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Abstract. Let6 be a collection ofn algebraic surface patches inR3 of constant maximum
degreeb, such that the boundary of each surface consists of a constant number of algebraic
arcs, each of degree at mostb as well. We show that the combinatorial complexity of the
vertical decomposition of a single cell in the arrangementA(6) is O(n2+ε), for anyε > 0,
where the constant of proportionality depends onε and on the maximum degree of the
surfaces and of their boundaries. As an application, we obtain a near-quadratic motion-
planning algorithm for general systems with three degrees of freedom.

1. Introduction

Let 6 = {σ1, . . . , σn} be a collection ofn algebraic surface patches inR3 of constant
maximum degreeb, such that the boundary of each surface consists of a constant number
of algebraic arcs, each of degree at mostb as well. LetA(6) denote the arrangement
of 6. (We assume that the reader is familiar with arrangements—see, for instance, the

∗ Work on this paper by the first author has been supported by the Netherlands’ Organization for Scientific
Research (NWO), by the nondirected research fund of the Korean Ministry of Education, and partial support
by Pohang University of Science and Technology Grants P95015, 1995, and 96F004, 1996. Work on this paper
by the second author has been supported by NSF Grants CCR-93-11127 and CCR-94-24398, by a Max-Planck
Research Award, and by grants from the U.S.–Israeli Binational Science Foundation, the Israel Science Fund
administered by the Israeli Academy of Sciences, and the G.I.F., the German–Israeli Foundation for Scientific
Research and Development.



270 O. Schwarzkopf and M. Sharir

recent book [19] for details concerning arrangements of surfaces in higher dimensions.)
Let ω be a fixed point, not lying on any surface of6. We denote byCω(6) the (open)
three-dimensional cell ofA(6) containingω. The combinatorial complexity ofCω(6)
is the number of vertices, edges, and 2-faces ofA(6) appearing on the boundary of
that cell. For simplicity, we measure this complexity only by the number of vertices of
the cell. It is well known that the number of all other boundary features ofCω(6) is
proportional to the number of vertices (assuming general position—see below), plus an
additive term ofO(n2).

Recently, it has been shown that the combinatorial complexity ofCω(6) is O(n2+ε),
for anyε > 0, where the constant of proportionality depends onε and on the maximum
degreeb of the surfaces and of their boundaries [12]. The corresponding algorithmic
problem, however, of computingCω(6) in near-quadratic time, has been open, with the
exception of several solutions for special classes of surfaces [4], [5], [14]. The main
motivation for this algorithmic problem comes from motion planning, and is explained
in detail in the papers just cited, and in the recent survey paper [13]. We also note that
these results extend the earlier (and somewhat simpler) analysis of the complexity of
lower envelopes of surfaces in higher dimensions [11], [17].

An algorithm for constructingCω(6) can be obtained using thevertical decomposition
of such a cell [12]–[14]. This is a standard decomposition scheme, described in detail
in several recent works [8], [9], [19], that partitions cells in arrangements of algebraic
surfaces into subcells of “constant description complexity” (see below), provided the
maximum degree of the surfaces is a constant.

For the sake of completeness, we also give a brief informal description of the vertical
decomposition. We first assume that each surface patch in6 is xy-monotone. This can
always be enforced by splitting each such patch intoO(1) xy-monotone subpatches. In
the first decomposition stage, we erect withinC a vertical “wall” up and/or down from
each edge ofC (both surface boundary edges and intersection edges of pairs of surfaces).
Each such wall consists of maximal vertical segments contained in (the closure of)C and
passing through the points of the edge. The collection of these walls partitionsC into
subcells, each having the property that it has a unique “top” facet and a unique “bottom”
facet (one or both of these facets may be undefined when the subcell is unbounded; all
other facets of the subcell lie on the vertical walls). However, the complexity of each
subcell may still be arbitrarily large. Thus, in the second decomposition stage, we take
each subcellC ′, project it onto thexy-plane, and apply to the projection a similar but
two-dimensional vertical decomposition, erecting ay-vertical segment from each vertex
of the projected subcell and from each point of localx-extremum on its edges. This
yields a collection of trapezoidal-like subcells, and we then lift each of them vertically to
3-space, to obtain a decomposition ofC ′ into prism-like subcells, each having “constant
description complexity,” meaning that each of them is a semialgebraic set defined by a
constant number of polynomials of constant maximum degree (which depends onb).
Repeating this second stage for all subcellsC ′ produced in the first stage, we obtain the
desired vertical decomposition ofC. More details can be found elsewhere [8], [9], [19].

Using this decomposition scheme, we can then apply, for instance, a lazy randomized
incremental algorithm [6] to construct the vertical decomposition ofCω(6), by adding
the surfaces one after the other in random order, and by updating the decomposition as
the surfaces are added. The efficiency of this algorithm crucially depends on the size
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(number of subcells) of the decomposition (of the cellsCω(6′), for any subset6′ ⊆ 6).
A near-quadratic bound on the size of the vertical decomposition of a single cell implies
that the (expected) complexity of the above algorithm is also near-quadratic.

In this paper we show that the complexity of the vertical decomposition of a single cell
in a three-dimensional arrangement, as above, is indeedO(n2+ε), for anyε > 0, where
the constant of proportionality depends, as above, onε and on the maximum degreeb
of the surfaces and of their boundaries. The proof technique borrows ideas from several
recent papers [1], [11], [17], [20] that have analyzed several related problems.

It is instructive to note that if all our surfaces arexy-monotone without boundaries (in
other words, they are graphs of continuous totally defined algebraic bivariate functions),
then the near-quadratic bound on the complexity of the vertical decomposition of a single
cell is an immediate consequence of the recent results of Agarwalet al. [1], which give
a near-quadratic bound for the complexity of the vertical decomposition of the region
enclosed between the lower envelope of one collection of such surfaces and the upper
envelope of another such collection; in this special case our single cell is a portion of
such a “sandwiched” region. In the general case that involves surfacepatches, though,
the topological structure of a single cell can be much more complex, and this makes the
analysis considerably harder.

As a corollary of our bound, we obtain that a single cell in a three-dimensional
arrangement of surfaces, as above, can be constructed in randomized expectedO(n2+ε)
time, for anyε > 0. This in turn implies that motion planning for fairly general systems
with three degrees of freedom can be performed in near quadratic time. This solves one
of the major open problems in the area. These applications of our bound are briefly
presented in Section 3.

