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Abstract. Given a simple arrangementiopseudolines in the Euclidean plane, associate
with line i the listo; of the lines crossing in the order of the crossings on lines; =

(01.0%.....0,_y) is a permutation of1, ..., n} — {i}. The vector(oy, 0. ..., on) is an
encoding for the arrangement. Define = 1 if of > i andt/ = 0, otherwise. Let
5 = (tl, th, ..., 7)_,), we show that the vectdt, 7, . . ., 7o) is already an encoding.

We use this encoding to improve the upper bound on the number of arrangements of
pseudolines to%°74"* Moreover, we have enumerated arrangements with 10 pseudolines.
As a byproduct we determine their exact number and we can show that the maximal number
of halving lines of 10 point in the plane is 13.

1. Introduction

Arrangements of lines and pseudolines are recognized as important and appealing objects
for research in geometry and combinatorics. A general theory of arrangements is given
in Griinbaum’s monograph [8]. The oriented matroid point of view on arrangements is
taken in [2]. Enumeration questions for arrangements are discussed in Section 6.5 of
[2] and in Section 9 of [9]. In most texts, arrangements of pseudolines are defined with
the real projective plane as ambient space. In contrast, we consider arrangements in the
Euclidean plane.

Let apseudolinde anx-monotone curve in the Euclidean plane. &mangement of
pseudoliness a family of pseudolines with the property that each pair of pseudolines
has a unigue point of intersection where the two pseudolines cross. An arrangement is
simpleif no three pseudolines have a common point of intersection. Throughout this
manuscript the termarrangementif not specified further, will always denote a simple
arrangement of pseudolines. T$iezeof an arrangement is the number of its pseudolines.
Given an arrangememt of sizen we label the pseudolines so that they cross a vertical
line left of all intersections in increasing order from bottom to top.
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Fig. 1. Wiring diagram.

An arrangement partitions the plane into cells of dimensions 0, 1, or Zeitiees
edgesandfacesof the arrangement. The cells of an arrangement carry a natural lattice
structure. Adding & and al element we obtain thiace latticeof the arrangement. Two
arrangements are considered tadmmorphidf their face lattices are isomorphic under
the correspondence induced by some labeling.

Particularly nice pictures of arrangements of pseudolines are given bywtinigig
diagramsantroducedin [5], see Fig. 1. L&V be awiring diagram of a simple arrangement
of sizen. For each abscissawhere no crossing takes place the vertical order (upward)
of the pseudolines atis a permutationry of {1...n}. Assuming that no two crossings
of W have the sama position we obtair(g) + 1 different permutations. Denote by
3 the sequence of these permutations in left to right order. We note two properties of
sequence:

(1) Thefirstelemental isthe identity permutatio¢d, 2, ..., n) and the lastelement
of X is the reverse permutatidn, ..., 2, 1).
(2) Two consecutive permutations Ihdiffer by the reversal of an adjacent pair.

Following Goodman and Pollack [6], [7] we call a sequeicef (’2‘) + 1 permutations
of {1...n} satisfying the above propertiessimple allowable sequencén general
allowable sequences it is allowed for consecutive permutations to differ by the reversal
of a larger substring. A simple allowable sequence is easily transformed into a wiring
diagram and, hence, an arrangement of pseudolines. Note, however, that many allowable
sequences may correspond to the same arrangement, see Fig. 2. Consecutive pairs of
crossings that have no pseudoline in common can be interchanged without changing the
arrangement.

Simple allowable sequences are basically the same as reflection networks, see [9].
Alternatively, they can also be seen as maximal chains in the weak Bruhat order of
the symmetric group. In this last context their numi#gr has been determined by

5 S

Fig. 2. Wiring diagrams corresponding to one arrangement but two allowable sequences.




On the Number of Arrangements of Pseudolines 259

Stanley [10]. His remarkable formula is

()

hoi(2n — 2k — Dk’

Edelman and Greene [3] prove this formula via a combinatorial bijection between dif-
ferent types of tableaux.

