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Abstract. The model of the torus as a parallelogram in the plane with opposite sides
identified enables us to define two families of parallel lines and to tessellate the torus, then
to associate to each tessellation a toroidal map with an upward drawing. It is proved that a
toroidal map has a tessellation representation if and only if its universal cover is 2-connected.
Those graphs that admit such an embedding in the torus are characterized.

1. Introduction

Given a graphG, let V(G) be the set of vertices ofG, E(G) the set of edges ofG. For
A ⊆ V(G) we denote byE(A) the set of edges ofG with both ends inA.

A map M on a surface6 is a connected graphG together with a 2-cell embedding
of G in 6. Two maps areequivalentif there is a homeomorphism of6 mapping the
graph of the first map onto the graph of the second. It is well known that the equivalence
classes of maps on orientable surfaces correspond naturally to rotation systems on the
underlying graphs [4]. Let us recall that arotation systemon a graphG is a set of cyclic
permutationsπv (v ∈ V(G)) whereπv cyclically permutes edges emanating fromv;
πv corresponds to the cyclic order of these edges aroundv on the surface. A similar
combinatorial representation can be given for maps on nonorientable surfaces (see, e.g.,
[4] or [10]). The rotation system around the faces ofM defines thedual map M∗. A
mapM and its dualM∗ can be simultaneously drawn in6 such that each vertex ofM∗

corresponds to an interior point of the corresponding face ofM (and vice versa), and
such that precisely dual pairs of edges cross each other.
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Project P1-0210-101-94. The second author’s work was partially supported by the ESPRIT Basic Research
Action No. 7141 (ALCOM II).
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Fig. 1. A toroidal map and its angle map.

If M is a map in6 whose underlying graph hasn vertices,eedges, andf faces, then
n− e+ f = χ(6) whereχ(6) is theEuler characteristicof the surface6.

In this paper we only consider maps onclosed surfaces(i.e., compact surfaces without
boundary) and maps in the plane. Most attention is given to the torus which can be rep-
resented by a parallelogramQ in the plane whose opposite sides are pairwise identified.
This representation of the torus carries the local geometry of the plane and hence we call
it theflat torus.

From now on we will assume that6 is a closed surface,M a map on6, andG the
underlying graph ofM . An angleof M (resp.,M∗) is a pair of consecutive arcs at a vertex
v of M (resp., a facef of M). Theangle mapof M is a mapA on6 whose vertices
are the vertices ofM plus the vertices ofM∗ (i.e., the faces ofM), and whose edges are
the angles ofM , each angle being incident with the corresponding vertex and face ofM
[12]. The set of angles incident with a vertexv of M has a local rotation determined by
M , and the set of angles incident with a face ofM inherits the local rotation fromM∗.
The angle mapA is bipartite and each face ofA is a quadrangle whose diagonals are
a pair of dual edges ofM andM∗. An example is shown in Fig. 1(b) where the dotted
lines represent the edges ofM and they are not part ofA. The dual map ofA is known
as themedial mapof M .

An important concept related to drawings of graphs in the plane is the notion of
upward drawings where each edge of a graph is oriented and drawn in the planeR2 so
that the ordinate monotonically increases when we traverse the edge according to its
orientation. In order to define an upward drawing of a graphG on the torus, we first
need a definition of a monotone arc. Consider, without loss of generality, the flat torus
obtained from a parallelogramQ in the plane. The lines parallel to the sides ofQ oriented
according to the usual axes determinehorizontalandvertical circuits on the torus. At
each point of the torus two circuits cross, the vertical one being crossed always by the
horizontal one, for instance, from left to right. A (polygonal) arc on the torus ismonotone
if it can be oriented such that by traversing the arc in the chosen direction, one crosses
horizontal circles only from bottom to top. In particular, the vertical circuits are examples
of monotone arcs. Let us observe that a monotone arc may cross a horizontal circuit more
than once by “winding” around two or more times. The definition of horizontal circles
is easily extended to the case when the horizontal direction is not necessarily parallel to
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a side ofQ. Monotone arcs are defined accordingly. Anupward drawingof a toroidal
map M is a map equivalent toM drawn on the torus with monotone (polygonal) arcs
such that at each vertexv of M , at least one edge incident tov entersv from below (with
respect to the chosen horizontal direction) and at least one edge entersv from above (see
Fig. 1(a)). The authors have shown in [9] by using network flow techniques that every
toroidal map with 2-connected universal cover admits a drawing in the flat torus that is
an upward drawing and, moreover, the corresponding drawing of the dual map is upward
at the same time (with respect to the vertical circuits instead of the horizontal ones).