2. Complexity of the Vertical Decomposition of a Single Cell

Let 6 andω be as in the Introduction. For the purpose of our analysis, we require the
surface patches to bexy-monotone. This involves no real loss of generality, because,
as already mentioned in the Introduction, we can partition each of the surfaces into a
constant number ofxy-monotone portions (where the constant depends on the maximum
degreeb).

As is well known [19], the complexity of the vertical decomposition ofC = Cω(6) is
proportional (up to an additive near-quadratic term) to the number ofvertical visibility
configurations. These are ordered triples(e, e′, g), whereeande′ are edges ofC andg is
a vertical segment whose bottom endpoint lies one, whose top endpoint lies one′, and
whose relative interior is contained inC. The main result of this paper is a near-quadratic
upper bound on the number of these vertical visibility configurations.

In what follows, we assume that the surfaces6 are ingeneral position, in the sense
considered in Section 7.1 of [19]. This does not involve any real loss of generality. To see
this, we apply a random perturbation to the polynomials defining the given surfaces. Any
given vertical visibility configuration will still appear after the perturbation with some
positive probability (in most cases it will actually multiply). This argument is discussed
in detail in [17]. Hence, a bound for surfaces in general position will, multiplied by the
appropriate constant, hold for arbitrary surfaces.
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A first consequence of the general position assumption is that the maximum number
of vertical visibility configurations that correspond to any fixed pair(e, e′) of vertically
visible edges is at most some constants (which depends on the maximum degreeb of the
surfaces and of their boundaries). Therefore, it suffices to count the number ofvertically
visiblepairs of edges ofC. These are ordered pairs(e, e′) of edges ofC such that there
exists a vertical visibility configuration(e, e′, g).

If e or e′ is a portion of the boundary of a surface of6, we call (e, e′, g) an outer
vertical visibility configuration; otherwise(e, e′, g) is aninner configuration. We later
show that the overall number of outer configurations isO(nλs+2(n)), whereλs(n) is the
maximum length of an(n, s) Davenport–Schinzel sequence [2], [15], [19]. Hence, in
what follows, we only consider inner vertical visibility configurations. For convenience,
we do not mention the qualifier “inner” from now on.

For technical reasons, we extend the notion of vertical visibility configurations as
follows. Let e ande′ be two edges ofA(6) such that there exists a vertical segmentg
whose bottom endpoint lies oneand whose top endpoint lies one′. We say that(e, e′, g)
is avertical edge-crossingatC-levelξ if 1

(i) the subset6′ ⊆ 6 of surfaces that intersect the relative interior ofghas cardinality
ξ , and

(ii) g is fully contained inCω(6\6′).
(Thexy-monotonicity of the surfaces imply that(ē, ē′, g) is a vertical visibility config-
uration inA(6\6′), whereē (resp.ē′) is the edge ofA(6\6′) containinge (resp.e′).)
Note that the four surfaces incident toe ande′ cannot intersect the relative interior ofg.
Thus, vertical edge-crossings atC-level 0 are precisely the vertical visibility configura-
tions. We denote byCq(6;ω) the number of vertical edge-crossings ofC-level at mostq.
We also denote byCq(n) the maximum possible value ofCq(6;ω), over all collections
6 of n surfaces as above (with a fixedb), and over all pointsω not lying on any surface.

The notion of levels is also extended to vertices and edges ofA(6): We say that a
vertexv (resp. an edgee) ofA(6) is atC-levelξ if there exists a subset6′ of ξ surfaces,
so thatv is a vertex of (resp.e is contained in an edge of)Cω(6\6′), and if ξ is the
smallest number with that property. Again, the actual vertices and edges ofCω(6) are
precisely the vertices and edges atC-level 0.

Let k be a threshold parameter, whose value is specified later. Our goal is to prove a
bound onC0(n) that has roughly the form

C0(n) ≤ 1

k2
Ck(n)+ O(kαn2+ε), (1)

whereα is some fixed exponent, from which we can deduce the near-quadratic bound on
C0(n), by using Clarkson and Shor’s technique [10] to boundCk(n) by O(k4C0(n/k)),
and by solving the resulting recurrence forC0, which easily yields a near-quadratic upper
bound. The exact inequality that we will derive will be somewhat weaker than (1), but it
will still yield the desired bound onC0(n).

1 We advise the reader that the paper uses several different notions of a level for a variety of configurations.
Intuitively, any of these levels is defined to be the smallest number of surfaces whose removal causes the
configuration in question to be such that all its defining elements lie on the boundary of the cell containingω.
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The idea of proving a bound like (1) is to identify aboutk2C0(6;ω) distinct edge-
crossings atC-level at mostk in the arrangementA(6). We do (something close to) this,
using a two-stage counting argument, similar to that used by Agarwalet al. [1]. This
should be compared with the simpler technique of using a single counting stage, as used
in [11] and [17] and in several other recent papers. The typical way in which such a stage
is applied, say to bound the complexity of the lower envelope of surfaces in 3-space, is as
follows. Start at a vertexv of the envelope, and proceed from it away from the envelope
along an intersection curveγ of the surfaces, in an attempt to collect at leastk vertices
of the arrangement alongγ before getting back to the envelope, and then chargev to the
first k such vertices, observing that all the charged vertices are at level at mostk, and
apply the Clarkson–Shor technique to bound the number of charged vertices byO(k3)

times the complexity of the envelope of a sample ofn/k of the surfaces. This approach,
combined with many additional ingredients that we omit in this sketchy review, leads to
a recurrence that solves toO(n2+ε), for anyε > 0, which is smaller by about one factor
of n than the naive boundO(n3).

In contrast, the naive bound on the number of edge-crossings isO(n4), since each
crossing is determined by four surfaces, and we want to obtain a bound that is about two
factors ofn smaller. This is why we need a two-stage counting scheme. Unfortunately,
such a scheme is considerably more complex, and we discuss below the additional
complications that may arise, and give some intuitive explanation of the manner in
which we overcome them, before giving the full formal proof.

Preliminaries. Letebe an edge ofA(6) and letVe be the vertical 2-manifold obtained
as the union of allz-vertical rays whose bottom endpoints lie one. The intersection of
each surfaceσ ∈ 6 with Ve is a (not necessarily connected) algebraic arc of constant
maximum degree (and with a constant number of connected components), so each pair
of these arcs intersect in at most some constant number,s, of points (wheres depends
only on the maximum degreeb of the given surfaces and of their boundaries; it is the
same parameters mentioned at the beginning of this section). We denote the set of these
arcs by6e, and their arrangement onVe byA(6e).

