
Discrete Comput Geom 18:93–109 (1997) Discrete & Computational

Geometry
© 1997 Springer-Verlag New York Inc.

Faster Approximation Algorithms for the
Rectilinear Steiner Tree Problem∗

U. Fößmeier,1 M. Kaufmann,1 and A. Zelikovsky2

1Wilhelm-Schickard-Institut f¨ur Informatik, Universität Tübingen,
Sand 13, 72076 T¨ubingen, Germany
{foessmei,mk}@informatik.uni-tuebingen.de

2Department of Computer Science, University of Virginia,
Charlottesville, VA 22903-2242, USA

Abstract. The classical Steiner tree problem requires a shortest tree spanning a given
vertex subset within a graphG = (V, E). An important variant is the Steiner tree prob-
lem in rectilinear metric. Only recently two algorithms were found which achieve better
approximations than the “traditional” one with a factor of 3/2. These algorithms with an
approximation ratio of 11/8 are quite slow and run in timeO(n3) and O(n5/2). A new
simple implementation reduces the time toO(n3/2). As our main result we present efficient
parametrized algorithms which reach a performance ratio of 11/8+ ε for anyε > 0 in time
O(n · log2 n), and a ratio of 11/8+ log logn/logn in time O(n · log3 n).

1. Introduction

Let S= {v1, . . . , vn} be a set of points in the plane which is called aterminal. A Steiner
treeis a tree in the plane which contains the setS. TheSteiner problemis to find a Steiner
tree of minimal length. There are several versions of the problem, extensively described
in the literature [3], [6]–[8], [14], [15], [17].

We focus our attention on therectilinear Steiner problem; this is the version where the
distance between two points is the sum of the differences of theirx- andy-coordinates.
Recently this problem obtained new importance in the development of techniques for
VLSI routing [11], [12] and has been known to be NP-hard for a long time [10], [6].
Therefore polynomial-time algorithms for approximate solutions have been investigated.

∗ Parts of this work have been done at the Max-Planck-Institut f¨ur Informatik, Saarbr¨ucken and at the
Fakultät für Mathematik und Informatik, Universit¨at Passau, Passau.

94 U. Fößmeier, M. Kaufmann, and A. Zelikovsky

The quality of an approximation is measured by its performance ratio: an upper bound
on the ratio between the achieved length and the optimal length.

The well-knownMST-heuristicfor the Steiner problem approximates a Steiner min-
imum tree with a minimum length spanning tree of a complete graphGS, which has a
vertex setSand edge lengths equal to the shortest path lengths in the graphG.

The MST-heuristic for the rectilinear case is due to Hwang [9]. He proved that the
ratio between the length of the minimum spanning tree and the length of the Steiner
minimum tree is 3/2, and gave anO(n·logn)-time implementation for this approximation
algorithm.

Surprisingly two better approximations have recently been given [1], [19], which can
guarantee a performance ratio of 11/8. The algorithm of Zelikovsky runs in timeO(n3)

and has been improved by theO(n5/2) algorithm of Berman and Ramaiyer. The main
results of this paper are:

• An acceleration of the second algorithm toO(n3/2).
• A new parametrizedO(r · m · n · log2 n) algorithm with a performance ratio of

11/8+ 1/2m+ 1/(8 · 32r−2) for any parametersm, r > 0.

First we introduce some notation:ST(S) and st(S) are a Steiner tree ofS and its
length, respectively,SMT(S) denotes a Steiner minimum tree with lengthsmt(S). For a
complete graph with a vertex setS, M(S) is a minimum length spanning tree ofS, with
lengthm(S).

In general, a Steiner tree for a setS may contain as vertices also other vertices than
the terminals. These additional vertices are called theSteiner vertices. ST(S) is called a
full Steiner treeif S coincides with the set of leaves ofST(S). If ST(S) is not full, we
can split it into edge-disjoint full Steiner subtrees, thefull componentsof ST(S). ST(S)
is calledk-restrictedif every full component has at mostk terminals. Let the shortest
k-restricted Steiner tree for the setS, denoted bySMTk(S), have the lengthsmtk(S).
Notice thatSMT2(S) = M(S).

We review in Section 2 the basic algorithm due to Berman and Ramaiyer [1]. In
Section 3 we prove some facts that lead to a reduction of the necessary iteration steps.
Then we show how to precompute the data for each iteration efficiently, proving the time
bound ofO(n3/2). Finally, in Section 5 the new fast algorithm is presented, which runs
in O(n · polylog (n)) time.

2. The Basic Algorithm

The idea of the algorithm is, starting withM(S), iteratively to compute optimal Steiner
trees for small subsetszof the terminals (e.g.,|z| = 3) and insert these small Steiner trees
into the current tree. Let(s1, s2, s3) be a triple of terminals with coordinates(x1, y1),
(x2, y2), and(x3, y3), respectively. Such a triple is called astar, if x1 < x2 < x3 and
(y1− y2)(y2− y3) < 0. There are four types of stars corresponding to the four possible
orders of they-coordinates. In the following, we consider the case ofy2 < y1 < y3

(similar arguments can be used for the other types of stars), and denotes1 as theleft
point, s2 as thebottom point, ands3 as thetop pointof the star.

Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem 95

A centerof a star is the pointc = (x2, y1), which is the Steiner vertex ofSMT(s1, s2, s3).
We usez= (c; s1, s2, s3) to denote such a star.

More specifically the idea is to start with a minimum spanning tree forS, then to add
iteratively some new points (centers of stars) and to construct new minimum spanning
trees for the new point set. At the end we get a 3-restricted Steiner tree for the point
setS reaching the claimed approximation ratio. Berman and Ramaiyer did that also for
generalk ≥ 3, considering not only triples butk-tuples. However, the complexity of the
algorithm increases very fast for higherk. Therefore we restrict ourselves tok = 3.

• For u, v ∈ S, Bridge(u, v) is the longest edge on the path betweenu andv in the
actual tree.
• Bridge(z) = {Bridge(u, v); u, v ∈ z} for every starz.

The criterion for the insertion of the center of some star in Zelikovsky’s algorithm is
the gain(z) which is defined to be the difference of the cost ofBridge(z) andsmt(z).
Zelikovsky proposes always to add the star with the maximum gain as long as there
are stars with positive gain. Thus the length of the actual minimum spanning tree is
decreased and the approximation ratio of 11/8 can be proven.

The algorithm of Berman and Ramaiyer also operates with stars and their gains but
it is more involved. We need the following notations:

For e= Bridge(u, v) with costc, alt(e) = (u, v) with cost= (c− gain(z)).

Altbridge(z) = {alt (u, v); (u, v) ∈ Bridge(z)}.
Intuitively, we simulate anSMT(z) = M(z∪ c) wherec is the center ofz by inserting
two new edges between the terminals ofz (namely, theAltbridge(z)). Thus two cycles
appear.Bridge(z) denotes the set of edges which have to be removed from these cycles
in order to get a new minimum tree.

Note that the definitions of gain, Bridge, alt, and Altbridge depend on an actual edge
setE; we mark this set by a lower index in the following.

The algorithm of Berman and Ramaiyer consists of three phases: the evaluation phase,
the selection phase, and the construction phase. In the evaluation phase we first compute
M(S). Then, for all starsz, the valuesgainE(z) are computed.E is initialized as the set
of edges occurring inM(S). If gainE ≤ 0, thenz is discarded, otherwiseBold is removed
from E and Bnew is inserted instead, withBold = BridgeE(z),Bnew = AltbridgeE(z).
Then the triple(z, Bold, Bnew) is stored in a stack. We call such star to betreated. In the
selection phase the starsz are removed one by one from the stack, and the actualz is
either discarded oracceptedand then added to a listL if it might be included in the final
tree. In more detail,(z, Bnew) is inserted in the list ifBnew ⊆ E, i.e., theAltbridge(z)
were not used as bridges by another star at a later moment in the evaluation phase; if not,
the setBnew is removed fromE and a new (actualized) minimum tree is recomputed. In
the construction phase the stars stored inL arerealizedand so the output tree is built up
from the entries of the listL.

During the algorithm we have to compute bridges, altbridges, and gains of all stars as
well as some modifications on the actual setE and the corresponding MST. There are
several methods which support manipulations on MSTs. Frederickson [5] gave a data
structure for maintaining MSTs in dynamic graphs. Insertions and deletions are allowed

96 U. Fößmeier, M. Kaufmann, and A. Zelikovsky

as are manipulations on the edge lengths. This method can also be used to compute
(alt)bridges and gains. The update time per step isO(

√
e), wheree is the number of

edges. Another method [4] that only works on dynamic planar graphs takes onlyO(logn)
time per operation.

Berman and Ramaiyer apply Frederickson’s data structure and state that the number of
edges to consider is onlyO(n), namely, the set of edges in the actual minimum spanning
tree + the set of edges inSMT(z). Thus each basic step in Berman and Ramaiyer’s
algorithm takes timeO(

√
n). Trivially there are

(n
3

) = 2(n3) stars, so the algorithm
needs2(n3.5) time. In both papers [19] and [1], it has been observed that onlyO(n2)

stars have to be considered, improving the time bound to2(n3) [19] and2(n5/2) [1],
respectively.

In the next two sections we show that onlyO(n) stars have to be considered and how
this set of stars is constructed efficiently.

3. O(n) Stars Are Enough

In the following we prove that it is sufficient to consider only a linear number of stars
and this set can be constructed in timeO(n · log2 n). This immediately implies a drastic
improvement of the running time of the 11/8-approximation algorithm down toO(n3/2).

For brevity, we assume that coordinates of all terminals and subtractions between
them are distinct.

Consider the three terminalss1 = (x1, y1), s2 = (x2, y2), s3 = (x3, y3) ∈ S. We again
assume without loss of generality thatx1 < x2 < x3 andy2 < y1 < y3. The terminals
defining a starz also define a rectangleR where they lie on the boundary.R is empty if
there is no terminal(x, y) such thatx1 < x < x3 andy2 < y < y3.

Berman and Ramaiyer show that it is sufficient to consider a family of stars for which
we know that there is a 3-restricted SMT with stars from this family. They also prove

Lemma 1. For any terminal set S there is a3-restricted Steiner minimum tree SMT3(S)
using only stars defining empty rectangles.

