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Abstract. A weakε-net for a set of pointsM , is a set of pointsW (not necessarily in
M) where every convex set containingε|M | points in M must contain at least one point
in W. Weakε-nets have applications in diverse areas such as computational geometry,
learning theory, optimization, and statistics. Here we show that ifM is a set of points
quasi-uniformly distributed on a unit sphereSd−1, then there is a weakε-net W ⊆ Rd of
sizeO(log(1/ε) log(1/ε)) for M , wherekd is exponential ind. A set of pointsM is quasi-
uniformlydistributed onSd−1 if, for any spherical capC ⊆ Sd−1 with Vol(C) ≥ c1/|M |, we
have

c2 Vol(C) ≤ |C ∩ M | ≤ c3 Vol(C)

for three positive constantsc1, c2, andc3.
Further, we show that reducing our upper bound by asymptotically more than a log(1/ε)

factor directly implies the solution of a long unsolved problem of Danzer and Rogers.

1. Introduction

A weakε-net for a set of pointsM is a set of pointsW (not necessarily inM) such that
every convex set containingε|M | points inM must contain at least one point inW.

Estimating the smallest possible size of weakε-nets has attracted considerable atten-
tion recently. See, for example, [1], [6], [5], and [15]. Furthermore, many researchers have
found applications ofε-nets in computational geometry, learning theory, optimization,
and statistics, see Matouˇsek’s chapter [14], for example.
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In general, whenM can be an arbitrary point set inRd, the known bounds for the min-
imum size ofW areÄ(1/ε) lower andO((1/εd) logcd(1/ε)) upper, wherecd is an expo-
nential function ofd, see [6]. IfM is a planar set, there is aO(1/ε2) upper bound, see [1].

There are better upper bounds for special cases. WhenM is in convex position on
the plane Chazelleet al. [6] give an upper bound ofO((1/ε) loglog2 3(1/ε)). When
M is a set of points uniformly (or quasi-uniformly) distributed on a circle, a bound
of O((1/ε)2log∗(1/ε)) obtained by Capoyleas [5], was later improved to the optimal
O(1/ε) by Chazelleet al. [6]. As stated in the abstract, a set of pointsM is quasi-
uniformlydistributed on the unit sphereSd−1 in Rd, if for any spherical capC ⊆ Sd−1

with Vol(C) ≥ c1/|M |, we havec2 Vol(C) ≤ |C ∩ M | ≤ c3 Vol(C) for three constants
c1, c2, c3 > 0.

In this paper, we consider the special case whenM is a set of points quasi-uniformly
distributed on the sphereSd−1 for d ≥ 3.

A famous problem, of Danzer and Rogers, asks how many points can stab all convex
subsets of the unit square that have areaε. That is, how many points do we need in a
setW′ to be sure that all convex subsets of the unit sphere of areaε contain a point of
W′. See Unsolved-ProblemE14 in [8] and it is in the discussions in [1] and [3]. The
presently known bounds for the size of the smallest possible stabbing set areÄ(1/ε)
lower andO((1/ε) log(1/ε)) upper, but it is generally believed that the answer is likely
to be nonlinear in 1/ε.

In Section 2 we review the necessary background for the rest of the paper. In Section 3
we show thatn points quasi-uniformly distributed on aSd−1 sphere have weakε-nets
of size O((d2 log(d)kd/ε) log(kd/ε) log(1/ε)) and we give bounds forkd. Finally, in
Section 4, we prove that any lower bound for Danzer and Roger’s problem, is also a
lower bound for the size of the weakε-nets we are considering.

Special dependencies of the constants onε andd will be noted as necessary.

2. Foundations

Let us recall some basic facts aboutε-nets, for example, see the papers [12], [4], and [7],
or the books [2], [16], and [18]. Arange space Sis a pair(X, R), whereX is a set andR
is a set of subsets ofX (that is,R is a subset of the power set ofX). The members ofX are
elements. Members ofR areranges. For some constantε, 1> ε > 0, a subsetN ⊆ X is
called anε-net ofSiff N contains one point in each ranger ∈ Rwith |r | > ε|X|. It is easy
to see that ifR is the power set ofX, then anε-net must have at least(1− ε)|X| points.

A subsetA ⊆ X is said to beshatteredby R, if every subset ofA can be obtained
by intersectingA with some range inR. That is,A ⊆ X is said to beshatteredby R if
{A∩ r : r ∈ R} is the power set ofA.

The Vapnik–Chervonenkis dimension of the range space (orVC-dimension, for short)
is the cardinality of the largest shattered subset ofX. If no such largest subset exists, the
VC-dimension is infinite.

