Counterexamples to the Strong d-Step Conjecture for $d \geq 5^{*}$

F. Holt and V. Klee
Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195-4350, USA
holt @math.washington.edu
klee@ math.washington.edu

Abstract

A Dantzig figure is a triple (P, x, y) in which P is a simple d-polytope with precisely $2 d$ facets, x and y are vertices of P, and each facet is incident to x or y but not both. The famous d-step conjecture of linear programming is equivalent to the claim that always $\#^{d} P(x, y) \geq 1$, where $\#^{d} P(x, y)$ denotes the number of paths that connect x to y by using precisely d edges of P. The recently formulated strong d-step conjecture makes a still stronger claim-namely, that always $\#^{d} P(x, y) \geq 2^{d-1}$. It is shown here that the strong d-step conjecture holds for $d \leq 4$, but fails for $d \geq 5$.

Introduction

A path formed from k edges of a graph is here called a k-path. When x and y are vertices of a polytope $P, \delta_{P}(x, y)$ denotes the distance from x to y in P 's graph; thus $\delta_{P}(x, y)$ is the smallest k such that x and y are joined by a k-path. The maximum of $\delta_{P}(x, y)$, as x and y range over all vertices of P, is called the diameter of P and is denoted by $\delta(P)$. For each $n>d, \Delta(d, n)$ denotes the maximum of $\delta(P)$ as P ranges over all convex d-polytopes that have precisely n facets $((d-1)$-faces $)$. In the geometric form reported by Dantzig [D1], [D2], the d-step conjecture of linear programming (first formulated by W. M. Hirsch) asserts that $\Delta(d, 2 d)=d$, and the formally stronger Hirsch conjecture asserts that $\Delta(d, n) \leq n-d$ for all d and all $n>d$.

A d-polytope is called simple if each of its vertices is incident to precisely d edges, or, equivalently, to precisely d facets. We use the term (d, n)-polytope to refer to a simple d-polytope that has precisely n facets. Two vertices of a polytope will be called estranged iff they do not share a facet. In the course of showing that the d-step conjecture and the Hirsch conjecture are equivalent (though not necessarily on a dimension-for-dimension

[^0]basis), Klee and Walkup [KW] introduced the notion of a d-dimensional Dantzig figure, this being a triple (P, x, y) such that P is a $(d, 2 d)$-polytope and x and y are estranged vertices of P.

When x and y are vertices of a polytope P, we use $\#^{k} P(x, y)$ to denote the number of k-paths from x to y in P. As was shown in [KW], the d-step conjecture is equivalent to the claim that $\#^{d} P(x, y) \geq 1$ for each d-dimensional Dantzig figure (P, x, y). Using this equivalence, the d-step conjecture was proved in $[\mathrm{KW}]$ for $d \leq 5$, but it is still open for all $d \geq 6$. In [LPR], Lagarias et al. observed that for each d-dimensional Dantzig figure $(P, x, y), \#^{d} P(x, y) \leq d!$, and they formulated what they called the strong d-step conjecture, asserting that $\#^{d} P(x, y) \geq 2^{d-1}$. They verified this conjecture for $d \leq 3$ and they produced extensive numerical evidence in its favor for $4 \leq d \leq 15$. Subsequently, Lagarias and Prabhu [LP] showed for each d, that if r is either the minimum $\left(d^{2}-d+2\right)$ or the maximum number of vertices that a $(d, 2 d)$-polytope can have, then there exists a d-dimensional Dantzig figure (P, x, y) such that $\#^{d} P(x, y)=2^{d-1}$ and P has precisely r vertices.

This paper shows that the strong d-step conjecture is correct when $d=4$ but fails for all $d \geq 5$. The proof for $d=4$ is a routine computation based on the GrünbaumSreedharan catalog [GS] of the 37 combinatorial types of simple 4-polytopes with 8 facets. The disproof for $d \geq 5$ starts with a $(4,9)$ dual-neighborly polytope of diameter 5 that was first constructed in [KW], and then applies the wedging operation of [KW] to show that for each $d \geq 5$ there exists a d-dimensional Dantzig figure $(P, x, y$) for which $\#^{d} P(x, y)=3 \cdot 2^{d-3}<2^{d-1}$. (In the constructed examples, the number of vertices is $d^{2}+9 d-28$.)

As general references on the combinatorial structure of polytopes, the books by Grünbaum [G] and Ziegler [Z] are recommended. Both discuss the d-step conjecture.

1. Computational Procedure

The following procedure finds, for each estranged pair of vertices of a simple d-polytope P, the number of d-paths that join the two vertices.
(0) (Input.) For a simple d-polytope P with n facets and m vertices, let M denote the $n \times m$ facet-versus-vertex incidence matrix of P. The i th row of M tells which vertices are incident to facet i. The j th column of M tells which facets are incident to vertex j.
(1) $S:=M^{T} M$. (S is an $m \times m$ matrix $\left(s_{i j}\right)$ in which $s_{i j}$ is the number of facets shared by vertex i and vertex j.)
(2) $B:=\left(s_{i j} \stackrel{?}{=} 0\right)$, an $m \times m, 0-1$ matrix $\left(b_{i j}\right)$ in which the 1 entries correspond to pairs of vertices that are estranged. If $B=0$, there are no estranged pairs and the computation halts.
(3) $A:=\left(s_{i j} \stackrel{?}{=} d-1\right)$, the $m \times m$ adjacency matrix of the graph formed by P 's vertices and edges.
(4) (Output.) $N:=A^{d} \circ B$, in which \circ denotes the Hadamard (entry-by-entry) product. The (i, j) entry of A^{d} is the number of walks of length d from vertex i to vertex j. However, when two vertices x and y of a simple d-polytope P are estranged, they cannot be connected by a walk of length less than d, and hence each walk of length d
from x to y must, in fact, be a d-path. Thus the matrix N tells, for each estranged pair of vertices (x, y), the number $\#^{d} P(x, y)$ of d-paths that connect the two vertices.