A starz= (c; s1, s2, s3) is called atree starif M(S∪ c) contains the edges of the set
{(c, s1), (c, s2), (c, s3)}.

Lemma 2. For any set S of terminals there is an SMT3(S) using only tree stars.

Proof. Letz= (c; s1, s2, s3) be a star of size 3 in anSMT3(S) T with the centerc, Ez is
the set of edges between the points ofz. T\Ez consists of three disjoint and nonconnected
terminal setsS1, S2, S3, each of them containing a terminalsi ∈ Si , i = 1, . . . ,3, that
is adjacent toc. Let e1 ande2 be the shortest edges that connect the components; thus
T ′ := T\Ez ∪ {e1, e2} is a minimum spanning tree for the point setS∪ S∗\{c}, where
S∗ is the set of all Steiner points ofT ; this is becauseT is a minimum spanning tree
for the point setS∪ S∗. Assume that an edge(u, c) ∈ Ez (u ∈ {s1, s2, s3}) does not
belong toTmin := M(S∪ {c}); let v be the terminal being adjacent tou lying on the path
betweenu andc in Tmin; the pathP1 betweenu andv in Tmin and the pathP2 between

Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem 97

u andv in T ′ form a cycle in the point setS∪ S∗\{c}; the longest edge on this cycle,
saye, lies onP1, sinceP2 is a part of a minimum spanning tree ofS∪ S∗\{c}. (u, c) is
longer thane, becausee lies on the unique cycle ofTmin ∪ {(u, c)}; thus(u, c) is longer
than the longest edge onP2 sincee is longer than any edge onP2. Therefore adding
(u, c) to T and deleting the longest edge on the pathP2 would decrease the length ofT ,
a contradiction sinceT is anSMT3(S).

Lemmas 1 and 2 imply

Lemma 3. For any terminal set S there is an SMT3(S) using only tree stars defining
empty rectangles.

We call such starsproper stars.
A star ispositive(negative) if (y2− y0)−(x2−x1) > 0 (< 0). This means that the top

point lies above (below) the diagonal through the center of the star. Yao [18] introduced
a graph associated with the setS: every vertex is connected to the nearest vertices in all
eight angles defined by axes and bisectors. The Yao graph containsM(S∪ c). Since in
M(S∪ c) only one terminal point from each sector might be connected toc it implies
directly the following:

Lemma 4. For any terminal set S there are at most two distinct tree stars with the
same center c, namely the positive and the negative with the shortest length.

Let c be the center of a starz. If the bottom pointb is closer to the centerc than the
left point l , then the star has abottom root, otherwise it has aleft root. Accordingly, a
star is either namedbottomor left.

Lemma 5. For any terminal set S the number of left stars is at most4n.

Proof. Let s = (x, y) be a left root of two starsz= (c = (x1, y); s, s1 = (x1, y1), s2)

andz′ = (c′ = (x′1, y); s, s′1 = (x′1, y′1), s
′
2) and x1 < x′1. Then y1 < y′1, since both

stars are empty, andy − y′1 > x′1 − x, sincez′ is a left star. Thuss′1 lies below the
diagonal drawn in Fig. 1 and so the rectilinear distance betweens1 ands′1 is smaller than
the distance betweens1 andc. Since the edge(c, s1) belongs toM(S∪ c), the distance
betweenc ands′1 has to be larger than(c, s1) (otherwise(c, s1) would be the longest
edge in a cycle), that meansy′1− y1 < x′1− x1. Thus

y− y′1 > y′1− y1. (1)

Claim 1. There is no other left star with the bottom point s1.

Proof. Indeed, let(d = (x1, y′); s′ = (x′, y′), s1, s3) be such a star. This star together
with z andz′ are empty, sox′ < x and

y′1 > y′. (2)

98 U. Fößmeier, M. Kaufmann, and A. Zelikovsky

Fig. 1. Two proper left stars with the same root.

Sincec andd are both centers of left stars,

|s, c| < |c, s1|, (3)

|s, s′| < |c, d| + |d, s′| < |c, d| + |d, s1| = |c, s1|. (4)

Inequalities (1) and (2) imply

|s′, s1| = |s′, d| + |d, s1| < |s1, d| + |c, d| = |c, s1|. (5)

Inequalities (3)–(5) imply that the edge(c, s1) does not belong toM(S∪ c), because it
is the longest edge in the cyclec, s, s′, s1, c.

We count the number of possible centers for left stars: Imagine a grid having one row
and one column through every terminal, thusn rows andn columns. Then2 intersections
of this grid are possible locations for such centers. If there arer (r ≥ 2) centers for left
stars in the same row (i.e., the terminal in this row is the left root ofk tree stars), then by
Claim 1 inr −1 corresponding columns (all but the rightmost) there are no other centers.
Thusr (r ≥ 1) centers in a row imply(r − 1) · (n− 1) = nr − n− r + 1 intersections
that are not centers. Thus forR = ∑

i r i centers there are
∑

i (nri − n − ri + 1) =
nR−n2− R+n noncenter intersections. The total number of intersections (centers and
noncenter intersections) isn2. Hence,nR−n2− R+n+ R≤ n2 andR≤ (2n2−n)/n
or R< 2n. Now, Lemma 5 follows from Lemma 4.