Proposition 1 gives a bound on the size of anε-net, in terms of the VC-dimension of
the underlining range space. For weakε-nets however, no such proposition is proved.
There is no obvious way to use the theory of range spaces andε-nets, to bound the size
of weakε-nets, as we will do in this paper.

Vapnik and Chervonenkis first proved the following result in a more general context.
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Later using probabilistic methods, Haussler and Welzl [12] proved the next proposition
in terms ofε-nets.

Proposition 1 [12]. Let S= (X, R) be a range space of finite VC-dimension and let
1> ε > 0 and|X| À 1/ε.1 Then there exists anε-net for S of size O((1/ε) log(1/ε)).

It is known thatO((1/ε) log(1/ε)) is independent of the size ofX. Taking the di-
mension into account, Haussler and Welzl actually showed that for a range spaceS of
VC-dimensiond, theε-net forS is of size at most⌈

8d

ε
log

8d

ε

⌉
and they gave a lower bound ofÄ(d/ε). Later, Blummeret al. [4] showed that Haussler
and Welzl’s upper bound could be lowered. Further, Pach and Woeginger improved these
results and so did Koml´os (see [13], [17], and [14]). Together in [13] they gave the next
upper bound and showed that it is tight⌈

(1+ o(1))
8d

ε
log

1

ε

⌉
for d ≥ 2.

Given a range spaceS= (X, R), we writeR∗ to be the closure of the rangeR under
standard boolean (set-theoretic) formulas.

Proposition 2 [12], [10], [19]. Let S= (X, R)be a range space of finite VC-dimension
and let k be a natural number. Suppose every range in R∗ can be expressed by a Boolean
formula, involving k elements of R. Then S∗ = (X, R∗) also has finite VC-dimension.

Furthermore, Haussler and Welzl actually showed that if the VC-dimension ofS is d,
then the VC-dimension of the new range spaceS∗ is O(dk log(dk)), see also [2], [18],
and [14].

3. The Construction

In this section we prove the following theorem:

Theorem 3. Given a set M of n quasi-uniformly distributed points on Sd−1, then there
exists a weakε-net W for M such that

|W| = O

((
d2 log(d)kd

ε

)
log

(
kd

ε

)
log

(
1

ε

))
,

where kd is exponential in d.

1 The relationx À y meansx is larger thany by at least a sufficiently large constant.
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Fig. 1. SpheresS1, S1
1, andS1

2 with their spherical caps shaded.

Let the sphereSd−1 have unit surface volume and centerO. Take the sequence of
concentric spheres with different radii,

Sd−1
1 , Sd−1

2 , . . . , Sd−1
blog(λd/ε)c−1

all centered atO; and sphereSd−1
i+1 is properly contained inside of the sphereSd−1

i for
i : blog(λd/ε)c > i ≥ 1. And Sd−1

1 is insideSd−1. (We will discuss the purpose ofλd

shortly.)
Consider a hyperplaneHi tangent toSd−1

i that cuts off a spherical capCi from Sd−1.
We choose the sizes of the spheresSd−1

i so that the volume of the spherical capCi is
2i ε/λd. See Fig. 1.

In the rest of this section, we will prove that it is possible to put

O((d2 log(d)kd/ε) log(kd/ε))

points on each sphereSd−1
i , blog(λd/ε)c > i ≥ 1, so that the points on all the spheres

together, form a weakε-net for M , as stated in Theorem 3.
The proof of Theorem 3 rests on the next two lemmas.
The intuition of the next lemma is that given a set of points whose maximum distance

is large, then we can find a big subset contained in a ball that has a sufficiently large
distance from at least one point.

Lemma 1. Let M be a set of n points with diameterδ in Rd. For any real number
λ ≥ 1, there is a ball Bd of radius r= δ√d/λ and center p that contains at least n/λd

of the points in M and there is a point q∈ M for whichdist(p,q) ≥ δ/2.

Proof. Let δ be the diameter ofM . Then we can show by induction ond that M is
contained in ad-dimensional cube with sides of sizeδ. Therefore it can be covered by
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λd cubes with sides of sizeδ/λ. By the pigeon-hole principle at least one of these cubes
must contain at leastn/λd points ofM .

Let Bd be the smallest ball containing this cube and letBd have centerp. Consider
two points inM which are at a distance ofδ from each other. Of these two points, letq
be the one whose distance fromp is greater. Clearly,dist(p,q) ≥ δ/2 and in the same
way we can compute the bound onr using the Pythagorean theorem.

