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Abstract. Let D be a set of vectors iRY. A function f: RY — R is calledD-convexf
its restriction to each line parallel to a nonzero vectobaf a convex function. For a set
A C RY, thefunctional D-convex hull of Adenoted by cB(A), is the intersection of the
zero sets of all nonnegatiu®-convex functions that are 0 of.

We prove some results concerning the structure of functi@rabnvex hulls, e.g., a
Krein—Milman-type theorem and a result on separation of connected components.

We give a polynomial-time algorithm for computing®@) for a finite point setA (in
any fixed dimension) in the case Bfbeing a basis dR® (the case ofeparate convexily
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1. Introduction
1.1. Basic Definitions and an Example

Throughout, we assume thAtis a finite-dimensional real vector space (which can be
identified with someRY). Fora, b € X, we write [a, b] for the segment with endpoints
a, b, ie.,fabl ={ea+ (1-a)bla €0, 1]}.

Let D be a set of vectors iiX.

Definition 1.1 (D-Convex Set). A se€ C X is called aD-convex seif for any two
pointsxy, X € C such that the segmenty|, x,] is parallel to some nonzero vector of
D, we have ki, xp] € C. (D-convexity is also calledirectional convexityr restricted-
orientation convexityn the literature.)

Definition 1.2 (D-Convex Function). Lef be a real function defined on@-convex
setC. We say thatf is D-convexif, for any x € C and anyv € D, the function
gt) = f(x + tv) is a convex function of the real variable(The domain ofg is an
interval inR, asC is assumed to bB-convex.)

In this paper we shall mostly consider total functions (defined on the wXple

For the special case whé&hconsists ofl orthogonal vectors (which can be identified
with the standard orthonormal basisisf), we shall also use the woseparate convexity
instead ofD-convexity (and similarly for other derived notiorls).

The main object of our investigation is a suitable notion ofac¢onvex hull” of a
set. One can define the-convex hull of a setA as the intersection of alD-convex
sets (according to Definition 1.1) containig this D-convex hull will be denoted by
cop(A).

We shall concentrate on another kind Bfconvex hull, namely, one defined by
means ofD-convex functions. It seems less intuitive than the one just defined, but it
arises naturally in applications and it even seems to have some more pleasant properties
(as our results below also indicate).

Definition 1.3 (FunctionalD-Convex Hull). LetA € X. The set c8(A), called the
functional D-convex hubf A, is defined as

co®(A) = {x e X|f(x) < suEf(y) for all D-convexf: X — R ¢ .
ye

A setC is functionally D-convexf A = coP(A).

1 Other names used in the literature agetilinear convexity(e.g., [OSSW], [RW2], and [RW1]), and
orthoconvexitfRW3]. BiconvexityfAH] sometimes refers to the cage= (RY, 0) U (0, RV), whereu +v =
dim(X).

2 The notation cg, coP follows awidespread notational conventionin mathematics, namely, that subscripts
correspond to objects of a “primal” space while superscripts are used for objects related to functions on the
primal space.
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Fig. 1. A four-point configuratiorC4 with nontrivial functional separately convex hull.

Later, we shall show that this definition is equivalent to the characterization given in
the abstract.

It is easy to check that thB-convex hull is always contained in the functioriad
convex hull; also, ifA is a closed set an® = X (i.e., for the usual convexity), both
these hulls ofA coincide (see Section 2.1). The following (crucial) example shows that
the functionalD-convex hull may be much larger than tBeconvex hull in general.
Apparently, this example has been discovered independently by several authors (we are
aware of [T] and [AH]).

Example 1.4(A Four-Point Configuration). Let X = R?,let D = {(0, 1), (1, 0)} (i.e.,

we deal with separate convexity in the planet A= {a;, a,, az, a4} be a configuration

as in Fig 1(a). Thenco® (A) consists of the four segmenidaand the square 4, bzb,
depicted in Fig 1(b). We shall refer to this configuration & (meaning four points
whose x-coordinates and y-coordinates are ordered as those of the points depicted
of the mirror image of this configuratign

Proof Sketch For completeness, we outline a proof of the (more interesting) inclusion
C < coP(A), whereC is the set in Fig. 1(b) (another proof will be obtained as a special
case of our results later). It suffices to prove tBat {by, by, bs, by} c co®(A). Once
we know this, we hav€ = cop (AU B) € coP (AU B) = coP(A). Thus, letf be aD-
convex function, leM = max f (a),andM’ = max f (b;). We need to showl’ < M.
However, ifM” > M, leti be such thatf (b)) = M’. Looking at the segmera;b;_;
(whereby = by), we get a contradiction to the convexity bfthere, sincef (a) < M/,
f(b_1) < M/, but f(b) > M. O

Remark. We define the functiondd-convex hull usingotal D-convex functions only.

As a consequence, this hull is always a closed set (see below). One could use also partial
D-convex functions; this leads to various topological subtleties. Such definitions are
investigated in [AH] (for the special case of biconvexity). We do not proceed in this
direction, since we are interested mainly in combinatorial and computational aspects of
the hulls.
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1.2. Motivation and Background

The present investigation has been inspired by a significant problem in the calculus
of variations: characterization of rank-one convex and quasi-convex functions. In this
section we shall try to give a rather brief and simplified account of underlying problems
and applications. For the sake of brevity we introduce only the basic concepts and we
omit all technicalities or even precise explanation of some terms. The reader unfamiliar
with the topic is encouraged to find further information in the quoted references.

The notion ofrank-one convexityeadily serves as a special exampldstonvexity.
Indeed, ifX = M™" represents the spacemfx n matrices and

D ={ae M™"; ranka < 1}

is the cone of rank-one matrices, thBrconvexity becomes rank-one convexity studied

in the literature. On the other hand the notiorgagsi-convexityntroduced by Morrey

[M] to characterize weakly lower semicontinuous functionals on the space of vector-
valued functions is intrinsically more complicated. A functibris quasi-convexf it
satisfies the following inequality,, f (a+Ve)dx > [, f(a)dxforalla e M™", for

any smooth functiop € C§°(£2, R") (the space of smooth vector-valued functions with
compact supports i), and for any bounded domaia ¢ R™. Since quasi-convexity
plays a similar role in the study of vectorial variational problems (or systems of nonlinear
partial differential equations) as convexity does for scalar problems, construction of
guasi-convex envelopes is an important tool for the investigation of solutions to problems
that are not weakly lower semicontinuous (and hence direct methods of the calculus
of variations cannot be applied). Using quasi-convex functions, we definquilss-
convex hullof a setA, cd'®(A), similarly as ¢ (A) in Definition 1.3. In other words,
cd®(A) is the set of points that cannot be separated ffoby a quasi-convex function.
Unfortunately, no reasonable description of all quasi-convex functions is known. Any
quasi-convex function is rank-one convex, and hend&(&p < cd?°(A) holds; the
functional rank-one convex hull appears as a reasonable first approximation of the quasi-
convex hull®> However, even the computation of the functional rank-one convex hull
(coP(A)) is a difficult task and we are not aware of any efficient and reliable algorithm
(even an approximate one). The question of reasonable inner and outer approximations
of cd?¢(A) is one of the main goals for future work.

