Discrete Comput Geom 18:269-288 (1997)

Geometry

© 1997 Springer-Verlag New York Inc.

Vertical Decomposition of a Single Cell in a
Three-Dimensional Arrangement of Surface$

O. Schwarzkopfand M. Sharit

1Department of Computer Science, Pohang University of Science and Technology,
Hyoja-Dong, Pohang 790-784, South Korea
otfried@cs.ust.hk

2School of Mathematical Sciences, Tel Aviv University,

Tel Aviv 69978, Israel

sharir@math.tau.ac.il

and

Courant Institute of Mathematical Sciences, New York University,
New York, NY 10012, USA

Abstract. LetX be a collection oh algebraic surface patchesii of constant maximum
degreeb, such that the boundary of each surface consists of a constant number of algebraic
arcs, each of degree at mdsas well. We show that the combinatorial complexity of the
vertical decomposition of a single cell in the arrangemé(x) is O(n>**), for anys > 0,

where the constant of proportionality dependssoand on the maximum degree of the
surfaces and of their boundaries. As an application, we obtain a near-quadratic motion-
planning algorithm for general systems with three degrees of freedom.

1. Introduction

Let ¥ = {o1,...,0n} be a collection oh algebraic surface patchesk¥ of constant
maximum degreb, such that the boundary of each surface consists of a constant number
of algebraic arcs, each of degree at mosis well. LetA(X) denote the arrangement

of X. (We assume that the reader is familiar with arrangements—see, for instance, the
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recent book [19] for details concerning arrangements of surfaces in higher dimensions.)
Let w be a fixed point, not lying on any surface 6f We denote by, (X) the (open)
three-dimensional cell ofi(¥) containingw. The combinatorial complexity af, (%)

is the number of vertices, edges, and 2-faceslf) appearing on the boundary of
that cell. For simplicity, we measure this complexity only by the number of vertices of
the cell. It is well known that the number of all other boundary feature§,0k) is
proportional to the number of vertices (assuming general position—see below), plus an
additive term ofO(n?).

Recently, it has been shown that the combinatorial complexigy, 0f) is O(n%+¢),
for anye > 0, where the constant of proportionality depends amd on the maximum
degreeb of the surfaces and of their boundaries [12]. The corresponding algorithmic
problem, however, of computing,(X) in near-quadratic time, has been open, with the
exception of several solutions for special classes of surfaces [4], [5], [14]. The main
motivation for this algorithmic problem comes from motion planning, and is explained
in detail in the papers just cited, and in the recent survey paper [13]. We also note that
these results extend the earlier (and somewhat simpler) analysis of the complexity of
lower envelopes of surfaces in higher dimensions [11], [17].

An algorithm for constructing,,(X) can be obtained using thertical decomposition
of such a cell [12]-[14]. This is a standard decomposition scheme, described in detail
in several recent works [8], [9], [19], that partitions cells in arrangements of algebraic
surfaces into subcells of “constant description complexity” (see below), provided the
maximum degree of the surfaces is a constant.

For the sake of completeness, we also give a brief informal description of the vertical
decomposition. We first assume that each surface patghisrx y-monotone. This can
always be enforced by splitting each such patch @td) x y-monotone subpatches. In
the first decomposition stage, we erect witfiia vertical “wall” up andor down from
each edge of (both surface boundary edges and intersection edges of pairs of surfaces).
Each such wall consists of maximal vertical segments contained in (the closGraraf)
passing through the points of the edge. The collection of these walls partitioie
subcells, each having the property that it has a unique “top” facet and a unique “bottom”
facet (one or both of these facets may be undefined when the subcell is unbounded; all
other facets of the subcell lie on the vertical walls). However, the complexity of each
subcell may still be arbitrarily large. Thus, in the second decomposition stage, we take
each subcell’, project it onto thexy-plane, and apply to the projection a similar but
two-dimensional vertical decomposition, erectingreertical segment from each vertex
of the projected subcell and from each point of logagxtremum on its edges. This
yields a collection of trapezoidal-like subcells, and we then lift each of them vertically to
3-space, to obtain a decompositiondointo prism-like subcells, each having “constant
description complexity,” meaning that each of them is a semialgebraic set defined by a
constant number of polynomials of constant maximum degree (which deperg)s on
Repeating this second stage for all subcéllproduced in the first stage, we obtain the
desired vertical decomposition 6f More details can be found elsewhere [8], [9], [19].

Using this decomposition scheme, we can then apply, for instance, a lazy randomized
incremental algorithm [6] to construct the vertical decompositio6. gt ), by adding
the surfaces one after the other in random order, and by updating the decomposition as
the surfaces are added. The efficiency of this algorithm crucially depends on the size
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(number of subcells) of the decomposition (of the c€lJ6X’), for any subseE’ C ).
A near-quadratic bound on the size of the vertical decomposition of a single cell implies
that the (expected) complexity of the above algorithm is also near-quadratic.

In this paper we show that the complexity of the vertical decomposition of a single cell
in a three-dimensional arrangement, as above, is in@ged™*), for anys > 0, where
the constant of proportionality depends, as above; and on the maximum degrée
of the surfaces and of their boundaries. The proof technique borrows ideas from several
recent papers [1], [11], [17], [20] that have analyzed several related problems.

Itis instructive to note that if all our surfaces arg-monotone without boundaries (in
other words, they are graphs of continuous totally defined algebraic bivariate functions),
then the near-quadratic bound on the complexity of the vertical decomposition of a single
cell is an immediate consequence of the recent results of Agatvedl[1], which give
a near-quadratic bound for the complexity of the vertical decomposition of the region
enclosed between the lower envelope of one collection of such surfaces and the upper
envelope of another such collection; in this special case our single cell is a portion of
such a “sandwiched” region. In the general case that involves sysédchesthough,
the topological structure of a single cell can be much more complex, and this makes the
analysis considerably harder.