Let B, be the number of nonisomorphic simple arrangements of rsiZgéesides
the numbersA,, and B, we will consider their logarithms,, = log, A, andb, =
log, Bn. From the above remarks it follows that there are more allowable sequences than
arrangements, i.eb, < a,. From Stanley’s formula a®(n? logn) upper bound foa,
follows. Knuth [9] proves lower and upper bounds for the number of arrangements:

on?/6-5n/2 <B, < 3("Y)

This givesh, < 0.7924n? + n). Knuth reports on some computations supporting a
conjecture oby, < (). Fromthe sharpest version of the zone theorem [1] a bouind of
0.7194? is obtained. In the next section we propose a new encoding of arrangements
from which we easily obtaif, < 0.721372. In Section 3 we work a little harder to
obtain an improved bound &f, < 0.69742.

2. An Encoding for Arrangements

Representing an arrangement by an allowable sequence can be seen as an encoding
by an ordered sequence of vertical cuts through the arrangement. A representation by a
sequence of horizontal cuts can be obtained by associating withtiadisto; of the lines
crossing in the order of the crossings on lineTo an arrangemer thus corresponds
avector(oy, ..., on) Whereg; is a permutation ofl, ...,i —1,i +1,...,n}. As will

be shown in this section, it suffices to know which entries;adre larger thain in order

to obtain an encoding foA.

Definition 1.  Let 7, be the set oh-tuples(ty, 72, . .., T) With = (ti, th, ...t )
a binary vector and_]_j t! = n—i foralli.

Define a mappingb from arrangements of size to 7,. Given an arrangememd
let 7j report the crossings of pseudolinavith the other lines from left to right. More
precisely,tji = 1if the jth crossing on ling is a crossing with a line with index larger
thani. In the wiring diagram this corresponds to a move of witg into the next track.
Conversel)zji = Oiflinei is moving down at théth crossing, i.e., if thgth crossing on
linei is a crossing with a line with index smaller thariEach of then — 1 lines different
fromi contributes exactly one crossing on lineandn — i of these lines have a larger
label than . This proves thatry, 1o, ..., 1) = ®(A) isin7,. For example, the element
of 7, corresponding to the arrangement represented by the wiring diagram of Fig. 1 is

T=(1111,0111),(110),(,00,0),(0,0,0,0)).
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Of course, not all elements @f, correspond to an arrangement, e.g.,rfoe 4 we
have nine elements ify but only eight arrangements. The elemerfphot in the image
of ®isT =((1,1,1),(1,0,1), (0, 1,0), (0,0, 0)).

Theorem 1. The mappingd is injective

Proof. Algorithmically the tool of choice for the construction of the face lattice of

an arrangement of pseudolines is a topological sweep (see [4]). Imagine a sweep of
arrangement! as a move of a topological line continuously from left to right across the
plane. All incidences between cells of the arrangement are visited by the line during this
move. We discretize the line and replace it byuhiof edges of the arrangement. This is
alist(es, e, ..., &) of edges obeying the conditions:

(1) Edgee; is on the boundary of the bottom face, i.e., on the face containing the
vertical ray to—oo and edges, is on the boundary of the top face, i.e., the face
containing the vertical ray te-co.

(2) Foreach =i < n— 1thereis a facd; of the arrangement with edgesand
€41 On its boundary.

To get from the bottom face to the top face every pseudoline has to be crossed. Since a cut
consists ofi edges only it follows that the order of edges of a cut represents a permutation
of the lines of the arrangement. The sweep begins at the leftmost cut consisting of all left
unbounded edges. The permutation corresponding to this cut is the identity permutation.

An advance moveorresponds to shifting the topological line across a point of the
arrangement. The admissible points for advance moves are those with both left edges in
the current cut (Fig. 3).