A stronger concept than upward drawings is the tessellation representation of a map.
This concept was investigated in case of planar graphs by Tamassia and Tollis [14].
Given horizontal and vertical directions1 and1′ of the flat torus (possibly distinct from
the directions of the sides of the fundamental parallelogramQ), we consider a family
of horizontal line segments called the vertices, and a family of vertical line segments
called the faces, all disjoint except that each segment of one family touches at each end
a segment of the other family at one of its internal points. A map is associated with a
tessellation in the following way. Horizontal segments are the vertices, vertical segments
the faces. Each of the obtained quadrangular regions determines an edge of the map; it is,
by definition, incident with two vertices by its two horizontal sides, and with two faces by
its two vertical sides. The local rotationπv around the vertexv is determined by the order
of edges obtained by traversing the boundary of a small neighborhood of the vertical
segment corresponding tov in the clockwise direction. This rule determines the map
up to equivalence. Atessellationof the torus is then a representation of a toroidal map
defined by its vertices, faces, and edges as introduced above. An example of a tessellation
and the corresponding map is shown in Fig. 2 and a tessellation representation of the
map from Fig. 1(a) is presented in Fig. 3. Our main result is that a toroidal map admits a
tessellation representation if and only if it is essentially 2-connected. This, in particular,
implies the above-mentioned result of [9] about the simultaneous upward drawings of
the mapm and its dualM∗.

In Section 2 we present several characterizations of essentially 2-connected maps on
the torus and show that they can be obtained from two minimal maps by vertex splitting
and creating digons. Section 3 contains the proof of the main theorem about existence
of tessellation representations. Section 4 is devoted to the visibility representation and
grid contact graphs as corollaries of the main theorem. In Section 5, a characterization

Fig. 2. A tessellation representation of a toroidal map.
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Fig. 3. A tessellation representation of the map from Fig. 1.

of those graphs that can be embedded as an essentially 2-connected map on the torus is
presented.

Similar questions as addressed in this paper for the flat torus have been considered
in the case of the plane by de Fraysseixet al. [3], and for the torus by Kratochv´ıl and
Przytycka [6].

2. Essentially 2-Connected Maps

Theuniversal coverof the surface6 is the simply connected surfacẽ6 together with
a covering projectionp: 6̃ → 6. We refer to [7] for the general theory of covering
spaces and for basic properties of universal covering spaces. IfG is the graph of a map
on6, then p−1(G) defines a map iñ6. By the homotopy lifting property of covering
maps [7], a lifting of a closed walkW of G into the cover6̃ is a closed walk inp−1(G)
if and only if W is contractible in6. In particular, everyfacial walkof G (i.e., the walk
in G corresponding to the traversal of the boundary of a face) is lifted to facial walks in
the covering map.

The universal cover of the flat torus represented by the parallelogramQ is the plane
paved with replicates ofQ, and the lifting of a map in the torus is an infinite plane graph.
A part of such a pavement is shown in Fig. 4.

A map isessentially2-connectedif the graph of its universal cover map is 2-connected.
Figure 4 shows an example (of a part) of the universal cover of an essentially 2-connected
toroidal map whose graph is not 2-connected.

