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Abstract. Let0 be a collection of unboundedx-monotone Jordan arcs intersecting at most
twice each other, which we call pseudoparabolas, since two axis parallel parabolas intersect
at most twice. We investigate how to cut pseudoparabolas into the minimum number of
curve segments so that each pair of segments intersect at most once. We give anÄ(n4/3)

lower bound andO(n5/3) upper bound on the number of cuts. We give the same bounds
for an arrangement of circles. Applying the upper bound, we give anO(n23/12) bound on
the complexity of a level in an arrangement of pseudoparabolas, and anO(n11/6) bound on
the complexity of a combinatorially concave chain of pseudoparabolas. We also give some
upper bounds on the number of transitions of the minimum weight matroid base when the
weight of each element changes as a quadratic function of a single parameter.

1. Introduction

Arrangements of curves in a plane is a major research target in computational geometry.
Combinatorial complexities of parts of arrangements such as a cell, many cells,k-levels,
≤ k-levels, andx-monotone chains play key roles in designing algorithms on geometric
optimization and motion planning problems [4], [7], [14], [15].

Although arrangements of lines and line segments are most popular, an arrangement
of curves that satisfy the condition that each pair of curves intersect at mosts times
for a given constants, is also important in both theory and applications [11], [16]. If
each pair of curves intersects at most once, the arrangement is called an arrangement of
pseudolines, to which many results on an arrangement of lines generalizes. For example,
the complexity of thek-level of an arrangement ofn pseudolines is known to beO(

√
kn)

[19], [4].
We focus on the cases= 2 in this paper. A familiar example of such an arrangement

is that of axis-parallel parabolas (Fig. 1), in which two curves intersect at most twice.
An arrangement of axis-parallel parabolas is used in dynamic computational geometry,
since it shows the transition of the list of pairs of points among a set of linearly moving
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Fig. 1. Arrangement of parabolas.

points sorted with respect to theirL2 distances. The complexity of the lower envelope and
thek-level of an arrangement of parabolas gives the number of combinatorial changes
on the nearest pair and thekth nearest pair, respectively [1]. Also, the complexity of
topological change on theL2 minimum spanning tree can be formulated into a problem
on an arrangement of parabolas [10].

More generally, we consider an arrangement of unboundedx-monotone Jordan curves
intersecting each other at most twice. Such an arrangement is called an arrangement of
2-intersecting curves in the literature; however, for convenience’s sake, we call it an
arrangement ofpseudoparabolas.

It is often more difficult to analyze the complexity of an arrangement of curves than
an arrangement of lines or pseudolines. For example, the only upper bound previously
known on thek-level complexity of an arrangement of parabolas isO(kn), which is the
same as the bound for≤ k-levels [16].

The aim of this paper is to link the complexity of an arrangement of pseudoparabolas
to that of an arrangement of pseudolines. Our approach is to split pseudoparabolas by
cut points, generating an arrangement ofpseudosegmentsin which each pair of pseudo-
segments intersect at most once. For example, the arrangements of Fig. 1 can be converted
into an arrangement of pseudo-segments by introducing seven cuts (Fig. 2). We call the
minimum number of cuts required to make an arrangement0 into an arrangement of
pseudosegments thecutting numberof 0.

Fig. 2. Cut points.



How to Cut Pseudoparabolas into Segments 267

Our main results are the following two theorems:

Theorem 1.1. There exists an arrangement of axis parallel parabolas whose cutting
number isÄ(n4/3).

Theorem 1.2. An arrangement of pseudoparabolas can be cut into an arrangement of
pseudosegments with O(n5/3) cuts.

We also give the same bounds for the cutting number of an arrangement of circles.
The lower bound of Theorem 1.1 is derived from the lower-bound example [4], [5]

on the complexity ofn cells in an arrangement of lines.
The upper bound of Theorem 1.2 is derived from an inequality of Lov´asz’s used in the

proof of his fractional-covering theorem [13], combined with extremal graph theory [2]
and a probabilistic method [3], [16]. A greedy algorithm outputs cuts attaining this upper
bound.

Combining Theorem 1.2 with the known upper bound on the level complexity of
an arrangement of pseudolines, we derive a nontrivialO(n23/12) upper bound on the
complexity of a level of an arrangement of pseudoparabolas. The technique used here
is such that any improved upper bound for pseudolines will lead to an improved upper
bound for pseudoparabolas. Thus, Theorem 1.2 establishes an important link between
the complexities of arrangements of these two types.

We also give some upper bounds on the number of transitions of the minimum weight
matroid base when the weight of each element changes as a quadratic function of a single
parametert .

2. Preliminaries

Let 0 be an arrangement of pseudoparabolas. The arrangement subdivides the plane
into faces. We use the termscell, edge, andvertexfor two-, one-, and zero-dimensional
faces, respectively. When two pseudoparabolas intersect twice, they form a closed curve
consisting of a segment of each pseudoparabola: we call this closed curve alensformed
by these two pseudoparabolas.

The boundaries of the shaded regions in Fig. 3 are lenses. We say a lens is a 1-lens
if no curve crosses the lens. Consequently, a 1-lens consists of exactly two edges of the
arrangement. There exist no 1-lens in Fig. 3.

We define a hypergraphH(0), whose node set is the set of edges of the arrangement
0. A set of nodes ofH(0) forms a hyperedge if and only if its corresponding set of
edges of the arrangement forms a lens.

A node covering of a hypergraphH is a subset of the node set ofH such that every
hyperedge contains at least one node of the set.

A node covering with minimum size (number of nodes) is called a minimum covering.
The size of a minimum covering is called the covering number.

The following is a key lemma for our upper bound of the cutting number:

Lemma 2.1. The cutting number of0 is equal to the covering number of H(0).



268 Hisao Tamaki and Takeshi Tokuyama

Fig. 3. Lenses.

Proof. Given a minimum coveringC of H(0), we cut all edges of0 associated with
nodes inC. Then all lens are cut, that means all pairs of curve segments after the cut
intersect at most once. On the contrary, given a minimum cut of0, consider the collection
of the edges cut. Then the associated node set ofH(0) is a covering.

Corollary 2.2. The cutting number of0 is not less than the number of1-lenses.

3. Lower Bound

We give a proof of Theorem 1.1 in this section. We use the following well-known fact
(see [4] and [5]):

Theorem 3.1. There exists a highly degenerate arrangementA of lines which has a
set V of n vertices with total degreeÄ(n4/3).

Due to the construction given in [4], we can further assume that each line of the
arrangementA has a positive slope which is not larger than a given constant, say 0.5.

Proposition 3.2. There exists an arrangement of O(n) parabolas whose cutting num-
ber isÄ(n4/3).

Proof. LetA be the line arrangement introduced above. We consider an axis-parallel
parabolaγ , defined byy = cx2 for a positive constantc, and draw a copyγ (v) which
has its peak atv for eachv in V . Hence, we haven parabolas in total.

Now, we translate each line, so that the degeneracy ofA is resolved, and each line
through a pointv = (xv, yv) in V is translated so that it is tangent toγ (v). More
precisely, each line with a slopea is translated with a vector(a/2c,a2/4c), so that the
line y− yv = a(x − xv) is translated toy− yv + a2/4c = a(x − xv), which is tangent
to γ (v). Note that the translation vector is independent ofv.
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We consider the union of the above perturbation ofA and the parabolas. Then the
number of vertices in this arrangement at which two curves are tangent isÄ(n4/3). If we
replaceγ (v) with its translated copy with the (infinitesimal) translation vector(0,−ε)
for a very small positiveε, the arrangement hasÄ(n4/3) 1-lenses. The arrangement
hasn lines, as well asn parabolas. However, we can replace each curvey = f (x)
with y = f (x) + x2 to convert into an arrangement of 2n parabolas with the same
combinatorial property.

