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Abstract. The d-step conjecture is one of the fundamental open problems concerning
the structure of convex polytopes. L&td, n) denote the maximum diameter of a graph of

a d-polytope that has facets. Thal-step conjecture\(d, 2d) = d is proved equivalent

to the following statement: For each “general positigd™— 1) x (d — 1) real matrixM

there are two matrice®,, Q, drawn from a finite groug; of (d — 1) x (d — 1) matrices
isomorphic to the symmetric group Syd) ond letters, such tha®, M Q, has the Gaussian
elimination factorizatior. ~*U in which L andU are lower triangular and upper triangular
matrices, respectively, that hagesitivenontriangular elements. If#1) is the number of
pairs(o, T) € Symd) x Sym(d) giving a positiveL ~*U factorization, then @) equals

the number ofd-step paths between two vertices of an associated Dantzig figure. One
consequenceisthati) < d!. Numerical experiments all satisfied¥) > 29~ including
examples attaining equality for 8 d < 15. The inequality #M) > 29~ is proved for

d = 3. Ford > 4, examples with M) = 29-1 exhibit a large variety of combinatorial
types of associated Dantzig figures. These experiments and other evidence suggest that the
d-step conjecture may be true in all dimensions, in the strong faivh)# 29-1.

1. Introduction

Thed-step conjecture is one of the fundamental open problems in the structure of convex
polytopes. LetA(d, n) denote the maximum diameter of the graph (of the 1-skeleton)

* Part of this work was done at the Oberwolfach meeting in Applied and Computational Convexity, January
1995. N. Prabhu was supported in part by an NSF Research Initiation Award.
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of a simpled-polytope having exactly facets. Thelfoundefl Hirsch conjecturasserts
that

A(d,n) <n-—d.

Thed-step conjecturés the special case = 2d, and asserts that
A(d,2d) =d.

(Thed-cube shows that necessariyd, 2d) > d.) Klee and Walkup [8] showed that the
truth of thed-step conjecture for atl implies the truth of the (apparently more general)
Hirsch conjecture for alh andd. Thed-step conjecture has been proved (b 5.

The Hirsch conjecture has been proveddox 3 and alln, and also for all pairgd, n)
havingn — d < 5. These results and others are described in the comprehensive review
of Klee and Kleinschmidt [7].

Several natural generalizations of ttlestep conjecture are known to be false. For
example, thal-step conjecture fails for unbounded polyhedra in dimension 4 [8], and
extended versions of the dual version of thstep conjecture fail to hold for triangulated
spheres in high dimensions [10]. Based on such counterexamples, the consensus view
is that thed-step conjecture will also be false for lardeKlee and Kleinschmidt [7]
write: “We strongly suspect that thistep conjecture fails when the dimension is as
large as 12"

This paper presents a theoretical framework and experimental data suggesting that
thed-step conjecture may be true in all dimensions, in a strong form. These results are
based on a reformulation of thliestep conjecture in terms of the sign patterns of the
matricesL andU in Gaussian elimination factorizatiohs U of a set of(d!)2 matrices
{Q:MQ,: o,t € Sym(d)} constructed from an arbitragd — 1) x (d — 1) matrix
M. Here§ = {Q,: o € Sym(d)} is a certain group ofd — 1) x (d — 1) matrices
isomorphic to Synid). Recall that a triangular factorizatidl = L~U is one where
L is lower triangular with ones on the diagonal dnds upper triangular with arbitrary
diagonal elements. A triangular factorization exists and is unique for “general position”
M. We call anL~'U factorizationpositiveif all nontriangular elements i and U
are positive. The reformulation of thiestep conjecture, which we call ti@aussian
elimination sign conjectuteasserts that, for each “general positiov’, the set ofid!)?
matrice§Q.MQ,: o, T € Sym(d)}, where Synid) is the symmetric group athletters,
contains at least on®, M Q, having a positive. U factorization (Theorem 5.2).

We show that the number of positize U factorizations among th@!)? possibilities
counts the number af-step paths between distinguished vertisesandw, and of a
certain Dantzig figuré€P, wq, wy) associated td. A Dantzig figure(P, wy, w») is a
simpled-polytope having exactly®facets, given with vertices/; andw, and which
are antipodal in the sense thveg andw, are the intersection of disjoint setsafacets.