2. Proof for $\boldsymbol{d} \leq 4$

2.1. Theorem. The strong d-step conjecture is correct for $d \leq 4$.

Proof. The strong d-step conjecture is obvious for $d=2$, and [LPR] noted that it also holds for $d=3$. Verification for $d=3$ is almost immediate, because there are only two different combinatorial types of $(3,6)$ polytopes. The first is the 3-cube I^{3}, for which $\#^{3} I^{3}(x, y)=6$. (In general, I^{d} has 2^{d-1} estranged pairs (x, y), and $\#^{d} I^{d}(x, y)=d!$ for each such pair.) The second $(3,6)$-polytope Q is combinatorially equivalent both to a triangular prism truncated at one vertex and to the wedge over a pentagon with an edge as foot. In Q there are two estranged pairs (x, y), and $\#^{3} Q(x, y)=4$ for each of them.

To verify the strong d-step conjecture for $d=4$, we use the complete catalog of simplicial 4-polytopes with eight vertices that was published in 1967 by Grünbaum and Sreedharan [GS], correcting a 1909 list of Brückner [Br]. With the aid of the usual polarity, this may also be regarded as a catalog of simple 4-polytopes with eight facets. There are 37 different combinatorial types. In terms of the indexing of [GS], the procedure described in Section 1 yields the information that is listed below concerning the numbers of d-paths connecting estranged pairs of vertices.

The indices in parentheses are the identification numbers used in [GS]. An "na" indicates that the polytope in question has no estranged pairs. Polytope number (34) is the 4 -cube, in which there are eight estranged pairs and each pair is connected by twenty-four 4-paths. In polytope number (25) there are four estranged pairs, with one such pair connected by eight 4-paths, another pair connected by ten 4-paths, and two pairs for each of which there are eleven 4-paths. The other data are interpreted similarly.
(1) na; (2) na; (3) na; (4) na; (5) 8_{2}; (6) 8_{2}; (7) 12_{2}; (8) $8_{1}, 10_{1}$; (9) 10_{2}; (10) na; (11) 8_{2}; (12) 8_{2}; (13) na; (14) 8_{2}; (15) 8_{4}; (16) 12_{2}; (17) 16_{4}; (18) 10_{4}; (19) 13_{2}; (20) 10_{2}; (21) 13_{4}; (22) $12_{2}, 14_{2}$; (23) 11_{2}; (24) 10_{2}; (25) $8_{1}, 10_{1}, 11_{2}$; (26) 18_{6}; (27) $14_{2}, 15_{2}$; (28) $12_{2}, 13_{2}$; (29) $8_{1}, 12_{4}, 14_{1}$; (30) $10_{2}, 12_{2}$; (31) $8_{1}, 10_{1}, 11_{1}, 12_{1}$; (32) 12_{2}; (33) $8_{4}, 11_{2}$; (34) 24_{8}; (35) $8_{4}, 12_{2}$; (36) $8_{1}, 9_{2}, 12_{1}$; (37) $8_{2}, 9_{2}$.

Note that for each of the 37 polytopes, each estranged pair is connected by at least eight 4-paths. This proves the strong d-step conjecture for $d=4$.

3. Wedging and Truncation

Suppose that P is a d-polytope in \mathbb{R}^{d}, and that F is a face of P. In the terminology of [KW], a wedge over P with foot F is a $(d+1)$-polytope $\omega_{F}(P)$ that is formed by intersecting the "cylinder" $C=P \times\left[0, \infty\left[\right.\right.$ with a closed half-space J in \mathbb{R}^{d+1} such that the intersection $J \cap C$ is bounded and has nonempty interior, and the bounding hyperplane H of J is such that $H \cap\left(\mathbb{R}^{d} \times\{0\}\right)=F \times\{0\}$. The boundary complex of $\omega_{F}(P)$ is combinatorially equivalent to the complex formed from the boundary complex
of the prism $P \times[0,1]$ by identifying $\{p\} \times[0,1]$ with $(p, 0)$ for each point p of F. Henceforth, we specialize to the case in which F is a facet of P. Then, in effect, the identification process replaces the facet (d-face) $F \times[0,1]$ of the prism by a ridge $\left((d-1)\right.$-face) R that is a copy of F. In the wedge $\omega_{F}(P)$, there are two facets that contain the ridge R, and each of these facets is combinatorially equivalent to P. We shall denote these facets by $B(=P \times\{0\})$ and $T(=P \times\{1\})$ and call them the base and the top of the wedge; thus $R=B \cap T$. Since each vertex of $\omega_{F}(P)$ is incident to T or B, it corresponds naturally to a vertex in P. Each vertex $v \in F$ has a unique natural image in the ridge R in $\omega_{F}(P)$. Each vertex $v \in P \backslash F$ has a natural image in the base B and a second natural image in the top T; we denote these images by $v_{b}(=v \times\{0\})$ and v^{t} $(=v \times\{1\})$, respectively. If P is a (d, n)-polytope and F is a facet of P, then the wedge $\omega_{F}(P)$ is a $(d+1, n+1)$-polytope.

To derive the incidence matrix for $\omega_{F}(P)$ from the incidence matrix $M(P)$ of P, we first determine the index of $F: f_{i}=F$. Recall that the rows of M correspond to facets and the columns to vertices. Let C_{i} be the submatrix of $M(P)$ consisting of the columns that correspond to vertices not incident to f_{i}, and let E_{i} be a matrix of the same dimensions as $C_{i}\left(n \times\left(f_{0}(P)-f_{0}(F)\right)\right)$ in which all entries are zero, except those in the i th row which are all ones. Then

$$
M\left(\omega_{f_{i}}(P)\right)=\left(\begin{array}{cc}
C_{i}+E_{i}: M(P) \\
\langle 0\rangle & :
\end{array}\langle 1\rangle .\right.
$$

With $M\left(\omega_{F}(P)\right)$ so constructed, we have the base $B=f_{i}$, and the new row is the top $T=f_{n+1}$. The vertices of the foot are indicated precisely by the columns that have 1 's in both of these rows.

When F is any face of a d-polytope P, and x and y are vertices of P, we denote by $\# P(x, y)$ the number of shortest paths from x to y in P, and by $\# P(x, F, y)$ the number of shortest paths from x to y that visit F. Note that this differs from the practice of $[\mathrm{LPR}]$ and $[\mathrm{LP}]$, who use $\# P(x, y)$ to denote the number of d-paths from x to y in a d-dimensional Dantzig figure (P, x, y). (For that specialized purpose, we have used the notation $\#^{d} P(x, y)$.)

