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Abstract. A thrackleis a graph drawn in the plane so that its edges are represented by
Jordan arcs and any two distinct arcs either meet at exactly one common vertex or cross
at exactly one point interior to both arcs. About 40 years ago, J. H. Conway conjectured
that the number of edges of a thrackle cannot exceed the number of its vertices. We show
that a thrackle has at most twice as many edges as vertices. Some related problems and
generalizations are also considered.

1. Introduction

Let G be a graph with vertex s&t(G) and edge seE (G), and assume that it has no
loops or multiple edges. Arawing of G is a representation d& in the plane such

that every vertex corresponds to a point, and every edge is represented by a Jordan arc
connecting the corresponding two points without passing through any other vertex. Two
edges (arcs) are said¢oosseach other if they have an interior poipin common. For
simplicity, we always assume that no three edges cross at the same point. A cpoissing
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calledproperif in a small neighborhood op one edge passes from one side of the other
edge to the other side. Due to its aesthetic appeal and wide range of applications in VLSI
layout, computer-aided design, software visualization, etc., the area of graph drawings
has received a lot of attention in the past two decades. For a recent bibliography of graph
drawing algorithms, see [DETT].

There are many interesting results in topological graph theory characterizing all graphs
embeddable on a given surface without crossing (see [WB]). However, we know very
little about the possible intersection patterns determined by the edges of a graph drawn
on a surface. In particular, even for some very simple graphs we do not know how to
find thecrossing numbeof G, i.e., the minimum number of crossing pairs of edges in
a planar drawing 06. In the case whefs is a complete bipartite graph, this is ams
brick factory problem [T1], [G3]. The determination of the crossing number is known
to be NP-complete [GJ].

Anotherwell-known open problem that illustrates ourignorance about graph drawings
was raised by Conway about 40 years ago. He defitbchakleas a drawing of a graph
G with the property that any two distinct edges either:

(i) share an endpoint, and then they do not have any other point in common; or
(i) do not share an endpoint, in which case they meet exactly once and determine a
proper crossing.

Thrackle Conjecture. The number of edges of a thrackle cannot exceed the number
of its vertices.

A graph that can be drawn as a thrackle is said tthbeckleable Assuming that the
above conjecture is true, Woodall [W] characterized all thrackleable graphs. With this
assumption, a finite graph is thrackleable if and only if it has at most one odd cycle, it
has no cycle of length four, and each of its connected components contains at most one
cycle. Note that it is quite straightforward to check the necessity of these conditions (see
Lemma 2.1). Using a construction suggested by Conway, the thrackle conjecture can be
reduced to the following statement: If a graBlronsists of two even cycles meeting in
a single vertex, theis is not thrackleable (J[W1] and [PRS1]). It is worth mentioning
that the thrackle conjecture is true fstraight-line thracklesi.e., for drawings where
every edge is represented by a segment [HP], [FS], [PA]. See [LST] for a surprising
relation between straight-line thrackles and triangulations of certain polytopes, and [G1]
for another geometric application.

Any two edges of a thrackle intersect in exactly one point, including the endpoints.
For finite set-systems satisfying a similar condition we have the following well-known
result [F], [BE].

Fisher Inequality. Let F be a family of subsets of a finite set X such that any two
members of F have exactly one element in comniben F has at most as many
members as the number of elements of X

An interesting modular version of this inequality was discovered by Berlekamp [B].
Suppose that every memberfohas aroddnumber of elements and that the intersection
of any two members isven Then|F| < |X]|. These results and their generalizations



On Conway’s Thrackle Conjecture 371

originate in linear algebra and play a central role in finite geometries and in the theory
of combinatorial designs (see [BF]).

Since thrackles do not contain cycles of length four, it follows from [KST] that the
maximum number of edges a thrackleofertices can have i®(n*?). Our next theorem
represents a substantial improvement on this bound.