Each combinatorial type of Dantzig figure arises from sdvhe

The Gaussian elimination sign conjecture raises questions concerning the sign patterns
of triangular factorizations of random matrices. A natural heuristic to consider is that such
sign patterns should be random, when averaged over the action 6digy®ym(d). This
must be very far from the truth if the Gaussian elimination sign conjecture is to be true.
We show that this heuristic is indeed far from the truth, in the sense that a iQatexists
such thatM Q,, has anL ~*U factorization withU positive, and there are’ 2lements
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Q. such thaQ, M has arn_~1U factorization withL positive (Theorem 6.1). This result
leads to consideration of an alternative “random permutation mapping” heuristic, for
which the expected numbetM) of positiveL ~1U factorizations is 2.

The Gaussian elimination sign conjecture is amenable to numerical experimentation.
Part of its appeal is that it suggests unusual probability distributions to use in searching for
counterexamples to tltkstep conjecture. We report on extensive numerical experiments
for 3 < d < 15 in Sections 7 and 8. We made the empirical discovery that the number
#(M) of positiveL~1U factorizations oM appears to always satisfy

#M) > 2971,

and we found examples attaining equality for<3d < 15. The examples attaining
#(M) = 29-1 for d > 6 were discovered using distributions based onlth&J factor-
ization. In contrast, “uniform” Gaussian distribution & gave a very different distri-
bution of values of #M), having large values comparable in size to the general upper
bound #M) < d!.

We went on to study the Dantzig figuréB, w;, w,) associated to examples with
#(M) = 291, and discovered that these exhibit a wide variety of combinatorial types.
For example, in dimension 4 we found examples spanning the full range of allowed
vertex numbers, from 14 to 20. The bound# > 29-1 held under small perturbations
of M that changed the combinatorial type of the associated Dantzig figure.

This empirical evidence suggests that thetep conjecture may well be true in the
strong form #M) > 29-1. We call this thestrong d-step conjecturérhe discussion
following Theorem 6.1 shows that the inequaligMp > 29-1, if true, would also have
a theoretical interpretation as a “positive correlation” among the permutatignand
W constructed in Theorem 6.1.

We remark that the best theoretical bounds currently knownar d) areA(n, d) <
29-3n, due to Larman [9], and (n, d) < 2n'°%9 due to Kalai and Kleitman [5], see also
[4] and Theorem 3.10 of [14]. The latter bound give&, 2d) < 2d%t°%9, Kalai [4]
remarks that the bounal(d, 2d) < d?+°%9 can be derived by a more detailed analysis
of his argument. General references on polytopes include [3], [13], and [14]. For some
information on Gaussian elimination and its stability properties, see [2] and [12].

The contents of this paper are as follows. In Section 2 we precisely state the Gaussian
elimination sign conjecture. This conjecture was derived from a study of the simplex
exchange version of the-step conjecture, a version formulated by Klee [6]. Section 3
recalls known results on the simplex basis exchange version af-gtep conjecture.
Section 4 describes a parameter spadg for the simplex basis exchange conjecture.
Section 5 derives the Gaussian elimination sign conjecture and proves its equivalence to
the d-step conjecture. Section 6 proves a result about sign patterns in Gaussian elimi-
nation factorizations for the families of matrichsQ, andQ, M, whereQ,, runs over
matrices in ad — 1) x (d — 1) representation of the symmetric group Sginond
letters. Section 7 describes computational experiments concerning the Gaussian elim-
ination sign conjecture, which computed valugd/# for various distributions oM.

The final section reports on computations concerning the combinatorial type of Dantzig
figures(P, wy, W,) associated td1 having #M) = 29-1. The Appendix describes the
unique Gaussian distribution invariant under $glinx Sym(d) acting on the parameter
spaceMy.
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2. Gaussian Elimination Sign Conjecture

A triangular factorizationof a(d — 1) x (d — 1) real matrixM is a factorization
M=L""U, 2.1)

in which L is lower triangular with all diagonal elements; = 1, andU is upper
triangular. Such factorizations are directly related to the Gaussian elimination algorithm.
For invertible matriced, a triangular factorization (7.1) is unique if it exists, and it is
constructed using the Gaussian elimination algorithm without pivoting, see Section 1.4 of
[11]. There is an exceptional set of invertible matrices having no triangular factorization,
consisting of those matrices on which the Gaussian elimination algorithm encounters a
zero pivot.

