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Abstract. The classical Steiner tree problem requires a shortest tree spanning a given
vertex subset within a grapB = (V, E). An important variant is the Steiner tree prob-
lem in rectilinear metric. Only recently two algorithms were found which achieve better
approximations than the “traditional” one with a factor g3 These algorithms with an
approximation ratio of 148 are quite slow and run in tim®(n%) and O(n%?). A new
simple implementation reduces the timeQon®?). As our main result we present efficient
parametrized algorithms which reach a performance ratio 8 41 for anye > 0 intime

O(n - log? n), and a ratio of 118 + log logn/logn in time O(n - log® n).

1. Introduction

LetS= {v1,..., vy} be aset of points in the plane which is calleaminal A Steiner

treeis a tree in the plane which contains the SeTheSteiner problenis to find a Steiner

tree of minimal length. There are several versions of the problem, extensively described
in the literature [3], [6]-[8], [14], [15], [17].

We focus our attention on thiectilinear Steiner problenthis is the version where the
distance between two points is the sum of the differences of th@indy-coordinates.
Recently this problem obtained new importance in the development of techniques for
VLSI routing [11], [12] and has been known to be NP-hard for a long time [10], [6].
Therefore polynomial-time algorithms for approximate solutions have been investigated.

* Parts of this work have been done at the Max-Planck-Institutrfformatik, Saarhr¢ken and at the
Fakulgt fir Mathematik und Informatik, Universit Passau, Passau.
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The quality of an approximation is measured by its performance ratio: an upper bound
on the ratio between the achieved length and the optimal length.

The well-knownMST-heuristidor the Steiner problem approximates a Steiner min-
imum tree with a minimum length spanning tree of a complete gfaghwhich has a
vertex setSand edge lengths equal to the shortest path lengths in the Graph

The MST-heuristic for the rectilinear case is due to Hwang [9]. He proved that the
ratio between the length of the minimum spanning tree and the length of the Steiner
minimum treeis 32, and gave a® (n-log n)-time implementation for this approximation
algorithm.

Surprisingly two better approximations have recently been given [1], [19], which can
guarantee a performance ratio of/81The algorithm of Zelikovsky runs in tim@(n®)
and has been improved by ti@&n>?) algorithm of Berman and Ramaiyer. The main
results of this paper are:

¢ An acceleration of the second algorithm@gn®/?).
e A new parametrized(r - m- n - log? n) algorithm with a performance ratio of
11/8 + 1/2m+ 1/(8 - 32 ~2) for any parametens, r > 0.

First we introduce some notatio8T(S) andst(S) are a Steiner tree db and its
length, respective\§SMT(S) denotes a Steiner minimum tree with length(S). For a
complete graph with a vertex s8t M (S) is a minimum length spanning tree 8fwith
lengthm(S).

In general, a Steiner tree for a smay contain as vertices also other vertices than
the terminals. These additional vertices are calledteéner verticesST(S) is called a
full Steiner tredf S coincides with the set of leaves BfT(S). If ST(S) is not full, we
can split it into edge-disjoint full Steiner subtrees, thiékcomponentsf ST(S). ST(S)
is calledk-restrictedif every full component has at moktterminals. Let the shortest
k-restricted Steiner tree for the s8t denoted bySMT(S), have the lengttsmt(S).
Notice thatSMT>(S) = M(S).

We review in Section 2 the basic algorithm due to Berman and Ramaiyer [1]. In
Section 3 we prove some facts that lead to a reduction of the necessary iteration steps.
Then we show how to precompute the data for each iteration efficiently, proving the time
bound ofO(n*2). Finally, in Section 5 the new fast algorithm is presented, which runs
in O(n- polylog (n)) time.

2. The Basic Algorithm

The idea of the algorithm is, starting witl (S), iteratively to compute optimal Steiner
trees for small subserof the terminals (e.glz| = 3) and insert these small Steiner trees
into the current tree. Lefs,, Sp, S3) be a triple of terminals with coordinatés,, y1),

(X2, ¥2), and(Xs, y3), respectively. Such a triple is calledstar, if x; < X, < x3 and

(Y1 — Y2)(v2 — y3) < 0. There are four types of stars corresponding to the four possible
orders of they-coordinates. In the following, we consider the case/of< y; < y3
(similar arguments can be used for the other types of stars), and dgregeheleft
point, s, as thebottom pointands; as thetop pointof the star.
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A centerofa staristhe poirt = (X2, y1), whichisthe Steinervertex 8MT(s, $, S3).
We usez = (C; s1, S, 3) to denote such a star.

