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Abstract. The model of the torus as a parallelogram in the plane with opposite sides
identified enables us to define two families of parallel lines and to tessellate the torus, then
to associate to each tessellation a toroidal map with an upward drawing. It is proved that a
toroidal map has a tessellation representation if and only if its universal cover is 2-connected.
Those graphs that admit such an embedding in the torus are characterized.

1. Introduction

Given a graplG, let V (G) be the set of vertices @, E(G) the set of edges d&. For
A C V(G) we denote byE(A) the set of edges db with both ends inA.

A map Mon a surface is a connected grapB together with a 2-cell embedding
of G in X. Two maps areequivalentif there is a homeomorphism & mapping the
graph of the first map onto the graph of the second. It is well known that the equivalence
classes of maps on orientable surfaces correspond naturally to rotation systems on the
underlying graphs [4]. Let us recall that@ation systenon a graphG is a set of cyclic
permutationsr, (v € V(G)) wherer, cyclically permutes edges emanating fram
7, corresponds to the cyclic order of these edges arauad the surface. A similar
combinatorial representation can be given for maps on nonorientable surfaces (see, e.g.,
[4] or [10]). The rotation system around the faceshbfdefines thedual map M. A
mapM and its duaM* can be simultaneously drawn ¥ such that each vertex & *
corresponds to an interior point of the corresponding fac®dfnd vice versa), and
such that precisely dual pairs of edges cross each other.

* The first author was supported in part by the Ministry of Science and Technology of Slovenia, Research
Project P1-0210-101-94. The second author’s work was partially supported by the ESPRIT Basic Research
Action No. 7141 (ALCOM II).
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Fig. 1. Atoroidal map and its angle map.

If M is a map inX whose underlying graph hasvertices e edges, and faces, then
n—e+ f = x(X) wherey (X) is theEuler characteristicof the surfaces.

In this paper we only consider mapsdosed surface§.e., compact surfaces without
boundary) and maps in the plane. Most attention is given to the torus which can be rep-
resented by a parallelogra@in the plane whose opposite sides are pairwise identified.
This representation of the torus carries the local geometry of the plane and hence we call
it the flat torus

From now on we will assume that is a closed surfaceyl a map onx, andG the
underlying graph oM. An angleof M (resp.M*) is a pair of consecutive arcs at a vertex
v of M (resp., a facef of M). Theangle mapof M is a map.A on ¥ whose vertices
are the vertices ol plus the vertices ol * (i.e., the faces oM), and whose edges are
the angles oM, each angle being incident with the corresponding vertex and falgke of
[12]. The set of angles incident with a vertexf M has a local rotation determined by
M, and the set of angles incident with a faceMdfinherits the local rotation fronM*.

The angle map4 is bipartite and each face of is a quadrangle whose diagonals are
a pair of dual edges d#l andM*. An example is shown in Fig. 1(b) where the dotted
lines represent the edgesdf and they are not part od. The dual map of4 is known

as themedial mapof M.

An important concept related to drawings of graphs in the plane is the notion of
upward drawings where each edge of a graph is oriented and drawn in theR3lane
that the ordinate monotonically increases when we traverse the edge according to its
orientation. In order to define an upward drawing of a gr&bn the torus, we first
need a definition of a monotone arc. Consider, without loss of generality, the flat torus
obtained from a parallelogra@ in the plane. The lines parallel to the side€périented
according to the usual axes determim@izontalandvertical circuits on the torus. At
each point of the torus two circuits cross, the vertical one being crossed always by the
horizontal one, for instance, from left to right. A (polygonal) arc on the torasisotone
if it can be oriented such that by traversing the arc in the chosen direction, one crosses
horizontal circles only from bottom to top. In particular, the vertical circuits are examples
of monotone arcs. Let us observe that a monotone arc may cross a horizontal circuit more
than once by “winding” around two or more times. The definition of horizontal circles
is easily extended to the case when the horizontal direction is not necessarily parallel to
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a side ofQ. Monotone arcs are defined accordingly. &pward drawingof a toroidal

map M is a map equivalent tt drawn on the torus with monotone (polygonal) arcs
such that at each vertexof M, at least one edge incidenti@ntersy from below (with
respect to the chosen horizontal direction) and at least one edgeefrmrsabove (see

Fig. 1(a)). The authors have shown in [9] by using network flow technigues that every
toroidal map with 2-connected universal cover admits a drawing in the flat torus that is
an upward drawing and, moreover, the corresponding drawing of the dual map is upward
at the same time (with respect to the vertical circuits instead of the horizontal ones).

