet), WhereEe is the left-sparse set of chain
edges obtained in the previous subsection, is a good candiddt& fbis upper disjoint,
its size is large, and each of its lenses contains a chain edge on its lower boundary.
The latter two properties are favorable when we dekrieso as to establish the weight
condition of Lemma 7.1. However, our proof requires lensegLdtto have certain
additional properties: we defin&* to be a subset dfvedge(Ee) as follows.

For each segment of a parabolalinsuch that its endpoints are verticesIafwe
define thdengthof the segment to be the number of arrangement edges on the segment.
We call a chain edgshort-scopedf the length of its left scope is at mos# /2. Define
Eshort t0 be the subset dE e consisting of the short-scoped chain edgeEgigg. Since
the left scopes of the chain edgesmBf; are mutually disjoint and there are at most
n? arrangement edges in, there are at mostr=% chain edges oE; that are not
short-scoped. Therefore, we ha®&por| > |Ejert| — 2n°~% > 6n%~%,

Sett = ¢;n*%, wherec; is a sufficiently small constant, and call a lersng (resp.
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t-shorf if the length of the lower boundary df is greater tham (resp. at most). We
defineL* to be the subset dfvedge(Eghor) CONsisting oft-long lenses.

Lemma 7.10. |£*| > 4n®>~%,

Proof. We first note thaijlwedge(Eshor)| > |Eshord — N > 5n°~%, because each
parabola of” contains at most one chain edgemf,o.: that does not have a left wedge.
Let £’ denote the subset dfedge(Er) consisting oft-short lenses. We claim that
forms a simple-matching when interpreted as a set of hyperedges in the hypergraph
H(T"). To see this, let be an arbitrary edge of the arrangemEnthere is at most one
lens of£’ such that its upper boundary contagnbecause’ is upper-disjoint. Moreover,
there are at mogt— 1 lenses ofZ’ whose lower boundary contaiesbecause each of
these lenses is identified by its left endvertex that must be amortgtHevertices on
parab(e) lining up to the left ofe. Thus every arrangement edgis contained in at most
t lenses of£’. Using the bound on the size of a simpdenatching in Lemma 4.5, we
have|£'| < O(n®3tY3) = O(n?%). Since the hidden constant in thi notation is
increasing inc;, we may choose; small enough so thdll'| < n?>~%, |t follows that
|£*| > |lwedge(Eshor| — |£'] = 4n*~%. O

We defineE* to be the subset dEgpo; cOrresponding taC*. More formally, E* =
{e € Egnort | € has a-long left wedgé, so thatL* = {lwedge(e) | e € E*}. Note that
chain edges oE* and lenses of* are in one-to-one correspondence.

7.4. Defining F*

In this subsection we define the fully wedged set of chain ed@igeis Lemma 7.1. To
establish the weight condition (3), we wahgt to be sufficiently large and its elements
to have many overlappings with the lower boundaries of the lensgs. ak/e start with
finding a large seF C E(C) such that eack € F overlaps the boundary of some lens
in £*. We later extract a fully wedged subset fréfrand define it to bd=*.

Recall the definition of left hinges. If chain edgehas a left wedge, then the left
hinge ofe, lhinge(e), is the rightmost chain edge ohain(e) that overlaps the lower
boundary of the closest left wedéyeedge(e) of e. DefineF to be{lhinge(e)| e € E*}.

By definition, eacte e F overlaps the lower boundary of some lensiin Although

we have a lower bound diE*|, this does not readily translates to a lower boundn
because a chain edge may be a left hinge of more than one chain edges. For each subset
E of E*, define themultiplicity of E to be the maximum number of chain edge £odf

which the left hinges are identical. We seek a large subsEtafith low multiplicity,

for which we need some tools.

Let e and f be distinct chain edges on a single ch@inwith e lying to the left of
f. We say that the paiie, ) is safeif parab(e) andparab( f) are distinct and intersect
within slab[e, f].