In this paper we focus mainly on the case of separate convexity; however, we establish
also some properties for a genefal The case of separately convex functions has
previously been studied in this context in [T] as an easier substitute for the more general
case of rank-one convexity. As we shall show the separate conveRifyih> 3, exhibits
less convenient properties than the two-dimensional case and therefore generalization of
the results of [T] may not be obvious. Interesting results concerning separate convexity
can be also found in [AH], where this notion has been studied in connection with the
limiting behavior of bimartingales in probability theory.

At the end of this section we state an example of a particular problem where rank-one
convexity appears as an approximation of quasi-convexityvlét @ ¢ R™ — R"

3 |t was even conjectured that rank-one convex functions and quasi-convex functions are the same, but this
turned out to be false in general, s&d].
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be a sequence of functions such thié@b’)| < const. and digVv1’, A) — 0 almost
everywhere ire2 for a given compact seA ¢ M™", We ask under which conditions
on the setA the sequencév’)} is compact (up to a subsequence)Lif (see B2]).
This question is closely related to a characterization of Young measures generated by
weakly convergent subsequences of the bounded seq{@éntie} ¢ LP(2, R"). Such
sequences arise, for example, as minimizing sequences of energy functionals in models
of phase transformations (see [Bﬁ;,3|], and [BFJK]), with the stored enerds(u) =
fQ W(Vu) dx, whereu: R" — R" is a deformation of the body an: M™" — R
is a given nonnegative function with a nontrivial set of global minima, for definiteness
A={aeM™ W) =0}

A Young measure generated by a minimizing sequence such thatufif) = 0
is supported on the s&t and whenever it is trivial the sequence is compact (up to a
subsequence). Characterization of gets M"*" that allow only trivial Young measures
is known only in certain particular cases. Since any point ff@®\ A is a center of
mass of a nontrivial Young measure, description of the SE{#9 can give an answer to
the sequence compactness problem. We refer to §&,[T], and [Z1] and references
therein for more details.

1.3. Summary of Results

In Section 2.1, we discuss some easy properties, such as the continuity of Qtotal)
convex functions. In 2.2, we show a Krein—Milman-type result, i.e., that a compact
functionally D-convex set is the function&@-convex hull of its extremal points (when
extremal points are defined suitably). Then (Section 2.3) we show that for a compact
functionally D-convex set with finitely many connected components, the components
themselves are functionall-convex as well.

In Section 3 we discuss separate convexity. We develop an algorithm for computing
the functional separately convex hull of arpoint set inRY, with O(n%) worst-case
running time (this can easily be improved somewhat, but currently we do not know what
is the best complexity one can hope for). This algorithm is based on the above-mentioned
Krein—Milman-type result and a description of the hull as a union of “boxes” formed by
suitable grid points. Further, we discuss the computation of separately convex envelopes
of functions (Section 3.3). Finally, we construct a three-dimensional analogue of the
four-point configuration from Example 1.4; namely, we exhibit a 20-pointiset R?,
such that no two points oA lie in a common plane perpendicular to a coordinate
axis, and with a nontrivial functional separately convex hull (strictly larger #af his
configuration iggeneric meaning that any sufficiently small perturbationfddtill yields
a configuration with a nontrivial hull. Zhang [Z2] conjectured that no such configuration
in R3 exists. The construction can be generalized to an arbitrary dimension (to appear
elsewhere). A direct consequence of the three-dimensional construction for separate
convexity is the existence of 20 symmetric2 matrices in a general (stable) position
with a nontrivial functional rank-one convex hull.

In Section 4 we consider an alternative approach to computing functiddatiynvex
hulls of finite sets (or sets consisting of simple “building blocks”). This yields a fast al-
gorithm for the functional separately convex hull in the plane (Section 5). An example
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shows that in dimensions 3 and higher, this approach may fail in some cases, but never-
theless we believe that it might be practically interesting in the future, as it may provide
the functionalD-convex hull or its good outer approximation in many cases.

As aby-product of our treatment of the planar case, we also prove that the€atat”
number for the functional separately convex hull in the plane is finite, i.e., any point be-
longing to the hull of a (compact) sétalso belongs to the hull of some its 5-point subset
(this contrasts with the separately convex hull in the plane, where the €adatty num-
ber is infinite). On the other hand, we construct al3é R such that the Caragivdory
number for the functionaD-convexity is infinite.

2. Properties of the FunctionalD-Convex Hulls
2.1. Basics

Here we collect a few easy (and probably mostly known) facts abecnvexity. First
we note an alternative description ofad@).

Observation 2.1. Let us define a sequence of sets=AA, A1, Ay, ... by
A= U{[xl, Xo]|X1, X2 € A, [X1, Xo] is parallel to avectow € D}. (1)

Then

cop(A) = Ej A
i=1

Proof. Clearly,| J A is D-convex. Onthe other hand, itis easy to see fat cop(A)
for all i, by induction oni. O

Observation 2.2. For any D and any Awe havecop (A) € caP (A).

Proof. Letx € cop(A). Then, by Observation 2.1, there is a finite sequeacr,, . . .,
Xn = X, where eaclx; is either an element oA or x; € [x;, X] for somej, k < i with
[Xj, X] parallel to a vector oD. We prove by induction onthat f (xi) < supca f(y),
for any D-convex functionf. If x; € Athis is clear and ik = ax; + (1 — o)X we
apply Jensen’s inequality sindeis convex onX;, X]. O

Remark. Itiseasytocheckthatfdd = X (i.e., for the usual convexity) andiclosed,
cop(A) = coP(A). Indeed, suppose thatis not in the convex hull ofA; then by the
separation theorem, there exists a linear functigpal X* with q(x) > sup,c,d(y),
and this witnesses thatis not in cd‘(A) either.

Remark. SinceD-convexity and functionaD-convexity are in general different, one
might wonder what happens if we defined a “functiondllyconvex function” as one
with a functionallyD’-convex epigraph, wher®’ = D x R. However, it is not difficult
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to see that in this case we get the same notion @scanvex function. (To see that the
epigraph of aD-convex functionf: X — R is functionally D’-convex, consider the
function F: X x R — R, defined byF(x,t) = f(x) — t: it is D’-convex, and the

epigraph off is F~1((—o0, 0]).)

Next, we consider continuity db-convex functions (similar considerations for the
two-dimensional separate convexity appear in [T]).

Observation 2.3. If the linear span of D is the whole ,Xhen any D-convex function
defined on a D-convex set @ X is continuousand even locally Lipschitat every
point in the interior of A

Proof. After a suitable linear transformation of space, we may assum®tbahtains
the coordinate axes and thfiss separately convex. L& be a closed axis-parallel cube
contained in the interior oA; letc = (cy, ..., ¢q) be its center and lets2be its side
length.

First we show thatf is bounded from above 08. Let M be the maximum of the
values off at the vertices o€. By induction onj, we get thatf is also bounded b
on eachj-dimensional face of, and hence og itself. For instance, i€ = [0, 1]¢ and
we already know thaf (y) < M for all y with y; € {0, 1}, and ifx € C is an arbitrary
point, we havef (x) < x3 f((0, Xz, ..., X)) + (L — x1) f((1, X2, ..., Xg)) < M; this
gives the induction step frofn=d — 1to j = d. The general step is entirely similar.