4. Upper Bound

It suffices to give an upper bound for the covering number of hypergraphH(0). We
recall some notations on hypergraphs. The degreed(x) of a nodex of a hypergraph is
the number of hyperedges containingx. The maximum degree in a hypergraphH is
denoted byd(H).

A simple k-matchingof H is a setM of hyperedges such that each node belongs
to at mostk of them. The maximum number of hyperedges in a simplek-matching is
denoted byνk(H) (this is denoted bỹνk(H) in [13]). Note thatνd(H)(H) is the number
of hyperedges inH . We remove the argumentH from functionsd andν if no confusion
arises. A greedy algorithm for computing a covering is the following:

1. Find a node of maximum degree;
2. Insert the node into the covering, and remove the node and all hyperedges con-

taining it from H ;
3. If all hyperedges are covered, Exit; Else GOTO 1;

Lovász [13] shows that the greedy algorithm achieves a covering of size at most
logd(H)+ 1 times the size of the covering ofH . The following is the key inequality in
his proof. Lett be the size of the covering ofH obtained by the greedy algorithm. Then

t ≤ ν1

1 · 2 +
ν2

2 · 3 + · · · +
νd−1

(d − 1) · d +
νd

d
. (1)

Consequently, the minimum covering number ofH is also bounded by the right-hand
side of (1). Therefore, we want to estimateνk(H(0)) for k = 1, 2, . . . ,d.

Suppose we have a simple 1-matchingM of H(0) of sizeM . Recall that a hyperedge
in H(0) is a lens in0.

We define a bipartite graphG(M). The vertex set isS1 ∪ S2, whereS1 and S2 are
disjoint,|S1| = |S2| = |0| = n, with associated bijectionsγ1: S1→ 0 andγ2: S2→ 0.

We draw an edge between a nodeu of S1 andv of S2 if and only if the associated
curvesγ1(u) andγ2(v) form a lens which is associated with a hyperedge inM, and
γ1(u) is aboveγ2(v) within the lens. Here, a curveγ is aboveanother curveµ within
their lensL if the vertical downward ray from a point onγ ∪ L intersectsµ.

By definition,G(M) has 2n vertices. It is clear that the number of edges inG(M) is
the size of the matchingM.

First, we bound the sizeν1(H(0)) of the maximum simple 1-matching.

Lemma 4.1. SupposeM is a simple1-matching of H(0).Then G(M)does not contain
K3,4 as a subgraph.
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Proof. Assume thatG(M) contains a copy ofK3,4. Then we have three curvesC1, C2,
C3 and four curvesD1, D2, D3, D4 such that each pair(Ci , Dj ) makes a lens, in which
Ci is aboveDj , for 1 ≤ i ≤ 3, 1≤ j ≤ 4. Furthermore, becauseM is a 1-matching,
no edge in the arrangement constructed from these seven curves is contained in more
than one such lens. LetA(C) denote the arrangement of{C1,C2,C3} and A(D) that
of {D1, D2, D3, D4}. If an edgee of the arrangement is located onD1, ande is below
two curvesC1 andC2, emust be on both lenses(C1, D1) and(C2, D1). This means that
the two arrangementsA(C) and A(D) intersect each other only at points that are on
the upper envelope ofA(C). Similarly, those intersection points must also be on the
lower envelope ofA(D). Since there must be 12 lenses, the number of intersections
must be at least 24. However, the upper envelope ofA(C) has at most 5 edges,
and the lower envelope ofA(D)has at most 7 edges [1]. Because each pair of curves inter-
sects at most twice, the number of intersecting points cannot exceed 22, which is a
contradiction.

Remark. With a more careful analysis, we can also show thatG(M) does not con-
tain K3,3.

We use the following result in extremal graph theory, which can be found in [2] in a
more general form (p. 73, Lemma 7).

Lemma 4.2. Let G be a bipartite graph, with n vertices on each side, which does

not contain Ks,t as a subgraph. Suppose G contains m= yn edges. Then n

(
y
s

)
≤

(t − 1)

(
n
s

)
.

Theorem 4.3. G(M) contains O(n5/3) edges. Hence, ν1(H(0)) = O(n5/3).

Proof. We substitutes= 3 andt = 4 in the above lemma, and obtainy = O(n2/3).

Next, we show thatνk(H(0)) = O(n5/3k1/3) for generalk. In the following, we
assume 2≤ k ≤ n/7: the casek = 1 is already dealt with and the casek > n/7 is trivial.
We apply the probabilistic argument similar to the one Sharir [16] used for analyzing
the complexity of the≤ k level of curves.

Suppose we have a simplek-matchingM, and associated setL(M)of lenses. Assume
M hasνk hyperedges (i.e.,L(M) hasνk lenses).

For each lensL bounded by two curvesC1 andC2, an arrangement edge onL is called
extremalif it contains one of the intersection points ofC1 andC2. Obviously, there are
at most four extremal edges associated withL.

Now, we choose a sampleY of r = bn/kc curves from0. We say a lensL is anear
1-lens in the sample if (1)L is a lens consisting of two curves ofY and (2) for each
arrangement edgee of 0 that is extremal inL, L is the only lens which consists of two
curves ofY and containse (not necessary as an extremal edge).
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We consider the set of near 1-lenses of the sampleY, and consider the associated set
of hyperedgesM0 of H(Y).

Lemma 4.4. M0 is a simple1-matching of H(Y).

Proof. Suppose an edgee of the arrangement ofY is contained in two near 1-lensesL
andL ′. Let C be the curve on whiche is located. ThenL andL ′ contain intervalsI and
I ′ of C. Both intervals must containe; thus, at least one endpoint of eitherI or I ′ must
be contained in the other interval. Without loss of generality, we assume an endpoint of
I is contained inI ′. This means that an extremal edge ofL in the original arrangement
is contained inL ′, which contradicts the definition of a near 1-lens.

Now, analyze the expected number of near 1-lenses in the random sampleY. A lensL
of L(M) becomes a near 1-lens if (1) both of its bounding curves are in the sample and
(2) no other curve contributing a lens containing an extremal edge ofL is in the sample.
SinceM is ak-matching, the number of such curves in (2) is at mostk for each extremal
edge. For a fixedL, the number of samplesY of sizer satisfying these conditions is at

least

(
n− 4k− 2

r − 2

)
, so the probability that the lensL becomes a near 1-lens is at least(

n− 4k− 2
r − 2

)/(
n
r

)
. By a standard calculation (see [3] and [16]), we have

(
n− 4k− 2

r − 2

)
(

n
r

) ≥ r (r − 1)

n(n− 1)

(
1− r − 2

n− 4k− 1

)4k

. (2)

Sincer = bn/kc and we are assumingk ≤ n/7, we have(r − 2)/(n − 4k − 1) ≤
2/k andr (r − 1)/n(n − 1) ≥ k−2/2 and hence the right-hand side of (2) is at least
1
2k−2(1 − (2/k))4k = Ä(k−2). Therefore, the expected number of near 1-lenses in
Y is Ä(k−2νk). On the other hand, the bound on the size of a simple 1-matching in
the sample implies that the number of near 1-lenses inY must beO(r 5/3). Solving
Ä(k−2νk) ≤ O((n/k)5/3) for νk, we have:

Lemma 4.5. νk = O(n5/3k1/3).

Now, we compute the right-hand side of Lov´asz’s inequality (1):

ν1

1 · 2 +
ν2

2 · 3 + · · · +
νd−1

(d − 1) · d +
νd

d
= O

(
n5/3

n∑
k=1

k1/3

k(k+ 1)

)
= O(n5/3).

This proves Theorem 1.2.
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5. Applications

Level Complexity

Let0 be an arrangement ofn pseudoparabolas. Thelevelof an edgeeof the arrangement
0 is the number of edges that intersect with the vertical half-line downward from an
internal point one. This notion is well-defined since the above number is independent
of the choice of any internal point ofe. It is well-known that the closure of the union of
all edges with a given levelk is a connected curve and separates the plane. This curve is
called thek-level of0. The complexity of thek-level of0 is the number of edges whose
level isk.