Lemma7.11. Lete,..., e, be some consecutive chain edges in a chaitisted in
the left-to-right orderlf pair (e, ey) is not safethen there is somei,1<i,j,<m,
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such thafparab(e ) andparab(g;) form a lenslens(parab(g ), parab(g;)) contained in
slab[ey, em] whose lower boundary overlapg.e

Proof. The proofis by induction om. Form = 2 the statement trivially holds because
the pair(e1, ) must be safe. Now suppose > 3 and that(e;, ey) is not safe. First
consider the casgarab(e;) = parab(ey). If pair (e1, en_1) is safe, then setting= 1
andj = m—1 satisfies the lemmé&ns(parab(ey_1), parab(e;)) is formed with its right
end beingight(en_1) and its left end being the intersection guaranteed by the definition
of the safety of the paife;, en—_1) (and therefore lying islab[e;, ey_1]). On the other
hand, if pair(e;, en_1) is not safe then the resultimmediately follows from the induction
hypothesis.

Now supposeparab(e;) # parab(ey). Without loss of generality we may assume
that parab(e;) stays strictly belowparab(ey,) within slab[e;, en]. Then chainC must
intersectparab(e;) within slabslab(ey, en). Let ey be the chain edge that contains the
rightmost such intersection, £ m" < m. If parab(e,) forms a lens withparab(e;)
within slab[ey, en], then we are done, setting= 1 andj = m’. Otherwise, the pair
(e1, ey) is not safe and our claim directly follows from the induction hypothesisC

In the following, we use the fact that the size of any simiplmatching in the hy-
pergraphH () is at mostn?~#. This follows from the upper boun®(n®3k*3) of
Lemma 4.5 and our assumptitn< con'~1%: we exercise our reserved freedom and
choosecy small enough so that the above bound holds.

Lemma 7.12. There is a subset E of ‘Ewith |[E| > n?"% whose multiplicity is at
most rf°.

Proof.  Divide each cc-chain @ into subchains so that each subchain contains exactly
n? chain edges oE*, discarding an incomplete subchain that may result at one end of
the cc-chain. Call each of these subchaitraih. We have at leagE*|/n* —k > 3n>%
trails in total. We call a traibafeif every pair of chain edges therein is safe; otherwise
it is dangerousBy the above lemma, to each dangerous trail we can associate a lens
contained in the vertical slab spanned by the trail. Since two lenses associated with two
trails of a single chain are disjoint, the collection of such associated lenses form a simple
k-matching. Therefore, applying the above bound on the size of a skaplching, at
mostn®=“ trails are dangerous and hence at least# trails are safe.

Divide each safe trail int@eft andright parts, so that each part contain exaatif /2
chain edges oE*. Let E be the subset dt* consisting of chain edges in the right parts
of all the safe trails. The size & satisfies the requirement of the lemri@} > n>=%_ It
remains to show that the multiplicity & is at mosh?. For eacte € E, define thalepth
of e, denoted bylepth(e), to be the number of chain edgestobn the subchain starting
with Ihinge (e) and ending witle. We claim thatlepth(e) < n% for everye € E. Suppose
to the contrary thadepth(e) > n% for somee € E. This implies that the subchain from
lhinge(e) to e contains the entire left part of the safe trail to whiglbelongs. LetC
denote the left part of this safe trail. For each chain etlgeC N E, pair (f, e) is safe
and therefor@arab( f ) andparab(e) intersects within the slab spanned®yMoreover,
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if f; and f, are distinct chain edges N E, pair (1, f) is safe and hengearab( f1)
andparab( f,) are distinct by the definition of safety. Therefoparab(e) has at least

n% /2 vertices ofl” in the vertical slab spanned I8/ Sincelhinge(e) is to the left of this
slab, thes@? /2 vertices are contained in the left scopeoT his contradicts the choice
of E*, which must consist of short-scoped chain edges. Theredepgh(e) < n% for
everye € E. This implies that the multiplicity oE is at mosin?, because, if the left
hinges ofm chain edges oE are identical, at least one of them (the one farthest from
the common left hinge) must have depth O

This lemma implies that the left hinges of the chain edgek antribute at least
|E|/n?% distinct elements té. Thus:

Corollary 7.13. |F| > nZ %,

We are ready to define* of Lemma 7.1. LeGj,, be the subset dBjer in the previous
subsection defined b@. = {(e, f) € Gert | €, T € Fl. DefineG;ight analogously as
a subset of5,ignt. Let Eje (resp.Efyy,) be the maximum independent set@jf, (resp.

Gligny) Viewed as an undirected graph. Repeating the analysis in the previous subsection
that we used for lower-bounding the size of the maximum independent §&t:06r

Giight, we obtain the following.
Lemma 7.14. Either|Ejy| > n® % /6 or [Efy| > n*%/6.