Completely analogously, we define the vertical 2-manifoldVe obtained as the union
of all downward directedz-vertical rays whose top endpoints lie one. (ImagineVe as
a “curtain” hanging down frome, while Ve is a curtain standing one.) We denote the
set of arcs formed by the intersections of the surfaces of6 with Ve by 6e, and their
arrangement inVe byA(6e). We define theV -levelof a point p in Ve (resp. inVe) to
be the number of arcs in6e (resp. in6e) that lie below (resp. above)p.

A simple but crucial observation is:

Lemma 2.1. Let e be an edge ofA(6)withC lying locally right above e. Then(e, e′, g)
is an edge-crossing atC-levelξ , if and only if the point of e′ ∩Ve that lies on the z-vertical
line through g is a vertex ofA(6e) at V -levelξ .

See Fig. 1 for an illustration. This lemma implies that each vertical visibility config-
uration with bottom edgee corresponds to a vertex in the lower envelope of the arcs in
6e. (Of course, a similar and symmetric statement holds for6e′ , wheree′ is the top edge
of the configuration.)
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Fig. 1. The arrangementA(6e); with vertices representing a vertical visibility configuration and a vertical
edge-crossing atC-level 3, both havinge as their bottom edge.

Now that we have introduced this terminology and observations, we can dispose, as
promised, of outer visibility configurations:

Lemma 2.2. The number of outer vertical visibility configurations is O(nλs+2(n)).

Proof. Let δ be an arc bounding some surface in6. By Lemma 2.1 each outer vertical
visibility configuration havingδ as its bottom edge is represented by some vertex (break-
point) of the lower envelope of6δ within Vδ. By the standard Davenport–Schinzel theory
[2], [15], [19], the number of such breakpoints isO(λs+2(n)) (recall that6δ consists
of O(n) connected arcs, each pair of which intersect in at mosts points). We repeat
this analysis for each of theO(n) boundary arcs of the surfaces of6, and also apply a
symmetric analysis within the “hanging curtains”V δ. This implies the assertion of the
lemma.

It is convenient for our analysis to assume that the arrangementsA(6e) andA(6e′)

do not contain any arc endpoints atV-level ≤3k, except on the relative boundaries of
Ve andVe′ (recall that all other arc endpoints lie on surface boundaries). Intuitively, the
reason for this is that later in the analysis we will need to argue that many arcs that
appear among the firstk or 2k V-levels inVe or Ve′ contain at leastk vertices of the
corresponding arrangement. The above requirement guarantees that all but at most 3k
such arcs have the desired property. More details are given later in the proof. We can
achieve this by splitting the edges ofA(6) into what we callsplit edges, as follows.

Let γ be an arc in6e. If γ has an endpointw within the relative interior ofVe, which
lies in the first 3k V-levels ofA(6e), we erect a vertical line throughw and splite
andVe at that line into two portions. We repeat this splitting for all edgese of A(6)
and for eachγ ∈ 6e, whenever it is applicable. We apply a symmetric procedure in all
the corresponding downward-directed curtainsVe′ . Furthermore, we split all edgese at
points where their projection onto thexy-plane has a tangent parallel to they-axis. This
will guarantee that all split edges arex-monotone.

Lemma 2.3. The overall number of such edge-splittings is O(k2nλs+2(n/k)).
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Fig. 2. An edge-crossingχ = (e, e′, g) with σ(χ) = σ3.

Proof. The intersection curve of two surfaces has only a constant number of points
where the projection on thexy-plane has a tangent parallel to they-axis, so the total
number of such points isO(n2).

We bound the number of splits induced by an endpoint atV-level at most 3k using
a similar argument to that of Lemma 2.2. Letδ be an arc bounding some surface in
6. It is easily seen that each edge-split induced byδ (i.e., a splitting of some edgee
caused by a point inδ ∩ Ve (or a point inδ ∩ Ve) that lies atV-level ≤ 3k in A(6e)

(or inA(6e))) corresponds to a vertex ofA(6δ) in Vδ, or to a vertex ofA(6δ) in V δ,
at V-level ≤ 3k, and a standard application of the Clarkson–Shor technique implies
that the overall number of such vertices, over all boundary arcsδ, is O(k2nλs+2(n/k))
[10], [16].

We make one final definition before we start with the actual proof. For a vertical
edge-crossingχ = (e, e′, g), we have four distinct surfacesσ1, σ2, σ3, σ4 ∈ 6, such that
e⊂ σ1 ∩ σ2 ande′ ⊂ σ3 ∩ σ4 (here we already assume thate ande′ are split edges). Let
` be the vertical line throughg, and let`′ be a copy of̀ shifted infinitesimally along
e in decreasingx-direction. Thenσ3 ∩ `′ andσ4 ∩ `′ are two distinct points. We put
σ(χ) = σ3 if σ3 ∩ `′ lies belowσ4 ∩ `′, otherwiseσ(χ) = σ4; see Fig. 2.

Informal Preview of the Proof. As mentioned above, the proof uses a two-stage argu-
ment. The first stage analyzes the structure of the arrangementsA(6e), for (split) edges
e of the given cell, and identifies within them a setR of edge-crossings, all atC-level at
mostk, such thatC0(6;ω) is upper bounded by roughlyO(|R|/k) plus near-quadratic
terms. The second stage then analyzes the number of edge-crossings inR, by “distribut-
ing” them over the arrangementsA(6e′), over all (split) edgese′ at C-level at mostk,
and by estimating their number within each such arrangement. The goal is to show that
|R| is upper bounded by roughlyO(C3k(n)/k) plus certain near-quadratic terms. To do
so, we want to argue that the number of vertices of the first 3k V-levels in any such
arrangement is at least roughlyÄ(k) times the number of vertices representing elements
ofR in that arrangement. This argument, however, is complicated by the fact that some
arrangementsA(6e′) may contain too many of the edge-crossings inR. To overcome
this problem, we classify the crossings inR into two categories that we call “covered”
and “uncovered.” In two central lemmas (Lemmas 2.5 and 2.6) we then show that the
above argument holds for the number of uncovered edge-crossings inR, and that the



276 O. Schwarzkopf and M. Sharir

number of covered edge-crossings is near quadratic, which follows from a somewhat
involved graph planarity argument. Putting everything together, we obtain a recurrence
formula that solves to the desired near-quadratic bound forC0(n).