Let $W=\omega_{F}(P)$. Since the facets B and T are combinatorially equivalent to P, each vertex v of P has two natural images in W, and we denote these by v_{b} and v^{t}; if v is incident to F, then these two images coincide: $v_{b}=v^{t}=v$. Since a vertex w of W is incident to at least one of B or T, w has a natural image in P, which we denote by \bar{w}. Thus $\overline{v_{b}}=\overline{v^{t}}=v$ for each vertex v of P.

From these maps of vertices, we obtain for each path in W a unique natural image in P. Let $\left[w_{0}, w_{1}, \ldots, w_{m}\right]$ be a path in W. For each $i,\left[w_{i}, w_{i+1}\right]$ is an edge in W, so either $\left[\overline{w_{i}}, \overline{w_{i+1}}\right]$ is an edge of P or $\overline{w_{i}}=\overline{w_{i+1}}$ (i.e., $\left\{w_{i}, w_{i+1}\right\}=\left\{v_{b}, v^{t}\right\}$ for some vertex v of P). In the latter case, we say that $\left[w_{i}, w_{i+1}\right]$ is a vertical edge. The natural image of a vertical edge in W is a vertex in P. The natural image of $\left[w_{0}, w_{1}, \ldots, w_{m}\right]$ is $\left[\overline{w_{0}}, \overline{w_{1}}, \ldots, \overline{w_{m}}\right]$, to which sequence of vertices we apply the contraction that replaces v, v by v. In effect, we eliminate the vertical edges and map the remaining edges to their natural images in P.

The natural image of an m-path in W is a k-path in P with $k=m-e, e$ the number of vertical edges in the m-path. For a path ρ in P and fixed images w_{0} and w_{m} of its endpoints in W, we define the tight natural images of ρ from w_{0} to w_{m} to be those paths
of minimal length among all the paths from w_{0} to w_{m} in W whose natural image is ρ. For shortest paths, we have the following result.
3.1. Wedging Lemmas. Suppose x and y are vertices and F is a facet of the (d, n) polytope P. Then the wedge $W=\omega_{F}(P)$ is a $(d+1, n+1)$-polytope.
(1) Case (i). If no shortest path from x to y visits F, then

$$
\delta_{W}\left(x_{b}, y^{t}\right)=\delta_{P}(x, y)+1,
$$

and each shortest path from x to y in P corresponds naturally to $\delta_{P}(x, y)+1$ shortest paths from x_{b} to y^{t} in W. Further,

$$
\# W\left(x_{b}, x^{t}, y^{t}\right)=\# P(x, y)
$$

and for each neighbor v of x in P

$$
\# W\left(x_{b}, v_{b}, y^{t}\right)=\delta_{P}(x, y) \cdot \# P(x, v, y)+\sum_{\rho} 2^{r_{\rho}-1}
$$

the sum being taken over all $\left(\delta_{P}(x, y)+1\right)$-paths ρ from x to y via v which visit $F r_{\rho}(>0)$ times.
(2) Case (ii). If some shortest path from x to y visits F, then

$$
\delta_{W}\left(x_{b}, y^{t}\right)=\delta_{P}(x, y)
$$

and each shortest path in P from x to y that visits $F r$ times corresponds naturally to 2^{r-1} shortest paths from x_{b} to y^{t} in W.

If every shortest path in P from x to y that visits F does so only once, then the shortest paths from x to y are in natural one-to-one correspondence with the shortest paths in W from x_{b} to y^{t}. Under this nonrevisiting assumption,

$$
\# W\left(x_{b}, y^{t}\right)=\# P(x, F, y)
$$

If v is a neighbor of x in P, then

$$
\# W\left(x_{b}, v_{b}, y^{t}\right)=\# P(v, F, y)
$$

and

$$
\# W\left(x_{b}, x^{t}, y^{t}\right)=0
$$

Proof. Let $\left[x=v_{0}, v_{1}, \ldots, v_{m}=y\right]$ be an m-path from x to y in P which does not visit F. Then $\left[x_{b}=v_{0 b}, \ldots, v_{i b}, v_{i}^{t}, \ldots, v_{m}^{t}=y^{t}\right]$ is an $(m+1)$-path from x_{b} to y^{t} in W, for each $0 \leq i \leq m$. These $m+1$ distinct paths are the shortest paths in W for which the natural image in P is the given path. Moving from the base to the top requires the addition of a vertical edge somewhere in the path.

Now suppose that in the m-path $\left[x=v_{0}, v_{1}, \ldots, v_{m}=y\right], v_{i}$ is incident to F. Then $\left[x_{b}=v_{0 b}, \ldots, v_{(i-1) b}, v_{i}, v_{(i+1)}^{t}, \ldots, v_{m}^{t}=y^{t}\right]$ is an m-path from x_{b} to y^{t} in W. Moving from the base to the top requires no additional edge.

For an m-path from x to y in P which visits F, its tight natural images from x_{b} to y^{t} in W necessarily enter the first visit to F from the base and leave the last visit to F on the top. After visiting F the first time and before visiting F the last time, any choice of base or top between visits to F yields a tight natural image from x_{b} to y^{t}. There are 2^{r-1} ways of choosing whether the natural image in W of each of the $r-1$ sequences of vertices between visits to F is in the base or top. Thus a path in P which visits $F r$ times has 2^{r-1} distinct tight natural images from x_{b} to y^{t} in W.

Now let $m=\delta_{P}(x, y)$, and consider the set of shortest paths from x to y in P. Those which do not visit F have $m+1$ tight natural images from x_{b} to y^{t} in W, each of length $m+1$. Those which visit $F r$ times $(r>0)$ have 2^{r-1} tight natural images from x_{b} to y^{t}, each of length m.