More specifically the idea is to start with a minimum spanning tre&fénen to add
iteratively some new points (centers of stars) and to construct new minimum spanning
trees for the new point set. At the end we get a 3-restricted Steiner tree for the point
setSreaching the claimed approximation ratio. Berman and Ramaiyer did that also for
generak > 3, considering not only triples bittuples. However, the complexity of the
algorithm increases very fast for higherTherefore we restrict ourselveske= 3.

e Foru, v € S, Bridge(u, v) is the longest edge on the path betweesndv in the
actual tree.
e Bridge(2) = {Bridge(u, v); u, v € z} for every starz.

The criterion for the insertion of the center of some star in Zelikovsky’s algorithm is
the gain(z) which is defined to be the difference of the costBrfdge(z) andsmiz).
Zelikovsky proposes always to add the star with the maximum gain as long as there
are stars with positive gain. Thus the length of the actual minimum spanning tree is
decreased and the approximation ratio of@ tan be proven.

The algorithm of Berman and Ramaiyer also operates with stars and their gains but
it is more involved. We need the following notations:

For e = Bridge(u, v) with costc, alt(e) = (u, v) with cost= (¢ — gain(z)).
Altbridge(2) = {alt(u, v); (u, v) € Bridge(2)}.

Intuitively, we simulate arsMT(z) = M(z U c) wherec is the center of by inserting

two new edges between the terminalzdhamely, theAltbridge(z)). Thus two cycles
appearBridge(z) denotes the set of edges which have to be removed from these cycles
in order to get a new minimum tree.

Note that the definitions of gain, Bridge, alt, and Altbridge depend on an actual edge
setE; we mark this set by a lower index in the following.

The algorithm of Berman and Ramaiyer consists of three phases: the evaluation phase,
the selection phase, and the construction phase. In the evaluation phase we first compute
M (S). Then, for all starg, the valuegjaing (z) are computedE is initialized as the set
of edges occurring iM (S). If gaing < 0, thenzis discarded, otherwisB,q is removed
from E and Bpey is inserted instead, witlB,q = Bridgez(2), Bnew = Altbridge:=(2).

Then the triple(z, Boig, Brew) is stored in a stack. We call such star totteated In the
selection phase the stazsare removed one by one from the stack, and the actisl

either discarded acceptedand then added to a li&tif it might be included in the final

tree. In more detail(z, B.ey) is inserted in the list iBneyw C E, i.e., theAltbridge(2)

were not used as bridges by another star at a later moment in the evaluation phase; if not,
the setB,ew iS removed fromE and a new (actualized) minimum tree is recomputed. In
the construction phase the stars storell mrerealizedand so the output tree is built up

from the entries of the list.

During the algorithm we have to compute bridges, altbridges, and gains of all stars as
well as some modifications on the actual Beand the corresponding MST. There are
several methods which support manipulations on MSTs. Frederickson [5] gave a data
structure for maintaining MSTs in dynamic graphs. Insertions and deletions are allowed
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as are manipulations on the edge lengths. This method can also be used to compute
(alt)bridges and gains. The update time per steP(g/e), wheree is the number of
edges. Another method [4] that only works on dynamic planar graphs take®dolyn)

time per operation.

Berman and Ramaiyer apply Frederickson’s data structure and state that the number of
edges to consider is onl®(n), namely, the set of edges in the actual minimum spanning
tree + the set of edges iBMT(2). Thus each basic step in Berman and Ramaiyer’s
algorithm takes timeD(/n). Trivially there are(}) = ©(n3) stars, so the algorithm
needs® (n%%) time. In both papers [19] and [1], it has been observed that Gxly)
stars have to be considered, improving the time bour@ @@’) [19] and® (n%?) [1],
respectively.

In the next two sections we show that oy(n) stars have to be considered and how
this set of stars is constructed efficiently.

3. O(n) Stars Are Enough

In the following we prove that it is sufficient to consider only a linear number of stars
and this set can be constructed in ti@én - log? n). This immediately implies a drastic
improvement of the running time of the A8-approximation algorithm down 0 (n%?2).

