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Abstract. A Dantzig figureis a triple(P, x, y) in which P is a simpled-polytope with
precisely 2d facets,x andy are vertices ofP, and each facet is incident tox or y but not
both. The famousd-step conjectureof linear programming is equivalent to the claim that
always #d P(x, y) ≥ 1, where #d P(x, y) denotes the number of paths that connectx to y
by using preciselyd edges ofP. The recently formulatedstrong d-step conjecturemakes a
still stronger claim—namely, that always #d P(x, y) ≥ 2d−1. It is shown here that the strong
d-step conjecture holds ford ≤ 4, but fails ford ≥ 5.

Introduction

A path formed fromk edges of a graph is here called ak-path. Whenx andy are vertices
of a polytopeP, δP(x, y) denotes thedistancefrom x to y in P’s graph; thusδP(x, y)
is the smallestk such thatx andy are joined by ak-path. The maximum ofδP(x, y), as
x andy range over all vertices ofP, is called thediameterof P and is denoted byδ(P).
For eachn > d, 1(d, n) denotes the maximum ofδ(P) as P ranges over all convex
d-polytopes that have preciselyn facets((d− 1)-faces). In the geometric form reported
by Dantzig [D1], [D2], thed-step conjectureof linear programming (first formulated by
W. M. Hirsch) asserts that1(d, 2d) = d, and the formally strongerHirsch conjecture
asserts that1(d, n) ≤ n− d for all d and alln > d.

A d-polytope is calledsimpleif each of its vertices is incident to preciselyd edges, or,
equivalently, to preciselyd facets. We use the term(d, n)-polytopeto refer to a simple
d-polytope that has preciselyn facets. Two vertices of a polytope will be calledestranged
iff they do not share a facet. In the course of showing that thed-step conjecture and the
Hirsch conjecture are equivalent (though not necessarily on a dimension-for-dimension
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basis), Klee and Walkup [KW] introduced the notion of ad-dimensionalDantzig figure,
this being a triple(P, x, y) such thatP is a(d, 2d)-polytope andx andy are estranged
vertices ofP.

Whenx andy are vertices of a polytopeP, we use #k P(x, y) to denote the number
of k-paths fromx to y in P. As was shown in [KW], thed-step conjecture is equivalent
to the claim that #d P(x, y) ≥ 1 for eachd-dimensional Dantzig figure(P, x, y). Using
this equivalence, thed-step conjecture was proved in [KW] ford ≤ 5, but it is still open
for all d ≥ 6. In [LPR], Lagariaset al. observed that for eachd-dimensional Dantzig
figure(P, x, y), #d P(x, y) ≤ d!, and they formulated what they called thestrong d-step
conjecture, asserting that #d P(x, y) ≥ 2d−1. They verified this conjecture ford ≤ 3 and
they produced extensive numerical evidence in its favor for 4≤ d ≤ 15. Subsequently,
Lagarias and Prabhu [LP] showed for eachd, that ifr is either the minimum (d2−d+2)
or the maximum number of vertices that a(d, 2d)-polytope can have, then there exists a
d-dimensional Dantzig figure(P, x, y) such that #d P(x, y) = 2d−1 andP has precisely
r vertices.

This paper shows that the strongd-step conjecture is correct whend = 4 but fails
for all d ≥ 5. The proof ford = 4 is a routine computation based on the Gr¨unbaum–
Sreedharan catalog [GS] of the 37 combinatorial types of simple 4-polytopes with 8
facets. The disproof ford ≥ 5 starts with a (4, 9) dual-neighborly polytope of diameter
5 that was first constructed in [KW], and then applies the wedging operation of [KW] to
show that for eachd ≥ 5 there exists ad-dimensional Dantzig figure(P, x, y) for which
#d P(x, y) = 3 · 2d−3 < 2d−1. (In the constructed examples, the number of vertices is
d2+ 9d − 28.)

As general references on the combinatorial structure of polytopes, the books by
Grünbaum [G] and Ziegler [Z] are recommended. Both discuss thed-step conjecture.

1. Computational Procedure

The following procedure finds, for each estranged pair of vertices of a simpled-polytope
P, the number ofd-paths that join the two vertices.

(0) (Input.) For a simpled-polytopeP with n facets andm vertices, letM denote the
n×m facet-versus-vertex incidence matrix ofP. Thei th row of M tells which vertices
are incident to faceti . The j th column ofM tells which facets are incident to vertexj .

(1) S := MT M . (S is anm× m matrix (si j ) in which si j is the number of facets
shared by vertexi and vertexj .)

(2) B := (si j
?= 0), anm× m, 0–1 matrix(bi j ) in which the 1 entries correspond

to pairs of vertices that are estranged. IfB = 0, there are no estranged pairs and the
computation halts.