Theorem 5.1. The complexity of the k-level of0 is O(n23/12).

Proof. Without loss of generality, we assume that the arrangement is simple, that is,
no three curves intersect at a point. We consider the setP of cutting points that cut the
pseudoparabolas of0 into segments. We know thatm = |P| = O(n5/3). We subdivide
the plane intom+ 1 slabs withm vertical lines through points ofP. Inside a slab, the
arrangement can be considered as an arrangement of pseudolines.

Let Xi be the number of vertices of the arrangement located in thei th slabSi . Then∑m+1
i=1 Xi = O(n2).
Suppose that exactlyni curves contribute to thek-level in Si . Thek-level of0 inside

Si is a level of theseni curves.
Suppose a curveγ is on thek′-level at the left end of the slabSi , and contributes to

thek-level in Si . Thenγ must have at least|k − k′| vertices on itself inSi . Therefore,
the arrangement must have at leastn2

i /2 vertices inSi . This means thatni = O(
√

Xi ).
The complexity of a level ofni pseudolines isO(ni

√
ni ) [4], which is O(X3/4

i ).
Thus, the complexity of thek-level of0 is O(

∑m+1
i=1 X3/4

i ) = O(m(n2/m)3/4). Since
m= O(n5/3), we obtainO(n23/12).

Note that this result improves the known bound ofO(kn) [16] whenk > n11/12. Also
note that the bound would be automatically improved further, if we had a better bound
either on the level complexity of an arrangement of pseudolines or on the cutting number
of pseudoparabolas.

Complexity of Combinatorial Concave Chains

Given an arrangementF of x-monotone curves, acombinatorial concave chain(cc-
chain, for short)c is anx-monotone chain in the arrangementF satisfying the following
concave condition: If two curvesγ1 andγ2 intersects at a pointp and the chainc lies on
γ1 to the left of p and onγ2 to the right ofp, respectively, thenγ1 stabsγ2 from below
at p (curves are directed from left to right). See Fig. 4.

Given an arrangement0 of pseudoparabolas and a setC of cc-chains of that arrange-
ment, achain vertexof C is a vertex of0 at which a cc-chain ofC switches from one
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Fig. 4. Combinatorial concave chain.

curve of0 to another; achain edgeof C is the segment of a curve between two consec-
utive chain vertices of a cc-chain ofC. To avoid confusion, we refer to an edge of the
given arrangement as anarrangement edge. We define thelengthof a cc-chain to be the
number of chain edges of the cc-chain. We also refer to the length of a cc-chain as the
complexityof the cc-chain.

Theorem 5.2. The worst-case complexity of a cc-chain in an arrangement of n pseu-
doparabolas isÄ(n4/3) and O(n11/6).

Proof. The lower bound can be obtained from the degenerate arrangement which was
used in Proposition 3.2. This arrangement hasO(n) lines andÄ(n) “heavy” nodes
to each of whichÄ(n1/3) lines are incident. Moreover, the heavy vertices are lattice
points in an

√
n × √n integral lattice of the plane (see p. 112 of [4]). We rotate the

arrangement clockwise with a suitable small angle, so that the vertical column of the
lattice is transformed into a line with a positive slope. Each “heavy” vertex is replaced by
a tiny concave chain by using a suitable perturbation. We connect the rightmost vertex of
this tiny chain with the leftmost vertex of the tiny chain of the next (from top to bottom)
lattice vertex in the same column with a very steep parabola. Moreover, we connect the
topmost lattice point in a column with the bottom lattice point in the next column using a
very sharp parabola, so that the parabola joins two concave chains into one concave chain.
See Fig. 5. Then this arrangement has a combinatorial concave chain of lengthÄ(n4/3).

The upper bound can be obtained by subdividing the plane intom+ 1 = O(n5/3)

slabs given in the proof of Theorem 5.1. If there areni segments in thei th slab,
the complexity of the cc-chain within the slab isO(ni ). Since

∑m+1
i=1 n2

i = O(n2),∑m+1
i=1 ni = O(n

√
m) = O(n11/6).

Theorem 5.3. The worst-case complexity of a cc-chain of n curves where each pair of
curves intersects at most three times isÄ(n2/logn).

Proof. We can make anyx-monotone chain in a pseudoline arrangement into a combi-
natorial concave chain ofn 3-intersecting curves by using local changes (Fig. 6). Thus,
the theorem follows from Matouˇsek’sÄ(n2/logn) lower bound on the length of an
x-monotone chain [14] in an arrangement of pseudolines.
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Fig. 5. Construction of a concave chain of sizeÄ(n4/3).

We call a set of cc-chains of an arrangementedge-disjointif no arrangement edge
is shared by more than one cc-chain in the set. We are interested in bounding the total
complexity ofk edge-disjoint cc-chains.

Theorem 5.4. Let0 be an arrangement of n pseudoparabolas. Suppose k≤ n1−δ for
some positive constantδ < 6

11. Then the total number of chain edges in any set of k
edge-disjoint unbounded cc-chains of0 is O(n2−ε) whereε = δ/12.

Since the proof of this theorem is rather long, we delegate it to Section 7.

Transitions of Minimum Matroid Base and MST

Let E be a finite set and letB be a family of subsets ofE. The pair(E,B) is called a
matroid M(E,B), and the elements ofB are thebasesof M(E,B), if the following two
axioms hold [18]:

(A1) For anyB,C ⊂ E with B 6= C, if B ∈ B andC ⊂ B, C 6∈ B.

Fig. 6. Local change of anx-monotone chain of lines for a concave chain of 3-intersecting curves.
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(A2) For anyB, B′ ⊂ Bwith B 6= B′ and for anye∈ B−B′, there existse′ ∈ B′−B
such that(B− {e}) ∪ {e′} ∈ B.

For instance, letT be a set of spanning trees in an undirected connected graph
G = (V, E); then(E, T ) forms a matroid andT is a set of bases [18].

The number|B| of elements of a baseB ∈ B is independent of the choice ofB [18],
and is denoted byp. Let m = |E|, and assume the elements ofE to be indexed from
1 throughm. We assume that each elementi has a real-valued weightwi (t) that is a
function in the parametert . The minimum (resp. maximum) weight base is the one in
which the sum of weights of elements is minimum (resp. maximum).

If the weight functions of two elements have a constant number of intersections, we
have anO(m2) trivial upper bound on the number of transitions of the minimum weight
base ofM(E,B). If wi (t) is linear, this was improved toO(mmin{√p,

√
m− p})

[8], [9]. Recently, Eppstein [6] constructed a matroid with linear weights for which the
number of transitions of the minimum matroid base isÄ(m2/3 p2/3).

If the weight functions are quadratic, it is not even clear if theO(mp) upper bound
holds. From Theorem 5.4, we have the following bound:

Theorem 5.5. If the weight functions are quadratic, the number of transitions of the
minimum weight base is O(m23/12p1/12) if p > m5/11, and O(m2−1/22) if p ≤ m5/11.

Proof. The locusy = wi (t) is a parabola on thet–y plane for eachi = 1, 2, . . . ,m.
Hence, we have an arrangement ofm parabolas. We assume without loss of generality
that the arrangement of parabolas is simple; otherwise, we can perturb it to obtain a
simple arrangement without decreasing the number of transitions.

Let Bmin(t) be the minimum weight att , and letImin(t) be the set of indicesj such
thatej ∈ Bmin(t). Let Y(t) be the trajectory{(t, wj (t)) : j ∈ Imin(t)} on thet–y plane.

Suppose that a transition occurs att = t0. Then there must be a pair of basesB and
B′ such that both attain the minimum weight att0. Moreover, we can assume that there
exists an infinitesimally small positive real numberε such thatB andB′ are the minimum
weight bases att0− ε andt0+ ε, respectively.