Lemma 2.1. Given a map M of a graph G on a surface6 whose Euler characteristic
χ(6) is not positive, the following conditions are equivalent:

(i) M is essentially2-connected.
(ii) No facial walk f of M contains a proper closed subwalk which is contractible

on6.
(iii) There are no planar separations in the graph G of M, i.e., if G1 and G2 are graphs

each having at least one edge, and such that G= G1∪G2 and G1∩G2 = {v},
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Fig. 4. A part of the universal cover of a toroidal map.

wherev is a vertex, then G1 and G2 each contain a circuit that is noncontractible
on6.

(iv) The angle mapA of M has no homotopic pair of parallel edges, i.e., a pair of
edges bounding a disk.

(v) For every subset S of the vertices of the angle mapA of M we have

2|S| − |E(S)| ≥ 2χ(6). (1)

Proof. (i) ⇔ (ii) Sinceχ(6) ≤ 0, the underlying surface of the universal covering
mapM̃ of M is the plane. It is well known that a (possibly infinite) graph in the plane is
2-connected if and only if every facial walk is a simple cycle (not meeting the same vertex
twice). Since every facial walk (and every contractible subwalk of a facial walk) inM
lifts into M̃ to a facial walk of the same length (a subwalk of a facial walk, respectively),
(i) and (ii) are easily seen to be equivalent.

(ii) ⇒ (iii) Suppose thatG admits a planar separationG = G1∪G2, G1∩G2 = {v},
and suppose thatG1 contains only circuits that are contractible on6. Consider a facial
walk f of M which is not contained entirely inE(G1) or in E(G2). Then f is the union
of nonempty closed segments fromE(G1) and fromE(G2). By our choice,G1 contains
only contractible circuits. Therefore, any closed segment off in G1 is contractible. This
contradicts (ii).

(iii) ⇒ (iv) Suppose that the angle mapA of M has a pair of parallel edges bounding
an open diskD. Let the endpoints of these edges ofA be v, a vertex ofM , and f , a
face of M . Note that∂ D̄ ∩ G = {v} where∂ D̄ is the boundary of the closure ofD
in 6. SinceA contains only quadrangular faces,D is not a face ofA. Therefore the
subgraphG1 = G ∩ D̄ of G contains at least one edge. IfG2 = G ∩ (6\D), then also
G2 is nontrivial by the same reason. SinceG1 is contained in a disk, it only contains
contractible circuits, so the decompositionG = G1 ∪ G2 is a planar separation which
contradicts (iii).

(iv) ⇒ (v) Pick S ⊆ V(A). The angle graphA being bipartite, so is the subgraph
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A(S) of A induced onS. To prove the inequality 2|S| − |E(S)| ≥ 2χ(6), it suffices
to consider the case whenA(S) is connected and when|S| ≥ 3 sinceχ(6) ≤ 0. (Let
us note that conditionχ(6) ≤ 0 is really needed only in cases whenA(S) is just a
vertex or an edge.) Consider the induced embedding ofA(S) in 6. By (iv), and our
assumptions on connectivity and|S| ≥ 3, A(S) contains no digonal faces. Then it is
easy to see by using the Euler’s formula and the bipartiteness ofA(S), that we get the
required inequality.

(v) ⇒ (ii) Suppose that a proper closed subwalkQ of a facial walk f of M is
contractible on6. Let x be the endvertex ofQ ⊂ f , and letα1 andα2 be the angles in
f corresponding to the appearances ofx as an end ofQ. Lete1 ande2 be the edges inA
corresponding toα1 andα2, respectively. Note thate1 ande2 are parallel edges, joining
x and f in A. They determine a closed curveC on6 which is homotopic toQ since it
can be “pushed” by a homotopy withinf onto Q. SinceQ is contractible, so isC, and
thusC bounds an open diskD in 6. Let S be the set of vertices ofA that do not lie in
D, and consider the corresponding submapA(S) ofA. SinceD is a disk, the underlying
surface ofA(S) is also6. The faces ofA(S) coincide with faces ofA except for the
digonal faceD. Thus 2|E(S)| equals four times the number of faces ofA(S) minus 2
(due to the digon). Euler’s formula then shows that 2|S| − |E(S)| = 2χ(6) − 1. This
contradicts (v).