(3) A := (si j
?= d − 1), them× m adjacency matrix of the graph formed byP’s

vertices and edges.
(4) (Output.) N := Ad ◦ B, in which ◦ denotes theHadamard(entry-by-entry)

product. The(i, j ) entry ofAd is the number of walks of lengthd from vertexi to vertex
j . However, when two verticesx and y of a simpled-polytopeP are estranged, they
cannot be connected by a walk of length less thand, and hence each walk of lengthd
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from x to y must, in fact, be ad-path. Thus the matrixN tells, for each estranged pair
of vertices(x, y), the number #d P(x, y) of d-paths that connect the two vertices.

2. Proof for d ≤ 4

2.1. Theorem. The strong d-step conjecture is correct for d≤ 4.

Proof. The strongd-step conjecture is obvious ford = 2, and [LPR] noted that it also
holds ford = 3. Verification ford = 3 is almost immediate, because there are only two
different combinatorial types of (3, 6) polytopes. The first is the 3-cubeI 3, for which
#3I 3(x, y) = 6. (In general,I d has 2d−1 estranged pairs(x, y), and #d I d(x, y) = d! for
each such pair.) The second(3, 6)-polytopeQ is combinatorially equivalent both to a
triangular prism truncated at one vertex and to the wedge over a pentagon with an edge
as foot. InQ there are two estranged pairs(x, y), and #3Q(x, y) = 4 for each of them.

To verify the strongd-step conjecture ford = 4, we use the complete catalog of
simplicial 4-polytopes with eight vertices that was published in 1967 by Gr¨unbaum and
Sreedharan [GS], correcting a 1909 list of Br¨uckner [Br]. With the aid of the usual
polarity, this may also be regarded as a catalog of simple 4-polytopes with eight facets.
There are 37 different combinatorial types. In terms of the indexing of [GS], the procedure
described in Section 1 yields the information that is listed below concerning the numbers
of d-paths connecting estranged pairs of vertices.

The indices in parentheses are the identification numbers used in [GS]. An “na”
indicates that the polytope in question has no estranged pairs. Polytope number (34)
is the 4-cube, in which there are eight estranged pairs and each pair is connected by
twenty-four 4-paths. In polytope number (25) there are four estranged pairs, with one
such pair connected by eight 4-paths, another pair connected by ten 4-paths, and two
pairs for each of which there are eleven 4-paths. The other data are interpreted similarly.

(1) na; (2) na; (3) na; (4) na; (5) 82; (6) 82; (7) 122; (8) 81, 101; (9) 102; (10) na;
(11) 82; (12) 82; (13) na; (14) 82; (15) 84; (16) 122; (17) 164; (18) 104; (19) 132; (20) 102;
(21) 134; (22) 122, 142; (23) 112; (24) 102; (25) 81, 101, 112; (26) 186; (27) 142, 152;
(28) 122, 132; (29) 81, 124, 141; (30) 102, 122; (31) 81, 101, 111, 121; (32) 122;
(33) 84, 112; (34) 248; (35) 84, 122; (36) 81, 92, 121; (37) 82, 92.

Note that for each of the 37 polytopes, each estranged pair is connected by at least
eight 4-paths. This proves the strongd-step conjecture ford = 4.

3. Wedging and Truncation

Suppose thatP is a d-polytope inRd, and thatF is a face ofP. In the terminology
of [KW], a wedgeover P with foot F is a (d + 1)-polytopeωF (P) that is formed by
intersecting the “cylinder”C = P × [0,∞[ with a closed half-spaceJ in Rd+1 such
that the intersectionJ ∩ C is bounded and has nonempty interior, and the bounding
hyperplaneH of J is such thatH ∩ (Rd × {0}) = F × {0}. The boundary complex of
ωF (P) is combinatorially equivalent to the complex formed from the boundary complex
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of the prism P × [0, 1] by identifying {p} × [0, 1] with (p, 0) for each pointp of
F . Henceforth, we specialize to the case in whichF is a facet ofP. Then, in effect,
the identification process replaces the facet (d-face)F × [0, 1] of the prism by a ridge
((d − 1)-face) R that is a copy ofF . In the wedgeωF (P), there are two facets that
contain the ridgeR, and each of these facets is combinatorially equivalent toP. We shall
denote these facets byB (= P×{0}) andT (= P×{1}) and call them thebaseand the
top of the wedge; thusR = B ∩ T . Since each vertex ofωF (P) is incident toT or B,
it corresponds naturally to a vertex inP. Each vertexv ∈ F has a unique natural image
in the ridgeR in ωF (P). Each vertexv ∈ P\F has a natural image in the baseB and
a second natural image in the topT ; we denote these images byvb (= v × {0}) andvt

(= v×{1}), respectively. IfP is a(d, n)-polytope andF is a facet ofP, then the wedge
ωF (P) is a(d + 1, n+ 1)-polytope.