Theorem 1.1. Every thrackle of n vertices has at m@st— 3 edges
The proof is based on the following result.
Theorem 1.2. Every thrackleable bipartite graph is planar

Just like the Fisher inequality, the thrackle conjecture has some modular versions,
too. For example, call a graph drawing@neralizedor modulo2-) thrackleif any two
edges meet andd number of times, where “meet” means either “meet at a common
vertex” or “meet at a proper crossing.”

Theorem 1.3. Every generalized thrackle of n vertices has at n3ost 4 edges

Theorem 1.4. A bipartite graph can be drawn as a generalized thrackle if and only if
it is planar.

Woodall [W2] asked whether the thrackle conjecture remains true for generalized
thrackles. Our last theorem implies that the answer to this question is in the negative,
because a bipartite planar graphofertices can have as many as-2 4 edges.

2. Three Lemmas

In what follows a thrackle and its underlying “abstract” graph are both denotéal by
If there is no danger of confusion, we make no notational distinction between a vertex
(edge) of the graph and the corresponding point (arc).

Lemma2.1. Let G be a thrackleable grapffhen G containgi) no cycle of length
four; (ii) no two vertex-disjoint odd cycles

Proof. Toshow (ii), notice that a pair of vertex-disjoint odd cycles would be represented
in a thrackle by two closed curves that properly cross each other an odd number of
times. O

Lemma 2.2. LetC; and G be two cycles in a graph G that have precisely one vertex
v in common Suppose that G can be drawn as a thracRleen the two closed curves
representing @and G, cross each other in a small neighborhoodvaf and only if both
cycles are odd

Proof. Letk; denote the length o€, i = 1, 2. The closed curve representify
divides the plane intd;(k; — 3)/2 + 2 connected cells. Color these cells with black
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and white so that no two cells that share a boundary arc have the same color. The curve
representing, intersect<C, exactly 2k; — 2) + (ko — 2)k; = kik, times (mod 2), not
countingv. Every timeC, intersect<L,, it passes from one cell to another whose color

is different. Assume that in a small neighborhood dhe initial segment of an edge of

C, incident tov lies in a white region. Then the initial segment of the other edd&,of
incident tov lies in a black region if and only ¥;k; is odd. O

A graph consisting of three internally disjoint patRs i = 1, 2, 3, betweenu and
v is called a®-graph A drawing of this®-graph is said to be preserverif in a small
neighborhood ofi the initial pieces of the pathg follow each other in the same circular
order (clockwise or counterclockwise) as the final pieces do arou@therwise, the
drawing is called aonverter Note that, using this terminology, @ is a planar graph
drawn in the plane without crossing, then amsubgraph of this drawing is a converter.
The proof of the next lemma is very similar to that of the previous one.

Lemma 2.3. A ©®-subgraph of a thrackle is a converter if and only if at most one of its
three paths has odd length

Remark. With the exception of Lemma 2.1(i), all statements and proofs in this section
remain valid for generalized thrackles.

3. Bipartite Thrackles

Proof of Theoreni.2. By Kuratowski's theorem, it is sufficient to show that a thrack-
leable bipartite grapls does not contain a subdivision Bf or of K3 3.

Suppose thab contains a subdivision dfs, whose vertices are, . . ., v4. ASsume
without loss of generality that in a thrackle drawing@the initial pieces of the edges
incident tovg follow each other in the clockwise ordegvy, ..., vovs. Then there are
two (even) cycles througty, v1, vz andvg, vy, v4 that have no vertex in common other
thanvg. The corresponding two curves cross each other in a small neighborhegd of
contradicting Lemma 2.2.

Suppose next thab contains a subdivision df3 3 with vertex classegus, u,, us}
and{vy, v, v3}. Denote this subdivision bi{ . Assume first that the lengths of all nine
paths inK connecting they;’s and thev;’s have the same parity. Deleting frokh the
pointus together with the three paths connecting it to this, we obtain a®-graph. In
view of Lemma 2.3, it is a converter betweenandu,. Similarly, deletingu, (u;) we
obtain a converter between andus (u; andus, respectively). We say that the typelpf
is clockwiseor counterclockwis@ccording to the circular order of the initial segments
of the pathsy; v, Uj vy, Uj vz aroundu; . It follows from the definition of a converter that
any twou;’s must have opposite types, which is impossible.