In the case that none of the shortest paths from x to y in P visits F, we have established all the claims except the specific counts of shortest paths from x_{b} to y^{t} incident to given neighbors. Let v be a neighbor of x in P. Any shortest path from x to y via v consists of the edge $[x, v]$ prepended to a shortest path from v to y. Necessarily, $\delta_{P}(v, y)=\delta_{P}(x, y)-1$, and each of the $\delta_{P}(x, y)$ tight natural images of a shortest path from v_{b} to y^{t} can be prepended to a shortest path from x_{b} to y^{t}. We have accounted for all the shortest paths from x_{b} to y^{t} via v_{b} which do not visit F. However, an $(m+1)$-path from x to y via v and visiting $F r$ times has 2^{r-1} tight natural images from x_{b} to y^{t} in W, each of length $m+1$; hence each of these images will be a shortest path from x_{b} to y^{t}. We summarize this accounting in

$$
\# W\left(x_{b}, v_{b}, y^{t}\right)=m \cdot \# P(x, v, y)+\sum_{\rho} 2^{r_{\rho}-1}
$$

An $(m+1)$-path from x_{b} to y^{t} via x^{t} consists of the initial edge $\left[x_{b}, x^{t}\right]$ followed by an m-path ρ from x^{t} to y^{t}. Since none of the m-paths from x to y in P visits F, ρ must lie entirely in T, and so $\bar{\rho}$ is an m-path in P from x to y. On the other hand, for every m-path β from x to y in P, the tight natural image $\left[x_{b}, \beta^{t}\right]$ is an $(m+1)$-path from x_{b} to y^{t} in W. From this natural one-to-one correspondence, we have

$$
\# W\left(x_{b}, x^{t}, y^{t}\right)=\# P(x, y)
$$

We now address case (ii), in which some shortest m-path from x to y visits F. No path from x_{b} to y^{t} can have length less than m, but the tight natural images of an m-path which visits F has length m; hence $\delta_{W}\left(x_{b}, y^{t}\right)=\delta_{P}(x, y)$, and as observed above, an m-path in P which visits $F r$ times has 2^{r-1} tight natural images in W, each of length m. For any path from x to y in P which does not visit F, the tight natural images from x_{b} to y^{t} are of length $m+1$ and so are not shortest paths. Summing over all shortest paths ρ from x to y in P which visit $F r_{\rho}$ times, we have

$$
\# W\left(x_{b}, y^{t}\right)=\sum_{\rho} 2^{r_{\rho}-1}
$$

We now assume further that the shortest paths from x to y which visit F do so only once $(r=1)$. Under this assumption, each shortest path from x to y which visits F has a unique tight natural image from x_{b} to y^{t} in W. Hence, for each neighbor v of x in P,

$$
\# W\left(x_{b}, v_{b}, y^{t}\right)=\# P(v, F, y)
$$

and we can rewrite the above sum

$$
\# W\left(x_{b}, y^{t}\right)=\# P(x, F, y)
$$

To see finally that \# $W\left(x_{b}, x^{t}, y^{t}\right)=0$, we can either observe that no shortest paths from x_{b} to y^{t} are left uncounted, or we could observe that an m-path from x_{b} to y^{t} via x^{t} would have as its natural image in P a path from x to y of length less than m.

When a simple d-polytope P and two vertices x and y of P are fixed, we define a function γ_{x} on the neighbors of x in P by setting $\gamma_{x}(v)=\# P(x, v, y)$ for each neighbor v. We can list γ_{x} as a d-vector since P is simple:

$$
\gamma_{x}=\left(\# P\left(x, v_{1}, y\right), \ldots, \# P\left(x, v_{d}, y\right)\right)
$$

The conclusion of the second case in the above lemma can now be written succinctly:

$$
\gamma_{x_{b}}=\left(\gamma_{x}, 0\right),
$$

by which we mean $\gamma_{x_{b}}\left(v_{b}\right)=\gamma_{x}(v)$ for neighbors v of x in P, and $\gamma_{x_{b}}\left(x^{t}\right)=0$.
In the construction of counterexamples, we also employ the operation of truncating a (d, n)-polytope P at a vertex v. To perform the truncation geometrically, we form the intersection $\tau_{v}(P)$ of P with any closed half-space that misses v and whose bounding hyperplane passes strictly between v and the remaining vertices of P. Again note that since P is simple, $\tau_{v}(P)$ is a $(d, n+1)$-polytope with new facet $\tau(v)$ and $d-1$ additional vertices.

Combinatorially, the vertex v is replaced by a $(d-1)$-simplex $\Sigma(v)$ with one of its vertices on each edge incident to v. For example, if u is a neighbor of v in P, then in $\tau_{v}(P), \sigma(u)$ is a vertex in $\Sigma(v)$ whose neighbors are the $d-1$ other vertices in $\Sigma(v)$ and u.

We form the incidence matrix for the truncated polytope $\tau_{v}(P)$ from that of P thus:

$$
M\left(\tau_{v}(P)\right)=\left(\begin{array}{ccc}
M(P \backslash v): M(\Sigma(v) \backslash \tau(v)) \\
\langle 0\rangle & : & \langle 1\rangle
\end{array}\right) .
$$

We start with a copy of $M(P)$ and remove the column corresponding to v; this is the upper-left block $M(P \backslash v)$. We take d copies of the column for v, and in each copy replace one of the $d 1$'s by a 0 so that no two of these columns are the same; this is the upper-right block $M(\Sigma(v) \backslash \tau(v))$. Finally, we append a new row with 1's under these rightmost d columns and 0 's under $M(P \backslash v)$; this new row corresponds to the facet $\tau(v)$.

We note some natural correspondences between paths on P and paths on $Q=\tau_{v}(P)$. Paths in Q have unique natural images in P, obtained by replacing each occurrence of a vertex in $\Sigma(v)$ with v and then applying the contraction that replaces v, v by v. For a fixed path ρ in P, we define a tight natural image of ρ in Q to be a path of minimal length in Q whose natural image in P is ρ. Every path in P has a unique tight natural image in Q. In particular, for distinct neighbors u and w of v in P, the paths $[u, v]$ and $[u, v, w]$ correspond, respectively, to the paths $[u, \sigma(u)]$ and $[u, \sigma(u), \sigma(w), w]$ in Q. Note that the tight natural images in Q of m-paths in P which do not visit v, except possibly as a terminal vertex, are also of length m; if an m-path in P does not terminate at v but visits $v r$ times, then its tight natural image is an $(m+r)$-path in Q.
3.2. Truncation Lemmas. Suppose x and v are distinct vertices in the (d, n)-polytope P, and u and w are distinct neighbors of v in P. Then $Q=\tau_{v}(P)$ is a $(d, n+1)$-polytope.
(1) Case (i). If $\delta_{P}(x, w)=\delta_{P}(x, v)$, then $\delta_{Q}(x, \sigma(w))=\delta_{P}(x, v)+1$,