If |Ejeq| > n>%/6, then we seF* = E|y; otherwise we sef* = E/ ;.

is left-sparse ant/, is right-sparseF* is fully wedged in either case.

1 /
SinceE

7.5. The Weight Condition

In this section we show that* and F* defined in the previous subsections satisfy the
weight condition (3) of Lemma 7.1, which we list below:

Z weightg. (L) > n?. (4)
LeLl*

To facilitate the proof, we first define a subggtof £* whose members are in one-to-one
correspondence with the memberddf.

Lemma 7.15. There exists a one-to-one mappitigF-* — £* such that each £ F*
overlaps the lower boundary of lengf).

Proof. For eachf e F*, there is at least one € E* such thathinge(e) = f, by
the definition ofF*. Choose arbitrarg; € E* with Ihinge(ef) = f for eachf and set
A(f) = lwedge(er), which is in £* by the definition ofE*. To show thatz is one-to-
one, letfy, f, be two distinct elements d¥*. If chain edgesy, andey, are not on the
same parabola, then lende®dge(er,) andlwedge(ey,) are distinct and hence we are
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done. Suppose bot, andes, are on the same parabofand assume without loss
of generality thaty, lies to the left ofer,. We cannot havevedge(er,) = Iwedge(er,)
because it would pugy, in the left scope o€, contradicting the choice d&* that must
be left-sparse. Thereforg,is one-to-one as required. O

Let £} € £* be the image.(F*) of F*. We are going to show

Z weighte. (L) > n?, (5)
LeLl]
which implies our weight condition (4).

We need the following technical lemma. For each arrangemented§é, let L,
denote the set of lenses 6f whose lower boundaries contaénWe call a lensL of
L% well-overlappedf |Le| > W = 12n® for every arrangement edgeon its lower
boundary.

Lemma 7.16. At least half of the lenses df; are well-overlappegdfor sufficiently
large n.

The proof of this lemma is given below. We use this lemma to prove (5)C§ b the
subset o7 consisting of well-overlapped lenses. By the above lemma and the definition
of £, we have|L3| > |£3]/2 = |F*|/2 > n?~8/12. For each. € £3, A~1(L) € F*
overlaps the lower boundaries of at ledélenses ofL} and hence contributes a weight
of at leastW to the summatiorELeq weightg.(L). Thus, the summation must be at
leastW - |L3] > n.

Finally, the proof of Lemma 7.16 below completes the proof of Lemma 7.1 and hence
of our theorem.

Proof of Lemm&'.16. LetCp denote the set of all lenses©f whose lower boundaries
are formed by parabolB. We will show that, for eactP such thatLp| > n'=% /24, all
but a vanishing fraction of the lensesdp are well-overlapped. Then we will be done,
because the total number of lenses that are in ségsuch thalLq| < n~% /24 is at
mostn?-8 /24 < |£3|/4. Fix a parabol® with |Lp| > n1~8/24. Foreachlenk € Lp
that is not well-overlapped, there is an arrangement edgehe lower boundary ok
such thaiLe| < W, by definition: we say thas witnesses L

Recall that each lens ii} ist-long wheret = ¢;n'~%. Let| be an arbitrary interval
on P consisting oft consecutive arrangement edges. We say khaitnessesa lens
L e Lp that is not well-overlapped, if some arrangement edge | withessesL.
Let Sbe the set of lenses witnessed lognd letSer (resp.Signy) denote the subset of
S consisting of lenses whose lower boundaries contain the leftmost (resp. rightmost)
arrangement edge of Then we haveS = Sert U Signt because the length of the lower
boundary of eaclh. € Sis at least. Let Lg be a lens inSe; such that the intersection
of its lower boundary witH is minimal. Then, for every arrangement edge | in the
lower boundary ofLg, we havele O Set. Sincel g is witnessed by some € 1, this
implies that|Sert| < W. Similarly we have Signd] < W and hencgS| < 2W.

Now, partitionP into disjoint intervals, with each interval havibgrrangement edges
each. Since each lens 6 that is not well-overlapped must be witnessed by some of
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these intervals, and each interval can witness at mdstehses, the number of lenses

not well-overlapped is at mos¥2 - 2n/t = 48n'* /c,. Sinces < 1% and hence < 3

22’

this number io(n!~%). O
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