We say that a triangular factorization (2. 1hisndegeneratéall nontriangular entries
of L andU are nonzero, i.e., if

L =[Ljj] with Ljj #0 for i=>j, 2.2)
U =[Uj] with Uj; #0 for i < j. '
The set of matrice#! that possess a nondegenerate triangular factorization is an open
dense subset of altl — 1) x (d — 1) real matrices.
We say that a triangular factorization (2.1)pissitiveif all nontriangular entries of
andU are positive, i.e., if

Lij >0 for i>j; Uj >0 for i <j. (2.3

The Gaussian elimination sign conjecture involves a gréupf d-1)x@d-1
matrices which is isomorphic to the symmetric group $g)mon d letters. Given
o € Sym(d), there correspond®, € & given by

1 if j=o@)<d-—1,
(Qij=1 0 if j#o@{) and 1l<o(i)=<d-1,

and Q. Q, = Q., for all o, 7 € Sym(d) Thus & is the set of(d — 1) x (d — 1)
matrices consisting of all permutation matrices, together with all matrices obtained from
a permutation matrix by replacing one row with a row-af’s. For example,

S AR T IE T

We say that &d — 1) x (d — 1) real matrixM is in completely general positiahall
(d?2 matrices

Q.- MQ, for o, 1t € Sym(d)

are nondegenerate, i.e., have a triangular factorization satisfying (2.2). The set of com-
pletely general position matrices is an open dense subs@t ef1) x (d — 1) real
matrices.
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Gaussian Elimination Sign Conjecture GE4). Foreach(d—1) x (d—1) real matrix
M in completely general position there is some pairo) € Sym(d) x Sym(d) such
that the matrix QM Q,, has a positive triangular factorization 11U .

In Section 5 we prove that for each fixddhe Gaussian elimination sign conjecture
G, is equivalent to the-step conjecturé\(d, 2d) = d (Theorem 5.2). Furthermore,
the number of pairgo, t) for which Q; M Q, has a positive triangular factorization
counts the number al-step paths between antipodal vertices of a particular Dantzig
figure associated th (Theorem 5.1).

3. Simplex Exchange Variant of thed-Step Conjecture

We set basic terminology. polyhedronis the intersection of a finite number of closed
half-spaces ifRY, and gpolytopeis a bounded polyhedron. This paper deals exclusively
with polytopes. Afaceof a polytope is its intersection with a supporting hyperplane,
and ani-faceis a face of dimension A d-polytope is a polytope of dimensiah and a
facetof ad-polytope is ad — 1)-face. A(d, n)-polytopeis ad-polytope having exactly
n facets. Ad-polytope issimpleif each vertex (0-face) oP is contained in exactly
d facets, or, equivalently, if there are exaalyedges (1-faces) incident on each of its
vertices.

The graph G(P) of a polytope Pis the abstract undirected graph representing the
incidence structure of the O-faces (vertices) and 1-faces (edgds) Gf P) contains
no loops or multiple edges. It is well known that the graptiP) of a d-polytope is
d-connected. A polytop® is simple if and only if the grape(P) is d-regular, i.e., it
has exactlhyd edges incident on each vertexulfindv are vertices oG (P) thedistance
dp(u, V) betweenu andv is the minimal number of edges that must be traversed in
G(P) to travel fromu to v. Thediameters(P) is the diameter of the grapB(P), i.e.,
8(P) = max,, dp(U, V).

Let A(d, n) denote the maximal diameté&¢P) whereP runs over alld-polytopes
havingn facets. TheHirsch conjectureasserts that

A(d,n)<n-d whenever n>d+ 1

Klee and Walkup [8, Theorem 2.8] show that the valug@, n) is always attained by
some simplel-polytope.