To derive the incidence matrix forωF (P) from the incidence matrixM(P) of P,
we first determine the index ofF : fi = F . Recall that the rows ofM correspond to
facets and the columns to vertices. LetCi be the submatrix ofM(P) consisting of the
columns that correspond to vertices not incident tofi , and letEi be a matrix of the same
dimensions asCi (n× ( f0(P) − f0(F))) in which all entries are zero, except those in
the i th row which are all ones. Then

M(ω fi (P)) =
(

Ci + Ei : M(P)
〈0〉 : 〈1〉

)
.

With M(ωF (P)) so constructed, we have the baseB = fi , and the new row is the top
T = fn+1. The vertices of the foot are indicated precisely by the columns that have 1’s
in both of these rows.

WhenF is any face of ad-polytopeP, andx andy are vertices ofP, we denote by
#P(x, y) the number of shortest paths fromx to y in P, and by #P(x, F, y) the number
of shortest paths fromx to y that visit F . Note that this differs from the practice of
[LPR] and [LP], who use #P(x, y) to denote the number ofd-paths fromx to y in a
d-dimensional Dantzig figure(P, x, y). (For that specialized purpose, we have used the
notation #d P(x, y).)

Let W = ωF (P). Since the facetsB andT are combinatorially equivalent toP, each
vertexv of P has two natural images inW, and we denote these byvb andvt ; if v is
incident toF , then these two images coincide:vb = vt = v. Since a vertexw of W is
incident to at least one ofB or T , w has a natural image inP, which we denote byw.
Thusvb = vt = v for each vertexv of P.

From these maps of vertices, we obtain for each path inW a unique natural image
in P. Let [w0, w1, . . . , wm] be a path inW. For eachi , [wi , wi+1] is an edge inW, so
either [wi , wi+1] is an edge ofP or wi = wi+1 (i.e., {wi , wi+1} = {vb, v

t } for some
vertexv of P). In the latter case, we say that [wi , wi+1] is a vertical edge. The natural
image of a vertical edge inW is a vertex inP. The natural image of [w0, w1, . . . , wm] is
[w0, w1, . . . , wm], to which sequence of vertices we apply the contraction that replaces
v, v by v. In effect, we eliminate the vertical edges and map the remaining edges to their
natural images inP.

The natural image of anm-path inW is ak-path inP with k = m− e, e the number
of vertical edges in them-path. For a pathρ in P and fixed imagesw0 andwm of its
endpoints inW, we define thetight natural imagesof ρ fromw0 towm to be those paths
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of minimal length among all the paths fromw0 to wm in W whose natural image isρ.
For shortest paths, we have the following result.

3.1. Wedging Lemmas. Suppose x and y are vertices and F is a facet of the(d, n)-
polytope P. Then the wedge W= ωF (P) is a (d + 1, n+ 1)-polytope.

(1) Case (i).If no shortest path from x to y visits F, then

δW(xb, yt ) = δP(x, y)+ 1,

and each shortest path from x to y in P corresponds naturally toδP(x, y) + 1
shortest paths from xb to yt in W. Further,

#W(xb, xt , yt ) = #P(x, y),

and for each neighborv of x in P

#W(xb, vb, yt ) = δP(x, y) · #P(x, v, y)+
∑
ρ

2rρ−1,

the sum being taken over all(δP(x, y)+ 1)-pathsρ from x to y viav which visit
F rρ (> 0) times.

(2) Case (ii).If some shortest path from x to y visits F, then

δW(xb, yt ) = δP(x, y),

and each shortest path in P from x to y that visits F r times corresponds naturally
to 2r−1 shortest paths from xb to yt in W.

If every shortest path in P from x to y that visits F does so only once, then
the shortest paths from x to y are in natural one-to-one correspondence with the
shortest paths in W from xb to yt . Under this nonrevisiting assumption,

#W(xb, yt ) = #P(x, F, y).

If v is a neighbor of x in P, then

#W(xb, vb, yt ) = #P(v, F, y),

and

#W(xb, xt , yt ) = 0.

Proof. Let [x = v0, v1, . . . , vm = y] be anm-path fromx to y in P which does not
visit F . Then [xb = v0b, . . . , vib, v

t
i , . . . , v

t
m = yt ] is an(m+ 1)-path fromxb to yt in

W, for each 0≤ i ≤ m. Thesem+1 distinct paths are the shortest paths inW for which
the natural image inP is the given path. Moving from the base to the top requires the
addition of a vertical edge somewhere in the path.