To make the algorithm deterministic our sweep always has to pick the lowest admis-
sible point for the advance move. Formally, idbe the least index such that the right
endpoints of edgeg ande 3 coincide in the current cufey, ..., €,). The next cut
is(en,....6-1,€,€,4, 642, ...,6) whereg is the edge right o& ,; on the same
pseudoline and , is the edge right o& on the same pseudoline. In general, if two
cuts differ by an advance move the corresponding permutations differ by an adjacent
transposition. As long as some edges in the cut have right endpoints an advance move is
possible. The algorithm terminates when the current cut has become the rightmost cut
consisting of all right unbounded edges and the vertical order of the lines is reversed. The

Fig. 3. Advancing the cut across a vertex.
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sequence of permutations of the cuts visited by the algorithnt@aonicalallowable
sequence for the arrangement.
The next algorithm works with inpub (A4) and produces a sequence of permutations.

The first permutationr = (71, ..., my) is the identity. We initialize an edge counter
s(i) = 1 for each lind and lety; = ts”('m). The bit-stateof the algorithm is the vector
v = (v1, v2, ..., V). It will be important to keep in mind that depends omr ands.

Initially v; is simply the first bit oft; where®(A) = (tq, ..., 7).

In each step the algorithm takes the least indeith v; = 1 andv; .; = 0. Edge coun-
terss(srj) ands(rj 1) are increased by one ands changed by an adjacent transposition
at positioni, i.e.,m becomesny, ..., 71, Ti11, Ti, Tit2, -+ - » 7Tn)-

The claim is that sweeping and® (4) produces the same sequence of indices
advance moves and are consequently the same, i.e, the cannonical allowable sequence.
We compare the two sweeps by making simultaneous advance steps in both algorithms.
Lete = (e, ..., &) be the current cut and let= (vy, ..., vy) be the current bit state.
The following invariant suffices to prove the claim by induction.

(x) The current permutation of both algorithms agree. Moreover, theilsash that
the right endpoints o0& ande; coincide equals the leastwith v; = 1 and
Vi4+1 = 0.

This is trivially verified at the beginning. Now suppose thgtié true after some fixed
number of moves of both algorithms.

Both algorithms make their next advance at the same inded the two lines involved
in the crossing are determined by the permutation, hence, they are the same. It follows
that the new permutations agree. lzebe the new permutation, letbe the new cut,
and letv be the new bit state. Consider any indewith v; = 1 andvj,; = 0. This
means that at its next crossing lingis moving up while liner;, is moving down at
its next crossing. Since ling; is below liner;, and they border a common face.ih
they cross each other, i.e., edgeande; ;1 have a common right endpoint. Conversely,
if edgese; ande; 1 have a common right endpoint, then limgis moving up while line
7j+1 is moving down at the next crossing, henge= 1 andvj;1 = 0. This proves the
invariant.

By (x) the sweep algorithms fod and® (.A) produce the same allowable sequence.
The sequence characterizes the arrangerferithis proves the injectivity of map-
ping ®. O

We have seen that is an injective mapping from arrangements of size elements

of 7,,. Counting elements df, is a trivial task,| Zn| = (";) (", (") -+ (079)-

Factl. b, < Zﬂ;i kloge = 0.7213n? — n).

Proof. Let

_ n-1 n—-1 _(n_l)n—l
f(n)—< 0 >-~-(n_1>, hence f(n)_wf(n—l).
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The formula of Stirling gives log (n) = (n—1) loge+log f (n—1). The claim follows
by induction. O

Compared to the best-known boubg < 0.7194? this was surprisingly easy to
obtain.

For a better understanding of the encodibgt would be interesting to have some
tools to discriminate between members frdmthat are in the image ob and those
that are not. At this time we have little more than the second algorithm from the above
proof. We can take arbitrary elemefitss 7, as input to this algorithm. The two possible
outcomes are:

(1) The algorithm gets stuck befofg) moves have been made, i.e., in the current
vectorV there is no index with v; = 1 andvj,; = 0.
(2) T indeed corresponds to an arrangement.

