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J. Matoušek1 and P. Plech´ač2
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Abstract. Let D be a set of vectors inRd. A function f : Rd → R is calledD-convexif
its restriction to each line parallel to a nonzero vector ofD is a convex function. For a set
A ⊆ Rd, thefunctional D-convex hull of A, denoted by coD(A), is the intersection of the
zero sets of all nonnegativeD-convex functions that are 0 onA.

We prove some results concerning the structure of functionalD-convex hulls, e.g., a
Krein–Milman-type theorem and a result on separation of connected components.

We give a polynomial-time algorithm for computing coD(A) for a finite point setA (in
any fixed dimension) in the case ofD being a basis ofRd (the case ofseparate convexity).

This research is primarily motivated by questions concerning the so-calledrank-one con-
vexity, which is a particular case ofD-convexity and is important in the theory of systems
of nonlinear partial differential equations and in mathematical modeling of microstructures
in solids. As a direct contribution to the study of rank-one convexity, we construct a con-
figuration of 20 symmetric 2× 2 matrices in a general (stable) position with a nontrivial
functionally rank-one convex hull (answering a question of K. Zhang on the existence of
higher-dimensional nontrivial configurations of points and matrices).
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1. Introduction

1.1. Basic Definitions and an Example

Throughout, we assume thatX is a finite-dimensional real vector space (which can be
identified with someRd). Fora, b ∈ X, we write [a, b] for the segment with endpoints
a, b, i.e., [a, b] = {αa+ (1− α)b|α ∈ [0, 1]}.

Let D be a set of vectors inX.

Definition 1.1 (D-Convex Set). A setC ⊂ X is called aD-convex setif for any two
pointsx1, x2 ∈ C such that the segment [x1, x2] is parallel to some nonzero vector of
D, we have [x1, x2] ⊆ C. (D-convexity is also calleddirectional convexityor restricted-
orientation convexityin the literature.)

Definition 1.2 (D-Convex Function). Letf be a real function defined on aD-convex
set C. We say thatf is D-convexif, for any x ∈ C and anyv ∈ D, the function
g(t) = f (x + tv) is a convex function of the real variablet . (The domain ofg is an
interval inR, asC is assumed to beD-convex.)

In this paper we shall mostly consider total functions (defined on the wholeX).
For the special case whenD consists ofd orthogonal vectors (which can be identified

with the standard orthonormal basis ofRd), we shall also use the wordseparate convexity
instead ofD-convexity (and similarly for other derived notions).1

The main object of our investigation is a suitable notion of a “D-convex hull” of a
set. One can define theD-convex hull of a setA as the intersection of allD-convex
sets (according to Definition 1.1) containingA; this D-convex hull will be denoted by
coD(A).

We shall concentrate on another kind ofD-convex hull, namely, one defined by
means ofD-convex functions. It seems less intuitive than the one just defined, but it
arises naturally in applications and it even seems to have some more pleasant properties
(as our results below also indicate).

Definition 1.3 (FunctionalD-Convex Hull). LetA ⊆ X. The set coD(A), called2 the
functional D-convex hullof A, is defined as

coD(A) =
{

x ∈ X| f (x) ≤ sup
y∈A

f (y) for all D-convex f : X→ R

}
.

A setC is functionally D-convexif A = coD(A).

1 Other names used in the literature arerectilinear convexity(e.g., [OSSW], [RW2], and [RW1]), and
orthoconvexity[RW3]. Biconvexity[AH] sometimes refers to the caseD = (Ru, 0)∪ (0,Rv), whereu+ v =
dim(X).

2 The notation coD , coD follows a widespread notational convention in mathematics, namely, that subscripts
correspond to objects of a “primal” space while superscripts are used for objects related to functions on the
primal space.
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Fig. 1. A four-point configurationC4 with nontrivial functional separately convex hull.

Later, we shall show that this definition is equivalent to the characterization given in
the abstract.

It is easy to check that theD-convex hull is always contained in the functionalD-
convex hull; also, ifA is a closed set andD = X (i.e., for the usual convexity), both
these hulls ofA coincide (see Section 2.1). The following (crucial) example shows that
the functionalD-convex hull may be much larger than theD-convex hull in general.
Apparently, this example has been discovered independently by several authors (we are
aware of [T] and [AH]).

Example 1.4(A Four-Point Configuration). Let X= R2, let D = {(0, 1), (1, 0)} (i.e.,
we deal with separate convexity in the plane). Let A= {a1,a2,a3,a4} be a configuration
as in Fig. 1(a). ThencoD(A) consists of the four segments ai bi and the square b1b2b3b4

depicted in Fig. 1(b). We shall refer to this configuration asC4 (meaning four points
whose x-coordinates and y-coordinates are ordered as those of the points depicted, or
of the mirror image of this configuration).

Proof Sketch. For completeness, we outline a proof of the (more interesting) inclusion
C ⊆ coD(A), whereC is the set in Fig. 1(b) (another proof will be obtained as a special
case of our results later). It suffices to prove thatB = {b1, b2, b3, b4} ⊂ coD(A). Once
we know this, we haveC = coD(A∪ B) ⊆ coD(A∪ B) = coD(A). Thus, let f be aD-
convex function, letM = maxi f (ai ), andM ′ = maxi f (bi ). We need to showM ′ ≤ M .
However, if M ′ > M , let i be such thatf (bi ) = M ′. Looking at the segmentai bi−1

(whereb0 = b4), we get a contradiction to the convexity off there, sincef (ai ) < M ′,
f (bi−1) ≤ M ′, but f (bi ) ≥ M ′.

Remark. We define the functionalD-convex hull usingtotal D-convex functions only.
As a consequence, this hull is always a closed set (see below). One could use also partial
D-convex functions; this leads to various topological subtleties. Such definitions are
investigated in [AH] (for the special case of biconvexity). We do not proceed in this
direction, since we are interested mainly in combinatorial and computational aspects of
the hulls.
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1.2. Motivation and Background

The present investigation has been inspired by a significant problem in the calculus
of variations: characterization of rank-one convex and quasi-convex functions. In this
section we shall try to give a rather brief and simplified account of underlying problems
and applications. For the sake of brevity we introduce only the basic concepts and we
omit all technicalities or even precise explanation of some terms. The reader unfamiliar
with the topic is encouraged to find further information in the quoted references.

The notion ofrank-one convexityreadily serves as a special example ofD-convexity.
Indeed, ifX = Mm×n represents the space ofm× n matrices and

D = {a ∈ Mm×n; ranka ≤ 1}
is the cone of rank-one matrices, thenD-convexity becomes rank-one convexity studied
in the literature. On the other hand the notion ofquasi-convexityintroduced by Morrey
[M] to characterize weakly lower semicontinuous functionals on the space of vector-
valued functions is intrinsically more complicated. A functionf is quasi-convexif it
satisfies the following inequality:

∫
Ä

f (a+∇ϕ) dx ≥ ∫
Ä

f (a) dx for all a ∈ Mm×n, for
any smooth functionϕ ∈ C∞0 (Ä,Rn) (the space of smooth vector-valued functions with
compact supports inÄ), and for any bounded domainÄ ⊂ Rm. Since quasi-convexity
plays a similar role in the study of vectorial variational problems (or systems of nonlinear
partial differential equations) as convexity does for scalar problems, construction of
quasi-convex envelopes is an important tool for the investigation of solutions to problems
that are not weakly lower semicontinuous (and hence direct methods of the calculus
of variations cannot be applied). Using quasi-convex functions, we define thequasi-
convex hullof a setA, coqc(A), similarly as coD(A) in Definition 1.3. In other words,
coqc(A) is the set of points that cannot be separated fromA by a quasi-convex function.
Unfortunately, no reasonable description of all quasi-convex functions is known. Any
quasi-convex function is rank-one convex, and hence coD(A) ⊆ coqc(A) holds; the
functional rank-one convex hull appears as a reasonable first approximation of the quasi-
convex hull.3 However, even the computation of the functional rank-one convex hull
(coD(A)) is a difficult task and we are not aware of any efficient and reliable algorithm
(even an approximate one). The question of reasonable inner and outer approximations
of coqc(A) is one of the main goals for future work.