We now show thatf is also bounded from below. Laet € C, and letz denote the
point (X1, X2, ..., Xi, Ci+1,Ci+2,...,C¢) (i =0, 1,...,d). Consider the linez;, and let
z) be its intersection with the boundary ©flying on the other side af thanz;. By the
convexity of f onthe linecz, we getthatf (z;) > f(c)—(f(z))— f(c)) = 2f(c)— M.
Then, using the ling, z,, we obtainf (z,) > 2f (zy)— M > 4f(c)—3M, and, ingeneral,
induction shows thaf (z) > 2 f(c) — (2 — 1)M. Hencef is also bounded from below
bym=24f(c) — (29 — 1) M.

Let C’ be the cube of sidé centered at. For any two pointz, Z € C’ differing in a
single coordinate, we have

f@ - 1@l _2M-m
Ilz=Z11 8 '

For an arbitrary pair of distinct points, y € C’, we then define the “interpolating se-
quence’zy, 7, .. ., Zq Similarly as above, i.ezi = (y1, Y2, ..., ¥i, Xit1, Xi42, - - - » Xd),
and we get

[f(x) — f(y)l <Zid:1|f(zi—1)_f(zi)|<maX|f(Zifl)_f(Zi)|<2(M_m)
Ix=yli = Y zii—zly lz-1—zlls — ) '

|

Corollary 2.4.  If the linear span of D is the whole X and & X is arbitrary, then
coP(A) is a closed setand is equal taoP (A) (where A denotes the closure of) A
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Proof. For aD-convex functionf, define a seA; = {x € X|f(X) < sup, f(y)}.
Sincef is continuousAs is closed, and by definition we haveb@) = (s At, where
the intersection is over alb-convex functionsf . O

The next proposition shows that the definition of a function8lkgonvex set can be
simplified: functionallyD-convex sets are exactly the zero sets of nonnegBtigenvex
functions.

Proposition 2.5. Suppose that the linear span of D is the whole TKen for any
functionally D-convex set A there exists a D-convex functioX £ [0, co) such that
A= f10).

Proof. Letx ¢ A, by definition of a functionallyD-convex set, there existdaconvex

function f,: X — R with fy(X) > SURca fx(y). We may assume that sypgx =

0 and thatfy is nonnegative (otherwise, take th&-convex function mago, fy —

sup.ca fx(¥))). Suppose that such a functidahas been fixed for eache X\ A; define

an open setl)y = {y € X| fx(y) > 0}. Choose a countable s, xo, ...} € X\ Asuch

that >, Uy, = X\A (this is possible aX is a metric Lindedf space), and lef; = fy;.
For eachi, define a number

Ci =2 max iyl <i+Ixll}.

Foreacty € X,wesetf (y) =Y 2, Ci‘l fi (y). We claim that thisf is as required in the
proposition. For each € X, theith summand in the definition df(y) is upper-bounded
by 2 for all but at most finitely many, thus f (y) is well defined. It is also easily seen
that f is nonnegative an®-convex and thaf ~1(0) = A. O

2.2. A Krein—Milman-Type Theorem

Definition 2.6. Let A C X be a set. A poine € Ais called aD-extremalpoint of A
if there exists no segmentC A parallel to some nonzero vectore D and containing
e as its interior point.

Proposition 2.7. Let A B € X be compact set@nd suppose that all D-extremal
points of B belong to AThen B < coP(A). In particular, any compact functionally
D-convex set is the functional D-convex hull of the set of all its D-extremal points

Proof. Suppose that there exists a pointe B\coP(A). This means there is B-
convex functionf with f(x) > 0= SURcA f (y). PutM = maxg f. Among the points

of y € Bwith f(y) = M, consider the one with the lexicographically largest coordinate
vector, and call ityp (the compactness @ implies that it is determined uniquely). As
f(yo) = M > 0, yp is not D-extremal, so fix a segmestC B containingyy as its
interior point and parallel toa € D. We havef (y) < M forall y € s, so f is constant
ons, but thenyy, as an interior point 0§, cannot be lexicographically smallest sr-a
contradiction. |
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2.3. A Separation Result

Proposition 2.8. Let C;,C, € X be disjoint compact sets with;@ C, being a
functionally D-convex seThen both @ and G are functionally D-convex as well

Proof. Let xg be a point outsid€,; it suffices to find aD-convex functionf which

is zero onC; and nonzero aky. As is well known, we can find disjoint, bounded,
and open setd), V with C; € U, C, € V. Moreover, we may require thay ¢
U. Using Proposition 2.5, fix a nonnegati@-convex functionfy, with C; U C, =
fofl(O). Let us define @-convex functionf by settingf (x) = max( fo(x), |X]| — R),
whereR > 0 is a real number so large that the bRIlI0, R) containsU U V. Sete =
min{ f (x)|x € X\(U U V)}. Clearly this minimum is attained bf, and hence > 0.

We define a functiomg as follows:

I R ECS) for xeU,
909 = max( f (x), ¢) for xe X\U.

Clearlyg is zero everywhere 08;, andg(xo) > 0. To show the functiondD-convexity
of Cy, it suffices to check th®-convexity ofg.

Let ¢ = {x + tv|t € R} be a line parallel to some vecter € D. Definel =
{x € £]f(x) < ¢} C U U V. By theD-convexity of f, | is an open (possibly empty)
interval on¢. We distinguish two cases.

o If | NU = ¢, then the restriction off on ¢ coincides with the restriction of the
D-convex function maf, ¢).

e If | NU # @, then necessarily c U, and hencef > ¢ on ¢\U. Thereforeg
restricted or? equalsf restricted or¥.

This proves théD-convexity ofg and concludes the proof. O

Corollary 2.9. Let AC R be contained in a functionally D-convex setwhich is a
disjoint union of compact sets,C. . ., Cx. ThencoP (A) = Uikzl co® (AN GC).

3. Functional Separately Convex Hulls of Finite Sets

Throughout this section, we discuss separate convexity only,[.és,an orthogonal
basis ofX.

3.1. Grid Sets and Multilinear Functions

For a pointa € RY, letx; (a) denote théth coordinate of.

Let A C R be finite. Denote; (A) = {x;(a)|a € A}, and put gridA) = x1(A) x
X2(A) x -+ - x X4(A). By agrid we mean any set grié) for some finiteA. If a is a point
ofagridG, we leta'* (resp.a' ~) denote the point o whose all coordinates but thi
coincide with those od, and whoseth coordinate is the successor (resp. predecessor) of
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Xi (@) in X (G) (thus,a'* ora'~ need not exist for “border” points @). An elementary
boxfor a gridG is a Cartesian product of the forhpx I, x - - - X lg, where each; has
either the form{x;} for somex; € x;(G), or the form k; (a), x; (@' *)] for ana € G.

Proposition 3.1. Let G € RY be a grid let f: G — R be a function The following
statements are equivalent

() The function f can be extended to a separately convex fun€tion — R.
(i) For any a € G and any i such that both'a and d~ exist f satisfies the
“convexity on the triple@ —, a, a' ") :

X (@1) — xi(a)
X (@) — % (@)

X (@) —x @)

i+
x@h-x@y @)

f@ < f@") ©)
(let us call such an f a Bconvex functioron G).
For dimensiord = 2, a weaker form of this proposition was noted by Tartar [T].