As a corollary of our bound, we obtain that a single cell in a three-dimensional
arrangement of surfaces, as above, can be constructed in randomized exp@gteol
time, for anye > 0. This in turn implies that motion planning for fairly general systems
with three degrees of freedom can be performed in near quadratic time. This solves one
of the major open problems in the area. These applications of our bound are briefly
presented in Section 3.

2. Complexity of the Vertical Decomposition of a Single Cell

Let ¥ andw be as in the Introduction. For the purpose of our analysis, we require the
surface patches to bey-monotone. This involves no real loss of generality, because,
as already mentioned in the Introduction, we can partition each of the surfaces into a
constant number ofy-monotone portions (where the constant depends on the maximum
degreeh).

As is well known [19], the complexity of the vertical decompositiorfeE C,(X) is
proportional (up to an additive near-quadratic term) to the numbeenical visibility
configurationsThese are ordered triplés €, g), whereeande’ are edges af andg is
a vertical segment whose bottom endpoint lieepwhose top endpoint lies a, and
whose relative interior is containeddn The main result of this paper is a near-quadratic
upper bound on the number of these vertical visibility configurations.

In what follows, we assume that the surfaéare ingeneral positionin the sense
considered in Section 7.1 of [19]. This does not involve any real loss of generality. To see
this, we apply arandom perturbation to the polynomials defining the given surfaces. Any
given vertical visibility configuration will still appear after the perturbation with some
positive probability (in most cases it will actually multiply). This argument is discussed
in detail in [17]. Hence, a bound for surfaces in general position will, multiplied by the
appropriate constant, hold for arbitrary surfaces.
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A first consequence of the general position assumption is that the maximum number
of vertical visibility configurations that correspond to any fixed gejre’) of vertically
visible edges is at most some consw(which depends on the maximum degbea the
surfaces and of their boundaries). Therefore, it suffices to count the numkestioélly
visible pairs of edges of. These are ordered paifs, €) of edges of” such that there
exists a vertical visibility configuratiote, €, g).

If e or € is a portion of the boundary of a surface Bf we call (e, €, g) an outer
vertical visibility configuration; otherwisée, €, g) is aninner configuration. We later
show that the overall number of outer configuration®{®is,2(n)), wherers(n) is the
maximum length of arfn, s) Davenport—Schinzel sequence [2], [15], [19]. Hence, in
what follows, we only consider inner vertical visibility configurations. For convenience,
we do not mention the qualifier “inner” from now on.

For technical reasons, we extend the notion of vertical visibility configurations as
follows. Lete and€ be two edges ofA(X) such that there exists a vertical segmegnt
whose bottom endpoint lies @and whose top endpoint lies eh We say thate, €, g)
is avertical edge-crossingtC-level if*

(i) thesubseE’ C X of surfacesthatintersectthe relative interiogbias cardinality
&, and
(i) gis fully contained inC,(X\%’).

(Thexy-monotonicity of the surfaces imply thé, €, g) is a vertical visibility config-
uration in A(X\X'), whereé (resp.€) is the edge of4(X\X’) containinge (resp.€’).)
Note that the four surfaces incidentdande’ cannot intersect the relative interior @f
Thus, vertical edge-crossings@&tevel 0 are precisely the vertical visibility configura-
tions. We denote b€, (X; w) the number of vertical edge-crossingelievel at most.
We also denote b¢,(n) the maximum possible value G (X; ), over all collections
% of n surfaces as above (with a fixe§l and over all point& not lying on any surface.

The notion of levels is also extended to vertices and edgef(&f): We say that a
vertexv (resp. an edge) of A(X) is atC-levelé if there exists a subsé&t’ of & surfaces,
so thatv is a vertex of (respe is contained in an edge of),(£\X’), and if¢ is the
smallest number with that property. Again, the actual vertices and edgkg o are
precisely the vertices and edge<devel 0.

Letk be a threshold parameter, whose value is specified later. Our goal is to prove a
bound onCy(n) that has roughly the form

Co(n) < k—lzckm) + 0k n?*), &y
wherex is some fixed exponent, from which we can deduce the near-quadratic bound on
Co(n), by using Clarkson and Shor’s technique [10] to bo@a¢h) by O(k*Co(n/k)),
and by solving the resulting recurrence @y, which easily yields a near-quadratic upper
bound. The exact inequality that we will derive will be somewhat weaker than (1), but it
will still yield the desired bound oy(n).

1 We advise the reader that the paper uses several different notions of a level for a variety of configurations.
Intuitively, any of these levels is defined to be the smallest number of surfaces whose removal causes the
configuration in question to be such that all its defining elements lie on the boundary of the cell containing
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The idea of proving a bound like (1) is to identify abddCy(XZ; w) distinct edge-
crossings af-level at mosk in the arrangemend (X). We do (something close to) this,
using a two-stage counting argument, similar to that used by Agarinal [1]. This
should be compared with the simpler technique of using a single counting stage, as used
in[11] and [17] and in several other recent papers. The typical way in which such a stage
is applied, say to bound the complexity of the lower envelope of surfaces in 3-space, is as
follows. Start at a vertex of the envelope, and proceed from it away from the envelope
along an intersection curye of the surfaces, in an attempt to collect at Idasertices
of the arrangement alongbefore getting back to the envelope, and then chatgehe
first k such vertices, observing that all the charged vertices are at level akiransd
apply the Clarkson—Shor technique to bound the number of charged verticby
times the complexity of the envelope of a sample ok of the surfaces. This approach,
combined with many additional ingredients that we omit in this sketchy review, leads to
arecurrence that solves @n?+¢), for anye > 0, which is smaller by about one factor
of n than the naive boun®(n%).

In contrast, the naive bound on the number of edge-crossin@sr$), since each
crossing is determined by four surfaces, and we want to obtain a bound that is about two
factors ofn smaller. This is why we need a two-stage counting scheme. Unfortunately,
such a scheme is considerably more complex, and we discuss below the additional
complications that may arise, and give some intuitive explanation of the manner in
which we overcome them, before giving the full formal proof.