Similarly, the number of bottom stars is at most 4n. Thus, for all possible four types
of stars, Lemma 5 implies

Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem 99

Lemma 6. The number of proper stars is at most32n.

It follows directly from Lemmas 2 and 6, that we only need a linear number of stars
during the construction of a 3-restricted Steiner tree. In the next section we show how
to determine these stars.

4. Computing the Stars

Like in the previous section we concentrate on the computation of left stars, the other
kinds of stars can be determined analogously. From the proof of Lemma 5 we can extract
the following conditions to get a linear number of left stars; Fig. 2 illustrates the method
described in this section: For each left rootsl = (xl , yl) let sr = (xr , yr) be the rightmost
candidate for a bottom point such that the rectangle defined bysl andsr is empty andsr

lies below the diagonaly = −x + xl + yl (otherwisesr would lie closer to the center
thansl and thussl is not the root of the star). It is clear that simultanouslysr has maximal
y-coordinate among all candidates for bottom points.

If sr does not exist, thensl cannot be the left root of any star. Otherwise we continue
our search for more bottom points following the proof of Lemma 5: If there is another
bottom points′ = (x′, y′)of a left star with left rootsl , then the following three conditions
hold:xl < x′ < xr , y′ < yr , andyr − y′ < xr − x′. The last condition means thats′ lies
above the diagonaly = x + yr − xr , which intersectssr , and is necessary to fulfill the

Fig. 2. Computing left stars.

100 U. Fößmeier, M. Kaufmann, and A. Zelikovsky

tree star condition fors′. The proof of Lemma 5 states that if there is another terminal
p = (xp, yp) with y′ < yp < yr , xp < xl , andp also lies closer to the center defined by
p ands′ thans′, thens′ is not a bottom point (in Fig. 2q plays the role of ourp, butq
does not fulfill the left root condition; consequently, a star havingq as the left point and
s′ as the bottom point would be a bottom star, not a left star). This means that we have
to search for a terminals′ with maximal y-coordinate, to the right ofsl , to the left of
and belowsr which has no other terminal in the triangle described by the two diagonals
throughs′ and the horizontal line throughsr (in Fig. 2q lies outside this triangle). This
terminal can be taken to be a bottom point of a left star with left rootsl , it should be
deleted from the data structure of the bottom points such that it will not be taken later
as a bottom point for other left roots. Then we iterate our search wheres′ plays the role
of sr . This is correct since there is no other terminal to the right ofs′, which might be a
bottom point candidate for a star withsl . More formally, we get the following:

Algorithm

(1) sort the terminals inS in decreasing order with respect to theiry-
coordinates

(2) for all sl = (xl , yl) ∈ S (from top to bottom)
(3) find the rightmost terminalsr = (xr , yr) with xl < xr , yl > yr , and

yl − yr > xr − xl ;
(4) test the tree star condition;
(5) determine terminals′ = (x′, y′) with the following four properties:

(a) xl < x′ < xr ,
(b) the triangle determined by the diagonalsy = −x + x′ + y′ and

y = x + y′ − x′ and by the horizontal liney = yr is empty,
(c) y′ is maximal;
(d) s′ is unmarked,

(6) if s′ existsthen mark it, test the tree star condition,
(7) sr := s′; goto (5);

The second loop (steps (5)–(7)) can be simplified: Determine the intersection(xi , yi) of
the vertical line throughsl and the horizontal line throughsr and the terminalq = (xq, yq)

with xi > xq, yi > yq andyi − yq + xi − xq is minimal.q is the closest terminal lying
left and below the intersection of the two lines. Instead of computing different triangles
for the different terminals below the horizontal line throughsr , we can replace step (5)
by

(5′) determine terminals′ = (x′, y′) with the following three properties:
(a) s′ lies in the polygon determined by the vertical line throughxl , the

diagonalsy = x + yr − xr andy = −x + yq + xq andy = yr ;
(b) y′ is maximal;
(c) s′ is unmarked,

The following figure indicates what has to be done in step(5′). Marking the terminals is
done by deleting them from the data structure for the bottom points.

To simplify step(5′) we can partition the query polygon into two triangles and one
rectangle, solve the problem in these simpler query polygons, and maximize over the

Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem 101

resulting terminals. In the following we show how to solve one of the query problems
efficiently. The other problems can be done similarly.

We start with an abstract description: For real numbersa, b, andh, wherea < b, let
T(a, b, h) denote the triangle that is bounded by the linesy = h, y = x + h − b, and
y = −x + h + a. Hence, the upper side of this triangle is horizontal and its other two
sides have equal length and are parallel to the diagonalsy = x andy = −x.

Let S be a set ofn points in the plane. We want to maintain the points ofS under
insertions and deletions such that, for any query triangleT = T(a, b, h), we can find a
point of S∩ T having maximaly-coordinate.

First note that a point(x, y) is contained inT iff y ≥ x + h− b, y ≥ −x + h+ a,
andy ≤ h. We transform our problem as follows:

Transform each point(x, y) ∈ S to the point(α, β, γ) ∈ R3, whereα = y + x,
β = y− x, andγ = y. Let S′ be the resulting set of points. A query triangleT(a, b, h)
is transformed to the point(A, B,C) in R3: A = h+ a, B = h− b, andC = h.