In this paper we focus mainly on the case of separate convexity; however, we establish
also some properties for a generalD. The case of separately convex functions has
previously been studied in this context in [T] as an easier substitute for the more general
case of rank-one convexity. As we shall show the separate convexity inRd,d ≥ 3, exhibits
less convenient properties than the two-dimensional case and therefore generalization of
the results of [T] may not be obvious. Interesting results concerning separate convexity
can be also found in [AH], where this notion has been studied in connection with the
limiting behavior of bimartingales in probability theory.

At the end of this section we state an example of a particular problem where rank-one
convexity appears as an approximation of quasi-convexity. Letv( j ): Ä ⊂ Rm → Rn

3 It was even conjectured that rank-one convex functions and quasi-convex functions are the same, but this
turned out to be false in general, see [Š1].
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be a sequence of functions such that|∇v( j )| ≤ const. and dist(∇v( j ), A) → 0 almost
everywhere inÄ for a given compact setA ⊂ Mm×n. We ask under which conditions
on the setA the sequence{v( j )} is compact (up to a subsequence) inL p (see [̌S2]).
This question is closely related to a characterization of Young measures generated by
weakly convergent subsequences of the bounded sequence{∇v( j )} ⊂ L p(Ä,Rn). Such
sequences arise, for example, as minimizing sequences of energy functionals in models
of phase transformations (see [BJ], [Š3], and [BFJK]), with the stored energyE(u) =∫
Ä

W(∇u) dx, whereu: Rn → Rn is a deformation of the body andW: Mn×n → R
is a given nonnegative function with a nontrivial set of global minima, for definiteness
A = {a ∈ Mn×n;W(a) = 0}.

A Young measure generated by a minimizing sequence such that infE(u(k)) = 0
is supported on the setA and whenever it is trivial the sequence is compact (up to a
subsequence). Characterization of setsA ⊂ Mn×n that allow only trivial Young measures
is known only in certain particular cases. Since any point in coqc(A)\A is a center of
mass of a nontrivial Young measure, description of the set coqc(A) can give an answer to
the sequence compactness problem. We refer to [B], [Š2], [T], and [Z1] and references
therein for more details.

1.3. Summary of Results

In Section 2.1, we discuss some easy properties, such as the continuity of (total)D-
convex functions. In 2.2, we show a Krein–Milman-type result, i.e., that a compact
functionally D-convex set is the functionalD-convex hull of its extremal points (when
extremal points are defined suitably). Then (Section 2.3) we show that for a compact
functionally D-convex set with finitely many connected components, the components
themselves are functionallyD-convex as well.

In Section 3 we discuss separate convexity. We develop an algorithm for computing
the functional separately convex hull of ann-point set inRd, with O(nd) worst-case
running time (this can easily be improved somewhat, but currently we do not know what
is the best complexity one can hope for). This algorithm is based on the above-mentioned
Krein–Milman-type result and a description of the hull as a union of “boxes” formed by
suitable grid points. Further, we discuss the computation of separately convex envelopes
of functions (Section 3.3). Finally, we construct a three-dimensional analogue of the
four-point configuration from Example 1.4; namely, we exhibit a 20-point setA ⊂ R3,
such that no two points ofA lie in a common plane perpendicular to a coordinate
axis, and with a nontrivial functional separately convex hull (strictly larger thanA). This
configuration isgeneric, meaning that any sufficiently small perturbation ofA still yields
a configuration with a nontrivial hull. Zhang [Z2] conjectured that no such configuration
in R3 exists. The construction can be generalized to an arbitrary dimension (to appear
elsewhere). A direct consequence of the three-dimensional construction for separate
convexity is the existence of 20 symmetric 2× 2 matrices in a general (stable) position
with a nontrivial functional rank-one convex hull.

In Section 4 we consider an alternative approach to computing functionallyD-convex
hulls of finite sets (or sets consisting of simple “building blocks”). This yields a fast al-
gorithm for the functional separately convex hull in the plane (Section 5). An example
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shows that in dimensions 3 and higher, this approach may fail in some cases, but never-
theless we believe that it might be practically interesting in the future, as it may provide
the functionalD-convex hull or its good outer approximation in many cases.

As a by-product of our treatment of the planar case, we also prove that the Carath´eodory
number for the functional separately convex hull in the plane is finite, i.e., any point be-
longing to the hull of a (compact) setA also belongs to the hull of some its 5-point subset
(this contrasts with the separately convex hull in the plane, where the Carath´eodory num-
ber is infinite). On the other hand, we construct a setD inR3 such that the Carath´eodory
number for the functionalD-convexity is infinite.

2. Properties of the FunctionalD-Convex Hulls

2.1. Basics

Here we collect a few easy (and probably mostly known) facts aboutD-convexity. First
we note an alternative description of coD(A).

Observation 2.1. Let us define a sequence of sets A0 = A, A1, A2, . . . by

Ai+1 =
⋃
{[x1, x2]|x1, x2 ∈ Ai , [x1, x2] is parallel to a vectorv ∈ D} . (1)

Then

coD(A) =
∞⋃

i=1

Ai .

Proof. Clearly,
⋃

Ai is D-convex. On the other hand, it is easy to see thatAi ⊆ coD(A)
for all i , by induction oni .

Observation 2.2. For any D and any A, we havecoD(A) ⊆ coD(A).

Proof. Letx ∈ coD(A). Then, by Observation 2.1, there is a finite sequencex1, x2, . . . ,

xn = x, where eachxi is either an element ofA or xi ∈ [xj , xk] for some j, k < i with
[xj , xk] parallel to a vector ofD. We prove by induction oni that f (xi ) ≤ supy∈A f (y),
for any D-convex functionf . If xi ∈ A this is clear and ifxi = αxj + (1− α)xk we
apply Jensen’s inequality sincef is convex on [xj , xk].

Remark. It is easy to check that forD = X (i.e., for the usual convexity) andA closed,
coD(A) = coD(A). Indeed, suppose thatx is not in the convex hull ofA; then by the
separation theorem, there exists a linear functionalq ∈ X∗ with q(x) > supy∈A q(y),
and this witnesses thatx is not in coX(A) either.

Remark. SinceD-convexity and functionalD-convexity are in general different, one
might wonder what happens if we defined a “functionallyD-convex function” as one
with a functionallyD′-convex epigraph, whereD′ = D×R. However, it is not difficult
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to see that in this case we get the same notion as aD-convex function. (To see that the
epigraph of aD-convex function f : X → R is functionally D′-convex, consider the
function F : X × R → R, defined byF(x, t) = f (x) − t : it is D′-convex, and the
epigraph off is F−1((−∞, 0]).)

Next, we consider continuity ofD-convex functions (similar considerations for the
two-dimensional separate convexity appear in [T]).

Observation 2.3. If the linear span of D is the whole X, then any D-convex function
defined on a D-convex set A⊆ X is continuous, and even locally Lipschitz, at every
point in the interior of A.

Proof. After a suitable linear transformation of space, we may assume thatD contains
the coordinate axes and thusf is separately convex. LetC be a closed axis-parallel cube
contained in the interior ofA; let c = (c1, . . . , cd) be its center and let 2δ be its side
length.

First we show thatf is bounded from above onC. Let M be the maximum of the
values of f at the vertices ofC. By induction onj , we get thatf is also bounded byM
on eachj -dimensional face ofC, and hence onC itself. For instance, ifC = [0, 1]d and
we already know thatf (y) ≤ M for all y with y1 ∈ {0, 1}, and if x ∈ C is an arbitrary
point, we havef (x) ≤ x1 f ((0, x2, . . . , xd)) + (1− x1) f ((1, x2, . . . , xd)) ≤ M ; this
gives the induction step fromj = d − 1 to j = d. The general step is entirely similar.

