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Abstract. A weake-netfor a set of pointaM, is a set of pointdV (not necessarily in
M) where every convex set containiagM| points in M must contain at least one point
in W. Weak e-nets have applications in diverse areas such as computational geometry,
learning theory, optimization, and statistics. Here we show thM ifs a set of points
quasi-uniformly distributed on a unit sphe®1, then there is a weaknetW < RY of
sizeO(log(1/¢) log(1/e)) for M, whereky is exponential ird. A set of pointsM is quasi-
uniformlydistributed onS*~* if, for any spherical cag < S*-* with Vol(C) > ¢;/|M|, we
have

¢ Wol(C) < |CN M| < csWol(C)

for three positive constantg, ¢,, andcs.
Further, we show that reducing our upper bound by asymptotically more thafil#dog
factor directly implies the solution of a long unsolved problem of Danzer and Rogers.

1. Introduction

A weake-netfor a set of pointdM is a set of point& (not necessarily itM) such that
every convex set containingM | points inM must contain at least one pointVi.

Estimating the smallest possible size of weatkets has attracted considerable atten-
tionrecently. See, for example, [1], [6], [5], and [15]. Furthermore, many researchers have
found applications of-nets in computational geometry, learning theory, optimization,
and statistics, see MatseK'’s chapter [14], for example.
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In general, wheM can be an arbitrary point setlf, the known bounds for the min-
imum size ofW areQ (1/¢) lower andO((1/¢%) log™ (1/¢)) upper, wherey is an expo-
nential function ofl, see [6]. IfM is a planar set, there is@(1/¢2) upper bound, see [1].

There are better upper bounds for special cases. VWhés in convex position on
the plane Chazellet al. [6] give an upper bound 0O((1/¢)log%3(1/¢)). When
M is a set of points uniformly (or quasi-uniformly) distributed on a circle, a bound
of O((1/£)2°9 /&)y obtained by Capoyleas [5], was later improved to the optimal
O(1/¢) by Chazelleet al. [6]. As stated in the abstract, a set of poilsis quasi-
uniformly distributed on the unit sphei®—1 in RY, if for any spherical cag < S%-1
with Vol (C) > c1/|M|, we havec, Vol (C) < |C N M| < ¢3Vol(C) for three constants
C1, Cp, C3 > 0.

In this paper, we consider the special case wWileis a set of points quasi-uniformly
distributed on the sphei®~* for d > 3.

A famous problem, of Danzer and Rogers, asks how many points can stab all convex
subsets of the unit square that have are@hat is, how many points do we need in a
setW’ to be sure that all convex subsets of the unit sphere ofaaoeatain a point of
W'’. See Unsolved-Problef14 in [8] and it is in the discussions in [1] and [3]. The
presently known bounds for the size of the smallest possible stabbing set hfe)
lower andO((1/¢) log(1/¢)) upper, but it is generally believed that the answer is likely
to be nonlinear in As.

In Section 2 we review the necessary background for the rest of the paper. In Section 3
we show than points quasi-uniformly distributed on &' ~! sphere have weaknets
of size O((d?log(d)kq/¢) log(kg/e) log(1/¢)) and we give bounds fdkg. Finally, in
Section 4, we prove that any lower bound for Danzer and Roger’s problem, is also a
lower bound for the size of the weaknets we are considering.

Special dependencies of the constants andd will be noted as necessary.

2. Foundations

Let us recall some basic facts abeutets, for example, see the papers [12], [4], and [7],
or the books [2], [16], and [18]. Aange space & a pair(X, R), whereX is a set anR

is a set of subsets of (that is,Ris a subset of the power setXj. The members oK are
elementsMembers ofR areranges For some constart 1 > ¢ > 0, asubseN C X is
called are-net of Siff N contains one pointin eachrange Rwith |r| > | X]. Itis easy

to see that iR is the power set 0K, then are-net must have at leagt — ¢)| X| points.

A subsetA C X is said to beshatteredby R, if every subset ofA can be obtained
by intersectingA with some range irR. That is,A C X is said to beshatterecby R if
{ANr: r € R}is the power set oA.