Then, from axiom (A2), there existsei andej in E such thatB′ = (B− {ei }) ∪ {ej }.
Since bothB andB′ are minimum bases,wi (t0) = wj (t0), and the chain

y =
{
wi (t) for t ≤ t0,
wj (t) for t > t0

is combinatorial concave. Thus, we can observe thatY(t) is a union ofp combinatorial
concave chains, so that the number of transitions is the sum of complexities of these
chains. Note that this is not the complexity ofY(t), since we ignore intersections between
concave chains. Hence, the theorem follows from Theorem 5.4.

Corollary 5.6. Let G be a graph with m edges and n nodes, and suppose that each
edge has a weight function which is quadratic in a parameter t. Then the number of
transitions in its minimum spanning tree is O(m23/12n1/12). In particular, the number of
transitions of the minimum spanning tree of a complete graph Kn is O(n4−1/12).
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Remark. For a trivial matroid, whereB is the set of all subsets of sizep of E, the
number of transitions of the minimum weight base equals the complexity of thep-level
of the arrangement of parabolas, and, hence, we have anO(min{mp,m23/12}) bound by
combining Theorem 5.1 with an upper bound of complexity of the at-most-p levels [16].

6. Related Topics

Arrangement of Circles

We are given an arrangement ofn circles. Although a pair of circles intersects at most
twice, a circle is not anx-monotone curve. However, we can cut each circle with its
horizontal diameter, and divide it into an upper half-circle and a lower half-circle. We
can connect two vertical downward (resp. upward) rays to an upper (resp. lower) half-
circle at its two endpoints, and obtain anx-monotone curve separating the plane. It is
easy to see that every pair of curves intersects at most twice.

Thus, we have a family of pseudoparabolas. We can now apply our upper bound
results in the previous section. Also, the lower bound example for the cutting number of
pseudoparabolas in Section 3 can be easily adapted to an arrangement of circles. Indeed,
we place a unit circle at each heavy vertex of the arrangementA in Proposition 3.2,
translate lines and circles so thatO(n4/3) 1-lenses are created. We can replace lines with
a circle with a very large diameter without changing the combinatorial structure.

Thus, we have the following:

Theorem 6.1. Using O(n5/3) cuts, an arrangement of circles can be transformed to
an arrangement of pseudosegments. There exists an example for whichÄ(n4/3) cuts are
required.

Cutting a2t Intersecting Family

It is desired to extend the upper bound on a cutting number to that for an arrangement of
curves such that each pair of curves intersect at mostt times. Unfortunately, in the worst
case, we need to cut atÄ(n2) points in order to make an arrangement of 3-intersecting
curves into an arrangement of 2-intersecting curve segments. The lower-bound example
is obtained as follows: Consider an arrangement ofn lines. At each vertexv of the
arrangement, we locally replace one of the lines meeting there with a curve intersecting
the other line three times to make a pair of two 1-lenses as in Fig. 6. In order to cut the
curve so that each pair of curve segments intersect at most twice, we must cut one of the
pair of lenses for eachv; hence, we needÄ(n2) cuts.

More generally,Ä(n2) cuts are needed to make(2t + 1)-intersecting family to
2t-intersecting family in the worst case. On the other hand, for a family with even
intersecting-numbers, we have the following result:

Theorem 6.2. Given an arrangement of curves in which every pair of curves intersects
at most2t times, we can cut it at O(n2−1/β(t)) points to make it an arrangement of curve
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segments, in which every pair of segments intersects at most2t − 1 times. Here, β(t) is
the minimum positive number y satisfying y2 ≥ 4tλ2t (y), whereλ2t (y) is the length of
a Davenport–Schinzel sequence of degree2t on y characters.

Proof. Consider two curvesP andP′ such thatP is aboveP′ atx = −∞. We consider
the regionR(P, P′) of all points which is belowP′ and aboveP. Then R(P, P′)
consists oft connected components. The 2t-lens L(P, P′) is the set of arrangement
edges boundingR(P, P′). It suffices to cut at least one edge in every 2t-lens. Now,
we defineM andG(M) analogously to Section 3 for the hypergraph associated with
the set of 2t-lenses. The only difference from the case wheret = 1 is the analogue of
Lemma 4.1, in which we can prove thatG(M) does not containKβ(t),β(t). This implies
the theorem.

7. Proof of Theorem 5.4

Let δ < 6
11 be a positive constant and letε = δ/12. Supposek ≤ c0n1−δ for a sufficiently

small constantc0 defined later. Let0 be an arrangement ofn pseudoparabolas and let
C be a set ofk edge-disjoint unbounded cc-chains in0. Let L(0) denote the set of
lenses of0 and E(C) the set of chain edges ofC. Our goal in this section is to prove
|E(C)| ≤ 7n2−ε. The proof is by contradiction: we suppose|E(C)| > 7n2−ε and devote
the whole section to derive a contradiction.

In this section, for brevity, we often refer to pseudoparabolas of0 simply as “parabo-
las.” We use the following notation and definitions. We say a parabolaP is steeper than
a parabolaQ if and only if P is aboveQ at the left-infinity. If two parabolasP andQ of
0, P steeper thanQ, intersect at two points and thus form a lens, we denote this lens by
lens(P, Q); note thatP forms the lower boundary of this lens. For eache ∈ E(C), we
denote byparab(e) the parabola of0 of which e is a segment. Similarly, we denote by
chain(e) the cc-chain ofC that containse. For each chain edge or arrangement edgee, we
denote byleft(e) (resp.right(e)) the left (resp. right) endvertex ofe. We also writeleft(L)
andright(L) to denote the left and right endvertices of lensL. For two pointsu andv in
the plane such thatu lies to the left ofv (i.e., thex-coordinate ofu is smaller than that of
v), we denote byslab[u, v] the vertical closed slab whose left boundary containsu and
whose right boundary containsv. We denote byslab(u, v], slab[u, v), or slab(u, v) the
similar slab which is open at the left, right, or both boundaries, respectively. We also use
the notationslab[u,∞), slab(u,∞), slab(−∞, u], and slab(−∞, u) to denote slabs
unbounded in the specified direction. Moreover, when the left end of the slab is specified
by theright endvertex of an edge or lensX, we abbreviateslab(right(X), ·) to slab(X, ·).
Similarly we abbreviateslab(·, left(X)) to slab(·, X), and use the same convention for
closed slabs.

Let E ⊆ E(C) be a set of chain edges ofC. An adjacent pairof E is an ordered pair
(e, f ) ∈ E× E such thateand f are segments of the same parabola,e lies to the left of
f , andparab(e) = parab( f ) does not contain any chain edge ofE within slab(e, f ).
We call E fully wedgedif, for every adjacent pair(e, f ) of E, there is a parabola of0
that is steeper thanparab(e) and forms a lens withparab(e) completely contained in
slab(e, f ). We call a set of lensesL ⊂ L(0) upper-disjointif, for any two distinct lenses
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of L whose upper boundaries are defined by the same parabola, their upper boundaries
are disjoint from each other. Given a set of chain edgesE, theweightof a lensL with
respect toE, denoted byweightE(L), is defined to be the number of chain edges ofE
that overlap the lower boundary ofL. Here, and throughout this section, we say that two
curve segments overlap each other if they have an intersection of positive arc-length.
The following is our main lemma to the proof of Theorem 5.4.

Lemma 7.1. Given0 and C as in the beginning of this section, there exist a fully
wedged set of chain edges F∗ ⊆ E(C) and an upper-disjoint set of lensesL∗ ⊂ L(0)
such that ∑

L∈L∗
weightF∗(L) ≥ n2. (3)

The subsections that follow are devoted to the proof of this lemma. The following
simple lemma directly contradicts the above lemma and completes our proof by contra-
diction.

Lemma 7.2. Let F ⊆ E(C) be any fully wedged set of chain edges and letL ⊆ L(0)
be any upper-disjoint set of lenses. Then

∑
L∈L weightF (L) < n2.