Proof. The implication (i)=- (ii) is clear. Letf: G — R satisfy (ii). First we show
that f can be extended to a separately convex function on theBgspanned by the

points ofG.
Let B be aj-dimensional elementary box &. We claim that there exists a unique
multilinear mappingo(xy, . . . , X¢) whose values at thé Zorners ofB (which are points

of G) agree with those of . Indeed, since — j of the coordinates have a fixed value on
B, we, in fact, deal with multilinear polynomials invariables. Such polynomials have
exactly 2 coefficients, so if we regard them as a vector space, they have dimemsion 2
Hence it suffices to show that the linear map assigning to suckaiate multilinear
polynomial the vector of its 2values at the corners & has a trivial kernel. This is easy

to check by induction orj, however.

We define the extensioh on B as the multilinear polynomigb discussed above. It
is easy to check that this definition is compatible among different elementary Boxes
We need to check the separate convexity ofet ¢ be an axis-parallel line, say the line
{(t, %2, X3, ..., Xg)|t € R}. LetB = I3 x --- x g, |1 = [to, t1], be an elementary box
meeting¢ in a segment. The functiog(t) = f(t, X2, ..., Xq) is a linear function on
[to, t1] of the formg(t) = a(xy, ..., Xt + b(Xz, ..., Xq)-

Let B" = [tg,to] x I2 x I3 x --- x Iq be the elementary box adjacent Boon
the right. Fort € [ty, t2], g(t) has the forma’(xy, ..., Xyt + b' (X2, ..., Xq). TO show
convexity of g, it is enough to prova(xy, ..., Xq) < a'(Xz,...,Xq). Now botha
and a’ are multilinear polynomials i, ..., Xq. By the conditions (2) onf, we
knowa(ys, ..., Yq) < a(ya ..., Yq) forany cornery = (ya, ..., yq) of the(d — 1)-
dimensional boB = I, x - - - x l4. An easy induction on the dimension shows that the
inequality on all corners implies the required inequality at all poin.6Fhis concludes
the construction of a separately convex extensiori @ the boxB, spanned by the
grid G.

It remains to show that the functiof thus constructed has a separately convex
extension on the whole space. L@t be a grid arising fronG by adding one layer of
points at each side: formally, I§ = x(G), § = § U {min(§) — 1, max§) + 1},
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and putG’ = § x --- x §;. We show thatf can be extended G’ so that it remains
separately convex 08’. Having done this, we may proceed inductively, extendiran
larger and larger grids. For each such extension, we then apply the above construction to
extendf onthe box spanned by the corresponding grid. The domains of these extensions
are nested and the extensions agree on the common parts of their domains, so we can
define a total separately convex extensiorf @&fs the union of all these extensions.

It remains to consider the extension fr@o G’. We note that for the newly added—
border—points 06/, the inequalities (2) involving some old points (wittalready fixed)
only give lower bounds for the values 6f Let M be the maximum of the lower bounds
thus imposed on any of the new points; we define the valueatfall new points as/.
Then also the inequalities involving only new points will be satisfied (with equalily).

Similarly, as we have defineD-convex functions on a grid, we may also define
separately convex subsaif a grid, functionally separately convex subsefsa grid,
and the corresponding hulls. Namely,Af C G is a subset of a grid, it iseparately
convex(in G) if we have, for any two pointa, b € A differing in a single coordinate,
[a,b] N G C A. Apointx € G belongs to the functional separately convex hulkof
if there exists no separately convex functibonG — R with f (x) > maxa f (y).

To describe the functional separately convex hulls of finite point sets, the following
notion is useful: leG be a grid and leB € G be a separately convex subsei®{in
the grid sense). Thieox compleyof B, denoted by5C(B), is the set of all elementary
boxes onG whose corners all belong 8. We write | BC(B)| for the union of all boxes
of BC(B). It is easily checked tha3C(B)| equals the separately convex hull®f

The following is a straightforward consequence to the proof of Proposition 3.1.

Corollary 3.2. Forany finite AC X, we haveeoP (A) = |BC(C)|,where CC grid(A)
is the functional separately convex hull of(iA the grid sensge

Proof. ClearlyC C caP (A) (ifany point ofC could be separated fromby a separately
convex functionf , the restriction off onG = grid(A) would show that this point does
not belong to the functional separately convex hullkoin the grid sense), and hence
also|BC(C)| < ca(A). On the other hand, let be a point not lying in any box of
BC(C). We may assume thatlies in the relative interior of some (uniquely determined)
elementary boxB of G. Since this box is not i8C(C), it has a cornec not belonging to
C. Let f: G — R be a nonnegative separately convex functio@afhich is zero orC
and positive at. Then the separately convex extensiénof f constructed in the proof
of Proposition 3.1 is positive on the relative interior®fand this shows ¢ co®(A).O

We conclude this section with one more definition. IBetc RY be finite, and let
G = grid(B). We call a poine € B anextremalpoint of B (in the grid sense) if for each
i=1,2,...,d, atleast one of ¥, €~ either does not exist or does not belongto

It is straightforward to check that B is functionally separately convex (in the grid
sense), then the extremal pointsBare precisely thé®-extremal points of BC(B)| in
the sense of Definition 2.6.
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3.2. An Algorithm

Lemma 3.3. LetG be agridlet B C G be afunctionally separately convex atthe
grid sensg and let e be an extremal point of. Bhen B\ {e} is functionally separately
convex as well

Proof. Letf: G — R be anonnegative separately convex function vanishing and
nonzero orG\ B. Let us see which of the conditions (2) could be violated if we increase
the value off (e) from 0 to some > 0 while keeping the other values unchanged. These
are only the inequalities in whicli(e) appears on the left-hand side. Consider éor
which bothe/ T ande’ ~ exist. Sinceeis extreme, we havé(é*) > Oor f (€ ~) > 0, and
hence the right-hand side of (2) is a strictly positive number. If we ket the minimum

of the right-hand sides of all the (at masf relevant inequalities, then changirige)

from O toe retains the separate convexity bf O

The Algorithm. Let A € RY be a finite set. The following algorithm computes its
functional separately convex hull.

1. Let By be some functionally separately convex subsés ef grid(A) containing
A. (For instance, we may use the wh@ea more efficient procedure is probably
obtained by computing the iterated quadrant hulhefsee Section 4 below—and
letting By be the set of its grid points.)

2. Suppose that som® has already been computed.Bf has an extremal point
ed¢ A, setBi 1 = Bj\{e}, and repeat this step. If all extremal pointsByfbelong
to A, thenB; is the required functional separately convex hullffin the grid
sense; the actual hull can be reconstructed as its box complex).

The correctness of the algorithm follows from Lemma 3.3 and Proposition 2.7.
When implemented carefully (using suitable data structures to maintain the current
set of extremal points), this algorithm has running tidwgrid(A)|) = O(n%). It would
be interesting to find a faster algorithm (which would not consider all grid points).