The d-step conjecture asserts thatd, 2d) = d. By the remark above, the value
of A(d, 2d) is attained bys (P) for some simple(d, 2d)-polytope. There is a further
simplification due to Klee and Walkup [8]. Given a simgte 2d)-polytope P we say
that two of its verticesv; andw, areantipodal or make up ammntipodal pair, if they
lie in the intersection of disjoint sets dffacets, respectively. Such a triple, wy, wy)
is called aDantzig figure Klee and Walkup show that the valdgd, 2d) is attained by
3p (W1, Wp) for some Dantzig figuréP, wy, w,); see their Theorem 2.8. LetB, w1, wy)
count the number ofl-step paths betweeam; andw, in G(P). Thed-step conjecture
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A(d, 2d) = d may be restated as
#(P, W1, W2) >1

for all Dantzig figureg P, wy, w») in RY.

The simplex exchange variant of thestep conjecture is are-encoding of the condition
for the existence of d-step path connecting two antipodal vertices of a sinigle€d)-
polytope. To state it, aimplicial basis Bof R9-1 is an ordered set af vectorsB =
{by, ..., by} that form the vertices of & — 1)-simplex containin@ in its interior.

We also need a notion of general position. A finite set of vecfoirs R™ is said to
be aHaar setif every subset of sizen in A is linearly independent. We say that two
simplicial based andB’ are ingeneral positiorif B U B’ is a Haar set.

Simplex Exchange Conjecture $E4). For any two simplicial bases B and BfR9-1
that are in general positigrthere is a sequenceyBBy, By, ..., By of simplicial bases
of R%-1, with By = B and By = B/, such that each B is obtained from Bby adding
a vertex in Band removing a vertex in .B

The name “simplex exchange” refers to the exchange stepBdmB; ;. ; which adds
some vectob’ of B’ and removes some vectbrof B. Associated to each paiB, B')
of simplicial bases ar@!)? exchange sequenceg B B, By, By, ..., By = B’, which
are labeled by pairs of permutatiofs ¢) € Sym(d) x Sym(d) as follows: B is
obtained fromB; by adding the vectob, ;, € B" and removing the vectds,, of B.
We call an exchange sequeng@e o) legal if all the resulting base®; are simplicial
bases. Let B, B’) count the number of legal exchange sequences for th& BaB’)
of simplicial bases.

Theorem 3.1. For each d > 2, the d-step conjecture is equivalent to the simplex
exchange conjecture SE

Thisis proved by Klee and Kleinschmidt[7, 2.6] via an equivalence between simplicial
pairs(B, B’) and Dantzig triplegP, w1, w,) which we now describe.

To each general position paiB, B’) of simplicial bases oR%~* there corresponds a
Dantzig triple(P, wy, wy) in RY. HereP := P(B, B) is defined by

d d 2d
P(B, B = {(/\1, coo o)t Do Abi+ ) T hiabl =0,) Ai=14 > 0} :
i=1 i=1 i=1

whereP is viewed as lying in a particulat-dimensional flatg in R%, namely

d d 2d
Hg := {(Al,...,kgd): D aibi 4+ Aiahi =0, a = 1}.
i=1 i=1 i=1

Since B and B’ are simplicial bases there are positive reIaticE%z1 Aibp = 0 and
Y& b =0,with Y%, 4 = Y% A = 1, hence there is a strictly positive relation
d d
% )\ibi+%2)\i’bi’=0’
i=1 i=1
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which shows thaf (B, B’) is full-dimensional in the flaHq4. The polytopeP (B, B’)
has 2 facets

Fi={(A1,...,A2q) € P(B, B): A =0} for 1<i<2d,

andP(B, B’) is a simple polytope becaugB, B’) are in general position. The distin-
guished verticews/; andw, of P are the points of intersection & N F,N---N Fy and

Fa+1 N Fg12 N -+ - N Fyq, respectively. We check that these intersection points actually
lie in P. Forws;, this follows from B being a simplicial basis: there is a unique positive
relation

all A >0.

MQ
>
o

Il
o
™
>
Il
[y

i=1 i=1

Similarlyw; € P follows from B’ being a simplicial basis. Thy®, w1, wy) is a Dantzig
figure.

