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Abstract. A thrackle is a graph drawn in the plane so that its edges are represented by
Jordan arcs and any two distinct arcs either meet at exactly one common vertex or cross
at exactly one point interior to both arcs. About 40 years ago, J. H. Conway conjectured
that the number of edges of a thrackle cannot exceed the number of its vertices. We show
that a thrackle has at most twice as many edges as vertices. Some related problems and
generalizations are also considered.

1. Introduction

Let G be a graph with vertex setV(G) and edge setE(G), and assume that it has no
loops or multiple edges. Adrawing of G is a representation ofG in the plane such
that every vertex corresponds to a point, and every edge is represented by a Jordan arc
connecting the corresponding two points without passing through any other vertex. Two
edges (arcs) are said tocrosseach other if they have an interior pointp in common. For
simplicity, we always assume that no three edges cross at the same point. A crossingp is
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calledproper if in a small neighborhood ofp one edge passes from one side of the other
edge to the other side. Due to its aesthetic appeal and wide range of applications in VLSI
layout, computer-aided design, software visualization, etc., the area of graph drawings
has received a lot of attention in the past two decades. For a recent bibliography of graph
drawing algorithms, see [DETT].

There are many interesting results in topological graph theory characterizing all graphs
embeddable on a given surface without crossing (see [WB]). However, we know very
little about the possible intersection patterns determined by the edges of a graph drawn
on a surface. In particular, even for some very simple graphs we do not know how to
find thecrossing numberof G, i.e., the minimum number of crossing pairs of edges in
a planar drawing ofG. In the case whenG is a complete bipartite graph, this is Tur´an’s
brick factory problem [T1], [G3]. The determination of the crossing number is known
to be NP-complete [GJ].

Another well-known open problem that illustrates our ignorance about graph drawings
was raised by Conway about 40 years ago. He defined athrackleas a drawing of a graph
G with the property that any two distinct edges either:

(i) share an endpoint, and then they do not have any other point in common; or
(ii) do not share an endpoint, in which case they meet exactly once and determine a

proper crossing.

Thrackle Conjecture. The number of edges of a thrackle cannot exceed the number
of its vertices.

A graph that can be drawn as a thrackle is said to bethrackleable. Assuming that the
above conjecture is true, Woodall [W] characterized all thrackleable graphs. With this
assumption, a finite graph is thrackleable if and only if it has at most one odd cycle, it
has no cycle of length four, and each of its connected components contains at most one
cycle. Note that it is quite straightforward to check the necessity of these conditions (see
Lemma 2.1). Using a construction suggested by Conway, the thrackle conjecture can be
reduced to the following statement: If a graphG consists of two even cycles meeting in
a single vertex, thenG is not thrackleable ([W1] and [PRS1]). It is worth mentioning
that the thrackle conjecture is true forstraight-line thrackles, i.e., for drawings where
every edge is represented by a segment [HP], [FS], [PA]. See [LST] for a surprising
relation between straight-line thrackles and triangulations of certain polytopes, and [G1]
for another geometric application.

Any two edges of a thrackle intersect in exactly one point, including the endpoints.
For finite set-systems satisfying a similar condition we have the following well-known
result [F], [BE].

Fisher Inequality. Let F be a family of subsets of a finite set X such that any two
members of F have exactly one element in common. Then F has at most as many
members as the number of elements of X.

An interesting modular version of this inequality was discovered by Berlekamp [B].
Suppose that every member ofF has anoddnumber of elements and that the intersection
of any two members iseven. Then|F | ≤ |X|. These results and their generalizations
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originate in linear algebra and play a central role in finite geometries and in the theory
of combinatorial designs (see [BF]).

Since thrackles do not contain cycles of length four, it follows from [KST] that the
maximum number of edges a thrackle ofn vertices can have isO(n3/2). Our next theorem
represents a substantial improvement on this bound.

Theorem 1.1. Every thrackle of n vertices has at most2n− 3 edges.

The proof is based on the following result.

Theorem 1.2. Every thrackleable bipartite graph is planar.

Just like the Fisher inequality, the thrackle conjecture has some modular versions,
too. For example, call a graph drawing ageneralized(or modulo2-) thrackleif any two
edges meet anodd number of times, where “meet” means either “meet at a common
vertex” or “meet at a proper crossing.”