Preliminaries Letebe anedge afi(X) and letV, be the vertical 2-manifold obtained
as the union of alk-vertical rays whose bottom endpoints lie @nThe intersection of
each surface € X with Ve is a (not necessarily connected) algebraic arc of constant
maximum degree (and with a constant number of connected components), so each pair
of these arcs intersect in at most some constant nurapef points (wheres depends
only on the maximum degrde of the given surfaces and of their boundaries; it is the
same parametamentioned at the beginning of this section). We denote the set of these
arcs byXe, and their arrangement ofy by A(Xe).

Completely analogously, we define the vertical 2-maniféfdobtained as the union
of all downward directed-vertical rays whose top endpoints lie en(ImagineV€ as
a “curtain” hanging down frone, while Ve is a curtain standing oa.) We denote the
set of arcs formed by the intersections of the surfaces @fith V€ by X€, and their
arrangement it/ € by A(X°). We define theV/ -levelof a pointp in Ve (resp. inV®) to
be the number of arcs iBe (resp. inX€) that lie below (resp. above).

A simple but crucial observation is:

Lemma 2.1. Letebeanedge of(X) withC lying locally rightabove eThen(e, €, g)
is an edge-crossing &tlevelg, if and only if the point of @V, that lies on the z-vertical
line through g is a vertex ofl(X,) at V -levelg.

See Fig. 1 for an illustration. This lemma implies that each vertical visibility config-
uration with bottom edge corresponds to a vertex in the lower envelope of the arcs in
Ye. (Of course, a similar and symmetric statement hold&frwheree is the top edge
of the configuration.)
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Fig. 1. The arrangemenfi(XZe); with vertices representing a vertical visibility configuration and a vertical
edge-crossing at-level 3, both having as their bottom edge.

Now that we have introduced this terminology and observations, we can dispose, as
promised, of outer visibility configurations:

Lemma 2.2. The number of outer vertical visibility configurations it 2(n)).

Proof. Leté be an arc bounding some surface&inBy Lemma 2.1 each outer vertical
visibility configuration having as its bottom edge is represented by some vertex (break-
point) of the lower envelope afs within Vs. By the standard Davenport—Schinzel theory
[2], [15], [19], the number of such breakpoints@(1s,2(n)) (recall thatZ; consists

of O(n) connected arcs, each pair of which intersect in at rsqmbints). We repeat
this analysis for each of th®(n) boundary arcs of the surfaces Bf and also apply a
symmetric analysis within the “hanging curtaing®. This implies the assertion of the
lemma. O

It is convenient for our analysis to assume that the arrangemiits) and A(x¢)
do not contain any arc endpoints\atlevel <3k, except on the relative boundaries of
Ve andV*® (recall that all other arc endpoints lie on surface boundaries). Intuitively, the
reason for this is that later in the analysis we will need to argue that many arcs that
appear among the firktor 2k V-levels inV, or V€ contain at leask vertices of the
corresponding arrangement. The above requirement guarantees that all but ak most 3
such arcs have the desired property. More details are given later in the proof. We can
achieve this by splitting the edges.d{ X) into what we callsplit edgesas follows.

Lety be an arc irze. If y has an endpoinb within the relative interior oV, which
lies in the first & V-levels of A(X.), we erect a vertical line througly and splite
andV, at that line into two portions. We repeat this splitting for all edged A(X)
and for eachy € X, whenever it is applicable. We apply a symmetric procedure in all
the corresponding downward-directed curtaitfs Furthermore, we split all edgesat
points where their projection onto tlg-plane has a tangent parallel to thhaxis. This
will guarantee that all split edges axemonotone.

Lemma 2.3. The overall number of such edge-splittings isk@his,>(n/K)).
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Fig. 2. An edge-crossing = (e, €, g) with o (x) = o3.

Proof. The intersection curve of two surfaces has only a constant number of points
where the projection on they-plane has a tangent parallel to thexis, so the total
number of such points i©(n?).

We bound the number of splits induced by an endpointd¢vel at most B using
a similar argument to that of Lemma 2.2. L&be an arc bounding some surface in
3. It is easily seen that each edge-split induced lfye., a splitting of some edge
caused by a point id N Ve (or a point in§ N V) that lies atV-level < 3k in A(Ze)
(or in LA(X®))) corresponds to a vertex of(X;) in V;, or to a vertex ofA(x?) in V¢,
at V-level < 3k, and a standard application of the Clarkson—Shor technique implies
that the overall number of such vertices, over all boundary &rissO (k?nis,2(n/K))
[10], [16]. O

We make one final definition before we start with the actual proof. For a vertical
edge-crossing = (e, €, g), we have four distinct surfaces, o,, 03, 04 € X, such that
e C o1 Noyande C o3 N oy (here we already assume tleende’ are split edges). Let
¢ be the vertical line through, and let¢’ be a copy oft shifted infinitesimally along
e in decreasing-direction. Thernoz N ¢’ andoy N ¢ are two distinct points. We put
o(x) = o3if o3 N ¢ lies belowo, N £/, otherwises (x) = o4, see Fig. 2.

Informal Preview of the Proof As mentioned above, the proof uses a two-stage argu-
ment. The first stage analyzes the structure of the arrangeménts, for (split) edges

e of the given cell, and identifies within them a §&f edge-crossings, all &tlevel at
mostk, such thaCy(X; w) is upper bounded by roughl®(|R|/k) plus near-quadratic
terms. The second stage then analyzes the number of edge-crosstdwyitdistribut-

ing” them over the arrangements =€), over all (split) edge®’ atC-level at mosk,

and by estimating their number within each such arrangement. The goal is to show that
|R| is upper bounded by rough®(Cs(n)/K) plus certain near-quadratic terms. To do

so, we want to argue that the number of vertices of the fiksWV3devels in any such
arrangement is at least roughi(k) times the number of vertices representing elements
of R in that arrangement. This argument, however, is complicated by the fact that some
arrangementsi(Z¢) may contain too many of the edge-crossingRinTo overcome

this problem, we classify the crossings/into two categories that we call “covered”

and “uncovered.” In two central lemmas (Lemmas 2.5 and 2.6) we then show that the
above argument holds for the number of uncovered edge-crossifigsand that the
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number of covered edge-crossings is near quadratic, which follows from a somewhat
involved graph planarity argument. Putting everything together, we obtain a recurrence
formula that solves to the desired near-quadratic boun@gan).