Now suppose that in them-path [x = v0, v1, . . . , vm = y], vi is incident toF . Then
[xb = v0b, . . . , v(i−1)b, vi , v

t
(i+1), . . . , v

t
m = yt ] is anm-path fromxb to yt in W. Moving

from the base to the top requires no additional edge.
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For anm-path fromx to y in P which visits F , its tight natural images fromxb to
yt in W necessarily enter the first visit toF from the base and leave the last visit toF
on the top. After visitingF the first time and before visitingF the last time, any choice
of base or top between visits toF yields a tight natural image fromxb to yt . There are
2r−1 ways of choosing whether the natural image inW of each of ther − 1 sequences
of vertices between visits toF is in the base or top. Thus a path inP which visitsF r
times has 2r−1 distinct tight natural images fromxb to yt in W.

Now letm= δP(x, y), and consider the set of shortest paths fromx to y in P. Those
which do not visitF havem+ 1 tight natural images fromxb to yt in W, each of length
m+ 1. Those which visitF r times (r > 0) have 2r−1 tight natural images fromxb to
yt , each of lengthm.

In the case that none of the shortest paths fromx to y in P visitsF , we have established
all the claims except the specific counts of shortest paths fromxb to yt incident to given
neighbors. Letv be a neighbor ofx in P. Any shortest path fromx to y viav consists of the
edge [x, v] prepended to a shortest path fromv to y. Necessarily,δP(v, y) = δP(x, y)−1,
and each of theδP(x, y) tight natural images of a shortest path fromvb to yt can be
prepended to a shortest path fromxb to yt . We have accounted for all the shortest paths
from xb to yt via vb which do not visitF . However, an(m+ 1)-path fromx to y via v
and visitingF r times has 2r−1 tight natural images fromxb to yt in W, each of length
m+ 1; hence each of these images will be a shortest path fromxb to yt . We summarize
this accounting in

#W(xb, vb, yt ) = m · #P(x, v, y)+
∑
ρ

2rρ−1.

An (m+ 1)-path fromxb to yt via xt consists of the initial edge [xb, xt ] followed by
anm-pathρ from xt to yt . Since none of them-paths fromx to y in P visits F , ρ must
lie entirely inT , and soρ is anm-path in P from x to y. On the other hand, for every
m-pathβ from x to y in P, the tight natural image [xb, β

t ] is an(m+ 1)-path fromxb

to yt in W. From this natural one-to-one correspondence, we have

#W(xb, xt , yt ) = #P(x, y).

We now address case (ii), in which some shortestm-path fromx to y visits F . No
path fromxb to yt can have length less thanm, but the tight natural images of anm-path
which visitsF has lengthm; henceδW(xb, yt ) = δP(x, y), and as observed above, an
m-path in P which visitsF r times has 2r−1 tight natural images inW, each of length
m. For any path fromx to y in P which does not visitF , the tight natural images from
xb to yt are of lengthm+ 1 and so are not shortest paths. Summing over all shortest
pathsρ from x to y in P which visit F rρ times, we have

#W(xb, yt ) =
∑
ρ

2rρ−1.

We now assume further that the shortest paths fromx to y which visit F do so only
once (r = 1). Under this assumption, each shortest path fromx to y which visitsF has
a unique tight natural image fromxb to yt in W. Hence, for each neighborv of x in P,

#W(xb, vb, yt ) = #P(v, F, y),
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and we can rewrite the above sum

#W(xb, yt ) = #P(x, F, y).

To see finally that #W(xb, xt , yt ) = 0, we can either observe that no shortest paths from
xb to yt are left uncounted, or we could observe that anm-path fromxb to yt via xt

would have as its natural image inP a path fromx to y of length less thanm.

When a simpled-polytopeP and two verticesx and y of P are fixed, we define a
functionγx on the neighbors ofx in P by settingγx(v) = #P(x, v, y) for each neighbor
v. We can listγx as ad-vector sinceP is simple:

γx = (#P(x, v1, y), . . . ,#P(x, vd, y)).

The conclusion of the second case in the above lemma can now be written succinctly:

γxb = (γx, 0),

by which we meanγxb(vb) = γx(v) for neighborsv of x in P, andγxb(x
t ) = 0.

In the construction of counterexamples, we also employ the operation of truncating
a (d, n)-polytopeP at a vertexv. To perform the truncation geometrically, we form the
intersectionτv(P) of P with any closed half-space that missesv and whose bounding
hyperplane passes strictly betweenv and the remaining vertices ofP. Again note that
sinceP is simple,τv(P) is a(d, n+1)-polytope with new facetτ(v) andd−1 additional
vertices.