Theorem 1.3. Every generalized thrackle of n vertices has at most3n− 4 edges.

Theorem 1.4. A bipartite graph can be drawn as a generalized thrackle if and only if
it is planar.

Woodall [W2] asked whether the thrackle conjecture remains true for generalized
thrackles. Our last theorem implies that the answer to this question is in the negative,
because a bipartite planar graph ofn vertices can have as many as 2n− 4 edges.

2. Three Lemmas

In what follows a thrackle and its underlying “abstract” graph are both denoted byG.
If there is no danger of confusion, we make no notational distinction between a vertex
(edge) of the graph and the corresponding point (arc).

Lemma 2.1. Let G be a thrackleable graph. Then G contains(i) no cycle of length
four; (ii) no two vertex-disjoint odd cycles.

Proof. To show (ii), notice that a pair of vertex-disjoint odd cycles would be represented
in a thrackle by two closed curves that properly cross each other an odd number of
times.

Lemma 2.2. Let C1 and C2 be two cycles in a graph G that have precisely one vertex
v in common. Suppose that G can be drawn as a thrackle. Then the two closed curves
representing C1 and C2 cross each other in a small neighborhood ofv if and only if both
cycles are odd.

Proof. Let ki denote the length ofCi , i = 1, 2. The closed curve representingC1

divides the plane intok1(k1 − 3)/2+ 2 connected cells. Color these cells with black
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and white so that no two cells that share a boundary arc have the same color. The curve
representingC2 intersectsC1 exactly 2(k1− 2)+ (k2− 2)k1 ≡ k1k2 times (mod 2), not
countingv. Every timeC2 intersectsC1, it passes from one cell to another whose color
is different. Assume that in a small neighborhood ofv the initial segment of an edge of
C2 incident tov lies in a white region. Then the initial segment of the other edge ofC2

incident tov lies in a black region if and only ifk1k2 is odd.

A graph consisting of three internally disjoint pathsPi , i = 1, 2, 3, betweenu and
v is called a2-graph. A drawing of this2-graph is said to be apreserverif in a small
neighborhood ofu the initial pieces of the pathsPi follow each other in the same circular
order (clockwise or counterclockwise) as the final pieces do aroundv. Otherwise, the
drawing is called aconverter. Note that, using this terminology, ifG is a planar graph
drawn in the plane without crossing, then any2-subgraph of this drawing is a converter.

The proof of the next lemma is very similar to that of the previous one.

Lemma 2.3. A2-subgraph of a thrackle is a converter if and only if at most one of its
three paths has odd length.

Remark. With the exception of Lemma 2.1(i), all statements and proofs in this section
remain valid for generalized thrackles.

3. Bipartite Thrackles

Proof of Theorem1.2. By Kuratowski’s theorem, it is sufficient to show that a thrack-
leable bipartite graphG does not contain a subdivision ofK5 or of K3,3.

Suppose thatG contains a subdivision ofK5, whose vertices arev0, . . . , v4. Assume
without loss of generality that in a thrackle drawing ofG the initial pieces of the edges
incident tov0 follow each other in the clockwise orderv0v1, . . . , v0v4. Then there are
two (even) cycles throughv0, v1, v3 andv0, v2, v4 that have no vertex in common other
thanv0. The corresponding two curves cross each other in a small neighborhood ofv0,
contradicting Lemma 2.2.

Suppose next thatG contains a subdivision ofK3,3 with vertex classes{u1, u2, u3}
and{v1, v2, v3}. Denote this subdivision byK . Assume first that the lengths of all nine
paths inK connecting theui ’s and thevj ’s have the same parity. Deleting fromK the
point u3 together with the three paths connecting it to thevj ’s, we obtain a2-graph. In
view of Lemma 2.3, it is a converter betweenu1 andu2. Similarly, deletingu2 (u1) we
obtain a converter betweenu1 andu3 (u2 andu3, respectively). We say that the type ofui

is clockwiseor counterclockwiseaccording to the circular order of the initial segments
of the pathsui v1, ui v2, ui v3 aroundui . It follows from the definition of a converter that
any twoui ’s must have opposite types, which is impossible.