A stronger concept than upward drawings is the tessellation representation of a map.
This concept was investigated in case of planar graphs by Tamassia and Tollis [14].
Given horizontal and vertical directiodsandA’ of the flat torus (possibly distinct from
the directions of the sides of the fundamental parallelog€ywe consider a family
of horizontal line segments called the vertices, and a family of vertical line segments
called the faces, all disjoint except that each segment of one family touches at each end
a segment of the other family at one of its internal points. A map is associated with a
tessellation in the following way. Horizontal segments are the vertices, vertical segments
the faces. Each of the obtained quadrangular regions determines an edge of the map; itis,
by definition, incident with two vertices by its two horizontal sides, and with two faces by
its two vertical sides. The local rotatiany around the vertex is determined by the order
of edges obtained by traversing the boundary of a small neighborhood of the vertical
segment corresponding toin the clockwise direction. This rule determines the map
up to equivalence. Aessellatiorof the torus is then a representation of a toroidal map
defined by its vertices, faces, and edges as introduced above. An example of atessellation
and the corresponding map is shown in Fig. 2 and a tessellation representation of the
map from Fig. 1(a) is presented in Fig. 3. Our main result is that a toroidal map admits a
tessellation representation if and only if it is essentially 2-connected. This, in particular,
implies the above-mentioned result of [9] about the simultaneous upward drawings of
the mapm and its duaM*.

In Section 2 we present several characterizations of essentially 2-connected maps on
the torus and show that they can be obtained from two minimal maps by vertex splitting
and creating digons. Section 3 contains the proof of the main theorem about existence
of tessellation representations. Section 4 is devoted to the visibility representation and
grid contact graphs as corollaries of the main theorem. In Section 5, a characterization
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Fig. 2. A tessellation representation of a toroidal map.
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Fig. 3. Atessellation representation of the map from Fig. 1.

of those graphs that can be embedded as an essentially 2-connected map on the torus is
presented.

Similar questions as addressed in this paper for the flat torus have been considered
in the case of the plane by de Frayssebxal. [3], and for the torus by Kratochivand
Przytycka [6].

2. Essentially 2-Connected Maps

The universal covenf the surface is the simply connected surfage together with

a covering projectiop: ¥~ — X. We refer to [7] for the general theory of covering
spaces and for basic properties of universal covering spadgsslithe graph of a map

on %, thenp~1(G) defines a map ift. By the homotopy lifting property of covering
maps [7], a lifting of a closed walWV of G into the coverX is a closed walk ip~%(G)

if and only if W is contractible inx. In particular, everyacial walkof G (i.e., the walk

in G corresponding to the traversal of the boundary of a face) is lifted to facial walks in
the covering map.

The universal cover of the flat torus represented by the parallelo@&the plane
paved with replicates d, and the lifting of a map in the torus is an infinite plane graph.
A part of such a pavement is shown in Fig. 4.

A map isessentially2-connectedf the graph of its universal cover map is 2-connected.
Figure 4 shows an example (of a part) of the universal cover of an essentially 2-connected
toroidal map whose graph is not 2-connected.

Lemma 2.1. Givenamap M of agraph G on a surfaBewhose Euler characteristic
x (X) is not positivethe following conditions are equivalent

() M is essentiall\2-connected
(i) No facial walk f of M contains a proper closed subwalk which is contractible
onx.
(iii) There are no planar separationsinthe graph G ofild., if G; and G; are graphs
each having at least one ed@ad such that G= G, U G, and G N G, = {v},
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Fig. 4. A part of the universal cover of a toroidal map.

wherev is a vertexthen G, and G, each contain a circuit that is noncontractible
onx.