Lemma3.1. Let(B, B') be a pair of simplicial bases @%~1 in general positionwith
associated Dantzig figuid®, wy, wy). Then the number of legal exchange sequences for
(B, B) is equal to the number of d-step paths betwagrandw, in the graph GP),

i.e.,

#(B, B") = #(P, w1, wy). 3D

Converselyfor every Dantzig figuréP, wy, wy) there is a pair of simplicial bases
(B, B’) giving rise to(P, wy, wy).

Proof. Each simplicial basi8” C B U B’ defines a vertex oP, and vice versa. I1B;
andB; are two such simplicial bases that haig N B,| = d — 1, then they correspond
to two vertices inP that haved — 1 facets in common, hence they determine an edge
of P, in the intersection of thd — 1 common facets. Thus legal exchange sequences
correspond to moving along edge pathdirfrom w; to wy, and conversely. The only
possible way to get frorB to B’ in d exchange steps involves entering an eleme’ of
and removing an element & at each step. Thus (3.1) follows.

The converse assertion is proved on pp. 725-726 of [7]. O

4. Parameter Space for the Simplex Exchange Conjecture

In this section we construct a reduced 34y of simplicial basis pairs that includes a
counterexample to the simplex exchange conjecBiggif one exists. The set 1y is a
real linear space of dimensigd — 1), and we call it gparameter spactor the simplex
basis exchange conjectussy.

We reduce the set of simplicial basis pairs to consider using the following two oper-
ations that preserve(8, B’).

Lemma 4.1. Let(B, B’) be a pair of simplicial bases &9
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(i) If L:RY-! — RY-1js an invertible linear transformatigrihen
#(L(B), L(B")) = #(B, B). 4.1

(i) Given a strictly positive vectqe = (i1, ..., uq) € RY, and an ordered set of
vectors B= {by, by, ..., bg} setuo B := {uib1, uoby, ..., ugbg}. Forany two
such vectorg: and u/,

#(uo B, i o B') = #(B, B)). (4.2)

Remark. Both of these operations preserve the combinatorial type of the associated
Dantzig figure; we omit the straightforward proof.

Proof. (i) Clearly, L (B;) containd0 in its interior if and only ifB; does.
(ii) If a set of vectorgb;} satisfies a normalized positive linear relation

NgE
>
[=3
Il
o

™
Rt
Il
=

i=1 i=1

then{u;b;} satisfies the normalized positive linear relation
m N m N
Y hub)=0 Y k=1
i=1 i=1

with &; := (i /i) (XL G/ ))_1' -

Given an arbitrary simplicial basis pdiB, B’), we use Lemma 4.1 to reduce to the
case thaB equals thestandard simplexX\q := {sy, ..., &}, Which is a regular simplex
with centroidO. First takeB to B = x o B having centroid), and second apply that
sendsd — 1 vertices ofB to those ofAg. ThenL(B) = Aq4 because the centroid is
preserved. To get a canonical representation we rég#rtas embedded iR? as the
hyperplane

d
(@ = {x=(x....xa): (ex) =) x =0¢, (4.3)
i=1

in which

e=el+ez+‘+aj = (1715"-71)7
whereg denotes theth unit coordinate vector. Then the vertgxis the orthogonal
projection on(e)* of g, that is

1 .
s:a—ae, 1<i<d.

Certainly,
S+S+--+s5=0. 4.9
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We view B and B’ as sitting inR¢ in the hyperplanée)'. We choose a rescaling &
that takes it to

Z2=1{z71,2,...,2q} == n'B = {u1b], uabs, ..., nabyl,
in such a way that
n+2+---+29=0. (4.5
This rescaling is unique up to multiplication & by a scalar. Lemma 4.1 implies
that if (B, B") is a counterexample to the-step conjecture, thefAy, Z) is also a
counterexample.

The parameter spacé 1y enumerates all pairé\q, Z) such thatZ = {z,, ..., z4}
satisfies (4.5). We represent elements\éf asd x d matrices:

7 — e (4.6)

subject to the linear constraints

d
ZZ; =0,

i=1

(e,z) =0, 1<i<d.