In the transformed problem we want to find a point(α, β, γ) of S such thatα ≥ A,
β ≥ B, γ ≤ C, and having a maximal third coordinate. We first solve a simpler problem:
Maintain a setS′′ of planar points in a data structure such that for any query point(B,C)
we can find a point(β, γ) ∈ S, such thatβ ≥ B, γ ≤ C, andγ is maximal. This problem
can be solved by means of priority search trees. The solution usesO(n) space and has
query and update times ofO(logn).

Back to our problem forS′. We store the points of this set in the leaves of a balanced
binary search tree, sorted by their first coordinates. Each nodeu of this tree contains a
pointer to an associated structure: LetS′u be the set of points ofS′ that are stored in the
subtree ofu. Then the associated structure ofu is a priority search tree for the setS′u
taking only the second and third coordinates into account.

A query is solved as follows. Let(A, B,C) be a query point. We search in the tree
for A. During this search, each time we move from a nodeu to its left son, we query the
associated structure of the right sonv of u. That is, we find a point(β, γ) ∈ S′v such that
β ≥ B, γ ≤ C, andγ is maximal. At the end of the search, we have foundO(logn)
candidates. The point with the maximal third coordinate among them is the solution.
That is, this point satisifiesα ≥ A, β ≥ B, γ ≤ C, and has a maximal third coordinate
among such points.

It is clear that the query time isO(log2 n). Moreover, the data structure usesO(n logn)
space. Using standard dynamization techniques, the data structure can be maintained
under insertions and deletions inO(log2 n) amortized time [16].

In our case we only need deletions. The other queries can be performed analogously.
This proves the following theorem:

Theorem 1. In time O(n log2 n) we can determine the O(n) stars which are sufficient
for the execution of the approximation algorithms. Hence for any rectilinear Steiner
problem an11/8-approximation can be found in time O(n3/2).

5. A Fast Parametrized Version of the Algorithm

In this section we present a variant of the algorithm which saves a factor of nearly
√

n in
the time bound. In timeO(n· polylog(n)) a performance ratio of 11/8+ε can be reached

102 U. Fößmeier, M. Kaufmann, and A. Zelikovsky

for any constantε > 0. TheO in the running time of the algorithm is proportional to the
parametersr andm, the performance ratio will be 11/8+ 1/2m+ 1/(8 · 32r−2). The
new algorithm combines the merits of the algorithms in [1] and [19]: While Zelikovsky
always computes the actual best star, Berman and Ramaiyer allow the order of treating
the stars in the evaluation phase to be arbitrary; therefore they need the selection phase.
Our idea is not always to compute the best star (with the highest gain), but yet one with
a gain of at leastm/(m+ 1) times the optimum. So we save the selection phase (like
Zelikovsky does) and are not forced to compute an optimal starO(n) times.

Definition 1.

(a) gi is the gain of starzi at the beginning of the repeat loop.
(b) ai is the gain of starzi at the time of its treatment (actual gain).
(c) a′i is the gain of starzi at the time of its treatment, where no artificial edges

are used, i.e., bridges(zi) := edges of maximal length on the paths between the
terminals of the star which are original, i.e.,⊆ M(S).

In the algorithm we always computea′i instead ofai , therefore a new edge (aBnew

of an older star) will never be deleted and all stars once stored in the listRESwill be
constructed. We have to show that the cases where a star has a largeai but smalla′i and
is therefore discarded do not weaken the result too much.

Furthermore, we only consider “planar” stars, i.e. stars where thealtbridgesdo not
cross an existing edge. Here we also have to prove that nonplanar stars would not
achieve too much further gain, i.e., the performance ratio can be proved even without
treating nonplanar stars. The planarity of the structure is necessary to ensure the efficient
computing of the gains in timeO(logn) [4].

Algorithm

(1) compute the starszi (i = 1, . . . ,n) and store them in a listL;
(2) repeat r ·m · logn times:
(3) gi := gain(zi) (i = 1, . . . ,n);
(4) sortL according togi (in decreasing order);
(5) let j be maximal such thatgj ≥ g1(m/(m+ 1))
(6) for i := 1 to j do
(7) a′i := actualgain(zi) with bridges(zi) ⊆ E;
(8) if a′i ≥ g1(m/(m+ 1)) and zi is planarand Bold(zi) ⊆ E
(9) then

(10) storezi in a listRES;
(11) deletezi from L;
(12) M := M\Bold(zi) ∪ Bnew(zi);
(13) endif
(14) endfor
(15) endrepeat.

Note that if a star does not fulfill the conditiona′i ≥ g1(m/(m+ 1)) in line 8 it is not
automatically refused; it remains in the listL and will be considered again in subsequent
rounds of the repeat loop.

Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem 103

In the next subsections we prove

Theorem 2. For any given set of terminals S, |S| = n, the algorithm computes a
Steiner tree ST(S) in time O(r ·m · n · log2 n) for any given parameters r,m > 0. Its
performance ratio is at most11/8+ 1/2m+ 1/(8 · 32r−2).