Note that, since a mapM and its dual mapM∗ have the same angle map, if one ofM ,
M∗ is essentially 2-connected, so is the other. The essential 2-connectivity of toroidal
maps appears to be an appropriate generalization of the 2-connectivity planar maps.

Let M be an essentially 2-connected map on the torus. An edgeeof M is contractible
(resp.,removable), if M/e(resp.,M−e) is an essentially 2-connected map. Note that ife
is contractible (resp., removable), then its dual edgee∗ is removable (resp., contractible)
in the dual mapM∗.

Lemma 2.2. Let M be an essentially2-connected map on the torus and let e∈ E(M).
Then:

(a) If e is incident with a vertex of degree2, then e is contractible.
(b) If e is on a digonal face, then e is removable.
(c) If M has no digonal faces and has at least two vertices, then M has a contractible

edge.
(d) If M has no vertices of degree2and has at least two faces, then M has a removable

edge.

Proof. Statements (a) and (b) are obvious, and (c) and (d) are dual to each other. So it
suffices to prove (c). By (a) we may assume thatM has no vertices of degree 2.

SinceM has two or more vertices, there are nonloop edges inM . Considere being
one of them. Ife is not contractible, its contraction results in a map that is not essentially
2-connected. According to Lemma 2.1(iv), the corresponding angle map contains a digon
bounding a diskD. Suppose that the contracted edgee was chosen in such a way that
the number of vertices inD is as small as possible. By our assumptions (no degree 2
vertices, no digons),D contains an edge of the mapM . This edge is then contractible
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Fig. 5. Minimal essentially 2-connected mapsM0 andM1.

with respect toM since its contraction yielding a digon in the corresponding angle map
would contradict the minimality of the originally chosen edgee and the corresponding
disk D.

Lemma 2.2 shows that the only minimal essentially 2-connected map (with neither
contractible nor removable edges) on the torus is the mapM0 of Fig. 5. Lemma 2.2 also
implies that every essentially 2-connected toroidal mapM can be reduced to one of the
two mapsM0 andM1 from Fig. 5 after a sequence of edge contractions and deletions of
digon edges such that all intermediate maps are essentially 2-connected. Keeping track
of that sequence, we may reconstructM from the mapM0 or M1 obtained at the end by
using the sequence backwards: a deletion being replaced by the addition of a homotopic
parallel edge, a contraction being replaced by a vertex splitting. In other words:

Corollary 2.3. Every essentially2-connected toroidal map can be obtained from one
of the maps M0 and M1 by a sequence of homotopic parallel edge additions and vertex
splittings such that all intermediate maps are essentially2-connected.

3. Tessellation Representations

From now on we will only consider maps on the torus. In this section we will prove
that a toroidal map admits a tessellation representation on the torus if and only if it is
essentially 2-connected.

Suppose that we have a tessellation representation of a mapM . This defines an
orientation of edges ofM : each edgee is oriented from the vertex corresponding to the
base of the rectangleR representinge toward the end ofe corresponding to the upper
side ofR. For an arbitrary given orientation of the edges of a mapM , an angle at a vertex
v is lateral if one of its arcs is incoming and the other is outgoing atv. Otherwise, if
both arcs of an angle are incoming or both are outgoing atv, then the angle isextremal.
Having an orientation of edges of a mapM , we get an orientation of the angle mapA
as follows. Given an angleα incident with a vertexv and a facef of M , the angleα as
an edge ofA is oriented fromv to f if α is lateral, and fromv to f if α is extremal.
We say that an orientation of edges ofM has theupward propertyat v (resp., atf ) if
there are exactly two lateral angles atv (resp., two extremal angles atf ). Equivalently,
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in the oriented angle mapA, the indegree of every vertex (eitherv or f ) is equal to two
(see Fig. 1(b)). See also [11]. An orientation ofM , which has the upward property at
every vertex and every face, is called anupward orientation. By the above remark, an
upward orientation induces an indegree-two orientation of the angle mapA. (It is an
easy corollary of Euler’s formula that only maps with Euler characteristic zero admit
upward orientations.) Having indegree-two orientation ofA, we can use the following
lemma:

Lemma 3.1. Let k be an integer. A graph G admits an orientation of its edges such
that each vertex has indegree at most k if and only if the average degree of the vertices
of any subgraph of G is at most2k.

Proof. Let H be an arbitrary subgraph ofG and letd−(v) denote the indegree of
v ∈ V(G) with respect to an orientationÄ of edges ofG. If d−(v) ≤ k for every vertex
v, then

|E(H)| ≤
∑

v∈V(H)

d−(v) ≤ k|V(H)|,

so the average degree inH is at most 2k.
Conversely, suppose that|E(H)| ≤ k|V(H)| for every subgraphH of G. LetÄ be

an orientation of edges ofG such that the number

S(Ä) =
∑

d−(v)>k

(d−(v)− k)

is minimal. If S(Ä) = 0, we are done. So, assume thatv0 is a vertex withd−(v0) > k,
and letH be the subgraph induced by the verticesv such that there exists a directed path
from v to v0. Then

|E(H)| =
∑

v∈V(H)

d−(v) ≤ k|V(H)|.

Sinced−(v0) > k, there is a vertexv1 ∈ V(H) such thatd−(v1) < k. By reversing the
arcs on a directed path fromv1 tov0 we get an orientationÄ′ satisfyingS(Ä′) = S(Ä)−1,
a contradiction.

Now we state the main result of this section.

Theorem 3.2. A toroidal map admits a tessellation representation if and only if it is
essentially2-connected.

Proof. Suppose that we have a tessellation representation of a mapM . Then we easily
get an upward drawing ofM which induces an upward orientation of edges ofM . This
in turn defines an orientation of edges of the angle mapA such that every vertex ofA
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Fig. 6. Tessellation representations of mapsM0 andM1.

has indegree exactly 2 (see the Introduction). By Lemma 3.1, every subgraph ofA has
average degree at most 4. In our case, this means that for every subsetS of the vertices
of A we have

2|S| − |E(S)| ≥ 0. (2)

By Lemma 2.1(v),M is essentially 2-connected.
To prove the converse, we have to construct a tessellation representing an arbitrary

given essentially 2-connected mapM . This is done step by step asM can be obtained
(according to Lemma 2.2) fromM0 and M1 by a sequence of parallel edge additions
and vertex splittings. We start with a tessellation representation ofM0 or M1 shown in
Fig. 6.

Let us now consider the two types of generating rules. Adding a parallel edge is
simple: the rectangle corresponding to the edgeesplits into two by adding a vertical line
in the middle. Of course, the new vertical segment corresponds to the digonal face.

The vertex splitting operation is slightly more involved. Up to symmetries, we have
to consider four cases as displayed in Fig. 7. Note that in the first vertex-splitting rule,
the orientation of the edgeedepends on the relative position of the two faces involved in
the splitting. These rules give the procedure how to obtain a tessellation representation
of M starting fromM0 or M1. The proof is complete.

The proof of Theorem 3.2 also yields a polynomial time algorithm for constructing
tessellation representations of essentially 2-connected toroidal maps. Since a tessellation
representation determines an upward orientation, we also get a polynomial time algorithm
for upward orientations.

There are other possibilities for tessellation representations ofM0 andM1. However,
in none of them is any direction1 or1′ of the tessellating rectangles parallel to the sides
of the fundamental parallelogramQ of the flet torus. It would be interesting to know
which toroidal maps have a tessellation representation in the square model of the torus
with the directions1 and1′ parallel to the sides of the fundamental square.
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Fig. 7. Extending a tessellation after a vertex splitting.