Proof. For each parabolaP of0, letLP denote the set of lenses ofLwhose upper bound-
ary is defined byP. SinceL is upper-disjoint, the upper boundaries of the lenses ofLP are
mutually disjoint. To prove the lemma, it suffices to show that

∑
L∈LP weightF (L) < n

for each parabolaP of 0.
Fix P. For each parabolaQ such thatlens(Q, P) ∈ LP, let FQ denote the set of chain

edges inF that overlap the lower boundary oflens(Q, P). Thus,|FQ| is the weight of
lens(Q, P) with respect toF . Consider a parabolaQ such thatlens(Q, P) ∈ LP and
let the chain edges ofFQ enumerated ase1, e2, . . . , ej in the left-to-right order, where
j = |FQ|. SinceF is fully wedged, we havej − 1 distinct parabolasP1, . . . , Pj−1 such
that eachPi , 1 ≤ i ≤ j − 1, is steeper thanQ and forms a lens withQ completely
contained inslab(ei , ei+1). Thesej − 1 parabolas form lenses withP with their upper
boundaries contained in the upper boundary oflens(Q, P). See Fig. 7.

Thus, for eachQ such thatlens(Q, P) ∈ LP, we have a setPQ of |FQ| − 1 dis-
tinct parabolas. These setsPQ, for Q such thatlens(Q, P) ∈ LP, are mutually dis-
joint, since the intersections of each parabola inPQ with P is confined in the upper
boundary oflens(Q, P). CollectingPQ for all Q with lens(Q, P) ∈ LP, we have
altogether(

∑
lens(Q,P)∈LP |FQ|) − |LP| distinct parabolas. These parabolas must also

be distinct fromP and from eachQ such thatlens(Q, P) ∈ LP. Therefore, we have∑
lens(Q,P)∈LP |FQ| − |LP| ≤ n− 1− |LP|, or

∑
L∈LP weightF (L) ≤ n− 1.

7.1. Wedges and Scopes

In this subsection we introduce the notions ofwedgesandscopesthat will form a basis
for definingF∗ andL∗ of Lemma 7.1.
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Fig. 7. Proof of Lemma 7.2: parabolaP and lensesLP.

We start with a basic observation on pseudoparabolas. The following lemma is obvious
if our arrangement0 consists of axis-parallel geometric parabolas: we prove it based
only on the property of pseudoparabolas.

Lemma 7.3. Let C be a cc-chain consisting of chain edges e1, e2, . . . , em in this
order from left to right. Suppose thatparab(ej ) is the steepest among all the parabolas
parab(ei ), 1≤ i ≤ m. Then C is strictly belowparab(ej ) except on ej .

Remark. Parabolasparab(ei ), 1 ≤ i ≤ m, in the lemma above may not be mutually
distinct. The lemma impliesa posteriori, however, that the steepest parabolaparab(ej )

is distinct fromparab(ei ) for everyi 6= j .

Proof. By induction onm. Form = 1 the claim is obvious. Supposem ≥ 2 and letej

be as in the lemma. Since the definition of a cc-chain implies thatC is belowparab(ej )

in the neighborhood ofej , it suffices to show thatC does not intersectparab(ej ) except
on ej . Suppose to the contrary thatC intersectsparab(ej ) in, say,slab(ej ,∞) at vertex
v. We assume thatv is the leftmost such vertex if there are more than one. Thus,C is
strictly belowparab(ej ) in slab(ej , v). Let eh, j < h ≤ m, be the chain edge ofC that
containsv. Let parab(el ) be the steepest parabola amongparab(ej+1), . . . , parab(eh).
By the induction hypothesis,parab(el ) stays strictly aboveC in slab[ej , v] except onel .
In particular,parab(el ) is strictly aboveright(ej ) andv, which are onparab(ej ). On the
other hand,parab(el ) is strictly belowparab(ej ) onel . See Fig. 8. Therefore,parab(el )

must be steeper thanparab(ej ) contradicting the assumption thatparab(ej ) is the steepest
among all the parabolasparab(ei ), 1≤ i ≤ m, and completing the induction step.

This observation will be used often in the following form. See Fig. 9.

Corollary 7.4. Let P be a parabola and let u, v be points on P, with u lying to the
left of v. Let C be a bounded cc-chain from u tov such that C is strictly below P in
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Fig. 8. Lemma 7.3:parab(ej ) is supposedly the steepest.

slab(u, v). Then the steepest parabola Q among those contributing chain edges to C
forms a lens with P completely contained inslab[u, v].

Let e be a chain edge ofC. We say that a lensL of the arrangement0 is a left wedge
of e, if

• the upper boundary ofL is defined byparab(e),
• L lies to the left ofe, more precisely,L is contained inslab(−∞, e], and
• the lower boundary ofL overlaps some chain edge ofchain(e).

See Fig. 10. WhenL is a left wedge ofe, we define theleft scope of e delimited
by L, denoted bylscope(e, L), to be the open segment ofparab(e) in slab(left(L), e).
We call a left wedgeL of e theclosest left wedgeof e, and denote it bylwedge(e), if
lscope(e, L) is the minimal among all the left wedges ofe. Then we define theleft scope
of e, denoted bylscope(e), to belscope(e, lwedge(e)), the left scope ofe delimited by
the closest left wedge ofe; if there is no left wedge ofe, thenlwedge(e) is undefined
and we setlscope(e) to be the unbounded segment ofparab(e) in slab(−∞, e). Theleft
hingeof e, denoted bylhinge(e) is the rightmost chain edge ofchain(e) that overlaps the
lower boundary of lenslwedge(e). We define the notions of right wedges, right scopes,
and right hinges analogously, with “left” and “right” swapped in the above definitions,

Fig. 9. Corollary 7.4.
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Fig. 10. L is a left wedge ofe and the dashed segment ofparab(e) is lscope(e, L).

and use analogous notation:rwedge(), rscope(), andrhinge(). Finally, we say that a set
of chain edgesE ⊆ E(C) is left-sparse(resp.right-sparse) if the left scope (resp. right
scope) of anye∈ E does not overlap anyf ∈ E.

To motivate the technical developments on wedges and scopes in the subsequent sub-
sections, we sketch how these notions will be used in definingF∗ andL∗ of Lemma 7.1.
The definition ofL∗ is via some left- or right-sparse setE∗ ⊂ E(C). SupposeE∗ is
left-sparse. Note that eache ∈ E∗ has a left wedge unless it is theleftmostchain edge
of E∗ on a parabola, i.e., as long as there is somef ∈ E∗ such that( f, e) is an adja-
cent pair ofE∗, because thenlscope(e) must excludef and hence is bounded. We set
L∗ = {lwedge(e) | e∈ E∗ andlwedge(e) is defined}. Since the upper boundary of each
lens inL∗ is contained in one of the mutually disjoint left scopes of the chain edges of
E∗, L∗ thus defined is upper-disjoint as required by Lemma 7.1.L∗ is defined similarly
whenE∗ is right-sparse.

The setF∗ is chosen to be yet another left- or right-sparse subset ofE(C). ThenF∗ is
fully wedged as required by Lemma 7.1. To see this, let(e, f ) be an arbitrary adjacent
pair from F∗. If F∗ is left-sparse, then lenslwedge( f ) is contained inslab(e, f ) and
therefore the parabola of its lower boundary gives the parabola required in the definition
of a fully wedged set. IfF∗ is right-sparse, then lensrwedge(e) gives the required
parabola.

More specific choices ofE∗ andF∗ should be made in such a way that the weight con-
dition (3) in Lemma 7.1 is satisfied. This is the goal of the rather involved developments
in the remaining subsections.

7.2. Finding a Large Left- or Right-Sparse Set

The goal of this subsection is to find a left- or right-sparse subset ofE(C) that is large
enough for our purposes. Recall that we are supposing|E(C)| > 7n2−ε.