(iv) The angle mapd of M has no homotopic pair of parallel edgés., a pair of
edges bounding a disk

(v) For every subset S of the vertices of the angle riagd M we have

2|5 - [E(9)] = 2x (3). )

Proof. (i) < (ii) Since x(X) < 0, the underlying surface of the universal covering
mapM of M is the plane. It is well known that a (possibly infinite) graph in the plane is
2-connected if and only if every facial walk is a simple cycle (not meeting the same vertex
twice). Since every facial walk (and every contractible subwalk of a facial walkj in
lifts into M to a facial walk of the same length (a subwalk of a facial walk, respectively),
(i) and (ii) are easily seen to be equivalent.

(if) = (iii) Suppose thaG admits a planar separati@= G, U G,, G; NG, = {v},
and suppose th&; contains only circuits that are contractible Bn Consider a facial
walk f of M which is not contained entirely iB(G3) or in E(G>). Thenf is the union
of nonempty closed segments frdaiG;) and fromE(G,). By our choiceG; contains
only contractible circuits. Therefore, any closed segmelitiof G, is contractible. This
contradicts (ii).

(i) = (iv) Suppose that the angle mapof M has a pair of parallel edges bounding
an open diskD. Let the endpoints of these edges.4fbe v, a vertex ofM, and f, a
face of M. Note thatdD N G = {v} wheredD is the boundary of the closure @
in X. Since A contains only quadrangular faced3,is not a face ofd. Therefore the
subgraphG; = G N D of G contains at least one edgeGt = G N (X\D), then also
G, is nontrivial by the same reason. SinGg is contained in a disk, it only contains
contractible circuits, so the decompositiGn= G; U G, is a planar separation which
contradicts (iii).

(iv) = (v) Pick S € V(A). The angle grap being bipartite, so is the subgraph
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A(S) of A induced onS. To prove the inequality |8 — |[E(S)| > 2x (%), it suffices
to consider the case whef(S) is connected and wheis| > 3 sinceyx (X) < 0. (Let
us note that conditiory (¥) < 0 is really needed only in cases whel{S) is just a
vertex or an edge.) Consider the induced embeddind (@) in . By (iv), and our
assumptions on connectivity anfl] > 3, A(S) contains no digonal faces. Then it is
easy to see by using the Euler’s formula and the bipartiteness $f, that we get the
required inequality.

(v) = (ii) Suppose that a proper closed subwé&)kof a facial walk f of M is
contractible onx. Let x be the endvertex o C f, and letw; anda; be the angles in
f corresponding to the appearances af an end 0. Lete; ande, be the edges inl
corresponding te; andwy, respectively. Note thag ande, are parallel edges, joining
x and f in A. They determine a closed cur@on X which is homotopic tdQ since it
can be “pushed” by a homotopy withihonto Q. SinceQ is contractible, so i€, and
thusC bounds an open disk in . Let Sbe the set of vertices ol that do not lie in
D, and consider the corresponding subm®) of A. SinceD is a disk, the underlying
surface ofA(S) is alsox. The faces ofA(S) coincide with faces of4 except for the
digonal faceD. Thus 2E(S)| equals four times the number of facesAfS) minus 2
(due to the digon). Euler’s formula then shows thgg|2- |E(S)| = 2x(X) — 1. This
contradicts (v). O

Note that, since a majd and its dual map1* have the same angle map, if one\df
M* is essentially 2-connected, so is the other. The essential 2-connectivity of toroidal
maps appears to be an appropriate generalization of the 2-connectivity planar maps.
Let M be an essentially 2-connected map on the torus. An ed§#® is contractible
(resp.removablg, if M/e(resp.,M —e€) is an essentially 2-connected map. Note that if
is contractible (resp., removable), then its dual eeilge removable (resp., contractible)
in the dual mapgVi*.

Lemma 2.2. Let M be an essential8connected map on the torus and let&£(M).
Then

(a) If e isiincident with a vertex of degr@then e is contractible

(b) If e is on a digonal facethen e is removable

(c) If M has no digonal faces and has at least two vertitigsn M has a contractible
edge

(d) If M has no vertices of degréand has at least two facgken M has aremovable
edge

Proof. Statements (a) and (b) are obvious, and (c) and (d) are dual to each other. So it
suffices to prove (c). By (a) we may assume tlahas no vertices of degree 2.