4. Some Corollaries on Graph Drawing

4.1. Upward Drawing

A tessellation representation of a toroidal mapM determines an upward drawing and
an upward orientation ofM . In proving that the maps which admit tessellation repre-
sentations are essentially 2-connected, we used Lemma 3.1 where only their upward
orientation was needed. Therefore we also have:

Corollary 4.1. A toroidal map admits an upward orientation if and only if it is essen-
tially 2-connected.

4.2. Visibility Representations

Let M be an essentially 2-connected toroidal map. By Theorem 3.2 it has a tessellation
representation. Let us consider the horizontal segmentsHv, v ∈ V(M). A vertexv is
adjacent to a vertexu in M if and only if Hv contains a segmentSof positive length such
that by shiftingS in the vertical direction1′ we bump intoHu (or vice versa). We say
that the segmentHu is ε-visible from Hv. The intervalsHv, v ∈ V(M), thus uniquely
determineM . Such a representation ofM is called anε-visibility representationof M .
For theε-visibility it is not important whetherHv are open or closed segments. If we
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take asHv half-open segments (without their left endpoints, say), then the tessellation
of M yields a visibility representation forM where a point ofHv can see a point of
Hu in the vertical direction if and only ifuv ∈ E(M). Such notion of visibility (in the
plane) was considered by Melnikov [8]. Tamassia and Tollis [13] and, independently,
Wismath [15] characterized which graphs have such a visibility representation in the
plane. Corollary 4.3 below gives a toroidal analogue of that result.

Tessellation representation is a stronger concept thanε-visibility representation since
it gives simultaneousε-visibility representations forM and its dual mapM∗. However,
our next lemma shows that anε-visibility representation of a mapM can be transformed
into a tessellation representation ofM .

Lemma 4.2. Everyε-visibility representation of a toroidal map M without digonal
faces can be transformed into a tessellation representation of M.

Proof. Let Hv, v ∈ V(M), be the horizontal segments of anε-visibility representation
of M . For each edgeuv ∈ E(M), let Quv be a quadrangle determined byε-visibility of
Hu andHv. The base ofQuv is a segmentS(u, v) ⊆ Hu (say), and the upper side ofQuv

is a segmentS(v, u) ⊆ Hv. Suppose that the quadranglesQuv are chosen such that the
segmentsS(u, v) andS(v, u) are maximal. Now, the vertical sides of the quadrangles
Quv, uv ∈ E(M), give rise to vertical segments in the torus. None of these segments can
become a closed circle since what we started with was anε-visibility representation of
a 2-cell embedded graph. Now it is easy to see that we got a tessellation representation
of M .

Theorem 3.2 and Lemma 4.2 yield:

Corollary 4.3. A toroidal map admits anε-visibility representation in the flat torus
(or has a visibility representation with half-open horizontal segments) if and only if it is
essentially2-connected.

4.3. Toroidal Grid Contact Graphs

Two families of horizontal and vertical segments of the grid of the flat torus, each one
being disjoint from the others except for some contact points between two segments of
different families, define a bipartite toroidal graph, called agrid contact graph. Relying on
our tessellation theorem we get a characterization of the graphs which can be represented
as toroidal grid contact graphs on the flat torus.

Theorem 4.4. A graph H can be represented as the contact graph of straight-line
segments on the flat torus where all segments corresponding to the same bipartition class
of H are mutually parallel if and only if H is a bipartite graph that can be embedded in
the torus in such a way that no pair of parallel edges bounds a disk.
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Proof. A toroidal grid contact graph representation ofH on the torus determines an
embedding in the torus without parallel edges bounding disks. Conversely, let us embed
H in the torus without homotopic parallel edges. By repeatedly adding paths of length 2
or 3 between vertices of the graph it is possible to get an embedded graphH̃ such that:

(a) H is an induced subgraph of̃H ;
(b) H̃ is bipartite;
(c) H̃ is 2-cell embedded (and thus also connected);
(d) H̃ has no homotopic parallel edges; and
(e) no face ofH̃ has repeated vertices.