$$
\# Q(x, w, \sigma(w))=\# P(x, w)
$$

and

$$
\# Q(x, \sigma(u), \sigma(w))=\# P(x, u, v)
$$

(2) Case (ii). If $\delta_{P}(x, w)=\delta_{P}(x, v)-1$, then $\delta_{Q}(x, \sigma(w))=\delta_{P}(x, v)$,

$$
\# Q(x, w, \sigma(w))=\# P(x, w, v)
$$

and

$$
\# Q(x, \sigma(u), \sigma(w))=0 .
$$

(3) Case (iii). If $\delta_{P}(x, w)=\delta_{P}(x, v)+1$, then $\delta_{Q}(x, \sigma(w))=\delta_{P}(x, v)+1$,

$$
\# Q(x, w, \sigma(w))=0
$$

and

$$
\# Q(x, \sigma(u), \sigma(w))=\# P(x, u, v)
$$

Proof. Let w be a neighbor of v in P. Since w is a neighbor of v, their distances from x differ by at most 1 . For case (i) let $m=\delta_{P}(x, w)=\delta_{P}(x, v)$. Necessarily, $\# P(x, w, v)=\# P(x, v, w)=0$. The tight natural image of any m-path in P from x to v via a neighbor $u \neq w$ is an m-path in Q from x to $\sigma(u)$, which extends to an ($m+1$)-path from x to $\sigma(w)$. Each m-path from x to w in P can be identified with its tight natural image in Q and then extended to an ($m+1$)-path from x to $\sigma(w)$. Thus, $\delta_{Q}(x, \sigma(w))=m+1$; moreover, we have the specific counts \# $Q(x, u, \sigma(w))=$ $\# Q(x, \sigma(u), \sigma(w))=\# P(x, u, v)$, and $\# Q(x, w, \sigma(w))=\# P(x, w)$.

In case (ii) we let $m=\delta_{P}(x, v)=\delta_{P}(x, w)+1$. So $\# P(x, w, v)=\# P(x, w)$, and $\# P(x, v, w)=0$. The tight natural image of any $(m-1)$-path in P from x to w can be extended in Q to an m-path from x to $\sigma(w)$. On the other hand, for any other neighbor u of v, a path in Q from x to $\sigma(w)$ via $\sigma(u)$ has length at least $m+1$. We conclude, in this case, that $\delta_{Q}(x, \sigma(w))=m$ with $\# Q(x, w, \sigma(w))=\# P(x, w)=\# P(x, w, v)$ and $\# Q(x, \sigma(u), \sigma(w))=0$.

For case (iii) we let $m=\delta_{P}(x, w)=\delta_{P}(x, v)+1$. In this case, $\# P(x, w, v)=0$ and $\# P(x, v, w)=\# P(x, v)$. Any m-path in P from x to w can be identified with its tight natural image in Q and then extended to an $(m+1)$-path from x to $\sigma(w)$ via w. On the other hand, an $(m-1)$-path from x to v in P must arrive at v via a neighbor $u \neq w$, and so its tight natural image is an $(m-1)$-path in Q from x to $\sigma(u)$, which can be extended to an m-path from x to $\sigma(w)$. Thus $\delta_{Q}(x, \sigma(w))=m$ with $\# Q(x, \sigma(u), \sigma(w))=\# P(x, u, v)$ and $\# Q(x, w, \sigma(w))=0$.

4. Disproof for $\boldsymbol{d}=\mathbf{5}$

4.1. Theorem. There is a five-dimensional Dantzig figure (P, x, y) for which $\# P(x, y)=12$. Hence the strong d-step conjecture fails for $d=5$.

Proof. We produce the counterexample for $d=5$ as the wedge over a certain $(4,9)$ polytope Q_{4} which was first constructed in [KW]. The polytope Q_{4} has 9 facets and 27 vertices, and is the only $(4,9)$-polytope of diameter 5 . The combinatorial structure of Q_{4} is described explicitly on p. 741 of $\left[\mathrm{KK}^{\prime}\right]$. With a convenient numbering of facets and vertices, Q_{4} 's incidence matrix is as follows. The estranged vertices $x\left(=v_{1}\right)$ and $y\left(=v_{15}\right)$ of Q_{4} have $\delta_{Q_{4}}(x, y)=5$, and the facet $F\left(=f_{9}\right)$ misses both x and y. The facet F has 12 vertices.

$$
M\left(Q_{4}\right)=\left(\begin{array}{c}
110111000000100111111000000 \\
101000111000010110000111100 \\
111000111111000101000010000 \\
111111000111000010100100000 \\
001100100100101000110101011 \\
010010010010011001001010111 \\
000011011011111000011000010 \\
000101101101111000000001101 \\
000000000000000111111111111 .
\end{array}\right) .
$$

Let P_{5} denote the wedge over Q_{4} with foot F. Then F becomes a ridge in P_{5}, and each vertex v of $Q_{4} \backslash F$ has two images in P_{5} : an image v_{b} in the base B and an image v^{t} in the top T, connected by an edge. There are 15 such pairs, and with the 12 vertices in F this yields a total of 42 vertices in P_{5}.

Following the method in Section 3, we produce the incidence matrix $M\left(P_{5}\right)$ from $M\left(Q_{4}\right)$.

$$
M\left(P_{5}\right)=\left(\begin{array}{l}
110111000000100111111000000110111000000100 \\
101000111000010110000111100101000111000010 \\
111000111111000101000010000111000111111000 \\
11111100011100001010010000011111000111000 \\
001100100100101000110101011001100100100101 \\
010010010010011001001010111010010010010011 \\
000011011011111000011000010000011011011111 \\
000101101101111000000001101000101101101111 \\
11111111111111111111111111100000000000000 \\
00000000000000011111111111111111111111111
\end{array}\right) .
$$

In this incidence matrix we have the base $B=f_{9}$, the top $T=f_{10}$, and the vertices $x_{b}=v_{1}, y_{b}=v_{15}, x^{t}=v_{28}$, and $y^{t}=v_{42}$.