The Vapnik—Chervonenkis dimension of the range spacé@adimensionfor short)
is the cardinality of the largest shattered subset dff no such largest subset exists, the
VC-dimension is infinite.

Proposition 1 gives a bound on the size ofanet, in terms of the VC-dimension of
the underlining range space. For weakets however, no such proposition is proved.
There is no obvious way to use the theory of range spaces-aets, to bound the size
of weake-nets, as we will do in this paper.

Vapnik and Chervonenkis first proved the following result in a more general context.
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Later using probabilistic methods, Haussler and Welzl [12] proved the next proposition
in terms ofe-nets.

Proposition 1[12]. Let S= (X, R) be a range space of finite VC-dimension and let
1> ¢ > 0and|X| > 1/¢.! Then there exists astnet for S of size Q1/¢) log(1/¢)).

It is known thatO((1/¢) log(1/¢)) is independent of the size of. Taking the di-
mension into account, Haussler and Welzl actually showed that for a rangeSpéce
VC-dimensiord, thee-net for Sis of size at most

[Sd 8d"

- |Og -

& &

and they gave a lower bound @f(d/¢). Later, Blummeset al. [4] showed that Haussler

and Welzl's upper bound could be lowered. Further, Pach and Woeginger improved these

results and so did KoroE (see [13], [17], and [14]). Together in [13] they gave the next
upper bound and showed that it is tight

((1 + 0(1))88—d log 1—‘

e
ford > 2.

Given arange spac®= (X, R), we write R* to be the closure of the randg®under
standard boolean (set-theoretic) formulas.

Proposition 2[12], [10], [19]. LetS= (X, R)bearange space offinite VC-dimension

and let k be a natural numhe®uppose every range in‘lRan be expressed by a Boolean

formula involving k elements of R'hen S = (X, R*) also has finite VC-dimension
Furthermore, Haussler and Welzl actually showed that if the VC-dimensiSisaf,

then the VC-dimension of the new range sp&tés O(dklog(dk)), see also [2], [18],

and [14].

3. The Construction

In this section we prove the following theorem:

Theorem 3. Given a set M of n quasi-uniformly distributed points di'Sthen there
exists a weak-net W for M such that

-0 (E2 ) on(3)

where lg is exponential in d

1 The relationx >> y meansx is larger thary by at least a sufficiently large constant.
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Fig. 1. Spheresst, S}, andS} with their spherical caps shaded.

Let the spheres®~! have unit surface volume and cent@r Take the sequence of
concentric spheres with different radii,

ST Siogueya

all centered a©; and sphereﬁdgll is properly contained inside of the sph@‘é‘l for
i: llog(x9/e)] > i > 1. And ' is inside S*1. (We will discuss the purpose af
shortly.)

Consider a hyperplar¥; tangent toﬁ“‘1 that cuts off a spherical cap from S%-1,
We choose the sizes of the spheEﬁg1 so that the volume of the spherical c@pis
2'¢/29. See Fig. 1.

In the rest of this section, we will prove that it is possible to put

O((d?log(d)kg/¢) log(kg/e))

points on each sphe&“l, llog(x9/e)] > i > 1, so that the points on all the spheres
together, form a weak-net for M, as stated in Theorem 3.

The proof of Theorem 3 rests on the next two lemmas.

The intuition of the next lemma is that given a set of points whose maximum distance
is large, then we can find a big subset contained in a ball that has a sufficiently large
distance from at least one point.

Lemmal. Let M be a set of n points with diamet&rin RY. For any real number
1 > 1,there is a ball B of radius r = §1/d/A and center p that contains at leastxf
of the points in M and there is a pointg M for whichdist(p, q) > §/2.

Proof. Let§ be the diameter oM. Then we can show by induction @hthat M is
contained in a-dimensional cube with sides of si2eTherefore it can be covered by
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A9 cubes with sides of siz&y 1. By the pigeon-hole principle at least one of these cubes
must contain at least/A% points of M.