5.1. Performance Ratio

In this section we prove the performance ratio of the algorithm. We compare the list of
our accepted stars with the set of treated stars of the algorithm of Berman and Ramaiyer
where the performance ratio of 11/8 is known. Recall the definition oftreatedin Berman
and Ramaiyer’s algorithm. Our aim is to reach any constant fraction of the gain they can
realize.

Every starz having positive gain at the end of the evaluation phase has (at least) one
of the following characteristics:

(a) gain(z) (i.e., az) ≤ g1(m/(m+ 1)), whereg1 is the gain of the best star at the
beginning of the final round of the repeat loop.

(b) z is not planar.
(c) bridges(z) 6⊆ E, i.e.,z would delete an artificial edge.

For the following analysis letx be the sum of the gains of the treated stars in the algorithm
of Berman and Ramaiyer.

Lemma 7. After the(m·r · logn)th execution of the repeat loop(line 2), the remaining
gain of all planar stars z for which the condition bridges(z) ⊆ E holds sums to at most
x/32r−2.

Proof. First we consider the casem= 1. LetMaxbe the maximal gain of a star at the
beginning of the first round. Then afteri rounds every star has gain≤ Max/2i (in every
round the “better half” of the stars is executed), thus afterr · logn rounds≤ Max/nr .
Since there are at most 32n stars the whole gain left is≤ 32nMax/nr = 32Max/nr−1,
or (for n ≥ 32) ≤ Max/32r−2 ≤ x/32r−2.

In the casem > 1 we simulate one round form = 1 by several rounds. How many
rounds are necessary, such that the gain of any remaining star is bounded byMax/2?
After i rounds every star has gain≤ Max · (m/(m+ 1))i . Settingi = m, the factor
becomes(m/(m+ 1))m which converges for largem to 1/e < 1

2. Therefore afterm
rounds the gain of every remaining star is at mostMax/2. After m · r · logn rounds, the
total gain of all nontreated stars is bounded byx/32r−2.

Lemma 8.

max
Ŝ independent set of stars

∑
z∈Ŝ

(az− a′z) ≤
2x

m
,

i.e., the sum of all gains we lose by refusing to delete artificial edges(edges Bnew of older
stars) is bounded by2x/m.

104 U. Fößmeier, M. Kaufmann, and A. Zelikovsky

Proof. When a starzi1 is treated it uses an edgee∗i1 as Bold and creates an edgeei1 as
Bnew. Let S̄be the set of starsz with positive gain andei1 ∈ bridges(z). Let zi2 be the star
for whichazi2

−a′zi2
is maximal. It follows that at the time of the treatment ofzi1, zi2 had

a larger gain thanzi1, since otherwisezi2 would have hade∗i1 as a bridge instead ofei1.
So the gain we lose by the wrong choice ofzi1 instead ofzi2 is at mostai2, namely, the
gain(zi2) at the time whenzi2 was treated; for onlyonestar∈ S̄could be realized using
the edgeei1 as a bridge. Thus the total loss is at mostai2. zi2 had a gain of at leastai1+ai2
before the treatment ofzi1 (ai1 = |e∗i1| − |ei1|). Thusgi2 ≥ ai1 + ai2 or gi2 − ai1 ≥ ai2.

We conclude from the acceptation ofzi1:

ai1 ≥ a′i1 ≥
m

m+ 1
g1 ≥ m

m+ 1
gi1

⇒ ai2 ≤ gi2 − ai1 ≤ gi1 − ai1 ≤
m+ 1

m
ai1 − ai1 =

ai1

m
.

zi1 producestwo new edges that could be used asBold by other stars. Thus the loss
resulting from the wrong choice ofai1 can be bounded by 2ai1/m.

Summing over all stars, the total loss resulting from the discard of stars with artificial
edges can be bounded by≤ 2x/m.

Next we give the following property on intersecting stars:

Lemma 9. Let T be a3-restricted SMT with two stars a,b intersecting each other. Then
we can replace these stars by another star z without increasing the total length of the
SMT.

Proof. Let a = (a1,a2,a3) and b = (b1, b2, b3) be two intersecting stars of a 3-
restricted SMTT . These stars define empty rectangles; thus the height of one of them
should be larger than the height of the other. The former star, saya, and its induced
rectangle is calledverticaland the latter star, sayb, ishorizontal. Then the two rectangles
form a cross with the regionsA, B,C, D, E (see Fig. 3). Note that some of the external
regions (A, B,C, D) could have expansion 0, then the cross degenerates. We will look at
this case later. The total length of both starsa andb is equal to half of the perimeter of the
minimal rectangle which contains this cross, sayp (= px + py), plus the height of the
horizontal rectangle, sayh, plus the width of the vertical one, sayw. Two of the external
regions contain two terminals each, the other two regions contain one terminal each; and
we know that the two regions containing two terminals do not lie at opposite sides of
E. Without loss of generality regionsA and D contain two terminals each (otherwise
we have to turn the cross). We now have the situation thata2 anda3 lie in regionD, b2

andb3 in region A, a1 lies in regionB, andb1 in C. Let P be the shortest path which
connects the starsa andb in T . We distinguish two cases:

(I) P connects terminals from A and D(see Fig. 4). Consider the starz = {a1, b1,aj }
whereaj has the largery-coordinate among{a2,a3}. Thenz together with the edges
(a2,a3) and(b2, b3) andP connects the six terminals and is not longer thana, b, andP:

d(z)+ d(a2,a3)+ d(b2, b3) ≤ p+ h+ w = d(a)+ d(b).

Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem 105

Fig. 3. Two intersecting stars.

(II) P connects, e.g., B and A. Consider the starz= {b1,aj , bj } whereaj has the larger
y-coordinate among{a2,a3} andbj has the largerx-coordinate among{b2, b3}. As in
case I the cost ofz plus the lengths of the edges(a2,a3) and(b2, b3) is not higher than
the cost ofa andb together. The same holds for the starz = {a1, b1,aj } and the edges
(a2,a3) and(b2, b3).

We now consider the case where the starsa andb have a common endc such that one
of the external regions, sayD, has expansion 0, becausec would be the only terminal

Fig. 4. Replacing intersecting stars.

106 U. Fößmeier, M. Kaufmann, and A. Zelikovsky

in D (right-hand part of Fig. 3); nowc lies at the border ofD and A. We double the
terminalc such that bothA andD can be regarded as regions with one terminal (c1 or
c2, respectively) and can apply the constructions above.

Corollary 1. In the situation of Lemma9 there is always a better starẑh that contains
two terminals of the horizontal star, namely, those that lie closely at the left and right of
the intersecting vertical star. Analogously the existence of a better starẑv can be proven,
containing the two corresponding terminals of the vertical star.

Proof. Follows directly from the constructions in Lemma 9.

Now we are able to prove

Lemma 10. At the end of the evaluation phase all stars with positive gain that were
refused because of nonplanarity together have a gain of at most2x/m.

Proof. Let zi2 be a star with positive actual gain that intersects an accepted starzi1.
Without loss of generality among all accepted stars producing an intersection withzi2,
zi1 is the “oldest,” i.e., the earliest to be accepted. From Lemma 9 we know that there
exists a star̂z which is not accepted and for whichaẑ ≥ azi1

+ azi2
holds. There can be

four reasons whŷz has not been accepted:

(a) ẑ was treated beforezi1 but was not planar. From the construction ofẑ it follows
that one of the starszi1 or zi2 is not planar in this case, too. This star cannot be
zi1 because it is already accepted, therefore it has to bezi2. However, this means
that zi2 intersects another star that was treated beforeẑ which contradicts the
conditions ofzi1.

(b) ẑ was treated beforezi1 but uses an artificial edge.ẑ would be accepted using an
artificial edge but refused when not using artificial edges. That means that the
loss originating from discardinĝz is already counted earlier (see Lemma 8), even
if zi1 would be refused too.

(c) ẑ was treated beforezi1 but its actual gainaẑ was too small for an acceptation.
In this caseazi1

would also be too small and we have a contradiction to the
acceptation ofzi1.

(d) ẑ was treated afterzi1,⇒ gẑ ≤ gzi1
. Now we have

azi1
+ azi2

≤ aẑ ≤ gẑ ≤ gzi1
≤ azi1

m+ 1

m

⇒ azi2
≤ azi1

m+ 1

m
− azi1

= azi1

1

m
.

So we lose very little.

Finally we consider the question, How many stars intersecting the same starzi1 do we
lose? For the notation see Fig. 5. LetŜl andŜr be the better stars instead ofH andVt , or
H andVt+1, each containing the terminalsa andb, orb andc, respectively (the existence

Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem 107

r
r

r
a

b

c

H

V1 Vt−1 Vt Vt+1 Vt+2 Vs

. . .

. . .

. . .

. . .

Fig. 5. One star intersects several other stars.

of the starsŜl and Ŝr follows from Corollary 1). With similar arguments as in the case
where one intersection holds:Ŝl and Ŝr were treatedafter H, thereforegŜl

≤ gH and

gŜr
≤ gH . Ŝl is better thanH andVt together and intersectsVt−1;⇒ there is a star̂S′l

being better than̂Sl andVt−1 together, therefore better thanH , Vt , andVt−1 together and
Ŝ′l intersectsVt−2 and so on. The same construction is valid for the right side, i.e., the
starsVt+1, . . . ,Vs. Thus there are starsS∗l andS∗r with

aS∗l + aS∗r ≥ 2aH +
s∑

i=1

aVi .

Now, similar to the inequality above:

2aH +
s∑

i=1

aVi ≤ aŜl
+ aŜr

≤ gŜl
+ gŜr

≤ 2gH ≤ 2aH
m+ 1

m
⇒

s∑
i=1

aVi ≤
2aH

m
.

Thus by discarding a family of nonplanar stars we lose at most 2/m gain of a star already
accepted. This completes the proof of Lemma 10.

We conclude that the total gaing that could be realized is thus at least

smt2(S)− smt3(S)

2

(
1−

(
1

32r−2
+ 2

m
+ 2

m

))
.

This leads to a performance ratio of

3

2
−

3
2 − 5

4

2

(
1− 4

m
− 1

32r−2

)
= 11

8
+ 1

2m
+ 1

8 · 32r−2
.

5.2. Running Time

Here we want to analyse the algorithm to prove the time bound ofO(r ·m · n · log2 n).
As shown in Section 4, line 1 can be executed in timeO(n · log2 n).