We now show thatf is also bounded from below. Letx ∈ C, and letzi denote the
point(x1, x2, . . . , xi , ci+1, ci+2, . . . , cd) (i = 0, 1, . . . ,d). Consider the linecz1, and let
z′1 be its intersection with the boundary ofC lying on the other side ofc thanz1. By the
convexity of f on the linecz1, we get thatf (z1) ≥ f (c)−( f (z′1)− f (c)) = 2 f (c)−M .
Then, using the linez1z2, we obtainf (z2) ≥ 2 f (z1)−M ≥ 4 f (c)−3M , and, in general,
induction shows thatf (zi ) ≥ 2i f (c)− (2i −1)M . Hencef is also bounded from below
by m= 2d f (c)− (2d − 1)M .

Let C′ be the cube of sideδ centered atc. For any two pointsz, z′ ∈ C′ differing in a
single coordinate, we have

| f (z)− f (z′)|
‖z− z′‖1 ≤ 2(M −m)

δ
.

For an arbitrary pair of distinct pointsx, y ∈ C′, we then define the “interpolating se-
quence”z0, z1, . . . , zd similarly as above, i.e.,zi = (y1, y2, . . . , yi , xi+1, xi+2, . . . , xd),
and we get

| f (x)− f (y)|
‖x − y‖1 ≤

∑d
i=1 | f (zi−1)− f (zi )|∑d

i=1 ‖zi−1− zi ‖1
≤ max

i

| f (zi−1)− f (zi )|
‖zi−1− zi ‖1 ≤ 2(M −m)

δ
.

Corollary 2.4. If the linear span of D is the whole X and A⊆ X is arbitrary, then
coD(A) is a closed set, and is equal tocoD(A) (whereA denotes the closure of A).
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Proof. For a D-convex function f , define a setAf = {x ∈ X| f (x) ≤ supA f (y)}.
Since f is continuous,Af is closed, and by definition we have coD(A) =⋂ f Af , where
the intersection is over allD-convex functionsf .

The next proposition shows that the definition of a functionallyD-convex set can be
simplified: functionallyD-convex sets are exactly the zero sets of nonnegativeD-convex
functions.

Proposition 2.5. Suppose that the linear span of D is the whole X. Then for any
functionally D-convex set A there exists a D-convex function f: X→ [0,∞) such that
A = f −1(0).

Proof. Letx 6∈ A; by definition of a functionallyD-convex set, there exists aD-convex
function fx: X → R with fx(x) > supy∈A fx(y). We may assume that supA fx =
0 and that fx is nonnegative (otherwise, take theD-convex function max(0, fx −
supy∈A fx(y))). Suppose that such a functionfx has been fixed for eachx ∈ X\A; define
an open setUx = {y ∈ X| fx(y) > 0}. Choose a countable set{x1, x2, . . .} ⊂ X\A such
that

⋃∞
i=1 Uxi = X\A (this is possible asX is a metric Lindel¨of space), and letfi = fxi .

For eachi , define a number

Ci = 2i max{ fi (y)|‖y‖ ≤ i + ‖xi ‖} .
For eachy ∈ X, we setf (y) =∑∞i=1 C−1

i fi (y). We claim that thisf is as required in the
proposition. For eachy ∈ X, thei th summand in the definition off (y) is upper-bounded
by 2−i for all but at most finitely manyi , thus f (y) is well defined. It is also easily seen
that f is nonnegative andD-convex and thatf −1(0) = A.

2.2. A Krein–Milman-Type Theorem

Definition 2.6. Let A ⊆ X be a set. A pointe ∈ A is called aD-extremalpoint of A
if there exists no segments⊆ A parallel to some nonzero vectorv ∈ D and containing
e as its interior point.

Proposition 2.7. Let A, B ⊆ X be compact sets, and suppose that all D-extremal
points of B belong to A. Then B⊆ coD(A). In particular, any compact functionally
D-convex set is the functional D-convex hull of the set of all its D-extremal points.

Proof. Suppose that there exists a pointx ∈ B\coD(A). This means there is aD-
convex functionf with f (x) > 0= supy∈A f (y). PutM = maxB f . Among the points
of y ∈ B with f (y) = M , consider the one with the lexicographically largest coordinate
vector, and call ity0 (the compactness ofB implies that it is determined uniquely). As
f (y0) = M > 0, y0 is not D-extremal, so fix a segments ⊆ B containingy0 as its
interior point and parallel to av ∈ D. We havef (y) ≤ M for all y ∈ s, so f is constant
ons, but theny0, as an interior point ofs, cannot be lexicographically smallest ons—a
contradiction.
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2.3. A Separation Result

Proposition 2.8. Let C1,C2 ⊆ X be disjoint compact sets with C1 ∪ C2 being a
functionally D-convex set. Then both C1 and C2 are functionally D-convex as well.

Proof. Let x0 be a point outsideC1; it suffices to find aD-convex functionf which
is zero onC1 and nonzero atx0. As is well known, we can find disjoint, bounded,
and open setsU,V with C1 ⊆ U , C2 ⊆ V . Moreover, we may require thatx0 6∈
U . Using Proposition 2.5, fix a nonnegativeD-convex function f0 with C1 ∪ C2 =
f −1
0 (0). Let us define aD-convex functionf by setting f (x) = max( f0(x), ‖x‖ − R),

whereR > 0 is a real number so large that the ballB(0, R) containsU ∪ V . Setε =
min{ f (x)|x ∈ X\(U ∪ V)}. Clearly this minimum is attained byf , and henceε > 0.

We define a functiong as follows:

g(x) =
{

f (x) for x ∈ U,
max( f (x), ε) for x ∈ X\U .

Clearlyg is zero everywhere onC1, andg(x0) > 0. To show the functionalD-convexity
of C1, it suffices to check theD-convexity ofg.

Let ` = {x + tv|t ∈ R} be a line parallel to some vectorv ∈ D. Define I =
{x ∈ `| f (x) < ε} ⊂ U ∪ V . By the D-convexity of f , I is an open (possibly empty)
interval on`. We distinguish two cases.

• If I ∩ U = ∅, then the restriction ofg on ` coincides with the restriction of the
D-convex function max( f, ε).
• If I ∩ U 6= ∅, then necessarilyI ⊂ U , and hencef ≥ ε on `\U . Thereforeg

restricted oǹ equalsf restricted oǹ .

This proves theD-convexity ofg and concludes the proof.

Corollary 2.9. Let A⊆ Rd be contained in a functionally D-convex set C, which is a
disjoint union of compact sets C1, . . . ,Ck. ThencoD(A) =⋃k

i=1 coD(A∩ Ci ).

3. Functional Separately Convex Hulls of Finite Sets

Throughout this section, we discuss separate convexity only, i.e.,D is an orthogonal
basis ofX.

3.1. Grid Sets and Multilinear Functions

For a pointa ∈ Rd, let xi (a) denote thei th coordinate ofa.
Let A ⊆ Rd be finite. Denotexi (A) = {xi (a)|a ∈ A}, and put grid(A) = x1(A) ×

x2(A)×· · ·× xd(A). By agrid we mean any set grid(A) for some finiteA. If a is a point
of a gridG, we letai+ (resp.ai−) denote the point ofG whose all coordinates but thei th
coincide with those ofa, and whosei th coordinate is the successor (resp. predecessor) of
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xi (a) in xi (G) (thus,ai+ or ai− need not exist for “border” points ofG). An elementary
boxfor a gridG is a Cartesian product of the formI1× I2× · · · × Id, where eachIi has
either the form{xi } for somexi ∈ xi (G), or the form [xi (a), xi (ai+)] for ana ∈ G.