For brevity, we assume that coordinates of all terminals and subtractions between
them are distinct.

Consider the three terminas= (X1, Y1), S = (X2, ¥2), S3 = (X3, Y3) € S. We again
assume without loss of generality that < x, < Xz andy, < y; < y3. The terminals
defining a star also define a rectangle where they lie on the boundari is empty if
there is no terminalx, y) such thatx; < x < xzandy, <y < ya.

Berman and Ramaiyer show that it is sufficient to consider a family of stars for which
we know that there is a 3-restricted SMT with stars from this family. They also prove

Lemma 1l. Foranyterminal set S there is3arestricted Steiner minimum tree SMF)
using only stars defining empty rectangles

Astarz = (c; 51, S, S3) is called dree starif M(SU c) contains the edges of the set
{(c,s1), (¢, %), (C, s3)}-

Lemma 2. Forany set S of terminals there is an SMJ) using only tree stars

Proof. Letz = (c; s1, S, S3) be a star of size 3in a@®MT:(S) T with the centec, E, is

the set of edges between the pointg.df \ E; consists of three disjoint and nhonconnected
terminal setsS;, $, S, each of them containing a termingle §,i = 1,..., 3, that

is adjacent ta. Let e; ande, be the shortest edges that connect the components; thus
T := T\E; U {ey, &} is a minimum spanning tree for the point & S*\{c}, where

S* is the set of all Steiner points df; this is becausd& is a minimum spanning tree

for the point setSU S*. Assume that an edgel, ¢) € E; (U € {5, S, S3}) does not
belong toTyin := M(SU {c}); letv be the terminal being adjacentudying on the path
betweeru andc in Tyin; the pathP; betweeru andv in Ty, and the pathP, between
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u andv in T’ form a cycle in the point se5 U S*\{c}; the longest edge on this cycle,
saye, lies onPy, sinceP; is a part of a minimum spanning tree $fJ S*\{c}. (u, ¢) is
longer thare, because lies on the unique cycle dfiyin U {(u, ©)}; thus(u, ¢) is longer
than the longest edge d@ sincee is longer than any edge of. Therefore adding
(u, ¢) to T and deleting the longest edge on the pattwould decrease the length of

a contradiction sinc& is anSMTz(9). |

Lemmas 1 and 2 imply

Lemma 3. For any terminal set S there is an SM®) using only tree stars defining
empty rectangles

We call such starproper stars

A star ispositive(negative if (Yo — o) — (X2 —X1) > 0 (< 0). This means that the top
point lies above (below) the diagonal through the center of the star. Yao [18] introduced
a graph associated with the sktevery vertex is connected to the nearest vertices in all
eight angles defined by axes and bisectors. The Yao graph coM&®sl ¢). Since in
M (S U c) only one terminal point from each sector might be connectexitimplies
directly the following:

Lemma 4. For any terminal set S there are at most two distinct tree stars with the
same center,mamely the positive and the negative with the shortest length

Let c be the center of a star If the bottom point is closer to the centarthan the
left pointl, then the star haslaottom roof otherwise it has &ft root Accordingly, a
star is either nameblottomor left.

Lemmab. For any terminal set S the number of left stars is at ndost

Proof. Lets = (X, Yy) be a left root of two starg = (c = (X1, ¥); S, 1 = (X1, Y1), S2)
andz = (¢ = (X1, ¥):S, 8, = (X, ¥1),S) andxy < x;. Theny; < y;, since both
stars are empty, ang — y; > X; — X, sinceZ is a left star. Thus,; lies below the
diagonal drawn in Fig. 1 and so the rectilinear distance betseands; is smaller than
the distance betweesi andc. Since the edgéc, s;) belongs toM (SU ¢), the distance
betweenc ands; has to be larger tha(t, s;) (otherwise(c, s;) would be the longest
edge in a cycle), that meag$ — y; < x; — X1. Thus

Y=Y1> Y~ Y D
Claim 1. There is no other left star with the bottom point s

Proof. Indeed, letfd = (x1, ¥); s = (X, ¥), &1, 3) be such a star. This star together
with zandz are empty, s&’ < x and

y1 > Y. 2



98 U. FoBmeier, M. Kaufmann, and A. Zelikovsky

Fig. 1. Two proper left stars with the same root.