Remark. This algorithm shows that the functional separately convex hull only depends
on the combinatorial structure &f, in other words, that it is invariant under a monotone
transformation of a single coordinate. Hence we may always suppose that the point
coordinates are integers not exceediAg This does not seem to be obvious from the
definition.

3.3. Remark on Computing Separately Convex Envelopes

Definition 3.4 (D-Convex Envelope). LeA C Xbeasetandlet: A— Rbeareal
function. We define th®-convex envelopef f, denoted byCp f, by

Cp f(X) =supg(x)|g: X — Ris D-convex g(y) < f(y),Vy e A}.

This is formally a function int®R U {oo}; we let donCp f = {x € X|Cp f (X) < oc0}.
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StudyingD-convex envelopes (in particular, rank-one-convex envelopes as an upper
bound for quasi-convex envelopes) is equally important in applications as studying the
functionalD-convex hulls of sets. (On the other hand, as we point out lateD) tbenvex
envelope of a functiorf can be computed as a functiorial-convex hull of the graph
of f for D’=D x R.)

Here we consider the case of separately convex envelope of a function defined on
a finite setA ¢ RY. In this case, the domain of the envelope is easily seen to be
precisely c& (A). Moreover, as the proofs of Proposition 3.1 and Corollary 3.2 show,
the envelope is fully determined by its values at the poin® ef grid(A) N ca® (A) (on
each elementary box of the grid &f the envelope is the unique multilinear extension
determined by the values at the vertices of the box).

Hence, letf: A — R be a given function on an-point setA c RY; we are
looking for the functiong: B — R, which is separately convex in the grid sense, is
upper-bounded by at the points ofA, satisfies the appropriate inequalities of the form
(2), and is as large as possible (we may maximize at all points simultaneously, since
the maximum of two separately convex functions is separately convex). This yields a
problem of maximizing a linear function subject to a number of linear constraints, which
can be solved by algorithms for linear programming (see, e.g., [C]). Explicitly, with
unknownsg(b) (b € B), the linear program is the following:

maximize) s 9(b) subject to

9@ = f@), _ acA
gb) < apig®' )+ (1 —api)gb'™), b,b'*,b'~ € B,

whereayj = (i (b) — x (0'7)) /(i (B') — x; (b'7)).

For ann-point set inRY, this linear program has at madi(n®) variables and(n)
inequalities. For the practically important case wieis a grid, the number of variables
is the same as the number of input points, and the number of constrains islalmes
larger.

Remark. If Aisin general position, say, this approach seems unsatisfactory, in that
we need to consider many more variables than original points. For the planar case, it is
not too difficult to show that for the separately convex envelgmé a function given

at n points, one can decompose the domairgadfto O(n) rectangles, such thatis

a bilinear function on each of them. Therefogecan be fully described by giving its
values at the corners of these rectangles. However, currently we do not know how to find
this concise description without solving the linear program given above, with possibly
guadratically many variables and constraints.

Remark. The separately convex envelopes seem to be inherently more complicated
than the “usual” convex envelope, and it may be that some kind of high-dimensional linear
programming approach is unavoidable for its exact computation. We give an example to
support this (vague) statement.
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Example 3.5.

(i) Forany natural number sthere exist a finite set & R?, a function f A — R,
and a point ce R?, such that the value of £f (c) depends essentially on the
values of f at n distinct points;a. . ., a, € A, in the following senseor each
i, if we decrease the value of(d;) and leave the values of f at the other points
of A unchangegthen G f (c) decreases

(i) There exists a set Bt R3 such that the functional D-convexity has no finite
Caratheodory numbetthat is for any n there exists a set S R® and a point
x € coP (S) with x ¢ coP (B) for any at most n-point subset 8 S. (In contrast
the usual convexity iRY has Caratfeodory number d- 1.)

Proof. We describe an example showing (i) foe 6; the generalization to an arbitrary

n is immediate. Consider Fig. 2. The satC R? consists of the pointe = (0, 0),

us = (0, 6), v = (6, 0) (marked on the axes by circles), and of the pomts= (6, 1),

a = (1,6),a3 = (52),..,a8 = (3,4 (all these points are drawn in the/-plane).

We setf(0) = f(ug) = f(vs) = 0, and we assume & f(a) K f(a) € -+ K

f (ag) (Where« stands for “much smaller than”). Let us follow the construction of the
separately convex lower enveloge (Formally, we describe a construction of a function
g, which is certainly no smaller than the values of the envelope function; then it is easy
to check, proceeding backward, that if the input valdes; ) have the right orders of
magnitude, the resulting is indeed separately convex on the grid, and thus it is the
envelope itself; we omit a formal proof.) First of afj,is linear on the linev;a;; this
determineg(b;) in terms of f (a;). Next, we look at the lineiya,. Hereg consists of
two linear pieces with a break bt (since f (ap) is much larger tharf (a;)), so that the
valueg(b,) depends essentially on boflia;) and f (a2). The next line to look at is,as;
hereg also consists of two linear pieces, with a breakyxatind thereforg(bs) depends
onall of f (ay), f(ap), f(ag). Proceeding further in this manner, we finally find that the
value ofg on the segmertisag depends essentially on all dfa) (that is, if the f (&)

0 (721 Uy uz Uq Us Ug

Fig. 2.  An example concerning the separately convex envelope.
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have right orders of magnitude, increasing any of them by an arbitrarily small amount
increases the value gfat the midpoint of the segmenisag).

The above example can also be used for the proof of (ii). Indeed, let the notation be
as in the example; &8 RS contain the pointgx, f(x)), with x € A, plus the vertical
semilines of the form{(x, )|t e R, t > M} for all x € A, with M > maxf(g). Set
D ={(0, 1), (1, 0)} x R; then one can check that the epigraph of the separately convex
envelope off is exactly the functionaD-convex hull ofS. Now the pointx = (c, g(c))
belongs to this hull, but not to the hull of any set of the fd8ivi(a;, f (g))}. |

In Section 5.1, we show that (surprisingly) the functional separate convexity in the
plane does have a finite Caratidory number. It would be interesting to determine the
Caratl€odory number for some specifi; such as that for rank-one convexity or various
of its specializations.

3.4. A Nontrivial Generic Configuration in Dimensidh
We continue discussing separate convexity, Deis a basis oR¢.

Example 3.6. There exists 20-point set AC R® with co®(A) # A and such that

no two points of A lie in a common plane perpendicular to a coordinate &§3iace

the structure of the functional separately convex hull only depends on the ordering of
coordinatesany set Aarising from A by a sufficiently small perturbation also satisfies
coP(A) # A';in this sense is A “generit)

Proof. We begin by choosing one four-point planar configuration as in Example 1.4.
We place one copy of itin the= 0 plane, and one in tte= 1 plane (thexy-projections

are identical). Then we perturb the points a little in thdirection, so that no twa-
coordinates coincide. The resulting 8-point set and its functional separately convex hull
are depicted in Fig. 3. The lower points are denotedby. ., 8, and the corresponding
upper points bypg, . . ., bs.