First Stage Inthis stage we identify a s& of special vertical edge-crossingsix).

Consider first a (split) edgeof C with C lying locally right abovee. We partitione
into two subedges as follows: We start from the right endpoir @é&call that all split
edges arex-monotone) and move alorgto the left until we encounter thgk + 1)st
distinct surface o directly above the point. We denote the portioredfaversed by
this process b, and the remaining part &by g. (It can happen that we encounter
the left endpoint ok before seeing more thdndistinct surfaces—in that case = e
andg is empty.) By Lemma 2.1, every edge-crossing-dvel 0 with bottom point on
g corresponds to a vertex of the lower envelopglgEg ) on Vg . Since there are only
surfaces appearing on the lower envelope @veits complexity is at mosO (rs;2(k))

[2], [15]. Since the number of edges boundifigs O(n?+*) [12], and they can be split
into at mostO(k?nis.2(n/k)) additional split edges, the overall number of vertical
visibility configurations involving the right subedgesof all the split edgeg of C is at
mostO(rsy2(K) (N*¢ + k?nigy2(n/K))), for anye > 0. In the following, we therefore
restrict our attention to the vertical visibility configurations that appear above the left
subedges of the (split) edges of .

Intuitively, the reason for considering the right portions of edges separately lies in
the construction ok, described below. In this construction we move to the right from
certain vertices of the lower envelope afl(Z¢) along an incident arc, in an attempt to
collect at leask vertices of4(Z.) along that arc, each incident to a new distinct surface.
We can guarantee that this will be possible if at ldadistinct surfaces appear to the
right of v on the envelope, that is, iflies above the left portion af.

Consider a pair of surfaces, o, € X, and consider their intersection curven o,.
This curve consists of a constant numbexreahonotone connected pieces. Lebe one
such piece. LeYV, be the union of alV, for all (split) edges of the arrangement that
are contained iy. Lety’ be the subset gf that is the union of the left subedggof all
edge= C y of C such that lies locally right above. Let X (y) be the set of surfaces in
¥ that appear on the lower envelopegnrestricted over’, and lett =t, = [Z(y)|.
The number of breakpoints of the lower envelope abgvexcluding the endpoints of
arcsiny’)is at mostis, (1) [2], [15], wherea is an appropriate constant (depending on
the maximum degree of the surfaces; it arises because, as above, an intessectipn
may consist of more than one connected arc).

Consider now a surface € X(y). It appears on the lower envelope over the left
subedge of some (split) edgeC y with C lying locally right abovee, and therefore
there are at leadt surfacess’ € T that appear ovee to the right ofo. By continuity
and by our construction, eitherand such a surface intersect withinV, at least once,
or each of them has a point ¥tlevel > k. We now collectk vertices ono N V, as
follows: We start at some point whete appears on the lower envelope ¥g (over
the left subedg®), and followo N Ve in increasingx-direction (recall that all split
edges arx-monotone). We pass, before we reach the engl af leask verticesv, at
which we encounter a newjstinctsurface inZ, because we must either encounter all
the k surfaces that appear abogeor reach thekth V-level. All these vertices are at
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Fig. 3. The setup in the construction &.

V-level < k, since when we first reach thikeh V-level, we must have passed all the
k surfaces lying below the point. For every such venteet x, be the vertical edge-
crossing with bottom edgecorresponding to by Lemma 2.1. Note that(y,) = o. See
Fig. 3 for an illustration. We leR(y, o) denote the collection of these edge-crossings
Xv- Note that we collect thedevertices starting fromnly one occurrencef o along the
entire curvey, so|R(y, o)| = k. This is used in deriving property (R3) of Lemma 2.4
below. PutR(y) = Uaez(y) R(y,o), andR = Uy R(y), over allx-monotone pieces
y of intersection curves. The fact thaty,) = o for all x, € R(y, o) implies that the
setsR(y, o) are pairwise disjoint.

As observed before, the number of visibility configurations abpvés at most
aisi2(t). On the other hand, we have that

k
-aks+2(t)) > —— - aksi2(ty), (2)

R =
"Ryl = 3m

U Ro.o

o€X(y)

=kt =Q (k—
)Ls+2(t)

whereB(n) = O(rsi2(N)/N) is an extremely slowly growing function af [2], [15].
Summing (2) over alk-monotone pieceg of intersection curves, and observing that
any edge-crossing iR is counted in this sum exactly once, we obtain

Co(Z; w) < @w + O<A3+2(k) <n2+‘9 + kznks+2<2))), (3)

for anye > 0 (where the second term in the right-hand side bounds the number of
vertical visibility configurations over the right portioss. We thus obtain the following
lemma.

Lemma 2.4. Given a set of surface® and a pointw as abovethere is a sefR of
vertical edge-crossings such th&t| satisfieq3) and such that the following conditions
hold:

(R1) Eachy € R is atC-level at most k
(R2) For eachy = (e, €, g) € R, the edge e is an edge @fsuch thatC lies locally
right above e
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Fig. 4. Condition (R4).

(R3) For any three surfacess, 02,03 € X, there are at mosjk vertical edge-
crossingsy = (e, €,0) in R with e € o1 N o, ando(x) = o3, for some
constantu depending on the maximum degree b

(R4) For eachy = (e, €, g) € R, and for any surface that intersects the relative
interior of g, there is an intersection pointof { ando = o (x) on \%, so that
the portion oft NV, betweerv and g does not meet, and the portion o0& N Ve
betweeny and g does not meet the other surfacéncident to the top endpoint
of g. In addition if g’ denotes the vertical segment connecting e @arilen the
“trapezoidal-like” region A formed within ¥ by g, g/, the part of e between
g and d, and the part o N V, between g and’gis intersected by at most k
surfaces o= (see Fig 4).