Sincec andd are both centers of left stars,

Is.cl < Ic sl 3)
Is,s'l <lc,d]+1d,s'| < [c,d|+d, s1] = [c, s1]. 4)

Inequalities (1) and (2) imply
IS, sl = I8, d| +d, 51| < |s, d] + ¢, d| = |c, sul. (5

Inequalities (3)—(5) imply that the edge, s;) does not belong td(SU c), because it
is the longest edge in the cydtes, g/, s, C. O

We count the number of possible centers for left stars: Imagine a grid having one row
and one column through every terminal, tiusws anch columns. The? intersections
of this grid are possible locations for such centers. If there dére> 2) centers for left
stars in the same row (i.e., the terminal in this row is the left rosttoée stars), then by
Claim 1 inr — 1 corresponding columns (all but the rightmost) there are no other centers.
Thusr (r > 1) centersinarow implyr —1) - (n — 1) =nr —n —r + 1 intersections
that are not centers. Thus f& = ), r; centers there arg ;(nri —n—r; + 1) =
nR—n? — R+ nnoncenter intersections. The total number of intersections (centers and
noncenter intersections)m. HencenR—n? — R4+n+ R < n?andR < (20> —n)/n
or R < 2n. Now, Lemma 5 follows from Lemma 4. O

Similarly, the number of bottom stars is at most #hus, for all possible four types
of stars, Lemma 5 implies
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Lemma 6. The number of proper stars is at m@=n.

It follows directly from Lemmas 2 and 6, that we only need a linear number of stars
during the construction of a 3-restricted Steiner tree. In the next section we show how
to determine these stars.

4. Computing the Stars

Like in the previous section we concentrate on the computation of left stars, the other
kinds of stars can be determined analogously. From the proof of Lemma 5 we can extract
the following conditions to get a linear number of left stars; Fig. 2 illustrates the method
described in this section: For each left rgo& (X, yi) lets = (X, yr) be the rightmost
candidate for a bottom point such that the rectangle definefdnyds is empty ands

lies below the diagonay = —x + X + Y (otherwises would lie closer to the center
thans and thusg is not the root of the star). Itis clear that simultanousslizas maximal
y-coordinate among all candidates for bottom points.

If s does not exist, theg cannot be the left root of any star. Otherwise we continue
our search for more bottom points following the proof of Lemma 5: If there is another
bottom poins’ = (x’, y’) of aleft star with left roos, then the following three conditions
hold:x < X' < X, Y < ¥r,andy; — Yy < X — X'. The last condition means thsitlies
above the diagonat = x + y; — %, which intersects;, and is necessary to fulfill the

Fig. 2. Computing left stars.
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tree star condition fog'. The proof of Lemma 5 states that if there is another terminal
P = (Xp, Yp) With Y’ < yp < Vv, Xp < X, andp also lies closer to the center defined by

p ands’ thans/, thens' is not a bottom point (in Fig. g plays the role of oup, butq

does not fulfill the left root condition; consequently, a star hayjrag the left point and

s’ as the bottom point would be a bottom star, not a left star). This means that we have
to search for a termina with maximal y-coordinate, to the right of, to the left of

and belows. which has no other terminal in the triangle described by the two diagonals
throughs’ and the horizontal line through (in Fig. 2q lies outside this triangle). This
terminal can be taken to be a bottom point of a left star with left pat should be
deleted from the data structure of the bottom points such that it will not be taken later
as a bottom point for other left roots. Then we iterate our search vghptays the role

of 5. This is correct since there is no other terminal to the rigte oivhich might be a
bottom point candidate for a star with More formally, we get the following:

Algorithm

(1) sort the terminals inS in decreasing order with respect to thejir
coordinates

(2) for allg = (x, Y1) € S(from top to bottom)

(3) find the rightmost terminad = (X, y;) with X < X,y > ¥, and
Yi =¥ > X —X;

(4) testthe tree star condition;

(5) determine termina’ = (X', y’) with the following four properties:
@ x < x <x,
(b) the triangle determined by the diagongls= —x + x’ + y’ and

y = X+ Yy — X’ and by the horizontal ling = y; is empty,

(c) y'is maximal;
(d) s’ is unmarked,

(6) if & existsthen mark it, test the tree star condition,

(7) s :=¢5;goto(5);