There are two other essentially different cases according to the parities of the nine
paths formingK . It turns out that in both cases one can arrive at a contradiction by
showing that there is exactly one pair of points amongu1, u2, u3 having opposite
types.
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Proof of Theorem1.4. In view of the remark at the end of the previous section, the
above argument also proves that every bipartite graph that can be drawn as ageneralized
thrackle is planar. To establish the theorem, we have to show that the reverse of this
statement is also true, i.e., every bipartite planar graphG can be drawn as a generalized
thrackle. To see this, consider a crossing-free embedding ofG in the plane such that

(i) V(G) = V1 ∪ V2, where all points ofV1 are mapped into the upper half-plane
and all points ofV2 below the liney = −1;

(ii) every edgee∈ E(G) connects a vertex ofV1 to a vertex ofV2, and each piece of
e belonging to the strip−1≤ y ≤ 0 is a vertical segment.

Now erase the part of the drawing in the strip−1 ≤ y ≤ 0, and replace the part in
the upper half-plane by its reflection about they-axis. Reconnecting the corresponding
pairs of points on the linesy = −1 andy = 0 by straight-line segments, we obtain a
drawing ofG such that any pair of independent edges meet an odd number of times.
This can be turned into a generalized thrackle by slightly modifying the edges in a small
neighborhood of their endpoints so as to reverse the circular order of edges around each
vertex ofG.

We could have completed our proof without using Lemma 2.2. The fact that a thrackle
contains no subdivision ofK5 can also be deduced from Lemma 2.3 in a slightly more
complicated way.

The proof of Theorem 1.2 also yields the following.

Corollary 3.1. A graph is planar if and only if it has a drawing whose every2-
subgraph is a converter.

For a related result, see [T2].

4. Reduction to the Bipartite Case

Every graph can be made bipartite by the removal of fewer than half of its edges. It
follows from Euler’s polyhedral formula that any bipartite planar graph ofn vertices has
at most 2n− 4 edges(n > 2). If in addition the graph has no cycles of length four then
this bound can be replaced byb3n/2c−3 (n > 3). Thus, Theorem 1.4 and Lemma 2.1(i)
immediately imply the following.

Corollary 4.1. Let n> 3. Then

(i) every thrackle of n vertices has at most3n− 7 edges;
(ii) every generalized thrackle of n vertices has at most4n− 9 edges.

In the rest of this section we sketch how to reduce the bound in Corollary 4.1(i)
roughly byn.

Let G be a thrackle ofn vertices,n > 3. One can assume thatG is not bipartite,
otherwise its number of edges cannot exceedb3n/2c − 3. LetC denote a shortest odd
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cycle ofG with lengthc. By Lemma 2.1(i) and by the minimality ofC, any vertex ofG
not onC has at most one neighbor belonging toC. Hence, there are at mostn edges of
G which are not onC incident to vertices ofC. It follows from Lemma 2.1(ii) that the
graphG− C obtained fromG by the removal of all points ofC is bipartite. Thus,

|E(G)| ≤ |E(G− C)| + n ≤ 3(n− c)

2
+ n = 5n

2
− 3c

2
.

One can refine this argument, as follows. The closed curve representingC cuts the plane
into a number of cells that can be colored with black and white so that no two cells with
a common boundary arc have the same color. Letb andw denote the number of vertices
of G − C lying in black and in white cells, respectively. Clearly,c+ b+ w = n, and
one can assume without loss of generality thatb ≤ w, so that

b ≤ n− c

2
. (1)

Observe that if an edgee connects a point ofC to (say) a black vertex, then in a small
neighborhood of this point the initial piece ofe must be white. There are at mostb such
edges, and if one removes all of them together with all edges ofC, the resulting graph
(thrackle) becomes bipartite. This with (1) yields the inequality

|E(G)| ≤
⌊

3n

2

⌋
− 3+ b+ c ≤ 2n+ c

2
− 3.

Comparing the last two inequalities, we obtain that|E(G)| < (2+ 1
8)n.