Proof. Conditions (R1) and (R2) are immediate from the construction. Condition (R3)
follows if we chooseu to be the maximum number of maximaimonotone pieces into
which any intersection curve between two surfaces ia decomposed. All that remains

to be shown is condition (R4): Singee R ando (x) = o, there exists an edge-crossing
atC-level 0 of the form(e, €%, g*), wheree* is incident tas, such that, if we follovws NV,

from the top endpoint af* to the top endpoint af, we encounter at mo&t— 1 distinct
surfaces o2, and do not encounter’. Let A* denote the trapezoidal-like region formed
within Ve by g, g%, the part ofe betweeng andg*, and the part of o N V. betweerg
andg*. ThenA* can be intersected by at mdssurfaces of. To see this, we note that,

as just argued, at moktsurfaces intersegt, and that no surface can intersegtvhich

is a portion of an edge ofi(X)) or g*. We claim that no boundary arc of any surface
of ¥ can crossA*. Indeed, leu be the leftmost point of intersection of a boundary arc
with A*. Then the number of surfaces that vertically sepasdtem e is at mosk (any
such surface must crog3, so that, by construction, such a crossing would have caused
eto be split below it. It now follows that any surface crossinmust also cross, and
condition (R4) is thus immediate. O

Second Stage We next boundR| in terms ofCy(n). Let € be a split edge ofA(X)
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atC-level < k. Lett = te denote the number of surfacesBfthat appear on the first
2k (top) V-levels of A(=€). (We remind the reader that-levels inV® are measured
from € downward) If t < 4k, thene’ contributes at mosD (k?) edge-crossings t&.
We claim that there are onl@(k'~¢n?*¢) split edgese’ of A(X) atC-level < k. To
see this, charge each such edge one of its endpoints, and observe that the endpoint
is either a vertex ofA(X) atC-level at mosk or a splitting point of the edge of(X)
containinge’. By the analysis in [10], [16], and [19], the number of endpoints of the
first type isO(k'~¢n?t¢), for anye > 0. The number of endpoints of the second type
is, by Lemma 2.30(k?nis,2(n/K)), which is subsumed by the first bound. Hence, the
overall number of edge-crossings/within all the curtaind/® for whichte < 4k, is
O(k? - k1=¢n?t®) = O(k3n?+*), for anye > 0. We can thus assume that 4k.

We want to repeat, withiv®, the analysis of the first step. However, we face a
complication that the number of edge-crossings that are countdaiithin V¢ could
be aslarge a® (tk), as itis possible thatl vertices oV -level < kin A(X¢) correspond
to edge-crossings iR. Our goal in this second stage is to bou] by something close
to (1/k)Ck(n), but the technique of the first counting stage will not imply this wkién
is “full” of edge-crossings irR. To overcome this problem, we first bound the number
of “excessive” edge-crossingsRwithin V¢, using a different approach, and only then
bound the number of remaining crossings, using an approach similar to that of the first
stage.

We first identify a class of vertical edge-crossingsRn(the “excessive” edge-
crossings), whose number we will be able to bound independently. We define an edge-
crossingle, €, g) atC-level at mosk to becoveredf it satisfies the following condition:

Let o1, 02 € T be the two surfaces incident & There is a surface € ¥ that
intersects the relative interior @f, and eithefs; or o, (say, for definitenesss;)
crosseg within V¢, either to the left or to the right @f, at some poiniv. Moreover,
if g* denotes the vertical segment connectindo €, then the trapezoidal-like
portion of V€ bounded byg, g*, the portion ofe¢’ betweeng and g*, and the
portion ofo; betweerng andg*, is crossed by at moskzurfaces ofz.

See Fig. 5 for an illustration of this definition; note that the definition encompasses
several different subcases, as is illustrated in the figure. Note also that in the rightmost
subcase shown there the intersectidbetweert ando, in V€ could also be considered.
However, the corresponding trapezoidal-like region is not properly contained in the one

Fig. 5. Several types of covered edge-crossings.
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corresponding tav, so it is possible that it is crossed by more th&rs@rfaces and thus
disqualifies for making our edge-crossing covered.
We can now establish the two central lemmas.

Lemma 2.5. The number of uncovered edge-crossing® inithin V€ is O(te S2(te)).

Proof. Inthe first step of the proof, we partition the arcs5f into “small” subarcs, as
follows. Recall that, by construction, each endpoint of any afE9nmust either lie on
the relative boundary &f ¢, or else be a¥ -level > 3k. Replacez® by the subcollection
>* of only thoset = to arcs that appear within the firsk 2/-levels of A(X€). The
total number of vertices ofl(Z*) atV-level < 2kis O(k?As 2(t/K)) [16], [19], and so
there must exist & -levelk < k* < 2k that contains onlYD (kis,2(t/k)) = O(tB(t/k))
vertices. Hence, the porticd™ (X*) of A(X*) that lies atV-level < k* is formed by
O(tB(t/k)) connected subarcs whose endpoints lie either otkthéh V-level or on the
vertical boundaries 0f ¢ ; see Fig. 6. Moreover, since the number of verticed iz *)
is O(ktB(t/k)), we can partition further each of these subarcs (at points not coinciding
with any vertex of the arrangement) into smaller connected pieces, so that each piece is
incident to at mosk vertices of4*(Z*), and so that the overall number of these smaller
subarcs is stilO(tB(t/k)); see Fig. 6. LeE™ denote the resulting collection of the new
subarcs. Note that all vertices @i =€) atV-level < k* are also vertices afl(X ).