Combinatorially, the vertexv is replaced by a(d − 1)-simplex6(v) with one of its
vertices on each edge incident tov. For example, ifu is a neighbor ofv in P, then in
τv(P), σ(u) is a vertex in6(v) whose neighbors are thed − 1 other vertices in6(v)
andu.

We form the incidence matrix for the truncated polytopeτv(P) from that ofP thus:

M(τv(P)) =
(

M(P\v) : M(6(v)\τ(v))
〈0〉 : 〈1〉

)
.

We start with a copy ofM(P) and remove the column corresponding tov; this is the
upper-left blockM(P\v). We taked copies of the column forv, and in each copy replace
one of thed 1’s by a 0 sothat no two of these columns are the same; this is the upper-right
block M(6(v)\τ(v)). Finally, we append a new row with 1’s under these rightmostd
columns and 0’s underM(P\v); this new row corresponds to the facetτ(v).

We note some natural correspondences between paths onP and paths onQ = τv(P).
Paths inQ have unique natural images inP, obtained by replacing each occurrence of
a vertex in6(v) with v and then applying the contraction that replacesv, v by v. For
a fixed pathρ in P, we define atight natural imageof ρ in Q to be a path of minimal
length inQ whose natural image inP is ρ. Every path inP has a unique tight natural
image inQ. In particular, for distinct neighborsu andw of v in P, the paths [u, v] and
[u, v, w] correspond, respectively, to the paths [u, σ (u)] and [u, σ (u), σ (w),w] in Q.
Note that the tight natural images inQ of m-paths inP which do not visitv, except
possibly as a terminal vertex, are also of lengthm; if an m-path inP does not terminate
atv but visitsv r times, then its tight natural image is an(m+ r )-path inQ.
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3.2. Truncation Lemmas. Suppose x andv are distinct vertices in the(d, n)-polytope
P,and u andw are distinct neighbors ofv in P.Then Q= τv(P) is a(d, n+1)-polytope.

(1) Case (i).If δP(x, w) = δP(x, v), thenδQ(x, σ (w)) = δP(x, v)+ 1,

#Q(x, w, σ (w)) = #P(x, w),

and

#Q(x, σ (u), σ (w)) = #P(x, u, v).

(2) Case (ii).If δP(x, w) = δP(x, v)− 1, thenδQ(x, σ (w)) = δP(x, v),

#Q(x, w, σ (w)) = #P(x, w, v),

and

#Q(x, σ (u), σ (w)) = 0.

(3) Case (iii).If δP(x, w) = δP(x, v)+ 1, thenδQ(x, σ (w)) = δP(x, v)+ 1,

#Q(x, w, σ (w)) = 0,

and

#Q(x, σ (u), σ (w)) = #P(x, u, v).

Proof. Let w be a neighbor ofv in P. Sincew is a neighbor ofv, their distances
from x differ by at most 1. For case (i) letm = δP(x, w) = δP(x, v). Necessarily,
#P(x, w, v) = #P(x, v, w) = 0. The tight natural image of anym-path in P from x
to v via a neighboru 6= w is anm-path in Q from x to σ(u), which extends to an
(m+ 1)-path fromx to σ(w). Eachm-path fromx to w in P can be identified with
its tight natural image inQ and then extended to an(m + 1)-path fromx to σ(w).
Thus,δQ(x, σ (w)) = m+ 1; moreover, we have the specific counts #Q(x, u, σ (w)) =
#Q(x, σ (u), σ (w)) = #P(x, u, v), and #Q(x, w, σ (w)) = #P(x, w).

In case (ii) we letm = δP(x, v) = δP(x, w) + 1. So #P(x, w, v) = #P(x, w), and
#P(x, v, w) = 0. The tight natural image of any(m− 1)-path inP from x tow can be
extended inQ to anm-path fromx to σ(w). On the other hand, for any other neighbor
u of v, a path inQ from x to σ(w) via σ(u) has length at leastm+ 1. We conclude, in
this case, thatδQ(x, σ (w)) = m with #Q(x, w, σ (w)) = #P(x, w) = #P(x, w, v) and
#Q(x, σ (u), σ (w)) = 0.

For case (iii) we letm= δP(x, w) = δP(x, v)+1. In this case, #P(x, w, v) = 0 and
#P(x, v, w) = #P(x, v). Any m-path inP from x tow can be identified with its tight
natural image inQ and then extended to an(m+ 1)-path fromx to σ(w) viaw. On the
other hand, an(m−1)-path fromx tov in P must arrive atv via a neighboru 6= w, and so
its tight natural image is an(m−1)-path inQ fromx toσ(u), which can be extended to an
m-path fromx toσ(w). ThusδQ(x, σ (w)) = m with #Q(x, σ (u), σ (w)) = #P(x, u, v)
and #Q(x, w, σ (w)) = 0.
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4. Disproof for d = 5

4.1. Theorem. There is a five-dimensional Dantzig figure(P, x, y) for which
#P(x, y) = 12.Hence the strong d-step conjecture fails for d= 5.