Now, beside the white bipartition classW and the black classB of vertices ofH̃ ,
consider a third classR of red vertices: add a new vertexr ∈ R in every facef of H̃ ,
and joinr by red edges to every white vertex off . The resulting mapH̄ has bipartition
(W, B ∪ R) and also satisfies (a)–(e). By Lemma 2.1 (equivalence of conditions (i) and
(iv)), H̄ is the angle graph of an essentially 2-connected mapG, and by Theorem 3.2 we
can get a tessellation representation ofG. It is clear that the tessellation representation
yields the required grid contact representation ofH̄ . By (a), the restriction to the segments
corresponding to vertices ofH yields the required representation forH .

It is worth pointing out that Theorem 4.4 is closely related to results of Bellantoni
et al. [2] who considered the grid dimension of graphs. By taking a parallel to results
of [2], Theorem 4.4 characterizes graphs whose “toroidal grid dimension” is at most
two.

5. Graphs of Essentially 2-Connected Maps

It is of some interest to know which abstract graphs can be obtained as graphs of essen-
tially 2-connected toroidal maps. It is easy to find some sufficient conditions for a graph
G to have a representation as an essentially 2-connected toroidal map. For example, if
G is 2-connected, then every 2-cell embedding ofG in the torus yields an essentially
2-connected map. We claim that every 2-connected graph (except graphsCn, n ≥ 3)
with genus at most 1 and has a 2-cell embedding in the torus. This is clear if the graph
G has genus 1. On the other hand, ifG is planar, consider one of its plane embeddings.
Let e= uv be an arbitrary edge ofG with one of its endvertices, sayu, having degree
at least 3. Such an edge exists if and only ifG is not a cycle. LetF1, F2 be the two
faces in the plane containinge on the boundary. By replacing the unbounded face by a
disk and adding a “handle” joiningF1 andF2 we get an embedding ofG in the torus. If
f = uw ∈ ∂F1 is an edge atu distinct frome, we can re-embed it by using the handle so
that it attachesu from “inside” of F2. It is clear that this gives rise to a 2-cell embedding
of G in the torus.

Recall that a graph isnonseparableif it is either a vertex, a loop, a bond (p ≥ 1
parallel edges), or a 2-connected graph.

Let G1, . . . ,Gk (k ≥ 2) be nonseparable graphs, each containing at least one edge
and such that at least one ofGi (1≤ i ≤ k) is not isomorphic toK2. A graphG is acyclic
amalgamationof G1, . . . ,Gk if there are verticesui , vi ∈ V(Gi ) (possiblyui = vi if
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Gi 6= K2), i = 1, . . . , k, andG is isomorphic to the graph obtained from the (disjoint)
union ofG1, . . . ,Gk after identifyingui with vi+1 (index modulok), i = 1, . . . , k.

Theorem 5.1. A graph G can be represented as an essentially2-connected toroidal
map if and only if it satisfies one of the following conditions:

(a) G is 2-connected, it has an embedding in the torus, and it is not a cycle Cn for
some n≥ 3.

(b) G is a cyclic amalgamation of nonseparable planar graphs G1, . . . ,Gk where
k ≥ 2, G1 6= K2, and each of G1, . . . ,Gk contains at least one edge.