SinceM has two or more vertices, there are nonloop edged irfConsidere being
one of them. Ifeis not contractible, its contraction results in a map that is not essentially
2-connected. According to Lemma 2.1(iv), the corresponding angle map contains a digon
bounding a diskD. Suppose that the contracted edgeas chosen in such a way that
the number of vertices iD is as small as possible. By our assumptions (no degree 2
vertices, no digons)D contains an edge of the may. This edge is then contractible
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Fig. 5. Minimal essentially 2-connected mapk andMj.

with respect tdM since its contraction yielding a digon in the corresponding angle map
would contradict the minimality of the originally chosen edgend the corresponding
disk D. O

Lemma 2.2 shows that the only minimal essentially 2-connected map (with neither
contractible nor removable edges) on the torus is the g@pf Fig. 5. Lemma 2.2 also
implies that every essentially 2-connected toroidal ivapan be reduced to one of the
two mapsMgy andM; from Fig. 5 after a sequence of edge contractions and deletions of
digon edges such that all intermediate maps are essentially 2-connected. Keeping track
of that sequence, we may reconstrivtfrom the mapM, or M; obtained at the end by
using the sequence backwards: a deletion being replaced by the addition of a homotopic
parallel edge, a contraction being replaced by a vertex splitting. In other words:

Corollary 2.3. Every essentiall@-connected toroidal map can be obtained from one
of the maps M and M, by a sequence of homotopic parallel edge additions and vertex
splittings such that all intermediate maps are essenti2ibpnnected

3. Tessellation Representations

From now on we will only consider maps on the torus. In this section we will prove
that a toroidal map admits a tessellation representation on the torus if and only if it is
essentially 2-connected.

Suppose that we have a tessellation representation of aNhaphis defines an
orientation of edges df1: each edge is oriented from the vertex corresponding to the
base of the rectangIR representings toward the end oé corresponding to the upper
side ofR. For an arbitrary given orientation of the edges of a tivg@n angle at a vertex
v is lateral if one of its arcs is incoming and the other is outgoing aOtherwise, if
both arcs of an angle are incoming or both are outgoing titen the angle isxtremal
Having an orientation of edges of a mlfy we get an orientation of the angle map
as follows. Given an angle incident with a vertex and a facef of M, the anglex as
an edge of4 is oriented fromw to f if « is lateral, and fromv to f if « is extremal.

We say that an orientation of edgesiMfhas theupward propertyat v (resp., atf) if
there are exactly two lateral anglesvafresp., two extremal angles &). Equivalently,
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in the oriented angle mag, the indegree of every vertex (eitheor f) is equal to two
(see Fig. 1(b)). See also [11]. An orientationMf which has the upward property at
every vertex and every face, is called @wward orientation By the above remark, an
upward orientation induces an indegree-two orientation of the angleAnglt is an
easy corollary of Euler’s formula that only maps with Euler characteristic zero admit
upward orientations.) Having indegree-two orientationdofwe can use the following
lemma:

Lemma 3.1. Let k be an integelA graph G admits an orientation of its edges such
that each vertex has indegree at most k if and only if the average degree of the vertices
of any subgraph of G is at mo2k.

Proof. Let H be an arbitrary subgraph @& and letd~(v) denote the indegree of
v € V(G) with respect to an orientatiad of edges ofG. If d~(v) < k for every vertex
v, then

[E(H) < ) d (@) <kV(H)

veV(H)

so the average degreelhis at most R.
Conversely, suppose thgE(H)| < k|V (H)| for every subgrapid of G. Let Q2 be
an orientation of edges @& such that the number

S = > @ @-k

d-(v)>k

is minimal. If S(2) = 0, we are done. So, assume thais a vertex withd~ (vg) > kK,
and letH be the subgraph induced by the verticesich that there exists a directed path
from v to vg. Then

E(H)= )Y d () <kV(H)I.

veV(H)

Sinced™ (vg) > K, there is a vertex; € V(H) such thad~(v;) < k. By reversing the
arcson adirected path fromto v we get an orientatiof?’ satisfyingS(2') = S(2)—1,
a contradiction. O

Now we state the main result of this section.