Lemma 7.5. There is a set of chain edges E⊆ E(C) with |E| ≥ 8n2−2ε that is either
left- or right-sparse.
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To prove this lemma, consider the following sets oforderedpairs fromE(C):

Gleft = {(e, f ) ∈ E(C)× E(C) | parab(e) = parab( f ) andright(e) ∈ lscope( f )};
Gright = {(e, f ) ∈ E(C)× E(C) | parab(e) = parab( f ) andleft( f ) ∈ rscope(e)}.

If we regardGleft as anundirectedgraph on node setE(C) (ignoring the order in each
pair), thenE ⊆ E(C) is left-sparse if and only ifE is an independent set ofGleft. A
similar claim holds for independent sets ofGright. Thus, to prove Lemma 7.5, it suffices
to show that the size of the maximum independent set of eitherGleft or Gright is at least
8n2−2ε. We achieve this via showing thatGleft ∩ Gright has a large independent set. To
this end, we want to bound the number of pairs inGleft ∩ Gright. We need some facts on
wedges and scopes.

Lemma 7.6. Let e∈ E(C) be a chain edge. Thenchain(e), the cc-chain ofC containing
e, does not intersect the left or right scopes of e(and hence stays strictly belowlscope(e)
andrscope(e)).

Proof. Suppose there is an intersection ofchain(e) andparab(e) to the left ofe, i.e.,
in slab(−∞, e). Let v be the rightmost such intersection. We show thatv is not in
the left scope ofe. Let C be the subchain ofchain(e) betweenv and left(e), C =
chain(e) ∩ slab[v, e]. By the choice ofv, C stays strictly belowparab(e) in slab(v, e).
By Corollary 7.4, there is a parabolaP of 0, contributing a chain edge toC, that forms a
lensL with parab(e)within slab[v, e]. Thus,L is a left wedge ofesuch thatv is outside
of lscope(e, L) ⊇ lscope(e). An intersection ofchain(e) andparab(e) to the right ofe
is dealt with similarly.

Lemma 7.7. Let (e, f ) be a pair in Gleft ∩ Gright. Then the cc-chainschain(e) and
chain( f ) are distinct and intersect withinslab(e, f ).

Proof. Let (e, f ) ∈ Gleft ∩Gright. By the definition ofGleft, right(e) is in the left scope
of f and hence, by Lemma 7.6,chain( f ) stays strictly belowparab( f ) in slab[e, f ).
Similarly,chain(e) stays strictly belowparab(e) = parab( f ) in slab(e, f ]. In particular,
chain(e) is strictly abovechain( f ) at right(e) and is strictly belowchain( f ) at left( f ).
It follows that these two chains are distinct and must intersect inslab(e, f ).

The proof above implies that, for each pair(e, f ) ∈ Gleft ∩ Gright, there is a vertex
v in slab(e, f ) at whichchain(e) crosseschain( f ) downward, i.e.,chain(e) is above
chain( f ) on the left neighborhood ofv and is belowchain( f ) on the right neighborhood
of v. We call suchv acharge vertexof the pair(e, f ). A pair in Gleft ∩ Gright may have
more than one charge vertex. On the other hand, we have:

Lemma 7.8. Each vertexv of0 is a charge vertex of at most one pair in Gleft ∩Gright.

Proof. Suppose to the contrary that a vertexv is a charge vertex of two distinct pairs
(e1, f1) and(e2, f2) in Gleft ∩Gright. Let Ce andCf be the cc-chains crossing atv, with
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Fig. 11. Case 1 of Lemma 7.8:Ce intersects the right scope ofe1.

Ce aboveCf on the left ofv. Then from the definition of a charge vertex above,Ce =
chain(e1) = chain(e2) andCf = chain( f1) = chain( f2). Let P1 denoteparab(e1) =
parab( f1) andP2 denoteparab(e2) = parab( f2).

Since(e1, f1) and(e2, f2) are distinct, eithere1 6= e2 or f1 6= f2. We assume without
loss of generality thate1 6= e2 and furthermore thate1 lies to the left ofe2 on chainCe.

Case1: P1 = P2. Sincee1 ande2 are to the left ofv and f1 is to the right ofv, e2 lies
betweene1 and f1 on P1. Since(e1, f1) ∈ Gright, the right scope ofe1 containsleft( f1)

and hencee2. In other words, chainCe intersects the right scope ofe1, contradicting
Lemma 7.6. See Fig. 11.

In the remaining two cases, we assume thatP1 6= P2.

Case2: f1 is to the left of f2 on chain Cf . Because(e1, f1) ∈ Gright, chainCe stays
strictly below P1 in slab(e1, f1). Similarly, because(e2, f2) ∈ Gleft, chainCf stays
strictly below P2 in slab(e2, f2). Therefore,e2 is strictly below P1 and f1 is strictly
below P2, implying thatP1 intersectsP2 in slab(e2, f1). Let u denote this intersection.
Let C denote the cc-chain fromright(e1) to u that first followsC up to e2 and then
continue onP2 up tou. By Corollary 7.4, there must be a parabolaP containing an edge
of C that forms a lens withP1 within slab(e1, u). lens(P, P1) is a right wedge ofe1

and henceleft( f1) is outside of the right scope ofe1, a contradiction to the assumption
(e1, f1) ∈ Gright. See Fig. 12.

Case3: f1 is to the right of f2 on chain Cf . Since(e1, f1) is in Gleft ∩Gright, right(e1) is
in the left scope off1 andleft( f1) is in the right scope ofe1. Therefore, by Lemma 7.6,
both Ce and Cf stay strictly belowP1 in slab(e1, f1). Consider a cc-chainC from
right(e1) to left( f1) obtained by first followingCe up toe2, then followP2 up to f2, and
finally follow Cf up to right( f1). See Fig. 13. IfP2 intersectsP1 within slab(e2, f2),
then, similarly, to Case 2, we have a right wedge ofe1 in slab(e1, f2) contradicting the
assumption thatleft( f1) is in the right scope ofe1. Therefore,P2 does not intersectP1

within slab(e2, f2) and hence chainC stays strictly belowP1. By Corollary 7.4, there is a
parabolaP containing a chain edgeeP of C that forms a lens withP1 within slab(e1, f1).
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Fig. 12. Case 2 of Lemma 7.8:left( f1) is outside ofrscope(e1) because ofP.

If eithereP ∈ Ce or P = P2, thenlens(P, P1) is a right wedge fore1, contradicting the
assumption that(e1, f1) ∈ Gright. Otherwise,eP ∈ Cf and hencelens(P, P1) is a left
wedge of f1, contradicting the assumption that(e1, f1) ∈ Gleft.

Since the number of vertices in0 is at most 2

(
n
2

)
= n(n− 1), Lemmas 7.7 and 7.8

imply that|Gleft ∩ Gright| ≤ n(n− 1).
We are now ready to prove Lemma 7.5. LetÊ ⊆ E(C)denote a maximum independent

set ofGleft ∩ Gright regarded as an undirected graph onE(C). To bound the size of̂E
from below, we use the following well-known fact that follows from Tur´an’s theorem
[17], [12].

Fig. 13. Case 3 of Lemma 7.8:lens(P, P1) is a left wedge off1 and henceright(e1) is outside oflscope( f1).



How to Cut Pseudoparabolas into Segments 285

Lemma 7.9. The size of the maximum independent set of a graph with N nodes and
M edges is at least N2/(2M + N).

Applying this bound toGleft ∩ Gright, with N = |E(C)| > 7n2−ε (our supposition in
this section), a trivial boundN ≤ n2, and the boundM < n2 obtained above, we have

|Ê| ≥ 49n2(2−ε)/(2n2+ n2) ≥ 16n2−2ε.

We still need to translate this bound to a bound on the size of the maximum independent
set of eitherGleft or Gright.