Define thedepth DX$) of a subar® € ¥ to be the smalles¥-level in A(X ") of
any point ons; this notion is illustrated in Fig. 6. Note that, by constructi@g) is
always at mosk*, and it is also equal to the small@étlevel in A(X®) of any point on
8. We have:

Claim. Let(e, €, g) be an uncovered edge-crossinginwithin V¢, and suppose that
the relative interior of g is crossed by k surfacesLeto; ando; be the two surfaces
incident to eand lets1, 8, € = be the respective subarcsafn V¢, oo, N V€ incident
to the bottom endpoint of g. Then D(§;) = D(82) = h.

Fig. 6. Clipping the firstk* V-levels of. A(=¢) and decomposing them into subarcs; the depth of the subarc
§is 2.
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)

3!

Fig. 7. The proof of the bound on the number of uncovered edge-crossings.

Proof of Claim Note that, by definition, bot® (§;) andD(8,) are at mosh. Suppose
to the contrary that, say) (§1) < h. Then there is a point* € §; whoseV -level h* is
strictly smaller tharh; see Fig. 7. This implies that one of the surfaces, cdll ithat
crosses the relative interior gfcannot cross the relative interior of the vertical segment
g* that connecta™* to €. However, thert must crosss; at some pointw between
andv* (¢ cannot cros® and since’; has no point ofV-level > k*, there cannot be
a boundary point abov& within V). It is now easy to see thae, €, g) is a covered
edge-crossing. Indeed, latdenote the trapezoidal-like region formed witMf by g,
the vertical segment connectingto €, the portion of§; betweerv andw, ande’. Any
surface ofZ intersectingA must either intersect the interior gfor must form a vertex
on§; betweerv andw. There are at mo$t surfaces of the first kind, and at mdst 2
of the second (recall thay has at mosk vertices inA(x¢)), and soA is crossed by
less than R surfaces. This contradiction completes the proof of the claim. O

Let 2; denote the set of all subarcs Bf whose depth i, forh =1, ..., k, and
putth = |Z,|. If (e, €, g) is as in the claim, then the corresponding vertex a vertex
of the upper envelope ;" within V¢ Indeed, the claim implies thatis a vertex of
A(Z{), and no subarc of;" can pass above, because the depth of any such subarc
must be strictly smaller thah. Hence, the number of uncovered edge-crossing®g in
within V¢ is at most

k k t
D hsiath) < Asy2 (Zm) = Ast2 (o <tﬂ (E))) = O(tB*(1)). m
h=1 h=1

Lemma 2.6. The total number of covered edge-crossing®Rinn the entire arrange-
ment is O(k*n?+¢), for anye > 0.

Proof. Let R’ be the set of all covered edge-crossingskinbut with certain mul-
tiplicities removed: For every four surfaces, oo, 03,04 € X, we choose only one
edge-crossinge, €, g) with e € o1 N oy and€ < o3 N o4 for R’, and, for every
three surfaces, o2, 03 € X, we choose only one edge-crossing= (e, €, g) with

e C o1 Nozando (x) = o3 for R'. Exploiting condition (R3) and the fact that there are

at mosts edge-crossings defined by the same four surfaces, it is now sufficient to show
that|R'| = O(k3n?**), for anys > 0.
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Fig. 8. Two cases of covered edge-crossings: (e, €, g) € R, and the corresponding pathgy) (shown
as fat curves).

Letx = (e, €, g) be a covered edge-crossing. Letoy, 02, and¢ € T be asinthe
definition of a covered edge-crossing, and assumethatbsses within V€ to the left
of g at some pointv; see Fig. 8. By condition (R4), there is an intersection poiot ¢
ando onVe, Whereos = o () is one of the two surfaces definieg the portion ot NV,
betweerw andg does not meet, and the portion o N Ve betweerw andg does not
meet the other surfaeg incident to the top endpoint @f. Let A be the trapezoidal-like
region withinV,, as defined in condition (R4), and lat be the trapezoidal-like region
within V€, as in the definition of covered edge-crossings. By the preceding arguments,
at most & surfaces cross eitheéx or A’. See Fig. 8 for an illustration.

Let K be a random sample of/ k surfaces ofx. As argued in [10], the probability
that K contains the five surfaces, o, ¢, o, ando’, and does not contain any of the
other surfaces crossiny U A’, is at least/k®, for some absolute constamt> 0. Let
R be the set of edge-crossingss R’ that appear itd(K), in the sense that the above
choice of surfaces i materializes. Since the expected siz&qf is at least/k® times
the size ofR/, it suffices to prove thatR} | = O(n?*¢/k?), for anye > 0.

So letC(K) = C,(K) denote the cell inA(K) that containsw, and consider an
edge-crossing = (e, €, g) € Ri. Clearly, the segmerg crosses inA(K) only the
surfacez, and its portion below is fully contained inC(K). For technical reasons, we
distinguish between the two (top and bottom) sides of each surfateme appeal to the
intuition of the reader, and refer to [3], [4], and [12] for a formal definition. An important
property that this distinction has is that a curve drawn on the top side of a surface is not
considered to cross a curve drawn on the bottom side.

We construct, for every € R, a pathr = 7 (x) ondC(K) as the concatenation of
the following three subpaths:

e m1(x): the subarc of NV, connectingwtou =gnN¢;

e 72(x): asubarc of N V¢ extending fromu towardw, stopping as soon as it hits
eitheroy or o, in a pointw’ (w’ may or may not be equal o, see the two cases
in Fig. 8);

e m3(x): this subpath extends from’ alongo; N V€ or o, N V€ (depending on
which surface containg’) towardg, and stops as soon as it hits the other surface
defininge (this can happen either gtor earlier, see Fig. 8).