First Stage. In this stage we identify a setR of special vertical edge-crossings inA(6).
Consider first a (split) edgee of C with C lying locally right abovee. We partitione

into two subedges as follows: We start from the right endpoint ofe (recall that all split
edges arex-monotone) and move alonge to the left until we encounter the(k + 1)st
distinct surface of6 directly above the point. We denote the portion ofe traversed by
this process byer , and the remaining part ofe by el . (It can happen that we encounter
the left endpoint ofe before seeing more thank distinct surfaces—in that caseer = e
andel is empty.) By Lemma 2.1, every edge-crossing atC-level 0 with bottom point on
er corresponds to a vertex of the lower envelope ofA(6er ) onVer . Since there are onlyk
surfaces appearing on the lower envelope overer , its complexity is at mostO(λs+2(k))
[2], [15]. Since the number of edges boundingC is O(n2+ε) [12], and they can be split
into at mostO(k2nλs+2(n/k)) additional split edges, the overall number of vertical
visibility configurations involving the right subedgeser of all the split edgese of C is at
mostO(λs+2(k)(n2+ε + k2nλs+2(n/k))), for anyε > 0. In the following, we therefore
restrict our attention to the vertical visibility configurations that appear above the left
subedgesel of the (split) edges ofC.

Intuitively, the reason for considering the right portions of edges separately lies in
the construction ofR, described below. In this construction we move to the right from
certain verticesv of the lower envelope ofA(6e) along an incident arc, in an attempt to
collect at leastk vertices ofA(6e) along that arc, each incident to a new distinct surface.
We can guarantee that this will be possible if at leastk distinct surfaces appear to the
right of v on the envelope, that is, ifv lies above the left portion ofe.

Consider a pair of surfacesσ1, σ2 ∈ 6, and consider their intersection curveσ1 ∩ σ2.
This curve consists of a constant number ofx-monotone connected pieces. Letγ be one
such piece. LetVγ be the union of allVe, for all (split) edgese of the arrangement that
are contained inγ . Letγ ′ be the subset ofγ that is the union of the left subedgesel of all
edgese⊆ γ of C such thatC lies locally right abovee. Let6(γ ) be the set of surfaces in
6 that appear on the lower envelope onVγ restricted overγ ′, and lett = tγ = |6(γ )|.
The number of breakpoints of the lower envelope aboveγ ′ (excluding the endpoints of
arcs inγ ′) is at mostaλs+2(t) [2], [15], wherea is an appropriate constant (depending on
the maximum degree of the surfaces; it arises because, as above, an intersectionσ ∩ Vγ
may consist of more than one connected arc).

Consider now a surfaceσ ∈ 6(γ ). It appears on the lower envelope over the left
subedge of some (split) edgee ⊆ γ with C lying locally right abovee, and therefore
there are at leastk surfacesσ ′ ∈ 6 that appear overe to the right ofσ . By continuity
and by our construction, eitherσ and such a surfaceσ ′ intersect withinVe at least once,
or each of them has a point atV-level > k. We now collectk vertices onσ ∩ Ve as
follows: We start at some point whereσ appears on the lower envelope onVe (over
the left subedgeel ), and followσ ∩ Ve in increasingx-direction (recall that all split
edges arex-monotone). We pass, before we reach the end ofe, at leastk verticesv, at
which we encounter a new,distinctsurface in6, because we must either encounter all
the k surfaces that appear aboveer or reach thekth V-level. All these vertices are at



Vertical Decomposition of a Single Cell in a 3-D Arrangement of Surfaces 277

Fig. 3. The setup in the construction ofR.

V-level ≤ k, since when we first reach thekth V-level, we must have passed all the
k surfaces lying below the point. For every such vertexv, let χv be the vertical edge-
crossing with bottom edgeecorresponding tov by Lemma 2.1. Note thatσ(χv) = σ . See
Fig. 3 for an illustration. We letR(γ, σ ) denote the collection of these edge-crossings
χv. Note that we collect thesek vertices starting fromonly one occurrenceof σ along the
entire curveγ , so|R(γ, σ )| = k. This is used in deriving property (R3) of Lemma 2.4
below. PutR(γ ) = ⋃σ∈6(γ )R(γ, σ ), andR = ⋃γ R(γ ), over allx-monotone pieces
γ of intersection curves. The fact thatσ(χv) = σ for all χv ∈ R(γ, σ ) implies that the
setsR(γ, σ ) are pairwise disjoint.

As observed before, the number of visibility configurations aboveγ ′ is at most
aλs+2(t). On the other hand, we have that

|R(γ )| =
∣∣∣∣∣ ⋃
σ∈6(γ )

R(γ, σ )
∣∣∣∣∣ = kt = Ä

(
k

t

λs+2(t)
· aλs+2(t)

)
≥ k

β(n)
· aλs+2(tγ ), (2)

whereβ(n) = 2(λs+2(n)/n) is an extremely slowly growing function ofn [2], [15].
Summing (2) over allx-monotone piecesγ of intersection curves, and observing that
any edge-crossing inR is counted in this sum exactly once, we obtain

C0(6;ω) ≤ β(n)
k
|R| + O

(
λs+2(k)

(
n2+ε + k2nλs+2

(
n

k

)))
, (3)

for any ε > 0 (where the second term in the right-hand side bounds the number of
vertical visibility configurations over the right portionser ). We thus obtain the following
lemma.

Lemma 2.4. Given a set of surfaces6 and a pointω as above, there is a setR of
vertical edge-crossings such that|R| satisfies(3) and such that the following conditions
hold:

(R1) Eachχ ∈ R is atC-level at most k.
(R2) For eachχ = (e, e′, g) ∈ R, the edge e is an edge ofC such thatC lies locally

right above e.
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Fig. 4. Condition (R4).

(R3) For any three surfacesσ1, σ2, σ3 ∈ 6, there are at mostµk vertical edge-
crossingsχ = (e, e′, g) in R with e ⊆ σ1 ∩ σ2 and σ(χ) = σ3, for some
constantµ depending on the maximum degree b.

(R4) For eachχ = (e, e′, g) ∈ R, and for any surfaceζ that intersects the relative
interior of g, there is an intersection pointv of ζ andσ = σ(χ) on Ve, so that
the portion ofζ ∩Ve betweenv and g does not meetσ , and the portion ofσ ∩Ve

betweenv and g does not meet the other surfaceσ ′ incident to the top endpoint
of g. In addition, if g′ denotes the vertical segment connecting e andv, then the
“trapezoidal-like” region1 formed within Ve by g, g′, the part of e between
g and g′, and the part ofσ ∩ Ve between g and g′, is intersected by at most k
surfaces of6 (see Fig. 4).