The next lemma is used for showing that we will always have a sufficiently large
subset of a convex set that intersects some inner sphereSd−1

i . More precisely, the central
projections we are using are roughly volume and area preserving.

Lemma 2. Let Sd−1 and Td−1 be two concentric spheres centered atO and Td−1 is
inside Sd−1. LetH be a hyperplane tangent to Td−1 cutting off a spherical capC from
Sd−1 with center p and diameterδ. Let q ∈ Sd−1 be so thatdist(p,q) ≥ kδ, where
k > 1, and it is sufficiently large. Choose any two points a, b ∈ C, where the lines a–q
and b–q intersectH and Td−1, at the pairs of points(a′, b′) and(a′′, b′′), respectively.
See Fig. 2.Then the distancesdist(a, b), dist(a′, b′), anddist(a′′, b′′) are roughly equal;
in particular,

1− 1

k
<

dist(a, b)

dist(a′, b′)
and

dist(a, b)

dist(a′′, b′′)
< 1+ 1

k
.

Proof. IntersectSd−1, Td−1, andH by the two-dimensional plane determined by the
pointsa, b, andq. Now obtain an equivalent plane geometry problem. The required
conditions follow from the law of similar triangles from elementary geometry. That is,
two similar triangles have their corresponding angles equal. Further, edge lengths of two
similar triangles are different by the same multiplicative constant.

q

b
a

a’’
b’

b’’

a’

TS

p

Fig. 2. SpheresSd−1 andTd−1 with C at the top and the pointsa, b, a′, b′, a′′, andb′′ shown.
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These similar triangles bound the distance along the arcs of the spheres. This com-
pletes the proof.

Suppose we have a setM of points that are quasi-uniformly distributed on the sphere
Sd−1. Our goal is to place the points ofW on all of the spheresSd−1

i for i : blog(λd/ε)c >
i ≥ 1, so as to stab the convex hull of everyK ⊆ M with |K | ≥ ε|M |.

Consider such a set of pointsK and choose a large constantλd for someλ > 1. By
Lemma 1, and for sufficiently largeλ, there is someK ′ ⊆ K , where|K ′| ≥ ε|K |/λd

andq ∈ K , such thatK ′ is in some spherical capC of Sd−1 and also in a ballB of radius
r = δ√d/λ whereδ is the diameter of the setK . The spherical capC has diameterδ1,
base hyperplaneH, centerp, and the value ofλ can be chosen so thatdist(p,q) > k1δ1,
wherek1 is large. (That is,k1δ1À δ/2.)

We can increaseδ1 by a factor of less than 2 and haveH touch one of the spheres
in our sequence, call itTd−1, without violating any of the other conditions already
established. This is because sphereSd−1

i and hyperplaneHi cut off a spherical capCi

with 2i ε/λd surface volume, where we can adjust the value ofλ to make it so thatδ1 is
changed appropriately. Since each successive hyperplane cuts off double the volume of
the previous one, then the diameter of each successive spherical cap must be less than
double. (Note thatk1 will still be large.)

We arrange the points inW so thatconv(K ′ ∪ {q}) is stabbed by (that is, it contains)
at least one of the points ofW that we will distribute onTd−1. To this end, consider the
set,

I = conv(K ′ ∪ {q}) ∩ Td−1.

A spherical simplexon a sphereSd−1 is the intersection ofSd−1 andd half-spaces.

Claim 1. Let c be a large constant independent of d. The setI contains a spherical
simplexA with Vol(A) > ε/(2dd! λdc).

Proof. Let K ′H denote the image ofK ′ on H, under a central projection through
the pointq. By Lemma 2, this projection does not affect distances by more than a
small constant factor. Clearly,conv(K ′H) ⊆ conv(K ′ ∪ {q}) and Vol(conv(K ′H)) ≥
ε/(λdc′) for some constantc′. But then,conv(K ′H) contains a simplexA, with Vol(A) >
ε/(c′′2dd! λd) for some constantc′′.

A convex body ind dimensions of volumeV = ε/(λdc′) must contain an elipsoid
of volume at leastV/2d. This follows from the existence of the L¨owner–John elipsoid,
see [11], for example. Such an elipsoid, and therefore our convex body itself, contains a
simplex of volumeV/(2dd!).

Centrally project the mapping fromA throughq, ontoTd−1, to obtainA ⊆ I.A is a
spherical simplex, and by Lemma 2, we know that Vol(A) > ε/(c2dd! λd).