Proposition 3.1. Let G⊆ Rd be a grid, let f : G → R be a function. The following
statements are equivalent:

(i) The function f can be extended to a separately convex functionf̄ : X→ R.
(ii) For any a ∈ G and any i such that both ai+ and ai− exist, f satisfies the

“convexity on the triple(ai−,a,ai+)” :

f (a) ≤ f (ai−)
xi (a)− xi (ai−)

xi (ai+)− xi (ai−)
+ f (ai+)

xi (ai+)− xi (a)

xi (ai+)− xi (ai−)
(2)

(let us call such an f a D-convex functionon G).

For dimensiond = 2, a weaker form of this proposition was noted by Tartar [T].

Proof. The implication (i)⇒ (ii) is clear. Let f : G → R satisfy (ii). First we show
that f can be extended to a separately convex function on the boxB0 spanned by the
points ofG.

Let B be a j -dimensional elementary box ofG. We claim that there exists a unique
multilinear mappingp(x1, . . . , xd)whose values at the 2j corners ofB (which are points
of G) agree with those off . Indeed, sinced− j of the coordinates have a fixed value on
B, we, in fact, deal with multilinear polynomials inj variables. Such polynomials have
exactly 2j coefficients, so if we regard them as a vector space, they have dimension 2j .
Hence it suffices to show that the linear map assigning to such aj -variate multilinear
polynomial the vector of its 2j values at the corners ofB has a trivial kernel. This is easy
to check by induction onj , however.

We define the extension̄f on B as the multilinear polynomialp discussed above. It
is easy to check that this definition is compatible among different elementary boxesB.
We need to check the separate convexity off̄ . Let ` be an axis-parallel line, say the line
{(t, x2, x3, . . . , xd)|t ∈ R}. Let B = I1 × · · · × Id, I1 = [t0, t1], be an elementary box
meeting` in a segment. The functiong(t) = f (t, x2, . . . , xd) is a linear function on
[t0, t1] of the formg(t) = a(x2, . . . , xd)t + b(x2, . . . , xd).

Let B′ = [t1, t2] × I2 × I3 × · · · × Id be the elementary box adjacent toB on
the right. Fort ∈ [t1, t2], g(t) has the forma′(x2, . . . , xd)t + b′(x2, . . . , xd). To show
convexity of g, it is enough to provea(x2, . . . , xd) ≤ a′(x2, . . . , xd). Now both a
and a′ are multilinear polynomials inx2, . . . , xd. By the conditions (2) onf , we
know a(y2, . . . , yd) ≤ a′(y2, . . . , yd) for any cornery = (y2, . . . , yd) of the (d − 1)-
dimensional boxB̃ = I2× · · · × Id. An easy induction on the dimension shows that the
inequality on all corners implies the required inequality at all points ofB̃. This concludes
the construction of a separately convex extension off on the boxB0 spanned by the
grid G.

It remains to show that the function̄f thus constructed has a separately convex
extension on the whole space. LetG′ be a grid arising fromG by adding one layer of
points at each side: formally, letSi = xi (G), S′i = Si ∪ {min(Si ) − 1,max(Si ) + 1},
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and putG′ = S′1 × · · · × S′d. We show thatf can be extended toG′ so that it remains
separately convex onG′. Having done this, we may proceed inductively, extendingf on
larger and larger grids. For each such extension, we then apply the above construction to
extendf on the box spanned by the corresponding grid. The domains of these extensions
are nested and the extensions agree on the common parts of their domains, so we can
define a total separately convex extension off as the union of all these extensions.

It remains to consider the extension fromG to G′. We note that for the newly added—
border—points ofG′, the inequalities (2) involving some old points (withf already fixed)
only give lower bounds for the values off . Let M be the maximum of the lower bounds
thus imposed on any of the new points; we define the value off at all new points asM .
Then also the inequalities involving only new points will be satisfied (with equality).

Similarly, as we have definedD-convex functions on a grid, we may also define
separately convex subsetsof a grid, functionally separately convex subsetsof a grid,
and the corresponding hulls. Namely, ifA ⊆ G is a subset of a grid, it isseparately
convex(in G) if we have, for any two pointsa, b ∈ A differing in a single coordinate,
[a, b] ∩ G ⊆ A. A point x ∈ G belongs to the functional separately convex hull ofA
if there exists no separately convex functionf : G→ R with f (x) > maxA f (y).

To describe the functional separately convex hulls of finite point sets, the following
notion is useful: letG be a grid and letB ⊆ G be a separately convex subset ofG (in
the grid sense). Thebox complexof B, denoted byBC(B), is the set of all elementary
boxes onG whose corners all belong toB. We write|BC(B)| for the union of all boxes
of BC(B). It is easily checked that|BC(B)| equals the separately convex hull ofB.

The following is a straightforward consequence to the proof of Proposition 3.1.

Corollary 3.2. For any finite A⊆ X, we havecoD(A) = |BC(C)|, where C⊆ grid(A)
is the functional separately convex hull of A(in the grid sense).

Proof. ClearlyC ⊆ coD(A) (if any point ofC could be separated fromAby a separately
convex functionf , the restriction off onG = grid(A) would show that this point does
not belong to the functional separately convex hull ofA in the grid sense), and hence
also |BC(C)| ⊆ coD(A). On the other hand, letx be a point not lying in any box of
BC(C). We may assume thatx lies in the relative interior of some (uniquely determined)
elementary boxB of G. Since this box is not inBC(C), it has a cornerc not belonging to
C. Let f : G→ R be a nonnegative separately convex function ofG which is zero onC
and positive atc. Then the separately convex extension,f̄ , of f constructed in the proof
of Proposition 3.1 is positive on the relative interior ofB, and this showsx 6∈ coD(A).

We conclude this section with one more definition. LetB ⊆ Rd be finite, and let
G = grid(B). We call a pointe∈ B anextremalpoint of B (in the grid sense) if for each
i = 1, 2, . . . ,d, at least one ofei+, ei− either does not exist or does not belong toB.

It is straightforward to check that ifB is functionally separately convex (in the grid
sense), then the extremal points ofB are precisely theD-extremal points of|BC(B)| in
the sense of Definition 2.6.
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3.2. An Algorithm

Lemma 3.3. Let G be a grid, let B⊆ G be a functionally separately convex set(in the
grid sense), and let e be an extremal point of B. Then B\{e} is functionally separately
convex as well.

Proof. Let f : G→ R be a nonnegative separately convex function vanishing onB and
nonzero onG\B. Let us see which of the conditions (2) could be violated if we increase
the value off (e) from 0 to someε > 0 while keeping the other values unchanged. These
are only the inequalities in whichf (e) appears on the left-hand side. Consider ani for
which bothei+ andei− exist. Sincee is extreme, we havef (ei+) > 0 or f (ei−) > 0, and
hence the right-hand side of (2) is a strictly positive number. If we letε be the minimum
of the right-hand sides of all the (at mostd) relevant inequalities, then changingf (e)
from 0 toε retains the separate convexity off .

The Algorithm. Let A ⊆ Rd be a finite set. The following algorithm computes its
functional separately convex hull.

1. Let B0 be some functionally separately convex subset ofG = grid(A) containing
A. (For instance, we may use the wholeG; a more efficient procedure is probably
obtained by computing the iterated quadrant hull ofA—see Section 4 below—and
letting B0 be the set of its grid points.)

2. Suppose that someBi has already been computed. IfBi has an extremal point
e 6∈ A, setBi+1 = Bi \{e}, and repeat this step. If all extremal points ofBi belong
to A, thenBi is the required functional separately convex hull ofA (in the grid
sense; the actual hull can be reconstructed as its box complex).

The correctness of the algorithm follows from Lemma 3.3 and Proposition 2.7.
When implemented carefully (using suitable data structures to maintain the current

set of extremal points), this algorithm has running timeO(|grid(A)|) = O(nd). It would
be interesting to find a faster algorithm (which would not consider all grid points).

Remark. This algorithm shows that the functional separately convex hull only depends
on the combinatorial structure ofA, in other words, that it is invariant under a monotone
transformation of a single coordinate. Hence we may always suppose that the point
coordinates are integers not exceeding|A|. This does not seem to be obvious from the
definition.