There are two other essentially different cases according to the parities of the nine
paths formingK. It turns out that in both cases one can arrive at a contradiction by
showing that there is exactly one pair of points amangu,, uz having opposite
types. O
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Proof of Theoreni.4. In view of the remark at the end of the previous section, the
above argument also proves that every bipartite graph that can be dragarsralized
thrackleis planar. To establish the theorem, we have to show that the reverse of this
statement is also true, i.e., every bipartite planar g@man be drawn as a generalized
thrackle. To see this, consider a crossing-free embeddi@®iofthe plane such that

() V(G) = V1 U V,, where all points olv; are mapped into the upper half-plane
and all points ofV, below the liney = —1;

(il) every edgee € E(G) connects a vertex of; to a vertex olV,, and each piece of
e belonging to the strip-1 < y < 0 is a vertical segment.

Now erase the part of the drawing in the stAfl < y < 0, and replace the part in
the upper half-plane by its reflection about fraxis. Reconnecting the corresponding
pairs of points on the lineg = —1 andy = 0 by straight-line segments, we obtain a
drawing of G such that any pair of independent edges meet an odd number of times.
This can be turned into a generalized thrackle by slightly modifying the edges in a small
neighborhood of their endpoints so as to reverse the circular order of edges around each
vertex of G. O

We could have completed our proof without using Lemma 2.2. The fact that a thrackle
contains no subdivision df5 can also be deduced from Lemma 2.3 in a slightly more
complicated way.

The proof of Theorem 1.2 also yields the following.

Corollary 3.1. A graph is planar if and only if it has a drawing whose evéy
subgraph is a converter

For a related result, see [T2].

4. Reduction to the Bipartite Case

Every graph can be made bipartite by the removal of fewer than half of its edges. It
follows from Euler’s polyhedral formula that any bipartite planar grapheértices has

at most 2 — 4 edgegn > 2). If in addition the graph has no cycles of length four then
this bound can be replaced b§n/2| — 3 (n > 3). Thus, Theorem 1.4 and Lemma 2.1(i)
immediately imply the following.

Corollary 4.1. Letn> 3.Then

(i) every thrackle of n vertices has at m8st— 7 edges
(ii) every generalized thrackle of n vertices has at rdost 9 edges

In the rest of this section we sketch how to reduce the bound in Corollary 4.1(i)
roughly byn.

Let G be a thrackle of vertices,n > 3. One can assume th@&t is not bipartite,
otherwise its number of edges cannot excegt/2| — 3. Let C denote a shortest odd
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cycle of G with lengthc. By Lemma 2.1(i) and by the minimality &, any vertex ofG
not onC has at most one neighbor belongingdoHence, there are at masedges of
G which are not orC incident to vertices o€. It follows from Lemma 2.1(ii) that the
graphG — C obtained fromG by the removal of all points o is bipartite. Thus,

3(n—oc) _o5n 3¢

E(G E(G-C .
IE(G)] = |E( Ntns——+4n=—--

One can refine this argument, as follows. The closed curve represéntinty the plane
into a number of cells that can be colored with black and white so that no two cells with
a common boundary arc have the same colorblasidw denote the number of vertices
of G — C lying in black and in white cells, respectively. Clearty+ b + w = n, and
one can assume without loss of generality that w, so that
n—c

b< 5 D
Observe that if an edgeconnects a point of to (say) a black vertex, then in a small
neighborhood of this point the initial piece @must be white. There are at mdssuch
edges, and if one removes all of them together with all edg€3 ttfie resulting graph
(thrackle) becomes bipartite. This with (1) yields the inequality

3
IEG)] < L;J—3+b+052n+g—3.

Comparing the last two inequalities, we obtain tHatG)| < (2 + %)n.