One can further reduce this bound by utilizing an idea of Conway (see [W1], [G2],
[PRS2], and [PRS1]). Now we replace each vertex and edge ofC by two nearby vertices
and edges, respectively. More precisely, we split each vertexv of C into two vertices,vb

andvw, and connect all black and white neighbors ofv not onC tovb andvw, respectively.
Furthermore, ifv andv′ are two consecutive vertices ofC, we connectvb to v′w andvw
to v′b. It is not hard to see that this construction can be carried out in such a way that
the resulting drawingG′ is a thrackle, which becomes bipartite after the removal of all
edges betweenvb’s and black vertices. Thus,

|E(G′)| − b = |E(G)| + c− b ≤
⌊

3(n+ c)

2

⌋
− 3,

which implies by (1) that

|E(G)| ≤ 2n− 3,

as stated in Theorem 1.1.

5. Small Forbidden Configurations

All of the results in the previous sections were based on parity arguments. Theorem 1.4
shows that if we want to settle Conway’s original conjecture, we have to go beyond
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these methods. In the proof of Theorem 1.1 we were able to explore a property of
thrackles that does not hold for generalized thrackles. Namely, we used the fact that
a thrackleable graph has no cycle of length four (Lemma 2.1(i)). By excluding some
other small configurations that would contradict the thrackle conjecture, one can easily
improve the bound in Theorem 1.1. The trouble is that it is quite difficult to find any
new nontrivial forbidden subgraph, because even a relatively small graph may have an
enormous number of topologically different drawings such that no two edges meet more
than once. In this section, we illustrate these difficulties by an example.

Let23 denote a graph consisting of two vertices connected by three internally disjoint
paths of length three.

Theorem 5.1. A thrackleable graph cannot contain23 as a subgraph.

For the proof we need some preparation. LetG be a fixed thrackle whose edges are
smooth curves. Given two directed edgese and f that do not share an endpoint, we say
thate meets f clockwiseif at their intersection point a tangent vector toecan be carried
into a tangent vector off by a clockwise turn with angle less thanπ .

Let P = e1e2e3e4 be a directed path inG with length four, directed towarde4.
AssociateP with a 4× 4 matrix M such thatMi j = 0 if i = j or if ei and ej do
not have an interior point in common. Otherwise, letMi j = 1 or −1 depending on
whetherei meetsej clockwise or counterclockwise. Clearly,M is antisymmetric and it
is determined by the triple(M13,M14,M24). This triple is called thetypeof P. It turns
out that there are only six possible types:

a = (1, 1,−1); b = (1,−1,−1); c = (1,−1, 1);
A = (−1,−1, 1); B = (−1, 1, 1); C = (−1, 1,−1).

Lemma 5.2. Let e1, e2, . . . ,e6 be six directed edges of a thrackle that form a sim-
ple directed cycle, and let Pi = ei ei+1ei+2ei+3, where the indices are takenmod 6.
Thentype(P1) type(P2) . . . type(P6)must be one of the following sequences: Aa Aa Aa,
a Aa Aa A, BbBbBb, bBbBbB.

Given a directed pathP = e1e2e3e4, let the reverseof P be defined asP−1 =
e−1

4 e−1
3 e−1

2 e−1
1 , wheree−1

i denotes the same edge asei but with reversed orientation.
If e1 . . .e5 is a simple directed path, we say thatP′ = e2e3e4e5 can be obtained from
P = e1e2e3e4 by ashift.

Lemma 5.3. Let P be a path of length four in a thrackle, and assume thattype(P) ∈
{a, b, A, B}.

(i) type(P−1) = b, a, B, or A according to whethertype(P) = a, b, A, or B.
(ii) If P ′ can be obtained from P by a shift andtype(P′) ∈ {a, b, A, B}, then

type(P) type(P′) must be one of the following six pairs: a A, aB, bB, Aa, Ab,
Bb.

Proof of Theorem5.1. Assume that there is a thrackle containing23 as a subgraph. By
Lemma 5.2, the type of every directed path of23 belongs to the set{a, b, A, B}. Consider
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a pathP whose type belongs to{b, B}. (If P does not satisfy this condition, then its
reverse does.) Observe that the topology of23 allows us to transformP into its reverse
by a series of shifts. It follows from Lemma 5.3(ii) that the types of all paths obtained
during this process belong to{b, B}. However, by Lemma 5.3(i), type(P−1) ∈ {a, A},
which is a contradiction.
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