This set is not generic yet, since it consists of four pairs of points on common vertical
lines. For each = 1, ..., 4, we perturb; a little within its horizontal plane, and we
add three more points, d;, e, which are all located in a small cluster close to the edge
abj. The heights of these clusters (i.e., rangegz-cbordinates) are chosen distinct,
say close ta /5. Figure 4 shows a detail of this placementifog 1. In this case, the
order ofx-coordinates ix(c;) < X(e;) < x(by) < x(a1) < x(dy), they-coordinates
satisfyy(c;) < y(dy) < y(e1) < y(a1) < y(by), and finally thez-coordinates satisfy
Z(a1) < z(c1) < z(dy) < z(e1) < z(by). For the othei’s, the configuration is rotated
and lifted into an appropriate height.

In this way, we obtain a 20-point configuratidnwith all point coordinates distinct.

It remains to show that the functional separately convex hull is nontrivial. This could be
done by a computer, by running the algorithm from Section 3.2oihe functional
separately convex hull of\ is depicted in Fig. 4 (to make the picture simpler, only a
part is shown). The reader need not even believe this is the complete hull; it suffices to
check that the depicted set has Deextremal points than those éé—then it must be
contained in cB(A) (by Proposition 2.7) and hencesA) # A. O
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a1

Fig. 3. The initial 8-point configuration.

e @

Fig. 4. A part of the 20-point configuration and its functional separately convex hull.
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A Nontrivial Generic Configuration of Symmetric 2 x 2 Matrices. LetS**2denote
the space of real symmetric22 matrices. The mappingR3 — S?*2 defined by

. X+2z z
L (X, y,z)|—>( . y+z)

is an isomorphism of the vector spad@sandS?*2. Each of the three vectors &f =
{(1,0,0),(0,1,0),(0,0, 1)} is mapped to a symmetric rank-one matrixhiye.,.(D) C

R1, whereR1 = {a € $*?ranka = 1}. As a consequence we have, for alyC R3,
1(coP(A)) € cd*(t(A)). Hence if A is the above-constructed 20-point configuration,

its t-image is a sef\’ of 20 matrices with a nontrivial functional rank-one convex hull,

and this property is preserved under an arbitrary sufficiently small perturbation of the
matrices. Therefore we may also assume #atontains no two rank-one connected
matrices (since the set of configurations with a rank-one connection has a zero measure
in the space of all configurations), and hencg &) = A'.

Remarks. Similarly, for anyn there is a vector space isomorphigm RY — S™"
(whered = n(n+1)/2) such that the standard basis vectoiRirare mapped to rank-one
matrices. To see this, it suffices to construct a b&%i8 consisting of rank-one matrices.
One such basis consists of the matriddg, for 1 < k < £ < n, where the entry of

M ¢ at position(i, j) is 1if {i, j} < {k, £} and O otherwise. The construction of a basis
consisting of rank-one matrices for the sp&d8=" of all n x n matrices is entirely
trivial, and it gives an isomorphism &" — M™" with similar properties. Hence
nontrivial generic configurations for separate convexity in sufficiently high dimensions
yield nontrivial finite generic sets for rank-one convexity. On the other hand, smaller
nontrivial configurations could probably be obtained using larger sets of directions from
the rank-one cone. For example, we may note that if the spacexo® 2Znatrices is
identified withR?*, then the rank-one directions contain the @2, 0) U (0, R?), which
corresponds to a “biconvexity” iR*. These are themes for further research.

4, Q-Hulls and Iterated Q-Hulls

Here we define yet another notion of a “generalized convex hull” (this one is usually
considered in abstract convexity theory).

Definition 4.1. Let Q be a family of subsets oX. For a setA € X, we define the
Q-hull of A as

Q-co(A) =[|IQ e QIAC Q.

Clearly, if Q consists of functionallyD-convex sets, the®@-co(A) 2 coP(A). If
Q consisted ofall functionally D-convex sets, then we have equality. Our intention,
however, isto choos@ possibly “small” and consisting of “simple” sets, so thato( A)
can be computed or approximated reasonably. (For usual convexity, a s@ablef
course the set of all half-spaces.) Let us define one suitable-loaRifgy separate
convexity; it is the set of complements of all translated open orthants. Formally:
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Definition 4.2. For a sign vectos € {—1, 1}9, define
0s(0) = {x € Rsgnx) = fori =1,2,....d},

and fora € RY, letgs(a) = gs(0) + a (for a specific orthant we write ostby writing

the corresponding signs only, i.g., (0) stands for the positive open quadrant in the
plane). We sefs. = {R9\gs(a)|a € RY, s € {—1, 1}9}. We shall refer toQs-co(A)

as thequadrant hullof A. These are all points which cannot be separated ffdoy an
open orthant (quadrant in the plane).

The sets inQs. are functionally separately convex. To see that, 8¥qs(0) is
functionally separately convex, we may use the separately convex function

| Ixaxo. .. xql for x € 0s(0),
px) = {O otherwise.

Remark. This substantiates the claim made in Example 1.4, namely, that th@ set
there is functionally convex—it is easy to check tat Qg.-co(A). We also note that
the inclusionC < coP(A), which was established by a direct argument there, follows
from the Krein—Milman-type statement above (Proposition 2.7): the Balxtremal
points ofC are those ofA.

If Q consists of functionally convex sets, th@aco(A) is an outer approximation of
coP(A). Even for a four-point seAin the plane, however, the quadrant hull may be larger
than cd (A). An example is the seA = {(0, 0), (2, 1), (1, 2), (3, 3)}. Here Qs-co( A)
has three components—the poif@s0), (3, 3), and the square [R]2. By Corollary 2.9,
we get c@(A) = {(0,0), (3,3} Uca({(1.2). (2. D} < {(0.0).(3.3)} U Qsc-CO
({(1,2), (2, 1)}) = A. (Another way to see thaDs-co(A) # coP(A) is via Proposi-
tion 2.7).

An Iterated Q-Hull Procedure. The preceding four-point example suggests that a
better approximation of the function&-convex hull of a set might be obtained by
iterating theQ-hull construction for components. For instance, for a finite’sete may
use the following procedure. We comp@é’ = Q-co(A), we letC”, ..., C” be the
partition of C® into connected components, then we compute

k
C? = Jo-coAnC™), etc.
i=1

Obviously, forj > |A| —1 we haveC')) = CU+D and usually the procedure terminates
much sooner.

In Section 5 we show that for separate convexity in the plane, this procedure in fact
yields the functional convex hull for every finfteet A.

4 Itworks also for various “simple” compact séissuch as ones with finitely many connected components;
for an arbitrary compach, it need not give the functional separately convex hull in any finite number of
iterations.
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Fig. 5. A 6-point configuration whose quadrant hull is connected and larger than the functional separately
convex hull.

A Counterexample. In dimension 3 and higher, the iterated quadrant hull of a finite
point set can be strictly larger than the functional separately convex hull. A simple
example is shown in Fig. 5 (in coordinates, the points(@rd, 1), (1,0, 0), (1, 2, 0),
(2,0,0),(2,0,2),and(2, 2, 2)). The six points irR® are indicated by full circles, and the
functional separately convex hull is shown by full lines. The extra part of the quadrant
hull is drawn by a dashed line. It is easy to see that the point marked by the empty circle
cannot be separated from the other points by an octant; on the other hand, it cannot lie
in the functional separately convex hull since it is extremal in the quadrant hull.