The second loop (steps (5)—(7)) can be simplified: Determine the interséxtigg) of

the vertical line through and the horizontal line throughand the terminal = (Xq, Yq)

With X > Xq, Vi > Yq andy; — yq + Xi — Xq is minimal.q is the closest terminal lying

left and below the intersection of the two lines. Instead of computing different triangles
for the different terminals below the horizontal line througghwe can replace step (5)

by

(5) determine terminad’ = (X, y’) with the following three properties:
(a) s lies in the polygon determined by the vertical line throughthe
diagonalsy = x + y; — X andy = —X + yq + Xg andy = y;;
(b) y'is maximal;
(c) s’ isunmarked,

The following figure indicates what has to be done in $&p Marking the terminals is
done by deleting them from the data structure for the bottom points.

To simplify step(5’) we can partition the query polygon into two triangles and one
rectangle, solve the problem in these simpler query polygons, and maximize over the
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resulting terminals. In the following we show how to solve one of the query problems
efficiently. The other problems can be done similarly.

We start with an abstract description: For real numbets andh, wherea < b, let
T (a, b, h) denote the triangle that is bounded by the liyes h, y = x + h — b, and
y = —Xx 4+ h + a. Hence, the upper side of this triangle is horizontal and its other two
sides have equal length and are parallel to the diaggnalx andy = —x.

Let S be a set oh points in the plane. We want to maintain the pointsSafinder
insertions and deletions such that, for any query triafigte T (a, b, h), we can find a
point of SN T having maximaly-coordinate.

First note that a pointx, y) is contained ifT iff y > x+h—b,y > —x+ h + a,
andy < h. We transform our problem as follows:

Transform each pointx, y) € Sto the point(a, 8, y) € R®, wherea = y + X,

B =Yy —X,andy =vy. LetS be the resulting set of points. A query triangléa, b, h)
is transformed to the poitA, B, C) inR%: A=h+a, B=h —b, andC = h.

In the transformed problem we want to find a pdieat 8, ) of Ssuch thatx > A,

B > B,y < C, and having a maximal third coordinate. We first solve a simpler problem:
Maintain a seS’ of planar points in a data structure such that for any query g8int)

we can find apoints, y) € S,suchthap > B,y < C, andy is maximal. This problem
can be solved by means of priority search trees. The solution@g&gsspace and has
guery and update times @ (logn).

Back to our problem foS. We store the points of this set in the leaves of a balanced
binary search tree, sorted by their first coordinates. Each nad¢his tree contains a
pointer to an associated structure: [Setbe the set of points o that are stored in the
subtree ofu. Then the associated structurewis a priority search tree for the s&}
taking only the second and third coordinates into account.

A query is solved as follows. LatA, B, C) be a query point. We search in the tree
for A. During this search, each time we move from a node its left son, we query the
associated structure of the right soof u. That is, we find a pointg, y) € S, such that
B > B, y < C, andy is maximal. At the end of the search, we have fodogn)
candidates. The point with the maximal third coordinate among them is the solution.
That is, this point satisifies > A, 8 > B, y < C, and has a maximal third coordinate
among such points.

Itis clear that the query time @ (log? n). Moreover, the data structure us2gn logn)
space. Using standard dynamization techniques, the data structure can be maintained
under insertions and deletions@log? n) amortized time [16].

In our case we only need deletions. The other queries can be performed analogously.
This proves the following theorem:

Theorem 1. Intime O(nlog?n) we can determine the @) stars which are sufficient
for the execution of the approximation algorithnkéence for any rectilinear Steiner
problem anl1/8-approximation can be found in time(@*?).

5. A Fast Parametrized Version of the Algorithm

In this section we present a variant of the algorithm which saves a factor of Réaity
the time bound. In tim® (n- polylog(n)) a performance ratio of Y8+ ¢ can be reached
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for any constant > 0. TheO in the running time of the algorithm is proportional to the
parameters andm, the performance ratio will be ¥8 + 1/2m + 1/(8- 32 ~2). The

new algorithm combines the merits of the algorithms in [1] and [19]: While Zelikovsky
always computes the actual best star, Berman and Ramaiyer allow the order of treating
the stars in the evaluation phase to be arbitrary; therefore they need the selection phase.
Our idea is not always to compute the best star (with the highest gain), but yet one with
a gain of at leasin/(m + 1) times the optimum. So we save the selection phase (like
Zelikovsky does) and are not forced to compute an optimal@tap times.