Other cases can be ruled out as follows. SupposeTtttatn be swept and consider the
sequence of permutations generated. Sincd lineved upn — i times and dowm — 1,

linei ends up on wir@ —i + 1. This proves that we end up with the reverse permutation.
Hence, the sequence is allowable and corresponds to an arrangement.

3. A Better Bound for by,

Recall the element = ((1, 1, 1), (1,0, 1), (O, 1, 0), (0, O, 0)) of 74 not in the image of

®. Trying to sweepl we get stuck after three moves. At the second move we already
note that something goes wrong since the lines involved in the crossing of the first
move cross-back. Call ammediate back-cross situation where two lines cross twice

in a row. Geometrically this corresponds to two edges with the same left and right
endpoints. When sweepifige 7,, we recognize an immediate back-cross when the pair
(vi, viz1) = (1, 0) of the move is replaced by, v, ;) = (1, 0), i.e., the vectors and

v’ before and after the move are identical.

Note that the sweep correspondingdlice 7, is completely determined by the initial
vectorv and a sequence dafplace pairswy, wo, .. ., W) If the jth move of the sweep
interchangesr; andz;1 we replace(vi, vi+1) = (1, 0) by the pairw; = (wjl, wjz). A
sequence of replace pairs leads to an immediate back-cross exactly if one of the pairs
wj is (1, 0). The number of back-cross free elementgpfind, hence, the number of
arrangements can thus be estimated from above by the number of initial veetods
the number of1, 0) free sequences of replace pairs. bdhere are< 2" choices and
for each paimw; there remain three choices, therefore:

Fact2. B, < 2"30®), i.e,b, < 0.7922 + O(n).

The proof of Fact 1 made use only of the number of 0 and 1 in eadrhe proof of
Fact 2 is based on forbidding immediate back-crossings. With the replace matrix we next
define a representation that helps take care of both aspects. Estimating the number of
replace matrices will enable us to improve slightly the upper bounio,faor Theorem 2.
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Definition 2. A replace matrixis a binaryn x n matrix M with properties

1) Z?:lmij =n-—ifori=1,...,n,
(2) mj > mj foralli < j.

Lemma l. There is an injective mapping from arrangements of size n toxan
replace matrices

Proof. Consider®(A) and letm;; = til, that is, we record the initial of the sweep
of ®(A) along the diagonal oM. If in the kth move of the sweep ab(A) linesi and
j cross, we definen;; = 1 if the next crossing (after the crossing with lipgof line i
goes up andn;; = 0 if the next crossing of linegoes down, respectivelyy; = t;(w.
If i < j, then at their crossing lineis going up and ling is going down. Since the
lines do not back-cross we havey;, m;i) # (0, 1) or, equivalentlym;; > m;;. After

the complete sweep @b (.A) we remain with a single undefined entry in each row of
M. Let this entry be 0. Suppose< j andm;; was the last undefined entry of its row. It
follows that after crossing from below, linei was not involved in further crossings. If
line j had a further crossing, then it had to move down there since the position above
was occupied by, hencem;; = 0. Otherwise, ling had no further crossings and again
mji = 0.

Property (1) of replace matrices is easily seen to holdMoas defined above. The
entriesinrow of M are the entries af in ® (A) and an additional 0 in some permutation.
Hence,M = W(A) is a well-defined replace matrix. To show that this mapping is
injective we sweefM = W (A) and reconstruc® (A). The details very similar to the
arguments in the proof of Theorem 1 are left to the reader. O

We illustrate this encoding of arrangements by replace matrices by giving the replace
matrix corresponding to the arrangement of Fig. 1. In that case

1110017
1 0011
M=]1 0 0 0 1
0 0010
0 00 0O

To obtain an estimate for the number of replace matrices we use probabilistic arguments.
Consider the probability space of all binaryn x n matrices Wich;‘:l mj =n-—i
fori = 1,...,nand letM be a uniformly distributed random variableSh Let p; be
the probability that a fixed entry in rowof M is O, i.e.,p; = i/n, and letqg; = 1 — p
be the probability that this entry is 1, i.e,= (n—1i)/n.