The first two portionsri(x) andmw,(x) are drawn on théottomside of¢, and the last
portionmz(x) is drawn on theop side ofo; or oy; see Fig. 8.
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We draw a pathe () for each edge-crossing € R .
Claim. The relative interiors of any two distinct pathgy), 7 (x*) are disjoint

Proof of Claim Suppose to the contrary thaty ) andz (x*) contain a common point,
for two distinct edge-crossings = (e, €, g) andx* = (", (¢)*, g*) in R} . Because
of the top/bottom sidedness of the surfaces and the way in which the paths are drawn,
only the following cases can occur.

m1(x) intersectsti(x*): By our construction, the pati, (x) lies directly above an
edge ofA(K) (the one containing), starts (at its left endpoint) at an edge4fK ) and
stops as soon as it passes directly below another edge (the¢dagesimilar property
holds forz1(x*). It follows that if 71 (x) andmy(x*) have a common point (including
even the sharing of an endpoint), tres €%, € = (€')*, and the two paths must coincide
completely. This implies that and x* are defined by the same four surfaces, which is
a contradiction to the definition 6¢'.

ma(x) intersectsra(x *): The pathr,(x) passes directly below an edge4fK) (the
one containing’), ends on an edge of(K), and starts directly above an edge4(K)
(the one containing). It may pass above other edgesf .A(K), but then any suchis
defined by the same two surfacesalt follows that if the relative interiors of,(x) and
2(x*) have a common point, the = (¢)*, and hence (x) = o (x*). Furthermore,
the surfaceg on which these subpaths are drawn are the sameg ande* must be
defined by the same two surfacesstifAgain, this is impossible by our definition &'

The case where the common pointof x ) andz,(x*) is an endpoint of, say;2(x)
is handled in a similar manner. That is, we note that if the surfacas which these
subpaths are drawn are not the same, then the manner in which these subpaths are drawn
on the bottom side of these surfaces is easily seen to imply that the paths do not meet at
this point at all; see Fig. 9 for an illustration.

m3(x) intersectsrz(x*): The pathrs(x) lies below an edge ofli(K) (the one con-
taining €), and exactly one surface &f (namely,¢) passes between the path and the
edge. Hence, if the relative interiors 0¢(x) andxs(x*) have a common point, then
€ = (¢)*, and the surfaces on which these subpaths are drawn are the same. Hence
wa(x) = ma(x*), since they both lie inV€, on the same surface, and extend in both

Fig. 9. The pathsrz(x) andm2(x*) have no pointin common.
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directions until they hit an edge of(K). This implies thaty andx* are again defined
by the same four surfaces, which is impossible. Again, the case where the common point
of m3(x) andz3(x*) is an endpoint of one of these subpaths is handled as above.
Finally, w1 (x) intersectsra(x*) (or, symmetricallysr1 (x *) intersectsra(x)): A point
p € m2(x*) has to lie directly below an edge @f(K). The only point with this property
onmy(y) is its endpoinu. On the other hand lies directly above an edge of(K).
The only such point om,(x*) is its endpoint, and hence= € ande = (€')*, which,
as above, yields a contradiction.
This completes the proof of the claim. O

We continue with the proof of the lemma. We now have a systemwf pairwise
openly disjoint paths drawn o#C,(K), and our next goal is to bound their number,
using Euler’s formula for planar graphs, in a manner similar to, though somewhat more
complex than, the technique used by Tagansky [20]. This is done as follows.

Fix a facef of aC, (K) (which lies on either the top side or the bottom side of some
surface), and clip all paths that crofdo within f (note that either all these clippings
retain the first two portions of each such patht, ifes on the bottom side of a surface, or
they all retain the third portions of these pathd, Ifes on the top side). L&b¢ denote the
resulting collection of clipped paths. We reg&¢ as a plane drawing of a graph, whose
nodes are the edges bfand whose arcs are the clipped paths. Sihs(homeomorphic
to) a planar region, we do indeed obtain a plane drawing of a planar graph, and we can
apply Euler’'s formula to conclude that the number of arc&inis at most three times
the number of edges of, plus the number of faces @ of degree 2. Applying this
analysis to each (sided) face®@f(K), and summing up these bounds, we conclude that
the overall number of clipped subpaths is proportional to the complexity@€ ), which
is O((n/k)%*), for anye > 0 [12], plus the overall number of graph-faces of degree 2.

To get a better handle on those degree-2 faces, we go over all faoég,, (K),
take each “run” of adjacent degree-2 faces witfiinand delete all their incident sub-
paths, except for the first and the last one. Clearly, the number of remaining subpaths is
O((n/k)%*®), for anye > 0.

Now take a full pathrz (x). If either of its two clipped subpaths has survived after
the above trimming, we chargg ) to that subpath. Since this charging is unique, the
number of paths (x) of this kind isO((n/k)%*¢), for anye > 0. Suppose then that both
clipped subpaths of (x) have been trimmed. This is easily seen to imply that there is
a sequence of “parallel” paths, all of which connect between the same pair of edges of
C.,(K), such thatr (x) is a middle element of the sequence. Recall that, in the notations
used above, one of the terminal edges ¢f) is incident to the two surfaces, o, that
meet also at the bottom endpointgfrecall that the endpoint of (x) need not coincide
with the endpoint ofg), and the other terminal edge is incidentzgtand too (x). It
follows that there are at least three different pattig’) in the above sequence, such
that the corresponding edge-crossiggshare the three surfaces o,, ando = o (x’).

By our definition of R’, this is impossible, and therefore every patty) is uniquely
charged to one of its subpaths.

All these arguments readily imply that the total number of pats) that are drawn
onaC,(K) is O((n/k)?*¢), for anye > 0. This implies thatR} | = O(n*"¢/k?), and,
by our conclusions above, this completes the proof of the lemma. |
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We now show how the bounds derived in Lemmas 2.5 and 2.6 imply our main result.
Putt* = >, te, where the sum extends over all split edgeat C-level at mosk, for
whichty > 4k. Lemmas 2.5 and 2.6 imply that

IR| = O(K*n?**) + ) " O(te f2(te)) = O(K*n**) + O(t*B*(n)).
€

On the other hand, for each edgeas above, the number of vertices appearing in the
first 3k V-levels of A(Z¢) is Q (te k). Indeed, the number of surfaces whose intersection
arcs are fully contained within the firsk3v-levels of A(x¢) is at most &, because,

for every such surface, the endpoints of the curven V¢ must be among the firsk3
curves below each endpoint ef (the curve cannot have an endpoint in the interior of
V¢, because such an endpoint would have cagstedbe further split). Sinck > 4k, at
leastty — 3k > %tef of these curves have a point\atlevel >3k, and thus each of them
must contain at leaktvertices ofA(=¢) atV-level < 3k (because, by definition, it also
shows up among the tofk2/-levels). Since each such vertex induces an edge-crossing
atC-level at most g, it follows that