Proof. Conditions (R1) and (R2) are immediate from the construction. Condition (R3)
follows if we chooseµ to be the maximum number of maximalx-monotone pieces into
which any intersection curve between two surfaces in6 is decomposed. All that remains
to be shown is condition (R4): Sinceχ ∈ R andσ(χ) = σ , there exists an edge-crossing
atC-level 0 of the form(e, e∗, g∗), wheree∗ is incident toσ , such that, if we followσ ∩Ve

from the top endpoint ofg∗ to the top endpoint ofg, we encounter at mostk− 1 distinct
surfaces of6, and do not encounterσ ′. Let1∗ denote the trapezoidal-like region formed
within Ve by g, g∗, the part ofe betweeng andg∗, and the partζ of σ ∩ Ve betweeng
andg∗. Then1∗ can be intersected by at mostk surfaces of6. To see this, we note that,
as just argued, at mostk surfaces intersectζ , and that no surface can intersecte (which
is a portion of an edge ofA(6)) or g∗. We claim that no boundary arc of any surface
of 6 can cross1∗. Indeed, letu be the leftmost point of intersection of a boundary arc
with1∗. Then the number of surfaces that vertically separateu from e is at mostk (any
such surface must crossζ ), so that, by construction, such a crossing would have caused
e to be split below it. It now follows that any surface crossing1∗ must also crossζ , and
condition (R4) is thus immediate.

Second Stage. We next bound|R| in terms ofCk(n). Let e′ be a split edge ofA(6)
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at C-level ≤ k. Let t = te′ denote the number of surfaces of6 that appear on the first
2k (top) V-levels ofA(6e′). (We remind the reader thatV-levels inVe′ are measured
from e′ downward.) If t ≤ 4k, thene′ contributes at mostO(k2) edge-crossings toR.
We claim that there are onlyO(k1−εn2+ε) split edgese′ of A(6) at C-level ≤ k. To
see this, charge each such edgee′ to one of its endpoints, and observe that the endpoint
is either a vertex ofA(6) at C-level at mostk or a splitting point of the edge ofA(6)
containinge′. By the analysis in [10], [16], and [19], the number of endpoints of the
first type isO(k1−εn2+ε), for anyε > 0. The number of endpoints of the second type
is, by Lemma 2.3,O(k2nλs+2(n/k)), which is subsumed by the first bound. Hence, the
overall number of edge-crossings inR within all the curtainsVe′ for which te′ ≤ 4k, is
O(k2 · k1−εn2+ε) = O(k3n2+ε), for anyε > 0. We can thus assume thatt > 4k.

We want to repeat, withinVe′ , the analysis of the first step. However, we face a
complication that the number of edge-crossings that are counted inR within Ve′ could
be as large asÄ(tk), as it is possible thatall vertices ofV-level ≤ k inA(6e′) correspond
to edge-crossings inR. Our goal in this second stage is to bound|R| by something close
to (1/k)Ck(n), but the technique of the first counting stage will not imply this whenVe′

is “full” of edge-crossings inR. To overcome this problem, we first bound the number
of “excessive” edge-crossings inRwithin Ve′ , using a different approach, and only then
bound the number of remaining crossings, using an approach similar to that of the first
stage.

We first identify a class of vertical edge-crossings inR (the “excessive” edge-
crossings), whose number we will be able to bound independently. We define an edge-
crossing(e, e′, g) atC-level at mostk to becoveredif it satisfies the following condition:

Let σ1, σ2 ∈ 6 be the two surfaces incident toe. There is a surfaceζ ∈ 6 that
intersects the relative interior ofg, and eitherσ1 or σ2 (say, for definiteness,σ1)
crossesζ within Ve′ , either to the left or to the right ofg, at some pointw. Moreover,
if g∗ denotes the vertical segment connectingw to e′, then the trapezoidal-like
portion of Ve′ bounded byg, g∗, the portion ofe′ betweeng and g∗, and the
portion ofσ1 betweeng andg∗, is crossed by at most 2k surfaces of6.

See Fig. 5 for an illustration of this definition; note that the definition encompasses
several different subcases, as is illustrated in the figure. Note also that in the rightmost
subcase shown there the intersectionw′ betweenζ andσ2 in Ve′ could also be considered.
However, the corresponding trapezoidal-like region is not properly contained in the one

Fig. 5. Several types of covered edge-crossings.
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corresponding tow, so it is possible that it is crossed by more than 2k surfaces and thus
disqualifies for making our edge-crossing covered.

We can now establish the two central lemmas.

Lemma 2.5. The number of uncovered edge-crossings inRwithin Ve′ is O(te′β2(te′)).

Proof. In the first step of the proof, we partition the arcs of6e′ into “small” subarcs, as
follows. Recall that, by construction, each endpoint of any arc in6e′ must either lie on
the relative boundary ofVe′ , or else be atV-level > 3k. Replace6e′ by the subcollection
6∗ of only thoset = te′ arcs that appear within the first 2k V-levels ofA(6e′). The
total number of vertices ofA(6∗) atV-level ≤ 2k is O(k2λs+2(t/k)) [16], [19], and so
there must exist aV-levelk ≤ k∗ ≤ 2k that contains onlyO(kλs+2(t/k)) = O(tβ(t/k))
vertices. Hence, the portionA+(6∗) of A(6∗) that lies atV-level ≤ k∗ is formed by
O(tβ(t/k)) connected subarcs whose endpoints lie either on the(k∗)th V-level or on the
vertical boundaries ofVe′ ; see Fig. 6. Moreover, since the number of vertices inA+(6∗)
is O(ktβ(t/k)), we can partition further each of these subarcs (at points not coinciding
with any vertex of the arrangement) into smaller connected pieces, so that each piece is
incident to at mostk vertices ofA+(6∗), and so that the overall number of these smaller
subarcs is stillO(tβ(t/k)); see Fig. 6. Let6+ denote the resulting collection of the new
subarcs. Note that all vertices ofA(6e′) at V-level ≤ k∗ are also vertices ofA(6+).

Define thedepth D(δ) of a subarcδ ∈ 6+ to be the smallestV-level inA(6+) of
any point onδ; this notion is illustrated in Fig. 6. Note that, by construction,D(δ) is
always at mostk∗, and it is also equal to the smallestV-level inA(6e′) of any point on
δ. We have:

Claim. Let(e, e′, g) be an uncovered edge-crossing inRwithin Ve′ , and suppose that
the relative interior of g is crossed by h≤ k surfaces. Letσ1 andσ2 be the two surfaces
incident to e, and letδ1, δ2 ∈ 6+ be the respective subarcs ofσ1∩Ve′ , σ2∩Ve′ incident
to the bottom endpointv of g. Then D(δ1) = D(δ2) = h.