Fori < j letE;; bethe eventn; > my;. Sincem;; # m;; is equivalenttqm;;, m;i) =
(0, 1) the probability of evenk;; is Prob[Ei;] = (1— piq;). For the numbeR, of replace
matrices, we hav&®, = || ProbV\i<i Eijl.

Carelessly assuming independence of the evEptsve obtain as estimate fdR,
the produc Tz—5 (1) [T-;(L—i(n—j)/n?. The logarithm of this function behaves
like 0.66n2. Of course, due to the fixed row sums of matricesinthe Eij are not
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independent. There are positively and negatively correlated Bgir&;;-, therefore is

not obvious in which direction the error made by ignoring dependencies goes. In the
remaining part of this section we derive a valid estimateRgr

Lemma 2. Iflisasubsetof(i, j):1<i < j <n—1}suchthaProblE,| /\ﬁEJ Es] <

Prob[E,] foralle e l and J S | —«, then R, < || [],., Prob[E,].

Proof. For every enumeration, ..., ) of | we have Proty{\i<j Eij] < Prob
[Ager Bl = |“=|1 Prob[E | /\j_i E4]- The assumption orl implies ProbE, |
/\j <i E;] < Prob[E,,] for all i. O

Lemma3. Thesetl= {@,):1<i < [n/2] < ] < n} obeys the condition of
Lemma2.

Proof. LetQ(i, j) be the set of matrices that can be obtained from matric&s lof

removing rows and j. Think of (i, j) as the set ofn — 2) x n matrices with rows
indexed1...,i—1i+1...,j—1j +1,...,n,and2,”:1mk| = n — k for index

k. GivenM’ € Q(i, j), let #M’) be the number of matriced in 2 that reduce tdv’

by removing rows and j, equivalently, #M’) counts the number of pairs;, rj) of

rows that extend’ to a matrix inQ2. Generalizing this notation let(¥’ : E) be the
number of pairs of rows that exteM’ to a matrixM in Q so thatE holds forM. Let

a=(,]) el andd € | —«. The following inequalities are equivalent:

Prob[E,] > Prob| E, /\ E/g:|,
L Bed
Prob-E,] < Prob|—E, /\ E,g:|,
L ped
Prob-E,] - Prob[/\ Eﬂ} < Prob| —E, A /\ Eﬂ} ,
Bed L Bed
> HM:i-E) > #(M/:/\ Eﬁ>
M’eQ(i,j) M’eQ(. ) peld
< Z #M) Z #(M’:—-Ea/\/\Eﬁ),
M’eQ(,j) M’eQ(,j) Bed

#(M/:—-Ea)#(N/: A\ Eﬂ> < Y #(M/)#<N/:—|Ea AN E,g>.

M/N’eQ(,j) ped M'N’e(,j) ped

We claim that the last of these inequalities holds componentwise.



On the Number of Arrangements of Pseudolines 265

Claim 1. For any pair M, N’ of matrices inQ(, j):

#(M/:—-Ea)#<N’: /\ Eﬁ) < #(M’)#(N’:—Ea A /\ Eﬁ) )

Bed Bed

#(M’) counts the number of pail;, r;) of row vectors that extent’ € (i, j)
to M € Q. The condition om; is Y ryjy = n —i, there arg,".) choices forr;. The
number of choices far is (" ).

Now consider the pairg;, r;) counted by #M’: =E,). To match condition-E, the
valuesrj; = 0 andrj; = 1 are required. There rema{fi_}) choices forr; and (nfjffl)
choices forr;.