Proof. We produce the counterexample ford = 5 as the wedge over a certain(4, 9)-
polytopeQ4 which was first constructed in [KW]. The polytopeQ4 has 9 facets and 27
vertices, and is the only(4, 9)-polytope of diameter 5. The combinatorial structure of
Q4 is described explicitly on p. 741 of [KK′]. With a convenient numbering of facets
and vertices,Q4’s incidence matrix is as follows. The estranged verticesx(= v1) and
y(= v15) of Q4 haveδQ4(x, y) = 5, and the facetF(= f9) misses bothx andy. The
facetF has 12 vertices.

M(Q4) =



110111000000100111111000000
101000111000010110000111100
111000111111000101000010000
111111000111000010100100000
001100100100101000110101011
010010010010011001001010111
000011011011111000011000010
000101101101111000000001101
000000000000000111111111111.


.

Let P5 denote the wedge overQ4 with foot F . ThenF becomes a ridge inP5, and
each vertexv of Q4\F has two images inP5: an imagevb in the baseB and an image
vt in the topT , connected by an edge. There are 15 such pairs, and with the 12 vertices
in F this yields a total of 42 vertices inP5.

Following the method in Section 3, we produce the incidence matrixM(P5) from
M(Q4).

M(P5) =



110111000000100111111000000110111000000100
101000111000010110000111100101000111000010
111000111111000101000010000111000111111000
111111000111000010100100000111111000111000
001100100100101000110101011001100100100101
010010010010011001001010111010010010010011
000011011011111000011000010000011011011111
000101101101111000000001101000101101101111
111111111111111111111111111000000000000000
000000000000000111111111111111111111111111


.

In this incidence matrix we have the baseB = f9, the topT = f10, and the vertices
xb = v1, yb = v15, xt = v28, andyt = v42.

When applied toM(P5), the procedure of Section 1 yields as output a 42×42 matrix
N(P5) whose only nonzero entries are

n1,42 = 12, n4,35 = 36, n5,34 = 36, n7,32 = 36, n8,31 = 36, n15,28 = 12,

n42,1 = 12, n35,4 = 36, n34,5 = 36, n32,7 = 36, n31,8 = 36, n28,15 = 12.
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Using the same notation as in Section 2, the summary statistic forP5 is 122, 364.
That is:

• P5 has six estranged pairs in all, each of distance 5.
• There are thirty-six shortest paths for each of four estranged pairs.
• For two of the estranged pairs,(xb, yt ) and(xt , yb), there are only twelve shortest

paths.

In Q4 there are sixteen 5-paths fromx to y, but only twelve of those paths visit
F . From the Wedging Lemmas, as confirmed by the computational procedure, we
have #5P5(xb, yt ) = 12. Since(P5, xb, yt ) is a five-dimensional Dantzig figure, and
#5P5(xb, yt ) < 16, this is a counterexample to the strong 5-step conjecture.

5. Disproof for d ≥ 6

With M(P5) as in Section 4, truncateP5 atv42 to produceτ(P5). Then

M(τ (P5)) =



1101110000001001111110000001101110000001000000
1010001110000101100001111001010001110000100000
1110001111110001010000100001110001111110000000
1111110001110000101001000001111110001110000000
0011001001001010001101010110011001001001001111
0100100100100110010010101110100100100100110111
0000110110111110000110000100000110110111111011
0001011011011110000000011010001011011011111101
1111111111111111111111111110000000000000000000
0000000000000001111111111111111111111111111110
0000000000000000000000000000000000000000011111


.

Let P6 be the wedge overτ(P5) with foot f10. Then

M(P6) =



11011100000010001101110000001001111110000001101110000001000000
10100011100001001010001110000101100001111001010001110000100000
11100011111100001110001111110001010000100001110001111110000000
11111100011100001111110001110000101001000001111110001110000000
00110010010010110011001001001010001101010110011001001001001111
01001001001001110100100100100110010010101110100100100100110111
00001101101111110000110110111110000110000100000110110111111011
00010110110111110001011011011110000000011010001011011011111101
11111111111111101111111111111111111111111110000000000000000000
11111111111111110000000000000001111111111111111111111111111110
00000000000000010000000000000000000000000000000000000000011111
00000000000000001111111111111111111111111111111111111111111111


.