One can further reduce this bound by utilizing an idea of Conway (see [W1], [G2],
[PRS2], and [PRS1]). Now we replace each vertex and ed@ewyftwo nearby vertices
and edges, respectively. More precisely, we split each vertéXC into two verticespy
andv,,, and connect all black and white neighbors abt onC to v, andv,,, respectively.
Furthermore, ifv andv’ are two consecutive vertices 6f we connecty, to v, andv,,
to v,. It is not hard to see that this construction can be carried out in such a way that
the resulting drawings’ is a thrackle, which becomes bipartite after the removal of all
edges between,’s and black vertices. Thus,

|[E(G)|—b=|EG)|+c—b= Pm—;C)J -3,

which implies by (1) that
IE(G)| <2n -3,

as stated in Theorem 1.1.

5. Small Forbidden Configurations

All of the results in the previous sections were based on parity arguments. Theorem 1.4
shows that if we want to settle Conway'’s original conjecture, we have to go beyond
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these methods. In the proof of Theorem 1.1 we were able to explore a property of
thrackles that does not hold for generalized thrackles. Namely, we used the fact that
a thrackleable graph has no cycle of length four (Lemma 2.1(i)). By excluding some
other small configurations that would contradict the thrackle conjecture, one can easily
improve the bound in Theorem 1.1. The trouble is that it is quite difficult to find any
new nontrivial forbidden subgraph, because even a relatively small graph may have an
enormous number of topologically different drawings such that no two edges meet more
than once. In this section, we illustrate these difficulties by an example.

Let ®3 denote a graph consisting of two vertices connected by three internally disjoint
paths of length three.

Theorem 5.1. A thrackleable graph cannot contaéd; as a subgraph

For the proof we need some preparation. Getbe a fixed thrackle whose edges are
smooth curves. Given two directed edgeand f that do not share an endpoint, we say
thate meets f clockwiséat their intersection point a tangent vectortoan be carried
into a tangent vector of by a clockwise turn with angle less than

Let P = e;ee3e4 be a directed path i with length four, directed towarey.
AssociateP with a 4 x 4 matrix M such thatM;; = 0if i = j orif  andg do
not have an interior point in common. Otherwise, Mf = 1 or —1 depending on
whetherg meetsg clockwise or counterclockwise. Clearly| is antisymmetric and it
is determined by the tripléMi3, M14, M2g). This triple is called thaéypeof P. It turns
out that there are only six possible types:

a=(,1-1; b=(,-1 -1); c=(1-11;
A= (-1 -11; B=(-111); C=(-11-1.
Lemmab5.2. Leteg,e,...,e; be six directed edges of a thrackle that form a sim-

ple directed cycleand let R = 6,168,263, where the indices are takemod 6.
Thentype(P,) type(P,) . . . type(Ps) must be one of the following sequencaa AaAa
aAaAaABbBbBhbBbBbB

Given a directed patlP = e eezey, let thereverseof P be defined afP—! =
e, 'e; e, e Y, wheree ™ denotes the same edge @sbut with reversed orientation.
If e1...65is a simple directed path, we say tHat = e,esese5 can be obtained from
P = e;exe3e4 by ashift

Lemma5.3. Let P be a path of length four in a thracklend assume thaype(P) €
{a, b, A, B}.

(i) type(P~1) =b, a, B, or A according to whethetype(P) = a, b, A, or B.

(ii) If P’ can be obtained from P by a shift aridpe(P’) € {a, b, A, B}, then
type(P) type(P’) must be one of the following six paimA, aB, bB, Aa, Ab,
Bh.

Proof of Theorenb.1. Assume that there is a thrackle contairfingas a subgraph. By
Lemma5.2, the type of every directed pati®afbelongs to the s¢a, b, A, B}. Consider
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a pathP whose type belongs tfb, B}. (If P does not satisfy this condition, then its
reverse does.) Observe that the topologwefallows us to transfornf into its reverse

by a series of shifts. It follows from Lemma 5.3(ii) that the types of all paths obtained
during this process belong {b, B}. However, by Lemma 5.3(i), typ® 1) € {a, A},
which is a contradiction. O
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