Let BY be the smallest ball containing this cube andBéthave centep. Consider
two points inM which are at a distance éffrom each other. Of these two points, tpt
be the one whose distance frquris greater. Clearlydist(p, q) > §/2 and in the same
way we can compute the bound puising the Pythagorean theorem. O

The next lemma is used for showing that we will always have a sufficiently large
subset of a convex set that intersects some inner sﬁﬂé?eMore precisely, the central
projections we are using are roughly volume and area preserving.

Lemma 2. Let S and T9-! be two concentric spheres centered’atind T4 is
inside S—1. Let’H be a hyperplane tangent to?T? cutting off a spherical cag from
S*-1 with center p and diametet. Let g € S be so thatdist(p, q) > ké, where
k > 1, and it is sufficiently largeChoose any two points, & € C, where the lines a—q
and b—q intersect{ and T9~1, at the pairs of pointga’, b’) and (a”, b”), respectively
See Fig2. Then the distancetist(a, b), dist(a’, b"), anddist(a”, b”) are roughly equal
in particular,

1 dist(a b) dist(a, b) 1
1o S@Y g 2D g 2
k < dst@.by) M dist@.by Tk

Proof. Intersects’~1, T9-1, and’® by the two-dimensional plane determined by the
pointsa, b, andg. Now obtain an equivalent plane geometry problem. The required
conditions follow from the law of similar triangles from elementary geometry. That is,
two similar triangles have their corresponding angles equal. Further, edge lengths of two
similar triangles are different by the same multiplicative constant.

Fig. 2. Spheress®~1 andT9-1 with C at the top and the points b, &', b, a”, andb” shown.
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These similar triangles bound the distance along the arcs of the spheres. This com-
pletes the proof. O

Suppose we have a et of points that are quasi-uniformly distributed on the sphere
S¥-1, Our goalis to place the points ¥ on all of the spheresd‘l fori: [log(rd/e)| >
i > 1, so as to stab the convex hull of evé¢yC M with |K| > ¢|M|.

Consider such a set of poinks and choose a large constafitfor somex > 1. By
Lemma 1, and for sufficiently large, there is som&’ € K, where|K’| > ¢|K|/A¢
andq € K, such thaK’ is in some spherical capof S** and also in a balB of radius
r = 8§4/d/A wheres is the diameter of the sét. The spherical cap has diametes,,
base hyperplan#, centerp, and the value of can be chosen so thdist(p, q) > ki1,
wherek; is large. (That isk,8; > §/2.)

We can increasé; by a factor of less than 2 and ha#ttouch one of the spheres
in our sequence, call iT9-1, without violating any of the other conditions already
established. This is because spha‘?él and hyperplané; cut off a spherical cap;
with 2'¢ /09 surface volume, where we can adjust the valug tf make it so thas; is
changed appropriately. Since each successive hyperplane cuts off double the volume of
the previous one, then the diameter of each successive spherical cap must be less than
double. (Note thak; will still be large.)

We arrange the points W so thatconv(K’ U {q}) is stabbed by (that is, it contains)
at least one of the points d¥ that we will distribute oril -1, To this end, consider the
set,

7 = conv(K’ U {g}) N T4 L.
A spherical simplexon a spheré&™! is the intersection 0§~ andd half-spaces.

Claim 1. Let c be a large constant independent ofTthe setZ contains a spherical
simplexA with Vol (A4) > &/(24d! A%c).

Proof. Let K/, denote the image oK’ on H, under a central projection through
the pointq. By Lemma 2, this projection does not affect distances by more than a
small constant factor. CIearIypnv(Kﬂ) C conv(K’ U {gq}) and Vol(conv(Ké_[)) >
g/(1x9¢’) for some constartt. But then ,conv(Kéi) contains a simplex, with Vol(A) >
e/(c’29d! 1% for some constart’.

A convex body ind dimensions of volum&/ = &/(A9¢’) must contain an elipsoid
of volume at leasV /29. This follows from the existence of theolwiner—John elipsoid,
see [11], for example. Such an elipsoid, and therefore our convex body itself, contains a
simplex of volumeV /(24d!).