Fig. 6. Clipping the firstk∗ V-levels ofA(6e′ ) and decomposing them into subarcs; the depth of the subarc
δ is 2.
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Fig. 7. The proof of the bound on the number of uncovered edge-crossings.

Proof of Claim. Note that, by definition, bothD(δ1) andD(δ2) are at mosth. Suppose
to the contrary that, say,D(δ1) < h. Then there is a pointv∗ ∈ δ1 whoseV-level h∗ is
strictly smaller thanh; see Fig. 7. This implies that one of the surfaces, call itζ , that
crosses the relative interior ofg cannot cross the relative interior of the vertical segment
g∗ that connectsv∗ to e′. However, thenζ must crossδ1 at some pointw betweenv
andv∗ (ζ cannot crosse′ and sinceδ1 has no point ofV-level> k∗, there cannot be
a boundary point aboveδ1 within Ve′ ). It is now easy to see that(e, e′, g) is a covered
edge-crossing. Indeed, let1 denote the trapezoidal-like region formed withinVe′ by g,
the vertical segment connectingw to e′, the portion ofδ1 betweenv andw, ande′. Any
surface of6 intersecting1 must either intersect the interior ofg or must form a vertex
on δ1 betweenv andw. There are at mostk surfaces of the first kind, and at mostk− 2
of the second (recall thatδ1 has at mostk vertices inA(6e′)), and so1 is crossed by
less than 2k surfaces. This contradiction completes the proof of the claim.

Let6+h denote the set of all subarcs of6+ whose depth ish, for h = 1, . . . , k, and
put th = |6+h |. If (e, e′, g) is as in the claim, then the corresponding vertexv is a vertex
of the upper envelope of6+h within Ve′ : Indeed, the claim implies thatv is a vertex of
A(6+h ), and no subarc of6+h can pass abovev, because the depth of any such subarc
must be strictly smaller thanh. Hence, the number of uncovered edge-crossings inR
within Ve′ is at most

k∑
h=1

λs+2(th) ≤ λs+2

(
k∑

h=1

th

)
= λs+2

(
O

(
tβ

(
t

k

)))
= O(tβ2(t)).

Lemma 2.6. The total number of covered edge-crossings inR, in the entire arrange-
ment, is O(k4n2+ε), for anyε > 0.

Proof. Let R′ be the set of all covered edge-crossings inR, but with certain mul-
tiplicities removed: For every four surfacesσ1, σ2, σ3, σ4 ∈ 6, we choose only one
edge-crossing(e, e′, g) with e ⊆ σ1 ∩ σ2 and e′ ⊆ σ3 ∩ σ4 for R′, and, for every
three surfacesσ1, σ2, σ3 ∈ 6, we choose only one edge-crossingχ = (e, e′, g) with
e⊆ σ1 ∩ σ2 andσ(χ) = σ3 forR′. Exploiting condition (R3) and the fact that there are
at mosts edge-crossings defined by the same four surfaces, it is now sufficient to show
that|R′| = O(k3n2+ε), for anyε > 0.
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Fig. 8. Two cases of covered edge-crossingsχ = (e, e′, g) ∈ R, and the corresponding pathsπ(χ) (shown
as fat curves).

Letχ = (e, e′, g) be a covered edge-crossing inR′. Letσ1, σ2, andζ ∈ 6 be as in the
definition of a covered edge-crossing, and assume thatσ1 crossesζ within Ve′ to the left
of g at some pointw; see Fig. 8. By condition (R4), there is an intersection pointv of ζ
andσ onVe, whereσ = σ(χ) is one of the two surfaces defininge′, the portion ofζ ∩Ve

betweenv andg does not meetσ , and the portion ofσ ∩ Ve betweenv andg does not
meet the other surfaceσ ′ incident to the top endpoint ofg. Let1 be the trapezoidal-like
region withinVe, as defined in condition (R4), and let1′ be the trapezoidal-like region
within Ve′ , as in the definition of covered edge-crossings. By the preceding arguments,
at most 3k surfaces cross either1 or1′. See Fig. 8 for an illustration.

Let K be a random sample ofn/k surfaces of6. As argued in [10], the probability
that K contains the five surfacesσ1, σ2, ζ , σ , andσ ′, and does not contain any of the
other surfaces crossing1 ∪1′, is at leastc/k5, for some absolute constantc > 0. Let
R′K be the set of edge-crossingsχ ∈ R′ that appear inA(K ), in the sense that the above
choice of surfaces inK materializes. Since the expected size ofR′K is at leastc/k5 times
the size ofR′, it suffices to prove that|R′K | = O(n2+ε/k2), for anyε > 0.

So letC(K ) = Cω(K ) denote the cell inA(K ) that containsω, and consider an
edge-crossingχ = (e, e′, g) ∈ R′K . Clearly, the segmentg crosses inA(K ) only the
surfaceζ , and its portion belowζ is fully contained inC(K ). For technical reasons, we
distinguish between the two (top and bottom) sides of each surface in6; we appeal to the
intuition of the reader, and refer to [3], [4], and [12] for a formal definition. An important
property that this distinction has is that a curve drawn on the top side of a surface is not
considered to cross a curve drawn on the bottom side.

We construct, for everyχ ∈ R′K , a pathπ = π(χ) on∂C(K ) as the concatenation of
the following three subpaths:

• π1(χ): the subarc ofζ ∩ Ve connectingv to u = g ∩ ζ ;
• π2(χ): a subarc ofζ ∩ Ve′ extending fromu towardw, stopping as soon as it hits

eitherσ1 or σ2 in a pointw′ (w′ may or may not be equal tow, see the two cases
in Fig. 8);
• π3(χ): this subpath extends fromw′ alongσ1 ∩ Ve′ or σ2 ∩ Ve′ (depending on

which surface containsw′) towardg, and stops as soon as it hits the other surface
defininge (this can happen either atg or earlier, see Fig. 8).

The first two portionsπ1(χ) andπ2(χ) are drawn on thebottomside ofζ , and the last
portionπ3(χ) is drawn on thetopside ofσ1 or σ2; see Fig. 8.
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We draw a pathπ(χ) for each edge-crossingχ ∈ R′K .

Claim. The relative interiors of any two distinct pathsπ(χ), π(χ∗) are disjoint.