Applying the procedure of Section 1 to this incidence matrix, we find that there are
only two estranged pairs,(v1, v62) and(v17, v16), with summary statistic 242. Since the
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strong 6-step conjecture would require this number to be at least 32= 26−1, P6 is a
counterexample.

In the remainder of this section we show that the process of truncating and wedging
can be repeated to produce a family of counterexamples to the strongd-step conjecture
for all d > 5.

A triple (P, x, yt ) is a Wd-figure iff P is a (d, 2d)-polytope and is also a wedge
P = ωF (Q), with verticesx ∈ B\F andyt ∈ T\F such thatδP(x, yt ) = δP(x, yb) = d.

For aWd-figure(Pd, x, yt ), truncation atyt yields a(d, 2d + 1)-polytopeQ with a
vertexz= σ(yb) that is estranged fromx, and withδQ(x, z) = d+1. The truncated top
τ(T) is the unique facet ofQ not incident to eitherx or z. Taking the wedge overQ with
foot τ(T) yields a(d+ 1, 2d+ 2)-polytopePd+1 with only two estranged pairs(xb, zt )

and(xt , zb), each at distanced + 1. Since(Pd, x, yt ) is a Wd-figure, we can obtain a
stronger result.

Proposition 5.1. If (Pd, x, yt ) is a Wd-figure with#Pd(x, yt ) = k, and

Pd+1 = ωτ(T)τyt (Pd),

then(Pd+1, xb, zt ) is a Wd+1-figure with

#Pd+1(xb, z
t ) = 2k,

γxb = (2γx, 0) ,

and

γzt = (γyt , k
)
.

Proof. Since(Pd, x, yt ) is aWd-figure,Pd = ωF (Q) for some(d−1, 2d−1)-polytope
Q with facet F , and everyd-path fromx to yt visits F . The polytopePd satisfies the
first case of the Truncation Lemmas, withv = yt andw = yb. Let z= σ(yb) in τyt (Pd).
Then from the Truncation Lemmas it follows that the collection of shortest paths from
x to z is in natural bijection with the union of the collection of shortest paths inPd from
x to yt and the collection of shortest paths inPd from x to yb.

Once we take the wedge overτyt (Pd) with foot τ(T), the shortest paths fromxb to zt

are in natural bijection with shortest paths fromx to z that visitτ(T). This includes all
those shortest paths onτyt (Pd) which correspond to shortest paths fromx to yt on Pd;
it also includes those shortest paths onτyt (Pd) which correspond to shortest paths from
x to yb on Pd which visit F , sinceF ⊂ T .

By the Wedging Lemmas there is a natural bijection between shortest paths inPd

from x to yt and those fromx to yb which visit F . In particular,

#Pd(x, yt ) = #Pd(x, F, yb)

(= k by assumption). Thus, from these natural correspondences, we conclude not only
that

#Pd+1(xb, z
t ) = 2k,
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but also that

γxb = (2γx, 0)

and

γzt = (γyt , k).

We note also thatPd+1 is aWd+1-figure.

Corollary 5.2. If (Pd, x, yt ) is a Wd-figure and a counterexample to the strong d-
step conjecture, then with Pd+1 = ωτ(T)τyt (Pd), (Pd+1, xb, zt ) is a Wd+1-figure and a
counterexample to the strong(d + 1)-conjecture.

Corollary 5.3. Let Q be a(c, 2c+ 1)-polytope of diameter c+ 1 with an estranged
pair (x, y) at distance c+1,and#Q(x, F, y) < 2c for F the unique facet F not incident
to x or y. Then(ωF (Q), xb, yt ) is a counterexample to the strong(c+ 1)-conjecture
and is a Wc+1-figure.

That is, any polytopeQ with the prescribed properties serves as the seed for a family
of counterexamples to the strongd-step conjecture for alld > c, simply by iterating
the construction in Proposition 5.1 above. TheQ4 of Section 4 is such a polytope, and
serves as the seed for the family of counterexamples constructed here.

For this first family of counterexamples, denoting byx the vertexxb in every iterate
Pd, γx has only four nonzero entries, an extreme case of a phenomenon already noted
in [KK ′]. Only four of thed edges incident tox occur in a shortest path fromx to yt ;
for larged, most choices of pivot atx will not yield a shortest path. For example inP5,
γx = (4, 4, 2, 2, 0), and inP6, γx = (8, 8, 4, 4, 0, 0). In this family,

γx = (2d−3, 2d−3, 2d−4, 2d−4, 0, . . . ,0),

and

γyt = (0, 2, 2, 4, 4, 12, 24, . . . ,3 · 2d−4).