3.3. Remark on Computing Separately Convex Envelopes

Definition 3.4 (D-Convex Envelope). LetA ⊆ X be a set and letf : A→ R be a real
function. We define theD-convex envelopeof f , denoted byCD f , by

CD f (x) = sup{g(x)|g : X→ R is D-convex, g(y) ≤ f (y), ∀y ∈ A}.
This is formally a function intoR ∪ {∞}; we let domCD f = {x ∈ X|CD f (x) <∞}.
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StudyingD-convex envelopes (in particular, rank-one-convex envelopes as an upper
bound for quasi-convex envelopes) is equally important in applications as studying the
functionalD-convex hulls of sets. (On the other hand, as we point out later, theD-convex
envelope of a functionf can be computed as a functionalD′-convex hull of the graph
of f for D′ = D × R.)

Here we consider the case of separately convex envelope of a function defined on
a finite setA ⊂ Rd. In this case, the domain of the envelope is easily seen to be
precisely coD(A). Moreover, as the proofs of Proposition 3.1 and Corollary 3.2 show,
the envelope is fully determined by its values at the points ofB = grid(A)∩coD(A) (on
each elementary box of the grid ofA, the envelope is the unique multilinear extension
determined by the values at the vertices of the box).

Hence, let f : A → R be a given function on ann-point set A ⊆ Rd; we are
looking for the functiong: B → R, which is separately convex in the grid sense, is
upper-bounded byf at the points ofA, satisfies the appropriate inequalities of the form
(2), and is as large as possible (we may maximize at all points simultaneously, since
the maximum of two separately convex functions is separately convex). This yields a
problem of maximizing a linear function subject to a number of linear constraints, which
can be solved by algorithms for linear programming (see, e.g., [C]). Explicitly, with
unknownsg(b) (b ∈ B), the linear program is the following:

maximize
∑

b∈B g(b) subject to

g(a) ≤ f (a), a ∈ A,
g(b) ≤ αb,i g(bi−)+ (1− αb,i )g(bi+), b, bi+, bi− ∈ B,

whereαb,i = (xi (b)− xi (bi−))/(xi (bi+)− xi (bi−)).
For ann-point set inRd, this linear program has at mostO(nd) variables andO(nd)

inequalities. For the practically important case whenA is a grid, the number of variables
is the same as the number of input points, and the number of constrains is aboutd times
larger.

Remark. If A is in general position, say, this approach seems unsatisfactory, in that
we need to consider many more variables than original points. For the planar case, it is
not too difficult to show that for the separately convex envelopeg of a function given
at n points, one can decompose the domain ofg into O(n) rectangles, such thatg is
a bilinear function on each of them. Therefore,g can be fully described by giving its
values at the corners of these rectangles. However, currently we do not know how to find
this concise description without solving the linear program given above, with possibly
quadratically many variables and constraints.

Remark. The separately convex envelopes seem to be inherently more complicated
than the “usual” convex envelope, and it may be that some kind of high-dimensional linear
programming approach is unavoidable for its exact computation. We give an example to
support this (vague) statement.
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Example 3.5.

(i) For any natural number n, there exist a finite set A⊂ R2, a function f: A→ R,
and a point c∈ R2, such that the value of CD f (c) depends essentially on the
values of f at n distinct points a1, . . . ,an ∈ A, in the following sense: for each
i , if we decrease the value of f(ai ) and leave the values of f at the other points
of A unchanged, then CD f (c) decreases.

(ii) There exists a set D⊆ R3 such that the functional D-convexity has no finite
Carath́eodory number, that is, for any n there exists a set S⊆ R3 and a point
x ∈ coD(S)with x 6∈ coD(B) for any at most n-point subset B⊆ S. (In contrast,
the usual convexity inRd has Carath́eodory number d+ 1.)

Proof. We describe an example showing (i) forn = 6; the generalization to an arbitrary
n is immediate. Consider Fig. 2. The setA ⊂ R2 consists of the pointso = (0, 0),
u6 = (0, 6), v6 = (6, 0) (marked on the axes by circles), and of the pointsa1 = (6, 1),
a2 = (1, 6), a3 = (5, 2),. . . , a6 = (3, 4) (all these points are drawn in thexy-plane).
We set f (o) = f (u6) = f (v6) = 0, and we assume 0< f (a1) ¿ f (a2) ¿ · · · ¿
f (a6) (where¿ stands for “much smaller than”). Let us follow the construction of the
separately convex lower envelope,g. (Formally, we describe a construction of a function
g, which is certainly no smaller than the values of the envelope function; then it is easy
to check, proceeding backward, that if the input valuesf (ai ) have the right orders of
magnitude, the resultingg is indeed separately convex on the grid, and thus it is the
envelope itself; we omit a formal proof.) First of all,g is linear on the linev1a1; this
determinesg(b1) in terms of f (a1). Next, we look at the lineu1a2. Hereg consists of
two linear pieces with a break atb1 (since f (a2) is much larger thanf (a1)), so that the
valueg(b2) depends essentially on bothf (a1) and f (a2). The next line to look at isv2a3;
hereg also consists of two linear pieces, with a break atb2, and thereforeg(b3) depends
on all of f (a1), f (a2), f (a3). Proceeding further in this manner, we finally find that the
value ofg on the segmentb5a6 depends essentially on all off (ai ) (that is, if the f (ai )

Fig. 2. An example concerning the separately convex envelope.
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have right orders of magnitude, increasing any of them by an arbitrarily small amount
increases the value ofg at the midpointc of the segmentb5a6).

The above example can also be used for the proof of (ii). Indeed, let the notation be
as in the example; letS⊆ R3 contain the points(x, f (x)), with x ∈ A, plus the vertical
semilines of the form{(x, t)|t ∈ R, t ≥ M} for all x ∈ A, with M > max f (ai ). Set
D = {(0, 1), (1, 0)} ×R; then one can check that the epigraph of the separately convex
envelope off is exactly the functionalD-convex hull ofS. Now the pointx = (c, g(c))
belongs to this hull, but not to the hull of any set of the formS\{(ai , f (ai ))}.

In Section 5.1, we show that (surprisingly) the functional separate convexity in the
plane does have a finite Carath´eodory number. It would be interesting to determine the
Carathéodory number for some specificD, such as that for rank-one convexity or various
of its specializations.

3.4. A Nontrivial Generic Configuration in Dimension3

We continue discussing separate convexity, i.e.,D is a basis ofRd.

Example 3.6. There exists a20-point set A⊂ R3 with coD(A) 6= A and such that
no two points of A lie in a common plane perpendicular to a coordinate axis. (Since
the structure of the functional separately convex hull only depends on the ordering of
coordinates, any set A′ arising from A by a sufficiently small perturbation also satisfies
coD(A′) 6= A′; in this sense is A “generic.” )

Proof. We begin by choosing one four-point planar configuration as in Example 1.4.
We place one copy of it in thez= 0 plane, and one in thez= 1 plane (thexy-projections
are identical). Then we perturb the points a little in thez-direction, so that no twoz-
coordinates coincide. The resulting 8-point set and its functional separately convex hull
are depicted in Fig. 3. The lower points are denoted bya1, . . . ,a4 and the corresponding
upper points byb1, . . . ,b4.

This set is not generic yet, since it consists of four pairs of points on common vertical
lines. For eachi = 1, . . . ,4, we perturbbi a little within its horizontal plane, and we
add three more pointsci , di , ei , which are all located in a small cluster close to the edge
ai bi . The heights of these clusters (i.e., ranges ofz-coordinates) are chosen distinct,
say close toi /5. Figure 4 shows a detail of this placement fori = 1. In this case, the
order ofx-coordinates isx(c1) < x(e1) < x(b1) < x(a1) < x(d1), the y-coordinates
satisfy y(c1) < y(d1) < y(e1) < y(a1) < y(b1), and finally thez-coordinates satisfy
z(a1) < z(c1) < z(d1) < z(e1) < z(b1). For the otheri ’s, the configuration is rotated
and lifted into an appropriate height.