Let (e, f ) be an adjacent pair of̂E. We say thatf is left-activeif (e, f ) ∈ Gleft and
that e is right-active if (e, f ) ∈ Gright. Let Eleft (resp.Eright) be obtained fromÊ by
removing all the left-active (resp. right-active) chain edges. We claim thatEleft (resp.
Eright) is an independent set ofGleft (resp.Gright). To see this, suppose to the contrary
that(e, f ) ∈ Gleft, for somee, f ∈ Eleft. Let e′ be the chain edge of̂E such that(e′, f )
is an adjacent pair of̂E. Since the left scope off overlapse, it overlapse′ and hence
(e′, f ) ∈ Gleft. This means thatf is left-active, a contradiction to the definition ofEleft.
The proof thatEright is an independent set ofGright is similar.

We next show that either|Eleft| ≥ |Ê|/2 or |Eright| ≥ |Ê|/2. For each adjacent pair
(e, f ) of Ê, we cannot have bothe left-active andf right-active, because then(e, f ) is in
Gleft∩Gright contradicting the choice of̂E as an independent set ofGleft∩Gright. Because
there are fewer than|Ê| adjacent pairs of̂E, it follows that either fewer than|Ê|/2 chain
edges ofÊ are left-active or fewer than|Ê|/2 chain edges of̂E are right-active. Thus,
either|Eleft| ≥ |Ê|/2 or |Eright| ≥ |Ê|/2: at least one of them has size at least 8n2−2ε.

This completes the proof of Lemma 7.5. From now on, we assume without loss of
generality that|Eleft| ≥ 8n2−2ε.

7.3. DefiningL∗

For a set of chain edgesE ⊆ E(C), let lwedge(E) denote the set of lenses{lwedge(e) |
e∈ E has a left wedge}. Thenlwedge(Eleft), whereEleft is the left-sparse set of chain
edges obtained in the previous subsection, is a good candidate forL∗: it is upper disjoint,
its size is large, and each of its lenses contains a chain edge on its lower boundary.
The latter two properties are favorable when we defineF∗ so as to establish the weight
condition of Lemma 7.1. However, our proof requires lenses ofL∗ to have certain
additional properties: we defineL∗ to be a subset oflwedge(Eleft) as follows.

For each segment of a parabola in0 such that its endpoints are vertices of0, we
define thelengthof the segment to be the number of arrangement edges on the segment.
We call a chain edgeshort-scopedif the length of its left scope is at mostn2ε/2. Define
Eshort to be the subset ofEleft consisting of the short-scoped chain edges inEleft. Since
the left scopes of the chain edges ofEleft are mutually disjoint and there are at most
n2 arrangement edges in0, there are at most 2n2−2ε chain edges ofEleft that are not
short-scoped. Therefore, we have|Eshort| ≥ |Eleft| − 2n2−2ε ≥ 6n2−2ε.

Sett = c1n1−6ε, wherec1 is a sufficiently small constant, and call a lenst-long (resp.
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t-short) if the length of the lower boundary ofL is greater thant (resp. at mostt). We
defineL∗ to be the subset oflwedge(Eshort) consisting oft-long lenses.

Lemma 7.10. |L∗| ≥ 4n2−2ε.

Proof. We first note that|lwedge(Eshort)| ≥ |Eshort| − n ≥ 5n2−2ε, because each
parabola of0 contains at most one chain edge ofEshort that does not have a left wedge.
Let L′ denote the subset oflwedge(Eleft) consisting oft-short lenses. We claim thatL′
forms a simplet-matching when interpreted as a set of hyperedges in the hypergraph
H(0). To see this, lete be an arbitrary edge of the arrangement0. There is at most one
lens ofL′ such that its upper boundary containse, becauseL′ is upper-disjoint. Moreover,
there are at mostt − 1 lenses ofL′ whose lower boundary containse, because each of
these lenses is identified by its left endvertex that must be among thet − 1 vertices on
parab(e) lining up to the left ofe. Thus every arrangement edgee is contained in at most
t lenses ofL′. Using the bound on the size of a simplek-matching in Lemma 4.5, we
have|L′| ≤ O(n5/3t1/3) = O(n2−2ε). Since the hidden constant in thisO notation is
increasing inc1, we may choosec1 small enough so that|L′| ≤ n2−2ε. It follows that
|L∗| ≥ |lwedge(Eshort)| − |L′| ≥ 4n2−2ε.

We defineE∗ to be the subset ofEshort corresponding toL∗. More formally, E∗ =
{e ∈ Eshort | e has at-long left wedge}, so thatL∗ = {lwedge(e) | e ∈ E∗}. Note that
chain edges ofE∗ and lenses ofL∗ are in one-to-one correspondence.

7.4. Defining F∗

In this subsection we define the fully wedged set of chain edgesF∗ in Lemma 7.1. To
establish the weight condition (3), we wantF∗ to be sufficiently large and its elements
to have many overlappings with the lower boundaries of the lenses ofL∗. We start with
finding a large set̃F ⊆ E(C) such that eache ∈ F̃ overlaps the boundary of some lens
in L∗. We later extract a fully wedged subset from̃F and define it to beF∗.

Recall the definition of left hinges. If chain edgee has a left wedge, then the left
hinge ofe, lhinge(e), is the rightmost chain edge ofchain(e) that overlaps the lower
boundary of the closest left wedgelwedge(e) of e. DefineF̃ to be{lhinge(e)| e∈ E∗}.
By definition, eache ∈ F̃ overlaps the lower boundary of some lens inL∗. Although
we have a lower bound on|E∗|, this does not readily translates to a lower bound on|F̃ |
because a chain edge may be a left hinge of more than one chain edges. For each subset
E of E∗, define themultiplicity of E to be the maximum number of chain edges ofE of
which the left hinges are identical. We seek a large subset ofE∗ with low multiplicity,
for which we need some tools.

Let e and f be distinct chain edges on a single chainC, with e lying to the left of
f . We say that the pair(e, f ) is safeif parab(e) andparab( f ) are distinct and intersect
within slab[e, f ].

Lemma 7.11. Let e1, . . . , em be some consecutive chain edges in a chain C, listed in
the left-to-right order. If pair (e1, em) is not safe, then there is some i, j , 1≤ i, j,≤ m,
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such thatparab(ei ) andparab(ej ) form a lenslens(parab(ei ), parab(ej )) contained in
slab[e1, em] whose lower boundary overlaps ej .

Proof. The proof is by induction onm. Form= 2 the statement trivially holds because
the pair(e1, em) must be safe. Now supposem > 3 and that(e1, em) is not safe. First
consider the caseparab(e1) = parab(em). If pair (e1, em−1) is safe, then settingi = 1
and j = m−1 satisfies the lemma:lens(parab(em−1), parab(e1)) is formed with its right
end beingright(em−1) and its left end being the intersection guaranteed by the definition
of the safety of the pair(e1, em−1) (and therefore lying inslab[e1, em−1]). On the other
hand, if pair(e1, em−1) is not safe then the result immediately follows from the induction
hypothesis.

Now supposeparab(e1) 6= parab(em). Without loss of generality we may assume
that parab(e1) stays strictly belowparab(em) within slab[e1, em]. Then chainC must
intersectparab(e1) within slabslab(e1, em). Let em′ be the chain edge that contains the
rightmost such intersection, 1< m′ < m. If parab(em′) forms a lens withparab(e1)

within slab[e1, em′ ], then we are done, settingi = 1 and j = m′. Otherwise, the pair
(e1, em′) is not safe and our claim directly follows from the induction hypothesis.

In the following, we use the fact that the size of any simplek-matching in the hy-
pergraphH(0) is at mostn2−4ε. This follows from the upper boundO(n5/3k1/3) of
Lemma 4.5 and our assumptionk ≤ c0n1−12ε: we exercise our reserved freedom and
choosec0 small enough so that the above bound holds.

Lemma 7.12. There is a subset E of E∗ with |E| ≥ n2−2ε whose multiplicity is at
most n2ε.