Since there is only one 0 inγyt for each iterate, the truncation-and-wedge construction
is unique atyt ; that is, once we have truncated atyt , there is a unique choice ofz ∈ 6(yt )

to produce a counterexample. However, many variations of this family can be constructed
by applying the truncation atx in any iterate;z ∈ 6(x) can be chosen to beσ(u) for
any of thed − 4 neighborsu of x with γx(u) = 0. Although many combinatorial
types of counterexamples may be produced in this way, with manyγx and γyt , and
with small variations in the number of vertices, all such counterexamplesP will have
#d P(x, yt ) = 3 · 2d−3. In fact, except forP5, all counterexamples constructed in these
ways will have summary statistic(3 · 2d−3)2; to prove this, all we have left to show is
the following.

Proposition 5.4. If (Pd, x, yt ) is a Wd-figure, and Pd+1 = ωτ(T)τyt (Pd) with z =
σ(yb), then there are only two estranged pairs in Pd+1, (xb, zt ) and(xt , zb).
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Proof. SincePd+1 is a wedge, one vertex of any estranged pair must lie in the top, the
other in the base, and neither in the footτ(T). So suppose without loss of generality
thatub andvt are estranged vertices inPd+1 with ub in the base,vt in the top. Then in
τyt (Pd), u andv are estranged vertices, neither incident toτ(T). However,Pd is itself a
wedge, so eitheru ∈ B andv = z, or u = z andv ∈ B. Since neitheru norv is incident
to τ(T) in this (d, 2d+ 1)-polytope, there is only one vertex inB estranged fromz, but
x is estranged fromz and so must be this vertex. Hence, eitheru = x andv = z, or
u = z andv = x, and the result follows.

6. Additional Comments

If (P, x, y) is a (simple)d-dimensional Dantzig figure, then the polar polytopeQ is
simplicial. The boundary complex ofQ is a triangulated(d−1)-sphere with 2d vertices
and the facets ((d − 1)-simplices)Fx and Fy of Q that correspond tox and y do not
share a vertex and hence may be calledestranged. Under polarity, the paths (edge-paths)
of lengthd from x to y in P correspond toridge-pathsof lengthd from Fx to Fy in
Q. (See [KK′] for details.) The computational procedure of Section 1 applies without
change to determine, for each estranged pair of facets of a triangulated(d−1)-manifold,
the number of ridge-paths of lengthd joining the two facets.

In addition to the 37 different combinatorial types of simplicial 4-polytopes with 8
vertices, there are nonpolytopal triangulated 3-spheres with 8 vertices. The Br¨uckner
sphere, listed in [GS], does not have any estranged pair of facets. The Barnette sphere
[Ba] has summary statistic 152.

In cataloging the triangulated 3-manifolds with 9 vertices, Altshuler and Steinberg
[AS] found 1297 different combinatorial types. With the aid of Bokowski (as reported
in [ABS]), these were found to consist of one nonsphere, 154 nonpolytopal spheres, and
1142 polytopes. A tape containing their catalog was (many years ago) sent by Steinberg
to Klee, who found that all but one of those manifolds is of ridge-diameter≤ 4. The sole
exception was the simplicial 4-polytope that is dual to the simple 4-polytopeQ4 (with 9
facets and edge-diameter 5) that was used in Section 3 as the basis for our constructions.

Early in the study of thed-step conjecture, it was felt that the dual-cyclic polytopes and
other dual-neighborly polytopes were the most natural candidates for counterexamples
to the conjecture. However, the Hirsch conjecture was proved by [Kl] for the dual-cyclic
polytopes, and Lagarias and Prabhu [LP] have proved the strongd-step conjecture for
these polytopes. Both thed-step conjecture and the strongd-step conjecture are still
open for more general dual-neighborly polytopes, but Kalai [K1] established a weaker
form of the d-step conjecture (and of the Hirsch conjecture), showing thatδ(P) ≤
d2(n− d)2 logn for each dual-neighborly(d, n)-polytope.

Among the(d, 2d) polytopes, the minimum possible number of vertices isd2−d+2
and the maximum is

2

(
(3d − 1)/2

d

)
or

4

3

(
3d/2

d

)
according asd is odd or even. The maximum is attained by the polars of cyclic polytopes
and the minimum by the polars of stacked polytopes, and the strongd-step conjecture
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has been verified for both of these classes by Lagarias and Prabhu [LP]. The number
of vertices is relatively small for the counterexamples to the strongd-step conjecture
constructed (ford ≥ 5) in Sections 4 and 5; the number of vertices ofPd is d2+9d−28.

Finally, it should be mentioned that Kalai [K2], [K3], Kalai and Kleitman [KK], and
Matoušek, Sharir, and Welzl [MSW] have established subexponential upper bounds on
1(d, n), and that Frieze and Teng [FT] have shown that computing the diameter of a
polytope is anNP-hard problem.
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