There also exist generic sets with the above property. The smallest example we could
find (by a computer search) has twelve points (and a trivial functional separately convex
hull). It is the following set:A = {(1,7,7), (2,6,3), (3,1, 4), (4,5,11), (5,4, 2),
(6,2,8), (7,12, 10), (8,10,1), (9,9, 12), (10, 11, 6), (11, 3,5), (12,8, 9)}. A generic
set for which it is easily seen that the iterated quadrant hull is larger than the functional
separately convex hull is the configuration from Example 3.6. For instance, consider the
point (x(ey), y(e1), z(dy)) (look at Fig. 4). It is easy to check that this point belongs to
the quadrant hull, together with the segment connecting & tsay, and at the same
time that it is extremal in the quadrant hull (hence it cannot belong to the functional
separately convex hull). O

5. Functional Separately Convex Hulls in the Plane

Throughout this section, we consider separate convexity in the plane Qi.es
{(0, 1),(0, 1)}). For this case, Tartar [T] has shown that a finite A&etc R? satisfies
coP(A) = Aiffcop(A) = A(i.e., no two points share ancoordinate or §-coordinate)
and A contains na’4 configuration.

Here we give a description of the functional separately convex hull of compact sets
in the plane (Proposition 5.1 below), which implies that the “iterated quadrant hull”
procedure outlined at the end of Section 4 actually comput@gAyfor finite A. Then
we discuss an efficient implementation of this procedure in this particular case.
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Call setsA, B C R? separatedif they lie in diagonally opposite open quadrants,
i.e., there exista. € R? with either A € q,,(a), B € q__(a), or with A C q,_(a),

B C g_,(a). Asetisinseparabldf it cannot be partitioned into two nonempty separated
subsets.

Clearly, a set with a connected quadrant hull is inseparable (since the parts in a
separation would form disjoint pieces of the quadrant hull). It can be shown that also the
reverse implication holds; we know of no immediate proof and we do not need this fact,
SO we omit its proof.

Proposition 5.1. Let A be a compact inseparable set in the plafleencoP(A) =
QscCO(A).

One proof can be given based on Proposition 2.7. We give another, slightly more tech-
nical proof, which yields an interesting extra piece of information on the Caodtry
number. We begin by a lemma.

Lemmab5.2. Let A C R? be a compact inseparable sét u, v be points of A with
X(U) < x(v), y(u) > y(v); and letw be the pointx(u), y(v)) (see Fig 6(a)). Suppose
that the left top quadrant g, (u) contains no point of Aand also the right bottom
guadrant g._ (v) contains no point of AMoreoversuppose that ‘Athe part of A lying
in the bottom-left closed quadragt _ (w), is nonemptyThen there exist two points of A
which together with u and form aC, configuration(see Examplé&.4)such that the path
7 = uwv is contained in its functional separately convex Hthus also inco® (A)).

Proof. Lett € A’ be a point ofA” with maximumy-coordinate, and lat € A’ have

maximumx-coordinate. Further, let be a point with the smallest-coordinate among
the points ok € Awith y(a) > y(v), and letb be a point with the smallestcoordinate
among the points o € A with x(a) > x(u). If x(¢) < x(r) (as in Fig. 6(a)), then

— e - — . —

(a) (®)

Fig. 6. lllustration for the proof of Lemma 5.2.
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(a) | (b)

Fig. 7. lllustration for the proof of Proposition 5.1.

the pointsu, v, £, r form a four-point configuratio@,, and therefore (in particular) the
pathuwv is contained in cB(A) as claimed. Similarly fory(b) < y(t), we find the
configurationC, as the pointsl, v, b, t. Finally, if bothx(£) > x(r) andy(b) > y(t),
we find that the quadrants with center

<X(€) +x(r) y(b) + y(t)>

2 ’ 2

separateA (see Fig. 6(b); the shaded areas in the figure contain no poirkg-efa
contradiction. O

Proof of Propositiorb.1. LetA be inseparable and compact, anddet Qsc-Co(A).
This means that all the four closed quadraqi&) with vertices at contain points of
A. For eacts € {—1, 1}?, choose a poings € (@) N A such thats(as) N A = ¢; see
Fig. 7(a).

Consider the rectangle with_, anda,_ as its left-top and right-bottom corners,
respectively, and letv, w’ be its left-bottom and right-top corners, respectively; see
Fig. 7(b). Draw the axis-parallel lines throughandw’, and denote the resulting (closed)
regions ing__(a) and ing, (a) as indicated in the figure.

If R__N A#@, wemayapply Lemmab5.2with=a ,,v =a,_, and we get that
a four-point seC C A, consisting ofa_,, a, _, and two other points oA forms aC,
configuration such that &C) contains the segmerds_, w andwa,_. We now discuss
possible positions @i, . If &, ¢ R, thenitis easy to see thate co®(CUfa ).

If a,, € R, a statement symmetric to Lemma 5.2 (with top and bottom reversed
and left and right reversed) implies that, , a, _, and other two points oA form a

C4 configurationC’ such that c8(C’) contains the segments ,w’ andw’a,_. Then
clearlya e coP(CuU C’).

It remains to discuss the case whBn_ N A = @. By symmetry, we may also
assume thaR, . N A = ). Moreover, consider also the rectangle with. anda,
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RI_+ ,
Ry

ai4

Fig. 8. Acontradictioninthecase - € Ry, a4 € R_,.

as left-bottom and right-top corners, respectively, angJst be its left-top and right-
bottom corners, respectively; again by symmetry, we may also assume that the regions
g_,(y) andq, _(y’) contain no points ofA (note that these regions are defined using
a__anda, , analogously aR®__ andR , were defined using, _ anda_ ). With these
assumptions, we discuss the possible positiores of The regionR__ was excluded.

If a__ € R,,, all possible positions o&,, lead to a contradiction to the supposed
emptiness oR,, q_, (y) orq, _(y") (Fig. 8 illustrates this for the case, € R_,
where the point, _ gives a contradiction by lying ig,_(y")). Finally, ifa__ € R_,
say (the case__ € R;_ is symmetric), the only possibility foa, . turns out to be
a,. € R,_,andinthiscasa,_,a ,,a _,anda,, form aC, configuration containing
ain its functionalD-convex hull. This proves Proposition 5.1. O

5.1. Caratheodory Number

The above proof in fact shows that wheneaer coP (A), there exists a subsBt< A of
size bounded by a constant such that co® (B), that is, the functional separately convex
hull in the plane has a bounded Caextdory number. This is somewhat surprising, as
the situation for the separately convex hull is different—for any nunkbene can find

a setA € R? and a pointa € cop(A) such thata ¢ cop(B) for any at most -point
subsetB € A. As an example, one may take the set

1 1\|. 1 1 .

With a little extra effort, the Caradodory number for the functional separately convex
hull in the plane can be determined exactly.

Proposition 5.3. Let A c R? be compact and let & co®(A) (where D is the union
of the two coordinate axgsThen there exists an at mds{point subset BC A with
a e coP(B).
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a here

Ay

ay

Fig. 9. Examining 6-point configurations.