Proof. Divide each cc-chain ofC into subchains so that each subchain contains exactly
n2ε chain edges ofE∗, discarding an incomplete subchain that may result at one end of
the cc-chain. Call each of these subchains atrail . We have at least|E∗|/n2ε−k > 3n2−4ε

trails in total. We call a trailsafeif every pair of chain edges therein is safe; otherwise
it is dangerous. By the above lemma, to each dangerous trail we can associate a lens
contained in the vertical slab spanned by the trail. Since two lenses associated with two
trails of a single chain are disjoint, the collection of such associated lenses form a simple
k-matching. Therefore, applying the above bound on the size of a simplek-matching, at
mostn2−4ε trails are dangerous and hence at least 2n2−4ε trails are safe.

Divide each safe trail intoleft andright parts, so that each part contain exactlyn2ε/2
chain edges ofE∗. Let E be the subset ofE∗ consisting of chain edges in the right parts
of all the safe trails. The size ofE satisfies the requirement of the lemma:|E| ≥ n2−2ε. It
remains to show that the multiplicity ofE is at mostn2ε. For eache∈ E, define thedepth
of e, denoted bydepth(e), to be the number of chain edges ofE on the subchain starting
with lhinge(e)and ending withe. We claim thatdepth(e) ≤ n2ε for everye∈ E. Suppose
to the contrary thatdepth(e) > n2ε for somee∈ E. This implies that the subchain from
lhinge(e) to e contains the entire left part of the safe trail to whiche belongs. LetC
denote the left part of this safe trail. For each chain edgef ∈ C ∩ E, pair ( f, e) is safe
and thereforeparab( f ) andparab(e) intersects within the slab spanned byC. Moreover,
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if f1 and f2 are distinct chain edges inC ∩ E, pair( f1, f2) is safe and henceparab( f1)

andparab( f2) are distinct by the definition of safety. Therefore,parab(e) has at least
n2ε/2 vertices of0 in the vertical slab spanned byC. Sincelhinge(e) is to the left of this
slab, thesen2ε/2 vertices are contained in the left scope ofe. This contradicts the choice
of E∗, which must consist of short-scoped chain edges. Therefore,depth(e) ≤ n2ε for
everye ∈ E. This implies that the multiplicity ofE is at mostn2ε, because, if the left
hinges ofm chain edges ofE are identical, at least one of them (the one farthest from
the common left hinge) must have depthm.

This lemma implies that the left hinges of the chain edges ofE contribute at least
|E|/n2ε distinct elements tõF . Thus:

Corollary 7.13. |F̃ | ≥ n2−4ε.

We are ready to defineF∗ of Lemma 7.1. LetG′left be the subset ofGleft in the previous
subsection defined byG′left = {(e, f ) ∈ Gleft | e, f ∈ F̃}. DefineG′right analogously as
a subset ofGright. Let E′left (resp.E′right) be the maximum independent set ofG′left (resp.
G′right) viewed as an undirected graph. Repeating the analysis in the previous subsection
that we used for lower-bounding the size of the maximum independent set ofGleft or
Gright, we obtain the following.

Lemma 7.14. Either |E′left| ≥ n2−8ε/6 or |E′right| ≥ n2−8ε/6.

If |E′left| ≥ n2−8ε/6, then we setF∗ = E′left; otherwise we setF∗ = E′right. SinceE′left
is left-sparse andE′right is right-sparse,F∗ is fully wedged in either case.

7.5. The Weight Condition

In this section we show thatL∗ andF∗ defined in the previous subsections satisfy the
weight condition (3) of Lemma 7.1, which we list below:∑

L∈L∗
weightF∗(L) ≥ n2. (4)

To facilitate the proof, we first define a subsetL∗1 ofL∗ whose members are in one-to-one
correspondence with the members ofF∗.

Lemma 7.15. There exists a one-to-one mappingλ: F∗ → L∗ such that each f∈ F∗

overlaps the lower boundary of lensλ( f ).

Proof. For each f ∈ F∗, there is at least onee ∈ E∗ such thatlhinge(e) = f , by
the definition ofF∗. Choose arbitraryef ∈ E∗ with lhinge(ef ) = f for each f and set
λ( f ) = lwedge(ef ), which is inL∗ by the definition ofE∗. To show thatλ is one-to-
one, let f1, f2 be two distinct elements ofF∗. If chain edgesef1 andef2 are not on the
same parabola, then lenseslwedge(ef1) and lwedge(ef2) are distinct and hence we are
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done. Suppose bothef1 andef2 are on the same parabolaP and assume without loss
of generality thatef1 lies to the left ofef2. We cannot havelwedge(ef1) = lwedge(ef2)

because it would putef1 in the left scope ofef2 contradicting the choice ofE∗ that must
be left-sparse. Therefore,λ is one-to-one as required.

LetL∗1 ⊆ L∗ be the imageλ(F∗) of F∗. We are going to show∑
L∈L∗1

weightF∗(L) ≥ n2, (5)

which implies our weight condition (4).
We need the following technical lemma. For each arrangement edgee of 0, let Le

denote the set of lenses ofL∗1 whose lower boundaries containe. We call a lensL of
L∗1 well-overlappedif |Le| ≥ W = 12n8ε for every arrangement edgee on its lower
boundary.

Lemma 7.16. At least half of the lenses ofL∗1 are well-overlapped, for sufficiently
large n.

The proof of this lemma is given below. We use this lemma to prove (5). LetL∗2 be the
subset ofL∗1 consisting of well-overlapped lenses. By the above lemma and the definition
of L∗1, we have|L∗2| ≥ |L∗1|/2 = |F∗|/2 ≥ n2−8ε/12. For eachL ∈ L∗2, λ−1(L) ∈ F∗

overlaps the lower boundaries of at leastW lenses ofL∗1 and hence contributes a weight
of at leastW to the summation

∑
L∈L∗1 weightF∗(L). Thus, the summation must be at

leastW · |L∗2| ≥ n2.
Finally, the proof of Lemma 7.16 below completes the proof of Lemma 7.1 and hence

of our theorem.

Proof of Lemma7.16. LetLP denote the set of all lenses ofL∗1 whose lower boundaries
are formed by parabolaP. We will show that, for eachP such that|LP| ≥ n1−8ε/24, all
but a vanishing fraction of the lenses inLP are well-overlapped. Then we will be done,
because the total number of lenses that are in someLQ such that|LQ| < n1−8ε/24 is at
mostn2−8ε/24≤ |L∗1|/4. Fix a parabolaP with |LP| ≥ n1−8ε/24. For each lensL ∈ LP

that is not well-overlapped, there is an arrangement edgee in the lower boundary ofL
such that|Le| < W, by definition: we say thate witnesses L.

Recall that each lens inL∗1 is t-long wheret = c1n1−6ε. Let I be an arbitrary interval
on P consisting oft consecutive arrangement edges. We say thatI witnessesa lens
L ∈ LP that is not well-overlapped, if some arrangement edgee ∈ I witnessesL.
Let S be the set of lenses witnessed byI and letSleft (resp.Sright) denote the subset of
S consisting of lenses whose lower boundaries contain the leftmost (resp. rightmost)
arrangement edge ofI . Then we haveS= Sleft ∪ Sright because the length of the lower
boundary of eachL ∈ S is at leastt . Let L0 be a lens inSleft such that the intersection
of its lower boundary withI is minimal. Then, for every arrangement edgee∈ I in the
lower boundary ofL0, we haveLe ⊇ Sleft. SinceL0 is witnessed by somee ∈ I , this
implies that|Sleft| < W. Similarly we have|Sright| < W and hence|S| < 2W.

Now, partitionP into disjoint intervals, with each interval havingt arrangement edges
each. Since each lens ofLP that is not well-overlapped must be witnessed by some of
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these intervals, and each interval can witness at most 2W lenses, the number of lenses
not well-overlapped is at most 2W · 2n/t = 48n14ε/c1. Sinceδ < 6

11 and henceε < 1
22,

this number iso(n1−8ε).
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