When applied to $M\left(P_{5}\right)$, the procedure of Section 1 yields as output a 42×42 matrix $N\left(P_{5}\right)$ whose only nonzero entries are

$$
\begin{aligned}
& n_{1,42}=12, \quad n_{4,35}=36, \quad n_{5,34}=36, \quad n_{7,32}=36, \quad n_{8,31}=36, \quad n_{15,28}=12, \\
& n_{42,1}=12, \quad n_{35,4}=36, \quad n_{34,5}=36, \quad n_{32,7}=36, \quad n_{31,8}=36, \quad n_{28,15}=12 .
\end{aligned}
$$

Using the same notation as in Section 2, the summary statistic for P_{5} is $12_{2}, 36_{4}$. That is:

- P_{5} has six estranged pairs in all, each of distance 5.
- There are thirty-six shortest paths for each of four estranged pairs.
- For two of the estranged pairs, $\left(x_{b}, y^{t}\right)$ and $\left(x^{t}, y_{b}\right)$, there are only twelve shortest paths.

In Q_{4} there are sixteen 5-paths from x to y, but only twelve of those paths visit F. From the Wedging Lemmas, as confirmed by the computational procedure, we have $\#^{5} P_{5}\left(x_{b}, y^{t}\right)=12$. Since $\left(P_{5}, x_{b}, y^{t}\right)$ is a five-dimensional Dantzig figure, and $\#^{5} P_{5}\left(x_{b}, y^{t}\right)<16$, this is a counterexample to the strong 5 -step conjecture.

5. Disproof for $\boldsymbol{d} \geq \mathbf{6}$

With $M\left(P_{5}\right)$ as in Section 4, truncate P_{5} at v_{42} to produce $\tau\left(P_{5}\right)$. Then

$$
M\left(\tau\left(P_{5}\right)\right)=\left(\begin{array}{l}
1101110000001001111110000001101110000001000000 \\
1010001110000101100001111001010001110000100000 \\
1110001111110001010000100001110001111110000000 \\
111111000111000010100100000111111000110000000 \\
0011001001001010001101010110011001001001001111 \\
0100100100100110010010101110100100100100110111 \\
0000110110111110000110000100000110110111111011 \\
0001011011011110000000011010001011011011111101 \\
111111111111111111111111110000000000000000000 \\
00000000000000011111111111111111111111111110 \\
00011111
\end{array}\right) .
$$

Let P_{6} be the wedge over $\tau\left(P_{5}\right)$ with foot f_{10}. Then

$$
M\left(P_{6}\right)=\left(\begin{array}{l}
11011100000010001101110000001001111110000001101110000001000000 \\
10100011100001001010001110000101100001111001010001110000100000 \\
11100011111100001110001111110001010000100001110001111110000000 \\
11111100011100001111110001110000101001000001111110001110000000 \\
00110010010010110011001001001010001101010110011001001001001111 \\
01001001001001110100100100100110010010101110100100100100110111 \\
00001101101111110000110110111110000110000100000110110111111011 \\
00010110110111110001011011011110000000011010001011011011111101 \\
11111111111111101111111111111111111111111000000000000000000 \\
11111111111111110000000000000001111111111111111111111111110 \\
000000000000000100011111 \\
0000000000000000111
\end{array}\right) .
$$

Applying the procedure of Section 1 to this incidence matrix, we find that there are only two estranged pairs, $\left(v_{1}, v_{62}\right)$ and $\left(v_{17}, v_{16}\right)$, with summary statistic 24_{2}. Since the
strong 6-step conjecture would require this number to be at least $32=2^{6-1}, P_{6}$ is a counterexample.

In the remainder of this section we show that the process of truncating and wedging can be repeated to produce a family of counterexamples to the strong d-step conjecture for all $d>5$.

A triple $\left(P, x, y^{t}\right)$ is a W_{d}-figure iff P is a $(d, 2 d)$-polytope and is also a wedge $P=\omega_{F}(Q)$, with vertices $x \in B \backslash F$ and $y^{t} \in T \backslash F$ such that $\delta_{P}\left(x, y^{t}\right)=\delta_{P}\left(x, y_{b}\right)=d$.

For a W_{d}-figure $\left(P_{d}, x, y^{t}\right)$, truncation at y^{t} yields a $(d, 2 d+1)$-polytope Q with a vertex $z=\sigma\left(y_{b}\right)$ that is estranged from x, and with $\delta_{Q}(x, z)=d+1$. The truncated top $\tau(T)$ is the unique facet of Q not incident to either x or z. Taking the wedge over Q with foot $\tau(T)$ yields a $(d+1,2 d+2)$-polytope P_{d+1} with only two estranged pairs $\left(x_{b}, z^{t}\right)$ and $\left(x^{t}, z_{b}\right)$, each at distance $d+1$. Since $\left(P_{d}, x, y^{t}\right)$ is a W_{d}-figure, we can obtain a stronger result.

Proposition 5.1. If $\left(P_{d}, x, y^{t}\right)$ is a W_{d}-figure with $\# P_{d}\left(x, y^{t}\right)=k$, and

$$
P_{d+1}=\omega_{\tau(T)} \tau_{y^{\prime}}\left(P_{d}\right)
$$

then $\left(P_{d+1}, x_{b}, z^{t}\right)$ is a W_{d+1}-figure with

$$
\begin{gathered}
\# P_{d+1}\left(x_{b}, z^{t}\right)=2 k, \\
\gamma_{x_{b}}=\left(2 \gamma_{x}, 0\right),
\end{gathered}
$$

and

$$
\gamma_{z^{t}}=\left(\gamma_{y^{t}}, k\right)
$$

Proof. Since $\left(P_{d}, x, y^{t}\right)$ is a W_{d}-figure, $P_{d}=\omega_{F}(Q)$ for some $(d-1,2 d-1)$-polytope Q with facet F, and every d-path from x to y^{t} visits F. The polytope P_{d} satisfies the first case of the Truncation Lemmas, with $v=y^{t}$ and $w=y_{b}$. Let $z=\sigma\left(y_{b}\right)$ in $\tau_{y^{t}}\left(P_{d}\right)$. Then from the Truncation Lemmas it follows that the collection of shortest paths from x to z is in natural bijection with the union of the collection of shortest paths in P_{d} from x to y^{t} and the collection of shortest paths in P_{d} from x to y_{b}.