Proof. We may assum@ is inseparable (otherwise we may look at the inseparable
piece of Awhose hull containa). By inspecting the above proof of Proposition 5.1, we
find that the only situation where one needs more than five points to winessP (A)

isthe cas@__ € R__,a;, € R, (and the symmetric case far._ anda_,). Here

we haveC, configurationsC = {a,_, a4, a1, a} andC’ = {a_;,a,_,a;, a}. Up to
symmetry, there are only two possible ways how these configurations may look, and these
are depicted in Fig. 9. By an easy inspection of cases (discussing the possible position
of a in the rectangle_, wa,_w’), one can check that always lies in the functional
D-convex hull of some at most five points amaag, , a;—, &, a, aj, &. O

5.2. A Fast Algorithm in the Plane

Proposition 5.4. The functional separately convex hull of an n-point set in the plane
is a disjoint union of polygons with @) edges in totgland it can be computed in
O(nlogn) time

Proof Sketch Based on Proposition 5.1, most of the algorithm is rather standard, so
we omit various details. First we consider the case of an insepargiset setA. Here

we need to compute the quadrant hull &f and for this, well-known computational
geometry techniques may be used, see, e.g., [PS]. Forinstance, we may note the following
expression for the quadrant hull:

Qsc-CO(A) = ﬂ Us, where Ug = U@.

se{—1,1)2 acA

Indeed, a poink lies in Qsc-co(A) iff each of the closed quadrants with vertexxat
contains a point ofA; the unionUs is the set of all pointx which contain a point oA
in the closed quadrait_s(x).

EachUgs is an (unbounded) polygon bounded by a “staircase” polygonal line with at
mostn steps. It can be computed (n logn) time by an algorithm for computing the
maximaof a planar point set, and the four sktgcan be intersected by a plane sweep
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algorithm, say (see [PS] for terminology and such algorithms). To bound the number of
vertices of the intersection, we note that each vertex is either a vertex ofldgraeis

an intersection of an edge of sottde with the boundary of somédy (resp. an endpoint

of such an intersection if the intersection happens to be a segment). Since each edge of
the boundary obJs may only intersect the boundary Of in a single point or segment,

the O(n) bound on the number of vertices follows.

A slightly more interesting part of the algorithm is partitioning a finite set into insepa-
rable pieces. Lef be the givem-point set. First we sort its points by theicoordinates
and also by theiy-coordinates. Denote the points afby a;, a,, . . ., a, in such a way
thatx(a;) < X(a2) < --- < X(apn), and letp be a permutation sorting the points in the
y-direction, that isy(ap)) < --- < y(apm)). We assume that the points Afare stored
in a linear array (in the ordex, a,, . ..), and the permutatiop and its inversgp—! are
also stored in linear arrays.

The algorithmis easiestto describe recursively. We describe a pro&ERARATION
which, given the arrays storing and p, either concludes th& is inseparable, or finds
a partitionA = A; U A, of Ainto two separated sets. In the latter case, the procedure is
called recursively o\, and onA;. (Note that by the definition of separation, we have a
sorted order for bott&\; and A, in both coordinates; hence in an actual implementation,
the recursive call can be made wiky or A, specified as subintervals in the arrays
representing, so that we need not set up the arraysAgrand A.)

As we show below, the procedure can be implemented in such a way that it runs
in O(n) time on an inseparable set, or finds a separatiol @fito Az, Az in time
O(min(] Az], |A2])). An easy analysis then shows that the whole recursive algorithm for
decomposingA into inseparable pieces needs ti@én logn) for ann-point setA.

It remains to describe the proced 8EPARATION Supposé > 1. First we find out
which kind of separation to look for. §(a;) < y(an), then only a separation of the
——, ++ type (i.e., all the points in the first group in the separation precede all points
in the second group, for both coordinates) is possiblgdf) > y(a,), we should look
for a separation of the-—, —+ type; this case is similar to the former one and we omit
its discussion.

Thus, we assumg(a;) < Yy(an). It is easy to see that the following conditions are
necessary and sufficient for the s@g ap, ..., g} and{aj 1, ..., a,} (with1 <i < n)
to form a separation oA of the ——, ++ type:

the indicesp(), ..., p(i) form a permutation of1, 2, ..., i}, 3)
X(a) < X(a+1) andy(a) < y(a@), where j=p i), | =pti+1. (4

The condition (3) canberephrased as ffag), p(2), ..., p(@i)} = i.Thus, we startwith
i = 1 and then we incrememnf maintaining a variablemax= maxp(), ..., p(i)},
and we test for the conditioomax= i. Whenever this occurs, we check condition (4).

In this way, if the first set in the separation hagoints, the separation is found in
O(i) time. In order to handle efficiently also the case when the first set in the separation
is much larger than the second one, we simultaneously look for a separation “from
backward.” That is, at thith step, we also consider the symmetric conditions for the
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sets{ay, ..., an_i} and{an 1-i, ..., &} to be separated, i.e.,

the indicesp(n), p(n — 1), ..., p(n —i + 1) form a permutation of
{(n,n—-1,....,n—i +1},

X(@n+1-i) > X(@-i) andy(ay) > y(a),
where j=pin—-i+1),j =ptn-i.

In this way, a separation intdy, A, is found in timeO(min(] Az, |Az])), and when
i reaches|n/2] without a separation found, we know that the current input set is
inseparable. O

6. Open Problems

Aswas indicated in Section 1.2, along-term goal for further research is the understanding
of functional rank-one convex hulls and rank-one convex envelopes of functions (and
similarly for the corresponding quasi-convex notions). Below we list some immediate
guestions related to the current paper.

1. What is the maximum combinatorial complexity of the functional separately con-
vex hull of n points inRY? (O(n%) is an easy upper bound, but perhaps Dig1)
in three-dimensions etc.)? How efficiently can one compute it?

2. In particular, how efficiently can one decide whetiher= co®(A) for separate
convexity? Are there any nice sufficient conditions? (In the plane, one has Tartar’s
result that c8 (A) = Aiff cop(A) = A and A has naC4 configuration.)

3. Is there a finite Carattwdory number for functional separate convexitR for
eachd? (If yes, it has to be at least 2 Is there a finite Caradwdory number for
functional rank-one convexity in some dimensions?

4. What is the smallest number of points of a 8et R in general position with a
nontrivial functional separately convex hull? (Our example gives an upper bound
of 20, and an obvious lower bound is 8; a computer search revealed that no such
configuration of size 8 exists.) Similarly, what is the smallest number of matrices
(symmetric 2x 2, say) in general position with a nontrivial functional rank-one
convex hull?

5. How can our results for separate convexity be generalized to more directions in
D? (The first case to look at are three directions in the plane.)

6. In particular, what do functiondD-convex hulls of finite sets D-polytopes”)
look like?

7. Again, what are interesting necessary/sufficient conditiong\fer coP(A)? In
particular, what about symmetricx2 2 matrices and rank-one convexity?

8. Whatis agood analogue of orthants used in the definitigl+od for the separately
convex case?

9. If we are given some “reasonablg;, how to compute th@-hull efficiently?

10. How to compute or approximate-convex envelopes of functions efficiently?
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