In this way, we obtain a 20-point configurationA with all point coordinates distinct.
It remains to show that the functional separately convex hull is nontrivial. This could be
done by a computer, by running the algorithm from Section 3.2 onA. The functional
separately convex hull ofA is depicted in Fig. 4 (to make the picture simpler, only a
part is shown). The reader need not even believe this is the complete hull; it suffices to
check that the depicted set has noD-extremal points than those ofA—then it must be
contained in coD(A) (by Proposition 2.7) and hence coD(A) 6= A.
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Fig. 3. The initial 8-point configuration.

Fig. 4. A part of the 20-point configuration and its functional separately convex hull.
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A Nontrivial Generic Configuration of Symmetric 2 × 2 Matrices. LetS2×2 denote
the space of real symmetric 2× 2 matrices. The mappingι:R3→ S2×2 defined by

ι: (x, y, z) 7→
(

x + z z
z y+ z

)
is an isomorphism of the vector spacesR3 andS2×2. Each of the three vectors ofD =
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} is mapped to a symmetric rank-one matrix byι, i.e.,ι(D) ⊂
R1, whereR1 = {a ∈ S2×2|ranka = 1}. As a consequence we have, for anyA ⊆ R3,
ι(coD(A)) ⊆ coR1(ι(A)). Hence if A is the above-constructed 20-point configuration,
its ι-image is a setA′ of 20 matrices with a nontrivial functional rank-one convex hull,
and this property is preserved under an arbitrary sufficiently small perturbation of the
matrices. Therefore we may also assume thatA′ contains no two rank-one connected
matrices (since the set of configurations with a rank-one connection has a zero measure
in the space of all configurations), and hence coR1(A′) = A′.

Remarks. Similarly, for anyn there is a vector space isomorphismιn: Rd → Sn×n

(whered = n(n+1)/2) such that the standard basis vectors inRd are mapped to rank-one
matrices. To see this, it suffices to construct a basisSn×n consisting of rank-one matrices.
One such basis consists of the matricesMk,` for 1 ≤ k ≤ ` ≤ n, where the entry of
Mk,` at position(i, j ) is 1 if {i, j } ⊆ {k, `} and 0 otherwise. The construction of a basis
consisting of rank-one matrices for the spaceMn×n of all n × n matrices is entirely
trivial, and it gives an isomorphism ofRn2 → Mn×n with similar properties. Hence
nontrivial generic configurations for separate convexity in sufficiently high dimensions
yield nontrivial finite generic sets for rank-one convexity. On the other hand, smaller
nontrivial configurations could probably be obtained using larger sets of directions from
the rank-one cone. For example, we may note that if the space of 2× 2 matrices is
identified withR4, then the rank-one directions contain the set(R2, 0) ∪ (0,R2), which
corresponds to a “biconvexity” inR4. These are themes for further research.

4. Q-Hulls and Iterated Q-Hulls

Here we define yet another notion of a “generalized convex hull” (this one is usually
considered in abstract convexity theory).

Definition 4.1. Let Q be a family of subsets ofX. For a setA ⊆ X, we define the
Q-hull of A as

Q-co(A) =
⋂
{Q ∈ Q|A ⊆ Q}.

Clearly, if Q consists of functionallyD-convex sets, thenQ-co(A) ⊇ coD(A). If
Q consisted ofall functionally D-convex sets, then we have equality. Our intention,
however, is to chooseQpossibly “small” and consisting of “simple” sets, so thatQ-co(A)
can be computed or approximated reasonably. (For usual convexity, a suitableQ is of
course the set of all half-spaces.) Let us define one suitable-lookingQ for separate
convexity; it is the set of complements of all translated open orthants. Formally:
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Definition 4.2. For a sign vectors ∈ {−1, 1}d, define

qs(0) = {x ∈ Rd|sgn(xi ) = si for i = 1, 2, . . . ,d},

and fora ∈ Rd, let qs(a) = qs(0) + a (for a specific orthant we write outs by writing
the corresponding signs only, i.e.,q++(0) stands for the positive open quadrant in the
plane). We setQsc = {Rd\qs(a)|a ∈ Rd, s ∈ {−1, 1}d}. We shall refer toQsc-co(A)
as thequadrant hullof A. These are all points which cannot be separated fromA by an
open orthant (quadrant in the plane).

The sets inQsc are functionally separately convex. To see that, say,Rd\qs(0) is
functionally separately convex, we may use the separately convex function

ϕ(x) =
{|x1x2 . . . xd| for x ∈ qs(0),

0 otherwise.

Remark. This substantiates the claim made in Example 1.4, namely, that the setC
there is functionally convex—it is easy to check thatC = Qsc-co(A). We also note that
the inclusionC ⊆ coD(A), which was established by a direct argument there, follows
from the Krein–Milman-type statement above (Proposition 2.7): the onlyD-extremal
points ofC are those ofA.

If Q consists of functionally convex sets, thenQ-co(A) is an outer approximation of
coD(A). Even for a four-point setA in the plane, however, the quadrant hull may be larger
than coD(A). An example is the setA = {(0, 0), (2, 1), (1, 2), (3, 3)}. HereQsc-co(A)
has three components—the points(0, 0), (3, 3), and the square [1, 2]2. By Corollary 2.9,
we get coD(A) = {(0, 0), (3, 3)} ∪ coD({(1, 2), (2, 1)}) ⊆ {(0, 0), (3, 3)} ∪ Qsc-co
({(1, 2), (2, 1)}) = A. (Another way to see thatQsc-co(A) 6= coD(A) is via Proposi-
tion 2.7).

An Iterated Q-Hull Procedure. The preceding four-point example suggests that a
better approximation of the functionalD-convex hull of a set might be obtained by
iterating theQ-hull construction for components. For instance, for a finite setA, we may
use the following procedure. We computeC(1) = Q-co(A), we letC(1)

1 , . . . ,C(1)
k be the

partition ofC(1) into connected components, then we compute

C(2) =
k⋃

i=1

Q-co(A∩ C(1)
i ), etc.

Obviously, for j ≥ |A|−1 we haveC( j ) = C( j+1), and usually the procedure terminates
much sooner.

In Section 5 we show that for separate convexity in the plane, this procedure in fact
yields the functional convex hull for every finite4 setA.

4 It works also for various “simple” compact setsA, such as ones with finitely many connected components;
for an arbitrary compactA, it need not give the functional separately convex hull in any finite number of
iterations.
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Fig. 5. A 6-point configuration whose quadrant hull is connected and larger than the functional separately
convex hull.

A Counterexample. In dimension 3 and higher, the iterated quadrant hull of a finite
point set can be strictly larger than the functional separately convex hull. A simple
example is shown in Fig. 5 (in coordinates, the points are(0, 1, 1), (1, 0, 0), (1, 2, 0),
(2, 0, 0), (2, 0, 2), and(2, 2, 2)). The six points inR3 are indicated by full circles, and the
functional separately convex hull is shown by full lines. The extra part of the quadrant
hull is drawn by a dashed line. It is easy to see that the point marked by the empty circle
cannot be separated from the other points by an octant; on the other hand, it cannot lie
in the functional separately convex hull since it is extremal in the quadrant hull.

There also exist generic sets with the above property. The smallest example we could
find (by a computer search) has twelve points (and a trivial functional separately convex
hull). It is the following set:A = {(1, 7, 7), (2, 6, 3), (3, 1, 4), (4, 5, 11), (5, 4, 2),
(6, 2, 8), (7, 12, 10), (8, 10, 1), (9, 9, 12), (10, 11, 6), (11, 3, 5), (12, 8, 9)}. A generic
set for which it is easily seen that the iterated quadrant hull is larger than the functional
separately convex hull is the configuration from Example 3.6. For instance, consider the
point (x(e1), y(e1), z(d1)) (look at Fig. 4). It is easy to check that this point belongs to
the quadrant hull, together with the segment connecting it toe1, say, and at the same
time that it is extremal in the quadrant hull (hence it cannot belong to the functional
separately convex hull).