These constraints say that all row and column sumiz afe zero. Thus\g is a linear
space of dimensiord — 1)2. Note thatMy contains some extra “ideal elements” not
corresponding to any simplicial bad®, i.e., matriceZ of rank less thanl — 1.

We next describe the effect of permutations.oty. The symmetric group Sy(d)
has ad-dimensional representation as the Set= {P,:0 € Sym(d)} of permutation
matrices B, whereP, is defined by

1 if j=o(),
(Po)ij = {0 otherwise 4.7
The identity element of Syfd) is denotede, so thatP, = |. The set of permutation
matricesS; has a one-dimensional invariant subsp@sgeneratedbg = (1, 1, ..., 1),

and a complementargd — 1)-dimensional invariant subspa¢e ' = {z: (e, z) = 0).
The representatio; splits into a (trivial) one-dimensional representation/enand a
(d — 1)-dimensional representation ¢g*. For everyZ € My, the rows ofZ are in
(e)+, as are its columns, hence the parameter spdgéds invariant under both the left
and right action ofyy, that is,P,Z € Mgy andZP, € M4 foranyt,o € Sym(d). The
action of§; on the columns of matrices il is the(d — 1)-dimensional representation
above, which is explicitly realized as a <t of (d — 1) x (d — 1) matrices given in
Section 5.

The parameter spagely contains thestandard simplex matrix

A= ) (4.8



62 J. C. Lagarias, N. Prabhu, and J. A. Reeds

It plays a special role, because it is the orthogonal projection matrix ont@thel)-
dimensional subspade)* of RY, so thatA? = A and

My ={Z=ANA:N ad x d matrix}.
In addition,A commutes with all permutation matrices, i.e.,

S
%@
P,A = AP, = , , o € Sym(d). (4.9)
So(d)

Inside the parameter spadé, there are region® (z, o) defined by the property that
the permutation(z, o) € Sym(d) x Sym(d) gives a legal exchange sequence from the
simplicial basisAg = {sy, ..., &} to the simplicial basi¥ = {zj, ..., zg} andAqU Z
is a Haar set. Basic properties@{z, o) are as follows.

Lemma 4.2.

(i) EachQ (o, 1) is an open set aMy.
(i) Foreachr, o € Sym(d),

Q(r,0) =P, Q(e,e)P;t  with P, P, €% (4.10)

(i) For fixedr, the regions2(z, o) are pairwise disjoint ag varies Similarly, for
fixedo, the regions2 (z, o) are pairwise disjoint ag varies

Remarks. (1) Property (ii) implies thaf2 (z, o) all are isometric sets with respect to
the Euclidean metric oMy, because permutation of coordinates is a Euclidean motion.
(2) A stronger version of property (iii) appears as Theorem 6.1.

Proof. (i) Q2(z, o) is an open set, because the conditions that, Z) be a Haar set,
and thatO lie in the interior of the simplice®; for 1 < i < d, are preserved under
sufficiently small perturbations.
(i) We have
Z; Z(1)
P, : = g for 1 €%,

Zy Z:(d)

hence
Q(r,0) = P, Q(e 0).

The effect of permuting thes is equivalent to permuting the coordinate®8fby P,,
because thg are the orthogonal projections of the unit coordinate veetonsito (e)+,
see (4.9). Thus the exchangezgf, ands, ;, becomes, after permutation of coordinates,
the exchange df, ;, P, with s, so that

Q(e,0)=Q( P
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and (4.10) follows. Itis easily verified thatXy U Z is a Haar set, then soisq UP, Z P,
for z, p € Sym(d).

(iii) We prove, by induction on, that{z(j): ] < i} determineqo(j):] <i}. The
base casé, is vacuous. In going fronB;_; to B, let the vectorz,, enterB;. The
simplex determined b; is the convex hull of a facet of the simplex determined by
Bi_1, together withz, ;. It includesOin its interior, hence the ray frofin the direction
—2.¢) must hit this facet, while staying inside the simplex determinedfy. This
determines the facet uniquely, so the leaving veggx must be the unique vertex of
Bi_1 not in this facet. This completes the induction step.