Lines 3–5 obviously needO(n · logn) time for sortingO(n) objects.

108 U. Fößmeier, M. Kaufmann, and A. Zelikovsky

We cannot keepj small(j ∈ 2(n)); but since we ensure that the stars do not intersect
(line 8) we can apply the methods described in [4], such that the recomputations of the
gains can be done in timeO(logn). Thus lines 7–12 can be executed in timeO(logn).
This is the reason why we ask the stars to be planar in line 8.

In total, the algorithm needsO(r ·m·n · log2 n) time which isO(n · log2 n) if we keep
the parametersr andmconstant. If we chooser = log logn andm= logn/log logn, we
yield anO(n · log3 n) algorithm with a performance ratio of 11/8+ O(log logn/logn)
which is asymptotically equal to 11/8.

6. Conclusion

In this paper refined versions of the new approximation algorithms for rectilinear Steiner
trees of Zelikovsky and Berman and Ramaiyer were presented. Aiming for faster al-
gorithms, not for better approximations, we improved the previous best time bound of
O(n5/2) considerably. For the 11/8 approximation we showed a running time ofn3/2.
An alternative algorithm for a parametrized approximation gave an 11/8+ ε approx-
imation for anyε > 0 within time O(n · log2 n), which is close to optimal. Allowing
time O(n · log3 n), this algorithm provided an 11/8+ log logn/logn approximation.
To improve the running time and the approximation further, new methods seem to be
necessary.

Acknowledgement

We thank P. Berman for useful discussions about possible replacements of intersecting
stars.

References

1. P. Berman, V. Ramaiyer, Improved approximations for the Steiner tree problem.Proceedings, 3rd ACM–
SIAM Symposium on Discrete Algorithms, pp. 325–334, 1992.

2. M.W. Bern, R.L. Graham, The shortest-network problem.Sci. Amer., 1, 66–71, 1989.
3. Ding-Zhu Du, Yanjun Zhang, Qing Feng, On better heuristic for Euclidean Steiner minimum trees.Pro-

ceedings, 32nd Foundations of Computer Science, pp. 431–439, 1991.
4. D. Eppstein, G.F. Italianoet al., Maintenance of a minimum spanning forest in a dynamic planar graph.

Proceedings, 1st ACM–SIAM Symposium on Discrete Algorithms, pp. 1–11, 1990.
5. G. Frederickson, Data structures for on-line updating of minimum spanning trees, with applications.SIAM

J. Comput., 14, 781–789, 1985.
6. M.R. Garey, D.S. Johnson, The rectilinear Steiner problem is NP-complete.SIAM J. Appl. Math., 32,

826–834, 1977.
7. E.N. Gilbert, H.O. Pollak, Steiner minimal trees.SIAM J. Appl. Math., 16, 1–29, 1968.
8. M. Hanan, On Steiner’s problem with rectilinear distance.SIAM J. Appl. Math., 14, 255–265, 1966.
9. F.K. Hwang, On Steiner minimal trees with rectilinear distance.SIAM J. Appl. Math., 30, 104–114, 1976.

10. R.M. Karp, Reducibility among combinatorial problems. In Miller and Thatcher (eds.),Complexity of
Computer Computations, Plenum, New York, pp. 85–103, 1972.

11. B. Korte, H.J. Pr¨omel, A. Steger, Steiner trees in VLSI-layout. In B. Korteet al. (eds.),Paths, Flows and
VLSI-Layout, Springer-Verlag, Berlin, pp. 185–214, 1990.

Faster Approximation Algorithms for the Rectilinear Steiner Tree Problem 109

12. Th. Lengauer,Combinatorial Algorithms for Integrated Circuit Layout. Wiley, New York, 1990.
13. K. Mehlhorn,Data Structures and Algorithms III: Multidimensional Data Structures and Computational

Geometry. Springer-Verlag, Berlin, 1985.
14. D. Richards, Fast heuristic algorithms for rectilinear Steiner trees.Algorithmica, 4, 191–207, 1989.
15. H. Takahashi, A. Matsuyama, An approximate solution for the Steiner problem in graphs.Math. Japon.,

24, 573–577, 1980.
16. D.E. Willard, G.S. Lueker, Adding range restriction capability to dynamic data structures.J.Assoc.Comput.

Mach., 32, 597–617, 1985.
17. Y.F. Wu, P. Widmayer, C.K. Wong, A faster approximation algorithm for the Steiner problem in graphs.

Acta Inform., 23, 223–229, 1986.
18. A.C. Yao, On constructing minimum spanning trees ink-dimensional space and related problems.SIAM

J. Comput., 11, 721–736, 1982.
19. A.Z. Zelikovsky, The 11/8-approximation algorithm for the Steiner problem on Networks with rectilin-

ear distance. InSets, Graphs and Numbers, Colloq. Math. Soc. Janos Bolyai, Vol. 60, North-Holland,
Amsterdam, pp. 733–745, 1992.

20. A.Z. Zelikovsky, An 11/6-approximation algorithm for the Steiner problem on graphs.Algorithmica, 9,
463–470, 1993.

Received December2, 1993,and in revised form July24, 1996.