Definition 1.

(a) g is the gain of stag; at the beginning of the repeat loop.

(b) & is the gain of stag; at the time of its treatment (actual gain).

(c) & is the gain of star; at the time of its treatment, where no artificial edges
are used, i.e., bridges] := edges of maximal length on the paths between the
terminals of the star which are original, i.€ ,M(S).

In the algorithm we always compuég instead ofg;, therefore a new edge @hew
of an older star) will never be deleted and all stars once stored in tHeHSwill be
constructed. We have to show that the cases where a star has a largesmalla and
is therefore discarded do not weaken the result too much.

Furthermore, we only consider “planar” stars, i.e. stars wheraltbeédgesdo not
cross an existing edge. Here we also have to prove that nonplanar stars would not
achieve too much further gain, i.e., the performance ratio can be proved even without
treating nonplanar stars. The planarity of the structure is necessary to ensure the efficient
computing of the gains in tim®(logn) [4].

Algorithm

(1) compute the staig (i = 1, ..., n) and store them in a lidt;
(2) repeatr - m-logn times:

(3 g:=gainz)(i=1...,n);

(4) sortL according tag; (in decreasing order);

(5) letj be maximal such thay; > gi(m/(m+ 1))

(6) fori:=1tojdo

(7) & = actualgain(z) with bridgegz) < E;

(8) if & > g1(m/(m+ 1)) and z is planarand Boq(z) € E

(9) then
(20) storez; in a listRES
(12) deletez; from L;
(12) M= M\Bold(zi) U Bhew(Z);
(13) endif

(14) endfor
(15) endrepeat

Note that if a star does not fulfill the conditi@) > g;(m/(m + 1)) in line 8 it is not
automatically refused; it remains in the llsiand will be considered again in subsequent
rounds of the repeat loop.
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In the next subsections we prove

Theorem 2. For any given set of terminals, $S| = n, the algorithm computes a
Steiner tree STS) in time O(r - m - n - log? n) for any given parameters m > 0. Its
performance ratio is at modt1/8 + 1/2m+ 1/(8 - 32 ~2).

5.1. Performance Ratio

In this section we prove the performance ratio of the algorithm. We compare the list of
our accepted stars with the set of treated stars of the algorithm of Berman and Ramaiyer
where the performance ratio of /8is known. Recall the definition afeatedin Berman
and Ramaiyer’s algorithm. Our aim is to reach any constant fraction of the gain they can
realize.

Every starz having positive gain at the end of the evaluation phase has (at least) one
of the following characteristics:

(&) gain(z) (i.e.,a;) < gi(m/(Mm+ 1)), whereg; is the gain of the best star at the
beginning of the final round of the repeat loop.

(b) zis not planar.

(c) bridges2) Z E, i.e.,zwould delete an artificial edge.

For the following analysis let be the sum of the gains of the treated stars in the algorithm
of Berman and Ramaiyer.

Lemma 7. Afterthe(m-r -logn)th execution of the repeat lodfine 2), the remaining
gain of all planar stars z for which the condition bridges< E holds sums to at most
x/32 2.

Proof. First we consider the case= 1. LetMax be the maximal gain of a star at the
beginning of the first round. Then afterounds every star has gainMax/2' (in every
round the “better half” of the stars is executed), thus aftelogn rounds< Max/n".
Since there are at most 33tars the whole gain left is 32nMax/n" = 32Max/n" 1,

or (forn > 32) < Max/32 2 < x/32 2.

In the casen > 1 we simulate one round fon = 1 by several rounds. How many
rounds are necessary, such that the gain of any remaining star is bounditak87?
After i rounds every star has gain Max- (m/(m+ 1))'. Settingi = m, the factor
becomesgm/(m + 1))™ which converges for large to 1/e < % Therefore aftem
rounds the gain of every remaining star is at nidak/2. Afterm-r - logn rounds, the

total gain of all nontreated stars is boundedxg@2 —2. O

Lemma 8.