Theorem 3.2. A toroidal map admits a tessellation representation if and only if it is
essentially2-connected

Proof. Suppose that we have a tessellation representation of &mapen we easily
get an upward drawing d¥1 which induces an upward orientation of edgedvbfThis
in turn defines an orientation of edges of the angle tdaguch that every vertex ofl
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Fig. 6. Tessellation representations of mdys and M.

has indegree exactly 2 (see the Introduction). By Lemma 3.1, every subgraphaxf
average degree at most 4. In our case, this means that for every Sudighe vertices
of A we have

2|5 - |[E(9] = 0. 2

By Lemma 2.1(v) M is essentially 2-connected.

To prove the converse, we have to construct a tessellation representing an arbitrary
given essentially 2-connected mbf This is done step by step & can be obtained
(according to Lemma 2.2) frorivlp and M; by a sequence of parallel edge additions
and vertex splittings. We start with a tessellation representatidnyasr M; shown in
Fig. 6.

Let us now consider the two types of generating rules. Adding a parallel edge is
simple: the rectangle corresponding to the eglgplits into two by adding a vertical line
in the middle. Of course, the new vertical segment corresponds to the digonal face.

The vertex splitting operation is slightly more involved. Up to symmetries, we have
to consider four cases as displayed in Fig. 7. Note that in the first vertex-splitting rule,
the orientation of the edgedepends on the relative position of the two faces involved in
the splitting. These rules give the procedure how to obtain a tessellation representation
of M starting fromMg or M;. The proof is complete. O

The proof of Theorem 3.2 also yields a polynomial time algorithm for constructing
tessellation representations of essentially 2-connected toroidal maps. Since a tessellation
representation determines an upward orientation, we also geta polynomial time algorithm
for upward orientations.

There are other possibilities for tessellation representatiovy@ndM;. However,
in none of them is any directian or A’ of the tessellating rectangles parallel to the sides
of the fundamental parallelogra@ of the flet torus. It would be interesting to know
which toroidal maps have a tessellation representation in the square model of the torus
with the directionsA and A’ parallel to the sides of the fundamental square.
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Fig. 7. Extending a tessellation after a vertex splitting.

4. Some Corollaries on Graph Drawing
4.1. Upward Drawing

A tessellation representation of a toroidal mdpdetermines an upward drawing and

an upward orientation of. In proving that the maps which admit tessellation repre-
sentations are essentially 2-connected, we used Lemma 3.1 where only their upward
orientation was needed. Therefore we also have:

Corollary 4.1. Atoroidal map admits an upward orientation if and only if it is essen-
tially 2-connected

4.2. Visibility Representations

Let M be an essentially 2-connected toroidal map. By Theorem 3.2 it has a tessellation
representation. Let us consider the horizontal segmidpts € V(M). A vertexwv is
adjacentto a vertexxin M if and only if H, contains a segme&of positive length such

that by shiftingS in the vertical directiomA” we bump intoH, (or vice versa). We say

that the segmerttl, is e-visiblefrom H,. The intervalsH,, v € V (M), thus uniquely
determineM. Such a representation df is called arg-visibility representatiorof M.

For thee-visibility it is not important whetheH, are open or closed segments. If we
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take asH, half-open segments (without their left endpoints, say), then the tessellation
of M yields a visibility representation foM where a point ofH, can see a point of
Hy in the vertical direction if and only ifiv € E(M). Such notion of visibility (in the
plane) was considered by Melnikov [8]. Tamassia and Tollis [13] and, independently,
Wismath [15] characterized which graphs have such a visibility representation in the
plane. Corollary 4.3 below gives a toroidal analogue of that result.

Tessellation representation is a stronger conceptdhasibility representation since
it gives simultaneous-visibility representations foM and its dual magM*. However,
our next lemma shows that arvisibility representation of a maljl can be transformed
into a tessellation representationidf

Lemma 4.2. Everye-visibility representation of a toroidal map M without digonal
faces can be transformed into a tessellation representation.of M

Proof. LetH,,v € V(M), be the horizontal segments of awvisibility representation

of M. For each edgav € E(M), let Q, be a quadrangle determined byisibility of

H, andH,. The base of),, is a segmen$(u, v) € H, (say), and the upper side &,

is a segmen$g(v, u) € H,. Suppose that the quadrangl@g, are chosen such that the
segmentsS(u, v) and S(v, u) are maximal. Now, the vertical sides of the quadrangles
Qu», Uv € E(M), give rise to vertical segments in the torus. None of these segments can
become a closed circle since what we started with was@sibility representation of

a 2-cell embedded graph. Now it is easy to see that we got a tessellation representation
of M. O