5. Functional Separately Convex Hulls in the Plane

Throughout this section, we consider separate convexity in the plane (i.e.,D =
{(0, 1),(0, 1)}). For this case, Tartar [T] has shown that a finite setA ⊂ R2 satisfies
coD(A) = A iff coD(A) = A (i.e., no two points share anx-coordinate or ay-coordinate)
andA contains noC4 configuration.

Here we give a description of the functional separately convex hull of compact sets
in the plane (Proposition 5.1 below), which implies that the “iterated quadrant hull”
procedure outlined at the end of Section 4 actually computes coD(A) for finite A. Then
we discuss an efficient implementation of this procedure in this particular case.
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Call setsA, B ⊆ R2 separatedif they lie in diagonally opposite open quadrants,
i.e., there existsa ∈ R2 with either A ⊆ q++(a), B ⊆ q−−(a), or with A ⊆ q+−(a),
B ⊆ q−+(a). A set isinseparableif it cannot be partitioned into two nonempty separated
subsets.

Clearly, a set with a connected quadrant hull is inseparable (since the parts in a
separation would form disjoint pieces of the quadrant hull). It can be shown that also the
reverse implication holds; we know of no immediate proof and we do not need this fact,
so we omit its proof.

Proposition 5.1. Let A be a compact inseparable set in the plane. ThencoD(A) =
Qsc-co(A).

One proof can be given based on Proposition 2.7. We give another, slightly more tech-
nical proof, which yields an interesting extra piece of information on the Carath´eodory
number. We begin by a lemma.

Lemma 5.2. Let A⊆ R2 be a compact inseparable set, let u, v be points of A with
x(u) ≤ x(v), y(u) ≥ y(v); and letw be the point(x(u), y(v)) (see Fig. 6(a)). Suppose
that the left top quadrant q−+(u) contains no point of A, and also the right bottom
quadrant q+−(v) contains no point of A. Moreover, suppose that A′, the part of A lying
in the bottom-left closed quadrantq−−(w), is nonempty. Then there exist two points of A
which together with u andv form aC4 configuration(see Example1.4)such that the path
π = uwv is contained in its functional separately convex hull(thus also incoD(A)).

Proof. Let t ∈ A′ be a point ofA′ with maximumy-coordinate, and letr ∈ A′ have
maximumx-coordinate. Further, let̀ be a point with the smallestx-coordinate among
the points ofa ∈ A with y(a) ≥ y(v), and letb be a point with the smallesty-coordinate
among the points ofa ∈ A with x(a) ≥ x(u). If x(`) ≤ x(r ) (as in Fig. 6(a)), then

Fig. 6. Illustration for the proof of Lemma 5.2.
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Fig. 7. Illustration for the proof of Proposition 5.1.

the pointsu, v, `, r form a four-point configurationC4, and therefore (in particular) the
pathuwv is contained in coD(A) as claimed. Similarly fory(b) ≤ y(t), we find the
configurationC4 as the pointsu, v,b, t . Finally, if both x(`) > x(r ) andy(b) > y(t),
we find that the quadrants with center(

x(`)+ x(r )

2
,

y(b)+ y(t)

2

)
separateA (see Fig. 6(b); the shaded areas in the figure contain no points ofA)—a
contradiction.

Proof of Proposition5.1. Let A be inseparable and compact, and leta ∈ Qsc-co(A).
This means that all the four closed quadrantsqs(a) with vertices ata contain points of
A. For eachs ∈ {−1, 1}2, choose a pointas ∈ qs(a) ∩ A such thatqs(as) ∩ A = ∅; see
Fig. 7(a).

Consider the rectangle witha−+ anda+− as its left-top and right-bottom corners,
respectively, and letw, w′ be its left-bottom and right-top corners, respectively; see
Fig. 7(b). Draw the axis-parallel lines throughw andw′, and denote the resulting (closed)
regions inq−−(a) and inq++(a) as indicated in the figure.

If R−− ∩ A 6= ∅, we may apply Lemma 5.2 withu = a−+, v = a+−, and we get that
a four-point setC ⊆ A, consisting ofa−+,a+−, and two other points ofA forms aC4

configuration such that coD(C) contains the segmentsa−+w andwa+−. We now discuss
possible positions ofa++. If a++ 6∈ R′++, then it is easy to see thata ∈ coD(C∪ {a++}).
If a++ ∈ R′++, a statement symmetric to Lemma 5.2 (with top and bottom reversed
and left and right reversed) implies thata−+,a+−, and other two points ofA form a
C4 configurationC′ such that coD(C′) contains the segmentsa−+w′ andw′a+−. Then
clearlya ∈ coD(C ∪ C′).

It remains to discuss the case whenR−− ∩ A = ∅. By symmetry, we may also
assume thatR′++ ∩ A = ∅. Moreover, consider also the rectangle witha−− anda++
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Fig. 8. A contradiction in the casea−− ∈ R++, a++ ∈ R′−+.

as left-bottom and right-top corners, respectively, and lety, y′ be its left-top and right-
bottom corners, respectively; again by symmetry, we may also assume that the regions
q−+(y) andq+−(y′) contain no points ofA (note that these regions are defined using
a−− anda++ analogously asR−− andR′++ were defined usinga+− anda−+). With these
assumptions, we discuss the possible positions ofa−−. The regionR−− was excluded.
If a−− ∈ R++, all possible positions ofa++ lead to a contradiction to the supposed
emptiness ofR′++, q−+(y) or q+−(y′) (Fig. 8 illustrates this for the casea++ ∈ R′−+,
where the pointa+− gives a contradiction by lying inq+−(y′)). Finally, if a−− ∈ R−+,
say (the casea−− ∈ R+− is symmetric), the only possibility fora++ turns out to be
a++ ∈ R′+−, and in this casea+−,a−+,a−−, anda++ form aC4 configuration containing
a in its functionalD-convex hull. This proves Proposition 5.1.

5.1. Carath́eodory Number

The above proof in fact shows that whenevera ∈ coD(A), there exists a subsetB ⊆ A of
size bounded by a constant such thata ∈ coD(B), that is, the functional separately convex
hull in the plane has a bounded Carath´eodory number. This is somewhat surprising, as
the situation for the separately convex hull is different—for any numberK one can find
a setA ⊆ R2 and a pointa ∈ coD(A) such thata 6∈ coD(B) for any at mostK -point
subsetB ⊆ A. As an example, one may take the set{(

1

2i − 1
, 1+ 1

i

)∣∣∣∣ i = 1, 2, . . .

}
∪
{(

1

2i
,

1

i + 1

)∣∣∣∣ i = 1, 2, . . .

}
∪ {(1, 1)}.

With a little extra effort, the Carath´eodory number for the functional separately convex
hull in the plane can be determined exactly.

Proposition 5.3. Let A⊂ R2 be compact and let a∈ coD(A) (where D is the union
of the two coordinate axes). Then there exists an at most5-point subset B⊆ A with
a ∈ coD(B).
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Fig. 9. Examining 6-point configurations.

Proof. We may assumeA is inseparable (otherwise we may look at the inseparable
piece ofA whose hull containsa). By inspecting the above proof of Proposition 5.1, we
find that the only situation where one needs more than five points to witnessa ∈ coD(A)
is the casea−− ∈ R−−, a++ ∈ R′++ (and the symmetric case fora+− anda−+). Here
we haveC4 configurationsC = {a+−,a−+,a1,a2} andC′ = {a−+,a+−,a′1,a′2}. Up to
symmetry, there are only two possible ways how these configurations may look, and these
are depicted in Fig. 9. By an easy inspection of cases (discussing the possible position
of a in the rectanglea−+wa+−w′), one can check thata always lies in the functional
D-convex hull of some at most five points amonga−+,a+−,a1,a2,a′1,a

′
2.