Proof of Claim. Suppose to the contrary thatπ(χ) andπ(χ∗) contain a common point,
for two distinct edge-crossingsχ = (e, e′, g) andχ∗ = (e∗, (e′)∗, g∗) in R′K . Because
of the top/bottom sidedness of the surfaces and the way in which the paths are drawn,
only the following cases can occur.
π1(χ) intersectsπ1(χ

∗): By our construction, the pathπ1(χ) lies directly above an
edge ofA(K ) (the one containinge), starts (at its left endpoint) at an edge ofA(K ) and
stops as soon as it passes directly below another edge (the edgee′); a similar property
holds forπ1(χ

∗). It follows that if π1(χ) andπ1(χ
∗) have a common point (including

even the sharing of an endpoint), thene= e∗, e′ = (e′)∗, and the two paths must coincide
completely. This implies thatχ andχ∗ are defined by the same four surfaces, which is
a contradiction to the definition ofR′.
π2(χ) intersectsπ2(χ

∗): The pathπ2(χ) passes directly below an edge ofA(K ) (the
one containinge′), ends on an edge ofA(K ), and starts directly above an edge ofA(K )
(the one containinge). It may pass above other edgesē of A(K ), but then any such̄e is
defined by the same two surfaces ase. It follows that if the relative interiors ofπ2(χ) and
π2(χ

∗) have a common point, thene′ = (e′)∗, and henceσ(χ) = σ(χ∗). Furthermore,
the surfacesζ on which these subpaths are drawn are the same, ande ande∗ must be
defined by the same two surfaces of6. Again, this is impossible by our definition ofR′.

The case where the common point ofπ2(χ) andπ2(χ
∗) is an endpoint of, say,π2(χ)

is handled in a similar manner. That is, we note that if the surfacesζ on which these
subpaths are drawn are not the same, then the manner in which these subpaths are drawn
on the bottom side of these surfaces is easily seen to imply that the paths do not meet at
this point at all; see Fig. 9 for an illustration.
π3(χ) intersectsπ3(χ

∗): The pathπ3(χ) lies below an edge ofA(K ) (the one con-
taininge′), and exactly one surface ofK (namely,ζ ) passes between the path and the
edge. Hence, if the relative interiors ofπ3(χ) andπ3(χ

∗) have a common point, then
e′ = (e′)∗, and the surfaces on which these subpaths are drawn are the same. Hence
π3(χ) = π3(χ

∗), since they both lie inVe′ , on the same surface, and extend in both

Fig. 9. The pathsπ2(χ) andπ2(χ
∗) have no point in common.
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directions until they hit an edge ofA(K ). This implies thatχ andχ∗ are again defined
by the same four surfaces, which is impossible. Again, the case where the common point
of π3(χ) andπ3(χ

∗) is an endpoint of one of these subpaths is handled as above.
Finally,π1(χ) intersectsπ2(χ

∗) (or, symmetrically,π1(χ
∗) intersectsπ2(χ)): A point

p ∈ π2(χ
∗) has to lie directly below an edge ofA(K ). The only point with this property

on π1(χ) is its endpointu. On the other hand,u lies directly above an edge ofA(K ).
The only such point onπ2(χ

∗) is its endpoint, and hencee= e∗ ande′ = (e′)∗, which,
as above, yields a contradiction.

This completes the proof of the claim.

We continue with the proof of the lemma. We now have a systemG of pairwise
openly disjoint paths drawn on∂Cω(K ), and our next goal is to bound their number,
using Euler’s formula for planar graphs, in a manner similar to, though somewhat more
complex than, the technique used by Tagansky [20]. This is done as follows.

Fix a face f of ∂Cω(K ) (which lies on either the top side or the bottom side of some
surface), and clip all paths that crossf to within f (note that either all these clippings
retain the first two portions of each such path, iff lies on the bottom side of a surface, or
they all retain the third portions of these paths, iff lies on the top side). LetGf denote the
resulting collection of clipped paths. We regardGf as a plane drawing of a graph, whose
nodes are the edges off and whose arcs are the clipped paths. Sincef is (homeomorphic
to) a planar region, we do indeed obtain a plane drawing of a planar graph, and we can
apply Euler’s formula to conclude that the number of arcs inGf is at most three times
the number of edges off , plus the number of faces ofGf of degree 2. Applying this
analysis to each (sided) face ofCω(K ), and summing up these bounds, we conclude that
the overall number of clipped subpaths is proportional to the complexity ofCω(K ), which
is O((n/k)2+ε), for anyε > 0 [12], plus the overall number of graph-faces of degree 2.

To get a better handle on those degree-2 faces, we go over all facesf of Cω(K ),
take each “run” of adjacent degree-2 faces withinf , and delete all their incident sub-
paths, except for the first and the last one. Clearly, the number of remaining subpaths is
O((n/k)2+ε), for anyε > 0.

Now take a full pathπ(χ). If either of its two clipped subpaths has survived after
the above trimming, we chargeπ(χ) to that subpath. Since this charging is unique, the
number of pathsπ(χ) of this kind isO((n/k)2+ε), for anyε > 0. Suppose then that both
clipped subpaths ofπ(χ) have been trimmed. This is easily seen to imply that there is
a sequence of “parallel” paths, all of which connect between the same pair of edges of
Cω(K ), such thatπ(χ) is a middle element of the sequence. Recall that, in the notations
used above, one of the terminal edges ofπ(χ) is incident to the two surfacesσ1, σ2 that
meet also at the bottom endpoint ofg (recall that the endpoint ofπ(χ) need not coincide
with the endpoint ofg), and the other terminal edge is incident toζ and toσ(χ). It
follows that there are at least three different pathsπ(χ ′) in the above sequence, such
that the corresponding edge-crossingsχ ′ share the three surfacesσ1, σ2, andσ = σ(χ ′).
By our definition ofR′, this is impossible, and therefore every pathπ(χ) is uniquely
charged to one of its subpaths.

All these arguments readily imply that the total number of pathsπ(χ) that are drawn
on ∂Cω(K ) is O((n/k)2+ε), for anyε > 0. This implies that|R′K | = O(n2+ε/k2), and,
by our conclusions above, this completes the proof of the lemma.
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We now show how the bounds derived in Lemmas 2.5 and 2.6 imply our main result.
Put t∗ = ∑e′ te′ , where the sum extends over all split edgese′ at C-level at mostk, for
which te′ > 4k. Lemmas 2.5 and 2.6 imply that

|R| = O(k4n2+ε)+
∑

e′
O(te′β

2(te′)) = O(k4n2+ε)+ O(t∗β2(n)).