, 2X
. max Z (az—ay) < —,
S independent set of st 5% m

i.e., the sum of all gains we lose by refusing to delete artificial edgdges B\, of older
starg is bounded byx,/m.
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Proof. When a stag;, is treated it uses an edgg as B, g and creates an edgg as
Brew- Let Sbe the set of staswith positive gain an@, € bridgegz). Letz, be the star
for whicha,, — a;iz is maximal. It follows that at the time of the treatmentzpf z, had
a larger gain tham;,, since otherwise;, would have hacd;-*1 as a bridge instead &, .
So the gain we lose by the wrong choicezpfinstead ofz, is at mosta;,, namely, the
gain(z,) at the time wherz;, was treated; for onlpnestare Scould be realized using
the edges, as a bridge. Thus the total loss is at mastz, had a gain of at least, + &,
before the treatment &, (a;, = let ] — l&, ). Thusg;, > &, + &, org, — &, > &,.
We conclude from the acceptationzf:

ail_a11_m+1gl—m+lg|1
m+1 a,
= aizSng_aHSgll_ahS ail_ailzm'

z;, producestwo new edges that could be used Bgqy by other stars. Thus the loss
resulting from the wrong choice af, can be bounded bya2 /m.

Summing over all stars, the total loss resulting from the discard of stars with artificial
edges can be bounded by2x,/m. O

Next we give the following property on intersecting stars:

Lemma9. LetT be &-restricted SMT with two starshintersecting each otheFhen
we can replace these stars by another star z without increasing the total length of the
SMT

Proof. Leta = (a;,ap, az) andb = (by, by, b3) be two intersecting stars of a 3-
restricted SMTT. These stars define empty rectangles; thus the height of one of them
should be larger than the height of the other. The former starasayd its induced
rectangle is callederticaland the latter star, sdy ishorizontal Then the two rectangles
form a cross with the region&, B, C, D, E (see Fig. 3). Note that some of the external
regions @A, B, C, D) could have expansion 0, then the cross degenerates. We will look at
this case later. The total length of both staendb is equal to half of the perimeter of the
minimal rectangle which contains this cross, sag= pyx + py), plus the height of the
horizontal rectangle, say, plus the width of the vertical one, say Two of the external
regions contain two terminals each, the other two regions contain one terminal each; and
we know that the two regions containing two terminals do not lie at opposite sides of
E. Without loss of generality region& and D contain two terminals each (otherwise
we have to turn the cross). We now have the situationahanhdas lie in regionD, b,
andbg in region A, & lies in regionB, andb; in C. Let P be the shortest path which
connects the stassandb in T. We distinguish two cases:

(I) P connects terminals from A and (See Fig 4). Consider the star = {ay, by, 8;}
wherea; has the largey-coordinate amongay, as}. Thenz together with the edges
(ag, ag) and(by, bs) and P connects the six terminals and is not longer than, andP:

d(Z) + d(az, ag) + d(bz, bg) <p-+ h+w= d(a) + d(b)



Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem 105

B B
Py
h Al E C A E C
L
D C
—
w

Fig. 3. Two intersecting stars.

(1) P connectse.g., B and A Consider the star = {by, &, bj} wherea; has the larger
y-coordinate amongay, as} andb; has the largek-coordinate amongb,, bs}. As in
case | the cost df plus the lengths of the edgéa,, ag) and(by, bs) is not higher than
the cost ofa andb together. The same holds for the stax {a;, by, 8;} and the edges
(az, ag) and(bz, b3)

We now consider the case where the staasdb have a common engsuch that one
of the external regions, sdy, has expansion 0, becausavould be the only terminal

al

b2

b3

bl

®a2

a3

Fig. 4. Replacing intersecting stars.



106 U. FoBmeier, M. Kaufmann, and A. Zelikovsky

in D (right-hand part of Fig. 3); now lies at the border oD and A. We double the
terminalc such that bothA and D can be regarded as regions with one terminabg
Cy, respectively) and can apply the constructions above. O

Corollary 1. Inthe situation of Lemm@there is always a better stdy, that contains
two terminals of the horizontal staramelythose that lie closely at the left and right of
the intersecting vertical staAnalogously the existence of a better stacan be proven
containing the two corresponding terminals of the vertical.star

Proof. Follows directly from the constructions in Lemma 9. O

Now we are able to prove

Lemma 10. At the end of the evaluation phase all stars with positive gain that were
refused because of nonplanarity together have a gain of at 2xgsh.