Once we take the wedge over $\tau_{y^{t}}\left(P_{d}\right)$ with foot $\tau(T)$, the shortest paths from x_{b} to z^{t} are in natural bijection with shortest paths from x to z that visit $\tau(T)$. This includes all those shortest paths on $\tau_{y^{t}}\left(P_{d}\right)$ which correspond to shortest paths from x to y^{t} on P_{d}; it also includes those shortest paths on $\tau_{y^{t}}\left(P_{d}\right)$ which correspond to shortest paths from x to y_{b} on P_{d} which visit F, since $F \subset T$.

By the Wedging Lemmas there is a natural bijection between shortest paths in P_{d} from x to y^{t} and those from x to y_{b} which visit F. In particular,

$$
\# P_{d}\left(x, y^{t}\right)=\# P_{d}\left(x, F, y_{b}\right)
$$

($=k$ by assumption). Thus, from these natural correspondences, we conclude not only that

$$
\# P_{d+1}\left(x_{b}, z^{t}\right)=2 k
$$

but also that

$$
\gamma_{x_{b}}=\left(2 \gamma_{x}, 0\right)
$$

and

$$
\gamma_{z^{t}}=\left(\gamma_{y^{t}}, k\right)
$$

We note also that P_{d+1} is a W_{d+1}-figure.

Corollary 5.2. If $\left(P_{d}, x, y^{t}\right)$ is a W_{d}-figure and a counterexample to the strong d step conjecture, then with $P_{d+1}=\omega_{\tau(T)} \tau_{y^{t}}\left(P_{d}\right),\left(P_{d+1}, x_{b}, z^{t}\right)$ is a W_{d+1}-figure and a counterexample to the strong $(d+1)$-conjecture.

Corollary 5.3. Let Q be a $(c, 2 c+1)$-polytope of diameter $c+1$ with an estranged pair (x, y) at distance $c+1$, and $\# Q(x, F, y)<2^{c}$ for F the unique facet F not incident to x or y. Then $\left(\omega_{F}(Q), x_{b}, y^{t}\right)$ is a counterexample to the strong $(c+1)$-conjecture and is a W_{c+1}-figure.

That is, any polytope Q with the prescribed properties serves as the seed for a family of counterexamples to the strong d-step conjecture for all $d>c$, simply by iterating the construction in Proposition 5.1 above. The Q_{4} of Section 4 is such a polytope, and serves as the seed for the family of counterexamples constructed here.

For this first family of counterexamples, denoting by x the vertex x_{b} in every iterate P_{d}, γ_{x} has only four nonzero entries, an extreme case of a phenomenon already noted in $\left[\mathrm{KK}^{\prime}\right]$. Only four of the d edges incident to x occur in a shortest path from x to y^{t}; for large d, most choices of pivot at x will not yield a shortest path. For example in P_{5}, $\gamma_{x}=(4,4,2,2,0)$, and in $P_{6}, \gamma_{x}=(8,8,4,4,0,0)$. In this family,

$$
\gamma_{x}=\left(2^{d-3}, 2^{d-3}, 2^{d-4}, 2^{d-4}, 0, \ldots, 0\right)
$$

and

$$
\gamma_{y^{t}}=\left(0,2,2,4,4,12,24, \ldots, 3 \cdot 2^{d-4}\right)
$$

Since there is only one 0 in $\gamma_{y^{\prime}}$ for each iterate, the truncation-and-wedge construction is unique at y^{t}; that is, once we have truncated at y^{t}, there is a unique choice of $z \in \Sigma\left(y^{t}\right)$ to produce a counterexample. However, many variations of this family can be constructed by applying the truncation at x in any iterate; $z \in \Sigma(x)$ can be chosen to be $\sigma(u)$ for any of the $d-4$ neighbors u of x with $\gamma_{x}(u)=0$. Although many combinatorial types of counterexamples may be produced in this way, with many γ_{x} and $\gamma_{y^{\prime}}$, and with small variations in the number of vertices, all such counterexamples P will have $\#^{d} P\left(x, y^{t}\right)=3 \cdot 2^{d-3}$. In fact, except for P_{5}, all counterexamples constructed in these ways will have summary statistic $\left(3 \cdot 2^{d-3}\right)_{2}$; to prove this, all we have left to show is the following.

Proposition 5.4. If $\left(P_{d}, x, y^{t}\right)$ is a W_{d}-figure, and $P_{d+1}=\omega_{\tau(T)} \tau_{y^{t}}\left(P_{d}\right)$ with $z=$ $\sigma\left(y_{b}\right)$, then there are only two estranged pairs in $P_{d+1},\left(x_{b}, z^{t}\right)$ and $\left(x^{t}, z_{b}\right)$.

Proof. Since P_{d+1} is a wedge, one vertex of any estranged pair must lie in the top, the other in the base, and neither in the foot $\tau(T)$. So suppose without loss of generality that u_{b} and v^{t} are estranged vertices in P_{d+1} with u_{b} in the base, v^{t} in the top. Then in $\tau_{y^{\prime}}\left(P_{d}\right), u$ and v are estranged vertices, neither incident to $\tau(T)$. However, P_{d} is itself a wedge, so either $u \in B$ and $v=z$, or $u=z$ and $v \in B$. Since neither u nor v is incident to $\tau(T)$ in this $(d, 2 d+1)$-polytope, there is only one vertex in B estranged from z, but x is estranged from z and so must be this vertex. Hence, either $u=x$ and $v=z$, or $u=z$ and $v=x$, and the result follows.

6. Additional Comments

If (P, x, y) is a (simple) d-dimensional Dantzig figure, then the polar polytope Q is simplicial. The boundary complex of Q is a triangulated $(d-1)$-sphere with $2 d$ vertices and the facets $\left((d-1)\right.$-simplices) F_{x} and F_{y} of Q that correspond to x and y do not share a vertex and hence may be called estranged. Under polarity, the paths (edge-paths) of length d from x to y in P correspond to ridge-paths of length d from F_{x} to F_{y} in Q. (See $\left[\mathrm{KK}^{\prime}\right]$ for details.) The computational procedure of Section 1 applies without change to determine, for each estranged pair of facets of a triangulated $(d-1)$-manifold, the number of ridge-paths of length d joining the two facets.