On the other hand, for each edgee′ as above, the number of vertices appearing in the
first 3k V-levels ofA(6e′) isÄ(te′k). Indeed, the number of surfaces whose intersection
arcs are fully contained within the first 3k V-levels ofA(6e′) is at most 3k, because,
for every such surfaceσ , the endpoints of the curveσ ∩ Ve′ must be among the first 3k
curves below each endpoint ofe′ (the curve cannot have an endpoint in the interior of
Ve′ , because such an endpoint would have causede′ to be further split). Sincete′ > 4k, at
leastte′ − 3k > 1

4te′ of these curves have a point atV-level >3k, and thus each of them
must contain at leastk vertices ofA(6e′) atV-level ≤ 3k (because, by definition, it also
shows up among the top 2k V-levels). Since each such vertex induces an edge-crossing
atC-level at most 3k, it follows that

C3k(6;ω) = Ä
(

k
∑

e′
te′

)
= Ä(t∗k).

Hence, we have

|R| = O(k4n2+ε)+ O

(
β2(n)

k
· kt∗

)
= O(k4n2+ε)+ O

(
β2(n)

k
· C3k(n)

)
. (4)

Next, we estimateC3k(n) by using the probabilistic technique of Clarkson and Shor
[10], [16]. Since each edge-crossing(e, e′, g) is defined by four surfaces (two surfaces
incident toeand two incident toe′), the Clarkson–Shor technique is easily seen to imply
that C3k(n) = O(k4C0(n/k)). Combining (3), (4), and the Clarkson–Shor bound, we
readily obtain

C0(n) = O

(
(kβ(k)+ k3β(n))n2+ε + k3β(k)nλs+2

(
n

k

))
+ β

3(n)

k2
· O
(

k4C0

(
n

k

))
= O(k3β(n)n2+ε)+ O(k2β3(n)) · C0

(
n

k

)
.

The solution of this recurrence isO(n2+δ), for anyδ > ε. This is shown by induction on
n, choosingk = β1+3/δ(n) and using the fact thatβ(n) is an extremely slowly growing
function ofn (see also [1]).

In conclusion, we have thus obtained the main result of the paper:

Theorem 2.7. The complexity of the vertical decomposition of a single cell in an ar-
rangement of n algebraic surface patches inR3, such that the degrees of the surfaces
and of their boundary curves are all bounded by some constant b, is O(n2+ε), for any
ε > 0, where the constant of proportionality depends onε and on b.
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3. Applications

3.1. Constructing a Single Cell

Theorem 3.1. Given an arrangement of n algebraic surface patches inR3, such that
the degrees of the surfaces and of their boundary curves are all bounded by some constant
b, one can construct, in an appropriate model of computation, the cell of the arrangement
containing a given point, in randomized expected time O(n2+ε), for anyε > 0, where
the constant of proportionality depends onε and on b.

Proof. As noted in the Introduction, this can be accomplished, in a rather routine
manner, by applying the lazy randomized incremental framework of de Berget al. [6].
We content ourselves with a brief sketch. The model of computation that we assume is
that of exact rational arithmetic, using one which can perform any primitive algebraic
operation involving a constant number of surfaces (such as intersecting three surfaces,
computing edge-crossings induced by four surfaces, etc.) in constant time.

The algorithm maintains the vertical decomposition of a collection of cells of the
arrangement while adding the surface patches one by one in a randomly chosen order.
The collection of cells is guaranteed to contain the cell we are interested in. In general it
will include some other cells as well, since it seems to be too hard to determine whether
a new surface patch splits the current single cell or not.

Recall that vertical decomposition is defined in two stages: In the first stage, we erect
primary wallsfrom edges of the arrangement, and obtain cylindrical cells whose bottom
and top facet are both contained in a single surface patch and have the samexy-projection.
In the second stage, we partition these cylinders into constant-complexity “prisms,” using
secondary wallsdefined by a trapezoidal decomposition in thexy-projection. We call
the final resulting prismsboxes.

As an auxiliary structure, our algorithm also maintains ahistory graphas introduced
by Boissonnatet al. [7]. The history graph is a rooted, directed, acyclic graph whose
nodes correspond to boxes of the vertical decomposition at some intermediate stage. The
leaf nodes of the graph are colored either green or red. The green leaf nodes correspond
to the boxes of the vertical decomposition of the currently maintained collection of cells.
We also maintain a graph on the green leaf nodes that will allow us to transverse the
maintained cells of the current vertical decomposition.

To insert a new surfaceσ , we first have to find all green leaf nodes intersected byσ .
This is done by a graph traversal of the history graph, starting at the root. This requires
that we can test whetherσ intersects a given box. Since boxes are defined by a constant
number of polynomials, this is a constant time operation in our model.

Every green leaf boxτ intersected byσ is split into a constant number of new boxes.
A new green leaf is created for every new box, and it is linked toτ . The adjacency
relations are updated at the same time.

The new set of boxes will not, in general, be a proper vertical decomposition of the
new surface arrangement. In the next step, we have to merge boxes that are separated
by secondary wall sections that are no longer part of the vertical decomposition. This is
relatively easy for boxes whose top and bottom facets are distinct fromσ .

To correct the situation for boxes whose top or bottom facet isσ , we recompute the
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two-dimensional trapezoidal decomposition for all relevant facets on the surface ofσ .
A secondary history graphis created to aid traversing the history graph for these boxes,
see [6] for details.

After inserting surface patch number 2i , for 1 ≤ i < logn, we identify the cell
containing the marking point. This is done by traversing the vertical decomposition,
starting from the box that contains the given point. All boxes of the current set that do
not lie inside the cell are colored red, and will therefore not be subdivided any further.

The stated bound on the running time of the algorithm follows immediately from the
general results on lazy randomized incremental construction [6], once we plug in our
bound on the complexity of the vertical decomposition of a single cell.

3.2. Motion Planning for Systems with Three Degrees of Freedom

As noted in the Introduction, the main application of Theorems 2.7 and 3.1 is to mo-
tion planning for arbitrary systems with three degrees of freedom. This application is
described in detail in the survey papers [13] and [18], see also [3]. The results of our
paper imply the following:

Theorem 3.2. Let B be a robot system with three degrees of freedom, such that the free
configuration space of B can be described as a Boolean combination of n polynomial
equalities and inequalities, of constant maximum degree b, in the three parameters that
define the degrees of freedom of B. Then, given any two free placements Z1, Z2 of B, it
can be determined, in randomized expected time O(n2+ε), for anyε > 0, whether there
exists a collision-free motion of B from Z1 to Z2, and, if so, produce such a motion. (The
constant of proportionality in this bound depends onε and on b.)

As mentioned in the Introduction, this settles a long-standing open problem, which was
previously solved only for some special systems.
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