5.2. A Fast Algorithm in the Plane

Proposition 5.4. The functional separately convex hull of an n-point set in the plane
is a disjoint union of polygons with O(n) edges in total, and it can be computed in
O(n logn) time.

Proof Sketch. Based on Proposition 5.1, most of the algorithm is rather standard, so
we omit various details. First we consider the case of an inseparablen-point setA. Here
we need to compute the quadrant hull ofA, and for this, well-known computational
geometry techniques may be used, see, e.g., [PS]. For instance, we may note the following
expression for the quadrant hull:

Qsc-co(A) =
⋂

s∈{−1,1}2
Us, where Us =

⋃
a∈A

qs(a).

Indeed, a pointx lies inQsc-co(A) iff each of the closed quadrants with vertex atx
contains a point ofA; the unionUs is the set of all pointsx which contain a point ofA
in the closed quadrantq−s(x).

EachUs is an (unbounded) polygon bounded by a “staircase” polygonal line with at
mostn steps. It can be computed inO(n logn) time by an algorithm for computing the
maximaof a planar point set, and the four setsUs can be intersected by a plane sweep
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algorithm, say (see [PS] for terminology and such algorithms). To bound the number of
vertices of the intersection, we note that each vertex is either a vertex of someUs, or is
an intersection of an edge of someUs with the boundary of someUs′ (resp. an endpoint
of such an intersection if the intersection happens to be a segment). Since each edge of
the boundary ofUs may only intersect the boundary ofUs′ in a single point or segment,
the O(n) bound on the number of vertices follows.

A slightly more interesting part of the algorithm is partitioning a finite set into insepa-
rable pieces. LetA be the givenn-point set. First we sort its points by theirx-coordinates
and also by theiry-coordinates. Denote the points ofA by a1,a2, . . . ,an in such a way
thatx(a1) ≤ x(a2) ≤ · · · ≤ x(an), and letp be a permutation sorting the points in the
y-direction, that is,y(ap(1)) ≤ · · · ≤ y(ap(n)). We assume that the points ofA are stored
in a linear array (in the ordera1,a2, . . .), and the permutationp and its inversep−1 are
also stored in linear arrays.

The algorithm is easiest to describe recursively. We describe a procedureSEPARATION
which, given the arrays storingA andp, either concludes thatA is inseparable, or finds
a partitionA = A1 ∪̇ A2 of A into two separated sets. In the latter case, the procedure is
called recursively onA1 and onA2. (Note that by the definition of separation, we have a
sorted order for bothA1 andA2 in both coordinates; hence in an actual implementation,
the recursive call can be made withA1 or A2 specified as subintervals in the arrays
representingA, so that we need not set up the arrays forA1 andA2.)

As we show below, the procedure can be implemented in such a way that it runs
in O(n) time on an inseparable set, or finds a separation ofA into A1, A2 in time
O(min(|A1|, |A2|)). An easy analysis then shows that the whole recursive algorithm for
decomposingA into inseparable pieces needs timeO(n logn) for ann-point setA.

It remains to describe the procedureSEPARATION. Supposen > 1. First we find out
which kind of separation to look for. Ify(a1) < y(an), then only a separation of the
−−,++ type (i.e., all the points in the first group in the separation precede all points
in the second group, for both coordinates) is possible. Ify(a1) > y(an), we should look
for a separation of the+−,−+ type; this case is similar to the former one and we omit
its discussion.

Thus, we assumey(a1) < y(an). It is easy to see that the following conditions are
necessary and sufficient for the sets{a1,a2, . . . ,ai } and{ai+1, . . . ,an} (with 1≤ i < n)
to form a separation ofA of the−−,++ type:

the indicesp(1), . . . , p(i ) form a permutation of{1, 2, . . . , i }, (3)

x(ai ) < x(ai+1) andy(aj ) < y(aj ′), where j = p−1(i ), j ′ = p−1(i + 1). (4)

The condition (3) can be rephrased as max{p(1), p(2), . . . , p(i )} = i . Thus, we start with
i = 1 and then we incrementi , maintaining a variablecmax= max{p(1), . . . , p(i )},
and we test for the conditioncmax= i . Whenever this occurs, we check condition (4).

In this way, if the first set in the separation hasi points, the separation is found in
O(i ) time. In order to handle efficiently also the case when the first set in the separation
is much larger than the second one, we simultaneously look for a separation “from
backward.” That is, at thei th step, we also consider the symmetric conditions for the
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sets{a1, . . . ,an−i } and{an+1−i , . . . ,an} to be separated, i.e.,

the indicesp(n), p(n− 1), . . . , p(n− i + 1) form a permutation of
{n, n− 1, . . . ,n− i + 1},

x(an+1−i ) > x(an−i ) andy(aj ) > y(aj ′),
where j = p−1(n− i + 1), j ′ = p−1(n− i ).

In this way, a separation intoA1, A2 is found in timeO(min(|A1|, |A2|)), and when
i reachesbn/2c without a separation found, we know that the current input set is
inseparable.

6. Open Problems

As was indicated in Section 1.2, a long-term goal for further research is the understanding
of functional rank-one convex hulls and rank-one convex envelopes of functions (and
similarly for the corresponding quasi-convex notions). Below we list some immediate
questions related to the current paper.

1. What is the maximum combinatorial complexity of the functional separately con-
vex hull ofn points inRd? (O(nd) is an easy upper bound, but perhaps it isO(n)
in three-dimensions etc.)? How efficiently can one compute it?

2. In particular, how efficiently can one decide whetherA = coD(A) for separate
convexity? Are there any nice sufficient conditions? (In the plane, one has Tartar’s
result that coD(A) = A iff coD(A) = A andA has noC4 configuration.)

3. Is there a finite Carath´eodory number for functional separate convexity inRd, for
eachd? (If yes, it has to be at least 2d.) Is there a finite Carath´eodory number for
functional rank-one convexity in some dimensions?

4. What is the smallest number of points of a setA ⊂ R3 in general position with a
nontrivial functional separately convex hull? (Our example gives an upper bound
of 20, and an obvious lower bound is 8; a computer search revealed that no such
configuration of size 8 exists.) Similarly, what is the smallest number of matrices
(symmetric 2× 2, say) in general position with a nontrivial functional rank-one
convex hull?

5. How can our results for separate convexity be generalized to more directions in
D? (The first case to look at are three directions in the plane.)

6. In particular, what do functionalD-convex hulls of finite sets (“D-polytopes”)
look like?

7. Again, what are interesting necessary/sufficient conditions forA = coD(A)? In
particular, what about symmetric 2× 2 matrices and rank-one convexity?

8. What is a good analogue of orthants used in the definition ofQ-co for the separately
convex case?

9. If we are given some “reasonable”Q, how to compute theQ-hull efficiently?
10. How to compute or approximateD-convex envelopes of functions efficiently?
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[C] V. Chvátal,Linear Programming, Freeman, New York, 1983.
[M] C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer-Verlag, Berlin, 1966.

[OSSW] T. Ottmann, E. Soisalon-Soininen, and D. Wood, On the definition and computation of rectilinear
convex hulls,Inform. Sci. 33 (1985), 157–171.

[PS] F. P. Preparata and M. I. Shamos,Computational Geometry: An Introduction, Springer-Verlag, New
York, 1985.

[RW1] G. J. E. Rawlins and D. Wood, Optimal computation of finitely oriented convex hulls,Inform.
Comput. 72 (1987), 150–166.

[RW2] G. J. E. Rawlins and D. Wood, Computational geometry with restricted orientations,Proc. 13th
IFIP Conf. System Modelling and Optimization, Lecture Notes in Control and Information Science,
vol. 113, Springer-Verlag, Berlin, 1988, pp. 375–384.

[RW3] G. J. E. Rawlins and D. Wood, Ortho-convexity and its generalizations, in (G. T. Toussaint, ed.),
Computational Morphology, North-Holland, Amsterdam, 1988, pp. 137–152.
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