Theorem 3.2 and Lemma 4.2 yield:

Corollary 4.3. A toroidal map admits am-visibility representation in the flat torus
(or has a visibility representation with half-open horizontal segmahtnd only if it is
essentially2-connected

4.3. Toroidal Grid Contact Graphs

Two families of horizontal and vertical segments of the grid of the flat torus, each one
being disjoint from the others except for some contact points between two segments of
different families, define a bipartite toroidal graph, calleglid contact graphRelying on

our tessellation theorem we get a characterization of the graphs which can be represented
as toroidal grid contact graphs on the flat torus.

Theorem 4.4. A graph H can be represented as the contact graph of straight-line
segments on the flat torus where all segments corresponding to the same bipartition class
of H are mutually parallel if and only if H is a bipartite graph that can be embedded in
the torus in such a way that no pair of parallel edges bounds a disk
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Proof. A toroidal grid contact graph representationtbfon the torus determines an
embedding in the torus without parallel edges bounding disks. Conversely, let us embed
H in the torus without homotopic parallel edges. By repeatedly adding paths of length 2
or 3 between vertices of the graph it is possible to get an embedded igrapbh that:

(a) H is an induced subgraph éf;

(b) H is bipartite;

(c) H is 2-cell embedded (and thus also connected);
(d) H has no homotopic parallel edges; and

(e) no face ofH has repeated vertices.

Now, beside the white bipartition cla®¥ and the black clas8 of vertices ofH,
consider a third clasR of red vertices: add a new vertexe R in every facef of H,
and joinr by red edges to every white vertex bf The resulting mag has bipartition
(W, BU R) and also satisfies (a)—(e). By Lemma 2.1 (equivalence of conditions (i) and
(iv)), H is the angle graph of an essentially 2-connected @a@nd by Theorem 3.2 we
can get a tessellation representatiorGofit is clear that the tessellation representation
yields the required grid contact representatiorloBy (a), the restriction to the segments
corresponding to vertices ¢ yields the required representation tdr |

It is worth pointing out that Theorem 4.4 is closely related to results of Bellantoni
et al. [2] who considered the grid dimension of graphs. By taking a parallel to results
of [2], Theorem 4.4 characterizes graphs whose “toroidal grid dimension” is at most
two.

5. Graphs of Essentially 2-Connected Maps

It is of some interest to know which abstract graphs can be obtained as graphs of essen-
tially 2-connected toroidal maps. It is easy to find some sufficient conditions for a graph
G to have a representation as an essentially 2-connected toroidal map. For example, if
G is 2-connected, then every 2-cell embeddingsoin the torus yields an essentially
2-connected map. We claim that every 2-connected graph (except gtaphs> 3)
with genus at most 1 and has a 2-cell embedding in the torus. This is clear if the graph
G has genus 1. On the other handGifis planar, consider one of its plane embeddings.
Let e = uv be an arbitrary edge @ with one of its endvertices, say having degree
at least 3. Such an edge exists if and onlifis not a cycle. LetF;, F, be the two
faces in the plane containirgon the boundary. By replacing the unbounded face by a
disk and adding a “handle” joining; andF, we get an embedding @ in the torus. If
f = uw € dF; is an edge at distinct frome, we can re-embed it by using the handle so
that it attaches from “inside” of F,. It is clear that this gives rise to a 2-cell embedding
of G in the torus.

Recall that a graph isonseparabldf it is either a vertex, a loop, a bong(> 1
parallel edges), or a 2-connected graph.

Let Gy, ..., Gk (k > 2) be nonseparable graphs, each containing at least one edge
and such that at least one®f (1 < i < k) is notisomorphic td,. A graphG is acyclic
amalgamatiorof Gy, .. ., G if there are verticesi, v; € V(G;j) (possiblyu; = v; if
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G # Ky),i =1,...,k, andG is isomorphic to the graph obtained from the (disjoint)
union of Gy, ..., G after identifyingu; with vj; (index moduldk),i =1,...,k.