Cx(Z;0) =Q (the) = Q(t*k).
e

Hence, we have

2 2
IR| = O(k*n***) + O <—ﬂ |£n) -kt*) = 0Kk*n**)+ 0 (ﬂ én) .cgk(n)> . @

Next, we estimat€z (n) by using the probabilistic technique of Clarkson and Shor
[10], [16]. Since each edge-crossitg €, g) is defined by four surfaces (two surfaces
incident toe and two incident t&), the Clarkson—Shor technique is easily seen to imply

that Ca(n) = O(k*Co(n/k)). Combining (3), (4), and the Clarkson—Shor bound, we
readily obtain

3
O(“‘ﬁ () + KB ()n*** + k3,3(k)ms+2<g>> e O(k4C0<E)>

Co(n) 2

O(K3 BN + Ok?p3(n)) - %(E).

The solution of this recurrence @(n?%), for anys > ¢. This is shown by induction on
n, choosingk = A+%?(n) and using the fact that(n) is an extremely slowly growing
function ofn (see also [1]).

In conclusion, we have thus obtained the main result of the paper:

Theorem 2.7. The complexity of the vertical decomposition of a single cell in an ar-
rangement of n algebraic surface patchesRify such that the degrees of the surfaces
and of their boundary curves are all bounded by some constast®(n?*¢), for any

¢ > 0, where the constant of proportionality dependsscend on b
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3. Applications
3.1. Constructing a Single Cell

Theorem 3.1. Given an arrangement of n algebraic surface patcheRinsuch that

the degrees of the surfaces and of their boundary curves are all bounded by some constant
b, one can construcin an appropriate model of computatighe cell of the arrangement
containing a given poinin randomized expected time(@¥ ), for anye > 0, where

the constant of proportionality depends oand on b

Proof. As noted in the Introduction, this can be accomplished, in a rather routine
manner, by applying the lazy randomized incremental framework of de &ealy[6].

We content ourselves with a brief sketch. The model of computation that we assume is
that of exact rational arithmetic, using one which can perform any primitive algebraic
operation involving a constant number of surfaces (such as intersecting three surfaces,
computing edge-crossings induced by four surfaces, etc.) in constant time.

The algorithm maintains the vertical decomposition of a collection of cells of the
arrangement while adding the surface patches one by one in a randomly chosen order.
The collection of cells is guaranteed to contain the cell we are interested in. In general it
will include some other cells as well, since it seems to be too hard to determine whether
a new surface patch splits the current single cell or not.

Recall that vertical decomposition is defined in two stages: In the first stage, we erect
primary wallsfrom edges of the arrangement, and obtain cylindrical cells whose bottom
and top facet are both contained in a single surface patch and have theysanogection.

Inthe second stage, we partition these cylinders into constant-complexity “prisms,” using
secondary wallslefined by a trapezoidal decomposition in theprojection. We call
the final resulting prismboxes

As an auxiliary structure, our algorithm also maintaifgstory graphas introduced
by Boissonnagtt al. [7]. The history graph is a rooted, directed, acyclic graph whose
nodes correspond to boxes of the vertical decomposition at some intermediate stage. The
leaf nodes of the graph are colored either green or red. The green leaf nodes correspond
to the boxes of the vertical decomposition of the currently maintained collection of cells.
We also maintain a graph on the green leaf nodes that will allow us to transverse the
maintained cells of the current vertical decomposition.

To insert a new surface, we first have to find all green leaf nodes intersected by
This is done by a graph traversal of the history graph, starting at the root. This requires
that we can test whetherintersects a given box. Since boxes are defined by a constant
number of polynomials, this is a constant time operation in our model.

Every green leaf box intersected by is split into a constant number of new boxes.

A new green leaf is created for every new box, and it is linked.tdhe adjacency
relations are updated at the same time.

The new set of boxes will not, in general, be a proper vertical decomposition of the
new surface arrangement. In the next step, we have to merge boxes that are separated
by secondary wall sections that are no longer part of the vertical decomposition. This is
relatively easy for boxes whose top and bottom facets are distinctdrom

To correct the situation for boxes whose top or bottom facet iwe recompute the
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two-dimensional trapezoidal decomposition for all relevant facets on the surface of
A secondary history grapis created to aid traversing the history graph for these boxes,
see [6] for details.

After inserting surface patch number, 2or 1 < i < logn, we identify the cell
containing the marking point. This is done by traversing the vertical decomposition,
starting from the box that contains the given point. All boxes of the current set that do
not lie inside the cell are colored red, and will therefore not be subdivided any further.

The stated bound on the running time of the algorithm follows immediately from the
general results on lazy randomized incremental construction [6], once we plug in our
bound on the complexity of the vertical decomposition of a single cell. O

3.2. Motion Planning for Systems with Three Degrees of Freedom

As noted in the Introduction, the main application of Theorems 2.7 and 3.1 is to mo-
tion planning for arbitrary systems with three degrees of freedom. This application is
described in detail in the survey papers [13] and [18], see also [3]. The results of our
paper imply the following:

Theorem 3.2. Let B be arobot system with three degrees of freedoich that the free
configuration space of B can be described as a Boolean combination of n polynomial
equalities and inequalitie®f constant maximum degreeib the three parameters that
define the degrees of freedom af TBien given any two free placements,Z of B, it

can be determingdn randomized expected time(6¥+), for anye > 0, whether there
exists a collision-free motion of B from ¥o Z,, and if so, produce such a motioifThe
constant of proportionality in this bound dependseoand on b)

As mentioned in the Introduction, this settles a long-standing open problem, which was
previously solved only for some special systems.
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