In addition to the 37 different combinatorial types of simplicial 4-polytopes with 8 vertices, there are nonpolytopal triangulated 3 -spheres with 8 vertices. The Brückner sphere, listed in [GS], does not have any estranged pair of facets. The Barnette sphere [Ba] has summary statistic 15_{2}.

In cataloging the triangulated 3-manifolds with 9 vertices, Altshuler and Steinberg [AS] found 1297 different combinatorial types. With the aid of Bokowski (as reported in [ABS]), these were found to consist of one nonsphere, 154 nonpolytopal spheres, and 1142 polytopes. A tape containing their catalog was (many years ago) sent by Steinberg to Klee, who found that all but one of those manifolds is of ridge-diameter ≤ 4. The sole exception was the simplicial 4-polytope that is dual to the simple 4-polytope Q_{4} (with 9 facets and edge-diameter 5) that was used in Section 3 as the basis for our constructions.

Early in the study of the d-step conjecture, it was felt that the dual-cyclic polytopes and other dual-neighborly polytopes were the most natural candidates for counterexamples to the conjecture. However, the Hirsch conjecture was proved by [K1] for the dual-cyclic polytopes, and Lagarias and Prabhu [LP] have proved the strong d-step conjecture for these polytopes. Both the d-step conjecture and the strong d-step conjecture are still open for more general dual-neighborly polytopes, but Kalai [K1] established a weaker form of the d-step conjecture (and of the Hirsch conjecture), showing that $\delta(P) \leq$ $d^{2}(n-d)^{2} \log n$ for each dual-neighborly (d, n)-polytope.

Among the $(d, 2 d)$ polytopes, the minimum possible number of vertices is $d^{2}-d+2$ and the maximum is

$$
2\binom{(3 d-1) / 2}{d} \quad \text { or } \quad \frac{4}{3}\binom{3 d / 2}{d}
$$

according as d is odd or even. The maximum is attained by the polars of cyclic polytopes and the minimum by the polars of stacked polytopes, and the strong d-step conjecture
has been verified for both of these classes by Lagarias and Prabhu [LP]. The number of vertices is relatively small for the counterexamples to the strong d-step conjecture constructed (for $d \geq 5$) in Sections 4 and 5; the number of vertices of P_{d} is $d^{2}+9 d-28$.

Finally, it should be mentioned that Kalai [K2], [K3], Kalai and Kleitman [KK], and Matoušek, Sharir, and Welzl [MSW] have established subexponential upper bounds on $\Delta(d, n)$, and that Frieze and Teng [FT] have shown that computing the diameter of a polytope is an $\mathbb{N P}$-hard problem.

References

[ABS] A. Altshuler, J. Bokowski, and L. Steinberg, The classification of simplicial 3-spheres with nine vertices into polytopes and nonpolytopes, Discrete Math. 31 (1980), 115-124.
[AS] A. Altshuler and L. Steinberg, An enumeration of neighborly combinatorial 3-manifolds with nine vertices, Discrete Math. 16 (1976), 91-108.
[Ba] D. Barnette, Diagrams and Schlegel diagrams, In: Combinatorial Structures and Their Applications (Proc. Calgary Int'l Conf., Calgary 1969), Gordon and Breach, New York, 1970, pp. 1-4.
[Br$]$ M. Brückner, Über die Ableitung der allgemeinen Polytope und die nach Isomorpishmus verschiedenen Typen der allgemeinen Achtzelle (Oktatope), Nederl. Akad. Wettensch. Verslag Afd. Natuurk. Sect. 1, No. 1 (1909).
[D1] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press, Princeton, NJ, 1963.
[D2] G. B. Dantzig, Eight unsolved problems from mathematical programming, Bull. Amer. Math. Soc. 70 (1964), 499-500.
[FT] A. M. Frieze and S.-H. Teng, On the complexity of computing the diameter of a polytope, J. Comput. Complexity 4 (1994), 207-219.
[G] B. Grübaum, Convex Polytopes, Interscience/Wiley, London, 1967.
[GS] B. Grübaum and V. Sreedharan, An enumeration of simplicial 4-polytopes with 8 vertices, J. Combin. Theory 2 (1967), 437-465.
[K1] G. Kalai, The diameter of graphs of convex polytopes and f-vector theory, In: Applied Geometry and Discrete Mathematics-The Victor Klee Festschrift (P. Gritzmann and B. Sturmfels, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 4, American Mathematical Society, Providence, RI, 1991, pp. 387-411.
[K2] G. Kalai, Upper bounds for the diameter and height of graphs of convex polyhedra, Discrete Comput. Geom. 8 (1992), 363-372.
[K3] G. Kalai, A subexponential randomized simplex algorithm, Proc. 24th ACM Symposium on the Theory of Computing (STOC) (1992), ACM Press, New York, 1992, pp. 475-482.
[KK] G. Kalai and D. Kleitman, A quasi-polynomial bound for the diameter of graphs of polyhedra, Bull. Amer. Math. Soc. 26 (1992), 315-316.
[K1] V. Klee, Diameters of polyhedral graphs, Canad. J. Math. 16 (1964), 602-614.
[KK'] V. Klee and P. Kleinschmidt, The d-step conjecture and its relatives, Math. Oper. Res. 12 (1987), 718-755.
[KW] V. Klee and D. W. Walkup, The d-step conjecture for polyhedra of dimension $d<6$, Acta Math. 133 (1967), 53-78.
[LP] J. Lagarias and N. Prabhu, Counting d-step paths in extremal Dantzig figures, Discrete Comput. Geom., this issue, pp. 19-31.
[LPR] J. C. Lagarias, N. Prabhu, and J. A. Reeds, The d-step conjecture and Gaussian elimination, Discrete Comput. Geom. 18 (1997), 53-82.
[MSW] J. Matoušek, M. Sharir, and E. Welzl, A subexponential bound for linear programming, Proc. 8th Annual ACM Symposium on Computational Geometry (Berlin, 1992), ACM Press, New York, 1992, pp. 1-8.
[Z] G. M. Ziegler, Lectures on Polytopes, Springer-Verlag, New York, 1994.
Received December 27, 1995, and in revised form April 8, 1996.

[^0]: * The research of both authors was supported in part by the National Science Foundation.