Proof. Let z, be a star with positive actual gain that intersects an accepted star
Without loss of generality among all accepted stars producing an intersectiog; yith

z, is the “oldest,” i.e., the earliest to be accepted. From Lemma 9 we know that there
exists a staz which is not accepted and for whieh > 3, + 3y, holds. There can be
four reasons why has not been accepted:

(a) zwas treated beforg, but was not planar. From the constructior2af follows
that one of the starg, or z, is not planar in this case, too. This star cannot be
z, because it is already accepted, therefore it has &, bElowever, this means
that z, intersects another star that was treated befonéhich contradicts the
conditions ofz;, .

(b) zwas treated beform, but uses an artificial edg2would be accepted using an
artificial edge but refused when not using artificial edges. That means that the
loss originating from discardingis already counted earlier (see Lemma 8), even
if z;, would be refused too.

(c) zwas treated beforg, but its actual gaira; was too small for an acceptation.
In this casea, would also be too small and we have a contradiction to the
acceptation og;, .

(d) Zwas treated aftex;,, = g; < gz, . Now we have

Az +38z, <8 =0; <0z =3

m

m+1
= 8, S8, ——— — 8, =&,

So we lose very little.

Finally we consider the question, How many stars intersecting the samg, slarwe
lose? For the notation see Fig. 5. l$&andS be the better stars insteadldfandV;, or
H andV;, 1, each containing the terminasandb, orb andc, respectively (the existence
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Vi |- Vi Vi A/ Viga| - | Vs

Fig. 5. One star intersects several other stars.

of the stars§ and§ follows from Corollary 1). With similar arguments as in the case
where one intersection hold§: and S were treatedhfter H, thereforegg < gy and

g5 <OH-S is better tharH andV; together and intersect4_;; = there is a staf
being better thag andV;_; together, therefore better th&h V;, andV;_; together and

§1 intersectsV;_, and so on. The same construction is valid for the right side, i.e., the
starsVit, ..., Vs. Thus there are sta§ and§" with

S

ag +ag > 2ay +X;avi.
i=

Now, similar to the inequality above:

> m+1 S 2ay
2ay + Y ay <ag+ag <0 +0s <204 < 2an — 5 Za\/i<w-
= 2

Thus by discarding a family of nonplanar stars we lose at mastgain of a star already
accepted. This completes the proof of Lemma 10. O

We conclude that the total gagnthat could be realized is thus at least

sSmb(S) — sme(S (1_( 1 +g+g)).

2 322 'm m

This leads to a performance ratio of

3 5
3 5_7*(1 4 1)211 1 1

“m 322) 8 Tamteaze

5.2. Running Time

Here we want to analyse the algorithm to prove the time bour@(of- m - n - log? n).
As shown in Section 4, line 1 can be executed in ti@ - log? n).
Lines 3-5 obviously nee@®(n - logn) time for sortingO(n) objects.
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We cannot keep small(j € ®(n)); but since we ensure that the stars do notintersect
(line 8) we can apply the methods described in [4], such that the recomputations of the
gains can be done in tim@(logn). Thus lines 7-12 can be executed in ti@dogn).

This is the reason why we ask the stars to be planar in line 8.

In total, the algorithm need3(r -m-n- Iog2 n) time which isO(n- Iog2 n) if we keep
the parametenrsandm constant. If we choose= log logn andm = logn/log logn, we
yield anO(n - log® n) algorithm with a performance ratio of 18 + O(log logn/logn)
which is asymptotically equal to 18.

6. Conclusion

In this paper refined versions of the new approximation algorithms for rectilinear Steiner
trees of Zelikovsky and Berman and Ramaiyer were presented. Aiming for faster al-
gorithms, not for better approximations, we improved the previous best time bound of
O(n%?) considerably. For the ¥8 approximation we showed a running timerof?.

An alternative algorithm for a parametrized approximation gave a8 ¥1ls approx-
imation for anye > 0 within time O(n - log? n), which is close to optimal. Allowing

time O(n - log®n), this algorithm provided an ¥8 + loglogn/logn approximation.

To improve the running time and the approximation further, new methods seem to be
necessary.
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