Next, we show how to place

O

((
d2 log(d)2dd! λd

ε

)
log

(
2dd! λd

ε

))
points ofW on Td−1, so that they stab every spherical simplex onTd−1 of volumeε/c.
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Let us construct range spacesS = (X, R) andS∗ = (X, R∗) as follows. LetX be
a set of points quasi-uniformly distributed onTd−1, |X| À 1/ε. Let R be all the sets
that are intersections ofX with half-spaces. LetR∗ be the sets that are intersections of
X with spherical simplices. The range spaceS has VC-dimension roughlyd; it can be
easily seen that a set of at mostd+ 1 points inRd can be shattered with half-spaces. By
Proposition 2 the VC-dimension ofS∗ is

O(dk log(dk)) = O(d2 logd)

sincek = d.
Clearly, every spherical simplex onTd−1 of volumeε/(2dd! λdc) contains at least

ε|X|/(2dd! λdc′) points ofX for some constantc′, by the quasi-uniform distribution of
the points ofX. By Proposition 1,S∗ has an(ε/2dd! λdc′′)-net N, for some constantc′′

and where

|N| = O

((
d2 log(d)2dd! λd

ε

)
log

(
2dd! λd

ε

))
HenceN stabs all spherical simplicesA on Td−1, with Vol(A) ≥ ε/(2dd! λdc).

We can finish the construction ofW, simply by repeating this construction ofN for
eachSd−1

i . We have to iterate this process at most log(λd/ε) times. Lettingkd = 2dd! λd

for some constantλ > 1, the bound in Theorem 3 can be expressed tightly as

O

((
d2 log(d)kd

ε

)
log

(
kd

ε

)
log

(
1

ε

))
.

We can reduce the factor 2dd! in kd by a little, butkd will still be exponential.

4. Relation to a Problem of Danzer and Rogers

In this section we show that|W|, the size of the weakε-net for points quasi-uniformly
distributed on a sphere, is asymptotically at least as big as the size of the smallest stabbing
set for Danzer and Rogers’s problem.

Danzer and Rogers posed the following problem [9]:

Given a unit square how many points are necessary to hit every convex set of area
ε contained in the square?

See Unsolved-ProblemE14 in [8].

Theorem 4. Let M be a set of points quasi-uniformly distributed on a three-dimensional
sphere S2 and let W be a weakε-net for M, 0 < ε < 1. Let W′ be a set of points in a
unit square, such that every convex subset of the square with areaε contains a point in
W′. Then|W|(ε) = Ä(|W′|(ε)).

Proof. Consider a sphereS2 with big constant radiusRand centerO, and a horizontally
placed unit square touching the sphere at the point vertically above the centerO. Let M
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be quasi-uniformly distributed onS2 and letW be a weakε-net for it. Centrally project
W onto the square, to obtainW′,O being the center of the projection.

Now consider any convex subset of the square, call itC. Clearly,I = S2 ∩ conv(C∪O)
contains roughlyarea(C)|M |/4πR2 points ofM (see Lemma 2). Ifarea(C) ≥ εcR, c
being large, thenconv(I)must contain a point ofW and sinceconv(I) ⊆ conv(I ∪O),
C must contain a point ofW′. ThereforeW′ stabs all convex subsets of the square that
have areaεcR.

This theorem points out that if we shave off more than an asymptotic log(1/ε) factor
from the weakε-net for the sphereS2, then we can shave off more than a constant from
the solution of Danzer and Rogers’s problem.

Let us briefly consider the case where we allowM to be arbitrarily distributed on
Sd−1. By a simple generalization of the above method, we can show that any upper bound
on the size of the weakε-net ofM , is also an upper bound on the size of weakε-nets of
points arbitrarily distributed inRd−1.

The best-known bound for the size of weakε-nets of points arbitrarily distributed in
Rd−1 is O((1/εd−1) logcd−1(1/ε)) by Chazelleet al. [6]. This bound is considered hard
to improve.

5. Conclusions

As we noted in the Introduction, the best upper bound for a weakε-net for any setM in
Rd is O((1/εd) logcd(1/ε))wherecd is exponential ind and is due to Chazelleet al. [6].
Here we show how to construct a weakε-net for points quasi-uniform distribution on
a sphereSd−1 with O(((d2 log(d)kd)/ε) log(kd/ε) log(1/ε)) points in our weakε-net
for kd exponential ind. Our discussion in Section 4 leaves little hope for improving our
bound by more than a log(1/ε) factor or for generalizing our bound for points arbitrarily
distributed on the sphere.
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