Centrally project the mapping fro throughg, ontoT9-1, to obtain4 € Z. Ais a
spherical simplex, and by Lemma 2, we know that(Ml > ¢/(c29d! 19). O

Next, we show how to place

2 ddy 3d ddq 3 d
o<<d Iog(dg)Z d! )Iog(z dg!k ))

points of W on T9-1, so that they stab every spherical simplexTsh! of volumee /c.
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Let us construct range spacBs= (X, R) andS* = (X, R*) as follows. LetX be
a set of points quasi-uniformly distributed @1, |X| > 1/¢. Let R be all the sets
that are intersections of with half-spaces. LeR* be the sets that are intersections of
X with spherical simplices. The range sp&has VC-dimension roughlg; it can be
easily seen that a set of at madst 1 points inRY can be shattered with half-spaces. By
Proposition 2 the VC-dimension & is

O(dklog(dk)) = O(d?logd)

sincek = d.

Clearly, every spherical simplex of~1 of volumes/(2¢d! A%c) contains at least
e|X|/(24d! A9¢’) points of X for some constartt, by the quasi-uniform distribution of
the points ofX. By Proposition 1S* has an(s/2%d! A%c”)-netN, for some constart’

and where
2] 2dd1 )4 2dd1 )d
= o (1 74.)
& &

HenceN stabs all spherical simplice$ on T9-1, with Vol(A) > ¢/(24d! A9c).

We can finish the construction 9¥, simply by repeating this construction bif for
eachS,d*. We have to iterate this process at mostldye) times. Lettingkg = 29d! 1
for some constant > 1, the bound in Theorem 3 can be expressed tightly as

(722 )

We can reduce the factof @ in kq by a little, butkg will still be exponential.

4. Relation to a Problem of Danzer and Rogers

In this section we show tha¥V|, the size of the weak-net for points quasi-uniformly
distributed on a sphere, is asymptotically at least as big as the size of the smallest stabbing
set for Danzer and Rogers’s problem.

Danzer and Rogers posed the following problem [9]:

Given a unit square how many points are necessary to hit every convex set of area
¢ contained in the square?

See Unsolved-Proble&14in [8].

Theorem 4. Let M be asetof points quasi-uniformly distributed on athree-dimensional
sphere 3and let W be a weak-net for M, 0 < ¢ < 1. Let W be a set of points in a
unit square such that every convex subset of the square with a@ntains a point in

W'. Then|W|(e) = Q(W'|(¢)).

Proof. Consider a sphei®® with big constant radiuR and cente©, and a horizontally
placed unit square touching the sphere at the point vertically above the €ertet M
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be quasi-uniformly distributed o and letW be a wealke-net for it. Centrally project
W onto the square, to obtal’, O being the center of the projection.

Now consider any convex subset of the square, @@l@early,Z = S? N conv(CUQ)
contains roughlyrea(C)|M| /47 R? points of M (see Lemma 2). larea(C) > ¢CR, ¢
being large, thenonv(Z) must contain a point dfV and sincesonv(Z) C conv(Z U O),

C must contain a point dfV’. ThereforeW’ stabs all convex subsets of the square that
have areacR. |

This theorem points out that if we shave off more than an asymptotié legfactor
from the weake-net for the spher&?, then we can shave off more than a constant from
the solution of Danzer and Rogers’s problem.

Let us briefly consider the case where we allbivto be arbitrarily distributed on
s¥-1, By a simple generalization of the above method, we can show that any upper bound
on the size of the weaknet of M, is also an upper bound on the size of weakets of
points arbitrarily distributed ifR9-1.

The best-known bound for the size of weakets of points arbitrarily distributed in
RY9-1is O((1/e9 1) log%-1(1/¢)) by Chazelleet al. [6]. This bound is considered hard
to improve.

5. Conclusions

As we noted in the Introduction, the best upper bound for a wedt for any seM in
R%is O((1/¢%) log™ (1/¢)) wherecy is exponential ird and is due to Chazelket al. [6].
Here we show how to construct a weadet for points quasi-uniform distribution on
a sphereS?—1 with O(((d?log(d)kq)/¢) log(ky/€) log(1/¢)) points in our weak:-net

for kg exponential ird. Our discussion in Section 4 leaves little hope for improving our
bound by more than a l@iy/ <) factor or for generalizing our bound for points arbitrarily
distributed on the sphere.
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