Theorem 5.1. A graph G can be represented as an essentizibpnnected toroidal
map if and only if it satisfies one of the following conditions

() G is2-connectedit has an embedding in the toruand it is not a cycle g for

some n> 3.
(b) G is a cyclic amalgamation of nonseparable planar graphs G., Gx where
k> 2,G; # Ky, and each of G, . .., Gk contains at least one edge

Proof. We have already demonstrated sufficiency of (a). Let us now prove that graphs
satisfying (b) have an essentially 2-connected toroidal representation=ar. . ., k
whereG; # Ky, embedG; in the (closed) cylinde; in such a way thad Q; is in two
distinct faces, sa¥i, F2, Gi N 0Q; = ¥, andu; € dF, v; € dF,. Such embeddings
always exist. For that purpose take distinct fafgsF, of a planar embedding d;
such thaty; € aF; andv; € 9F,. SinceG; is nonseparable an@; # Kj, Kz, such
faces exist. After removing an open disk from eachFofand F;, we get a required
cylinder embedding. By cyclically identifying boundaries of these cylinders we get a
torus embedding 061 U - - - U Gk with vertices that need to be identified in common
faces. If at least one pair, v; are distinct vertices, then it is obvious that we can get
a 2-cell embedding o6 in the torus (after adding the remaining gragbsthat are
isomorphic toK,, and making the appropriate identifications of verticesy;lt= v;,
U = vy, ..., Uk = vk, then we get a 2-cell embedding as indicated in Fig. 8. It is easy
to see by using Lemma 2.1(ii) that the resulting maps are essentially 2-connected.
We will now show that conditions (a) and (b) are also necessaryGllet the graph
of a given essentially 2-connected mapGlis 2-connected, we have (a).& is not 2-
connected, leBy, ..., By (@ > 1) beits blocks. Since the map is essentially 2-connected,
each endbloclB; contains a cycl€; that is noncontractible on the surface.
Suppose first thab has two distinct cutvertices. Then distinct cutvertices’ of G
can be chosen such that an endblock, Baycontainsv, and another endblock, s#s,
containsv’. ThenC,; andC; are disjoint noncontractible cycles. Therefore they cut the
torus into two cylinders, sa@), Q'. Any other block ofG intersect€C; U C, only atv
or v’. Since the map is 2-cell, there is a p&hc G in Q joining v andv’. There is a
similar pathP’ in Q'. Let By be the block of5 containing the cycl€, = P U P’. Now,
each remaining block d& is embedded entirely i@ or in Q’. Since each endblodg;

Fig. 8. The case of a single cutvertex.
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(i > 3) contains a noncontractible cycle, it must intergggin a cutvertex ofG. Now
it is easy to see th#& fits case (b) with each of the grap@s, . .., Gk being either one
of By, ..., By, or a part ofBy “between” consecutive vertices & on P U P’ that are
either cutvertices o6 or cutvertices oBBy N Q or cutvertices oBy N Q'.

The remaining possibility is whe@ has exactly one cutvertex Then all blocks are
endblocks. If one of them contains a noncontractible cycle which does not pass through
v, then the proofis similar to the above. Thus, we may assume that every noncontractible
cycle of G passes through. ThenG — v consists of several components corresponding
to the blocks ofG. Each of such componenfd is plane embedded (contains only
contractible circuits) and all edges fronto v attachD at the boundary of the “outer”
face. Therefore all blocks db are planar graphs. Their identificationwatan also be
interpreted as a special case of a cyclic amalgamatipe-(v; for everyi). Hence we
have (b). O

It is worth mentioning that recognizing graphs satisfying (a) or (b) can be done in
linear time. For (a), testing 2-connectivity is easy by a depth-first search [1], while
checking ifG has genus at most 1 can be performed in linear time by a recent algorithm
of Juvanet al [5]. To test if G satisfies (b) we first determine all blocks @fand test
their planarity. There must be a blo@g containing all cutvertices (otherwise (b) is not
satisfied) and such that all blocks distinct fr@gare planar. Blocks distinct frofdg will
appear in the cyclic amalgamation with= v;, while By itself is a cyclic amalgamation
of (at least 1) planar graphs. If there are two or more cutvertices, it is easy to see how
to get the corresponding decomposition. Having just one cutvertex, we simply apply the
algorithm of [5].
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