Proof. We have already demonstrated sufficiency of (a). Let us now prove that graphs
satisfying (b) have an essentially 2-connected toroidal representation. Fori = 1, . . . , k
whereGi 6= K2, embedGi in the (closed) cylinderQi in such a way that∂Qi is in two
distinct faces, sayF1, F2, Gi ∩ ∂Qi = ∅, andui ∈ ∂F1, vi ∈ ∂F2. Such embeddings
always exist. For that purpose take distinct facesF ′1, F ′2 of a planar embedding ofGi

such thatui ∈ ∂F ′1 andvi ∈ ∂F ′2. SinceGi is nonseparable andGi 6= K1, K2, such
faces exist. After removing an open disk from each ofF ′1 and F ′2, we get a required
cylinder embedding. By cyclically identifying boundaries of these cylinders we get a
torus embedding ofG1 ∪ · · · ∪ Gk with vertices that need to be identified in common
faces. If at least one pairui , vi are distinct vertices, then it is obvious that we can get
a 2-cell embedding ofG in the torus (after adding the remaining graphsGj that are
isomorphic toK2, and making the appropriate identifications of vertices). Ifu1 = v1,
u2 = v2, . . . ,uk = vk, then we get a 2-cell embedding as indicated in Fig. 8. It is easy
to see by using Lemma 2.1(ii) that the resulting maps are essentially 2-connected.

We will now show that conditions (a) and (b) are also necessary. LetG be the graph
of a given essentially 2-connected map. IfG is 2-connected, we have (a). IfG is not 2-
connected, letB0, . . . , Ba (a > 1)be its blocks. Since the map is essentially 2-connected,
each endblockBi contains a cycleCi that is noncontractible on the surface.

Suppose first thatG has two distinct cutvertices. Then distinct cutverticesv, v′ of G
can be chosen such that an endblock, sayB1, containsv, and another endblock, sayB2,
containsv′. ThenC1 andC2 are disjoint noncontractible cycles. Therefore they cut the
torus into two cylinders, sayQ, Q′. Any other block ofG intersectsC1 ∪ C2 only atv
or v′. Since the map is 2-cell, there is a pathP ⊆ G in Q joining v andv′. There is a
similar pathP′ in Q′. Let B0 be the block ofG containing the cycleC0 = P∪ P′. Now,
each remaining block ofG is embedded entirely inQ or in Q′. Since each endblockBi

Fig. 8. The case of a single cutvertex.
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(i ≥ 3) contains a noncontractible cycle, it must intersectC0 in a cutvertex ofG. Now
it is easy to see thatG fits case (b) with each of the graphsG1, . . . ,Gk being either one
of B1, . . . , Ba, or a part ofB0 “between” consecutive vertices ofG on P ∪ P′ that are
either cutvertices ofG or cutvertices ofB0 ∩ Q or cutvertices ofB0 ∩ Q′.

The remaining possibility is whenG has exactly one cutvertexv. Then all blocks are
endblocks. If one of them contains a noncontractible cycle which does not pass through
v, then the proof is similar to the above. Thus, we may assume that every noncontractible
cycle ofG passes throughv. ThenG− v consists of several components corresponding
to the blocks ofG. Each of such componentsD is plane embedded (contains only
contractible circuits) and all edges fromD to v attachD at the boundary of the “outer”
face. Therefore all blocks ofG are planar graphs. Their identification atv can also be
interpreted as a special case of a cyclic amalgamation (ui = vi for everyi ). Hence we
have (b).

It is worth mentioning that recognizing graphs satisfying (a) or (b) can be done in
linear time. For (a), testing 2-connectivity is easy by a depth-first search [1], while
checking ifG has genus at most 1 can be performed in linear time by a recent algorithm
of Juvanet al. [5]. To test if G satisfies (b) we first determine all blocks ofG and test
their planarity. There must be a blockB0 containing all cutvertices (otherwise (b) is not
satisfied) and such that all blocks distinct fromB0 are planar. Blocks distinct fromB0 will
appear in the cyclic amalgamation withui = vi , while B0 itself is a cyclic amalgamation
of (at least 1) planar graphs. If there are two or more cutvertices, it is easy to see how
to get the corresponding decomposition. Having just one cutvertex, we simply apply the
algorithm of [5].
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