Thenumber#N”: /\ ;_; Ep) really depends oN’, respectively, onthe column vectors
s ands; of N'. First consider the choices for. To match the conditiongg for g € J
certain relations between entriesrpfands must hold. Note that due to the choice of
| we havei < n/2 and all pairs containingin J are of the form(, k), i.e.,n/2 < k
and all relations forced betweeanandr; are of the fornrx > s;. Relevant for; are
only those positions witk; = 1. Leti; be the number of pair§, k) € J with g = 1,
hence, conditionk for 8 € J force exactlyr; positionsx = 1. There remailﬁn:‘fil)
choices forr;. Forr; note that all pairs containing in J are of the form(k, j), i.e.,

k <n/2 < j and all relations forced betwesnandr; are of the fornry; < sjk. Define
Xo as the number of pairk, j) € J with sx = 0. There remairﬂ‘ff) choices forr;.
Finally, consider #N': —=E, A /\ ;.5 Eg). Compared with the previous case we have

additionally fixed values;; = Oinr; andrj; = linrj. Hence,('r‘]j:ll) choices forr;

and("*°~!) choices forr;. The claim is thus boiled down to the verification of

n—j-1
n—1 n—1 n—»x n—Xo
n—i/\n—j—1/\n—i—i/\n—j
- n n n—Xx;—1\/n—Xx—-1
“\n—-i/\n-j/\n—i-2/\n—-j—-1)
Both of the following inequalities hold separately. Use
ny n (n-1 and n\ n/n-1
k/  n—k\ k k) k\k—1
for their proofs.
n—1 n—»x - n n—x—1
n—iJ\n—i—x;/) ~ \n—i/\n—i—-x/)’
(2 (0) = (0)GET) :
n—j—1/\n—j/ = \n—] n—j—-1
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Theorem 2. The number Bof arrangements of n pseudolines is at most

06, I, ()
1—
kl:lo(k 1§i§n/l_2[<j§n n2

and hence p < 0.697M?2.

Proof. The above lemmas allow us to bound the numReof n x n replace matrices

by |2[ [T j)er (L —i(n = j)/n?). Plugging in|Q| = "5 (1) and the definition of
boundsR, by the above formula. By Lemma 1 the bound holds true for the number of
arrangements. Taking logarithms we obtain

1 . .
M < Iogz(e)(<n_; ) — ) logl—i(n—j)/n?).
(,jel

The inner sum iszi,jsn/2 log(1 — (i/n)(j/n)) and can (e.g., bimaple ) be estimated
as

1/2 p1/2
/ / log(1 — xy)dx dy= —0.01658
0 0

altogether,, < log,(e)(: — 0.0165n? = 0.697?. O

1 2

Fig. 4. Ten lines with 14 cells in the middle-level.
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Enumeration

B1p = 18,410,581,880. This is an additional value for the table of Knuth [9, page 35]. This
number was obtained by a recursive program. Given an arrangetramt pseudolines

the program generated all cuts from the top to the bottom face. The cuts correspond to
all possible ways to thread(a + 1)st line into the arrangement. For< 9 this resulted

in the numbemB,, given by Knuth.

As a byproduct of the counting algorithm we also found that the maximum number
hio of halving-lines a set of 10 points in the plane can have is 13 (Fig. 4). This adds a
new value to the lishy = 3, hg = 6, andhg = 9. Via the duality between nonvertical
lines and pointgy = ax + b) < (a, b) a halving line of point-seP corresponds to
a cellc in the arrangement dual #® such that a vertical line throughcrosses half of
the lines above and the other half below\Ve call the set of these cells theddle-level
of the arrangement. Note that the leftmost and the rightmost cell of the middle level of
an arrangement correspond to the same halving line in the dual. For more on the size
of middle levels and the more genekaset problem see [11] and [7] and the references
therein.
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