A similar proof shows thafo (j): ] > i} determineqz(j):j > i}: exchange the
roles ofZ andAg. O

The following lemma gives an upper bound forB¢ B’), and an equivalent upper
bound for the number af-step paths for Dantzig figures.

Lemma 4.3. For all simplicial basis pairg B, B') in R~ that are in general positian
#(B, B') < d!. (411

Equivalentlyfor all Dantzig figures P, w, W) in RY, the number of d-step paths from
w; to w, satisfies

#(P, wg, wp) < dl. (4.12

Proof. The bound (4.11) follows from Lemma 4.2(iii). For eache Sym(d), at
most onesc € Sym(d) gives a legal exchange sequence. Now (4.12) follows from
Lemma 3.1. |

These bounds are sharp, for (4.12) is attained for the Dantzig figure consisting of the
unit d-cube, with the antipodal vertice6, O, ..., 0) and(1, 1, ..., 1).

The simplex exchange conjecture asserts thatdhg regionsQ (¢, o) must cover
all of My, aside from an “exceptional set” of codimension 1. This raises two questions:
What is the structure d (z, o)? How do the setS (z, o) overlap?

For the first question, Lemma 4.2(ii) shows thatalk, o) are isometric, so it suffices
to characterize&2 (e, €). This we do in Lemma 5.1 below.

For the second question, Lemma 4.3 shows that at any poiktpat mostd! of the
Q(z, o) overlap. The example of the urdtcube has exactld! d-step paths between
antipodal vertices. Any small deformation of the: facet hyperplanes yields a polytope
with the combinatorial type of thd-cube. This corresponds to an open region in the
parameter spacéty.

One natural approach to disproving thatep conjecture for largitwould be to show
by a “volume argument” that most points #fly are covered by n®(z, o). Such an
argument consists of finding a probability measuien My that is invariant under the
action of Syngd) x Sym(d), assigns measure 0 to the “exceptional set,” and for which
the total measures covered by@liz, o) separately is less than 1. Under this hypothesis,
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all (o, t) have equal measure by Lemma 4.2(ii), so it would suffice to show that

1
V(Q(e, e)) < W
A natural candidate measure is provided by the (essentially unique) Gaussian measure
v 0N My that is invariant under Sy(d) x Sym(d). Appendix A gives a description
of vg.

In Section 4 we obtain a description ©f(e, ). It is a formidable task to evaluate
v6(L2(e, €)), and we do not attempt it. Numerical experimentsdox 9 described in
Section 7 suggest that this measure is in fact concentrated in the “bad” regiofy of
where many(z, o) overlap.

5. Gaussian Elimination and thed-Step Conjecture

The connection of triangular factorizations ofd— 1) x (d — 1) matrix with thed-
step conjecture arises from study of the Q&g, e) in the parameter spackty of the
simplex exchange conjecture. A set of simplicial balges, Z} is in the sei (e, e) if
the sequence of simplex exchanges frBgn= Ay to By = Z given by

Bl - {213&7%""7%}7
BZ {Zl’ 22’ %""’%}7

Bi-1 = {z1, 22, ..., Z4-1, S}

is legal. A necessary and sufficient condition for this to happen is that there are strictly
positive relations

AMi1Zy + A+ -+ Agss = 0,
A21Z1 + A2oZo + - + hgSy = 0,
(5.1)
Ad-1121 + Ad-12Z0 + -+ + Ad—14S = O.

We write this as

A1 o - 0 Z A2 A1z -+ Ay S
A2 Ao --- 0 Z 0 Az -+ Ay S
Ad-11 coo Ad_1d-1 ] | Zd—1 0 0 - X—1d]| | S

Since each nonnegative linear relation (5.1) is determined up to multiplication by a
positive scalar, we may (uniquely) rescale these relations to require that

Aii =1, l1<i<d-1
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Thus, if we define théd — 1) x (d — 1) matrix M by

Z; S
Z; S3

=—-M . , (5.2
Zy-1 S

thenM has the triangular factorization
M=L""U, (5.3)

in which bothL andU are positive triangular matricesby which we mean that all
entries ofL andU are strictly positive except for those entries that must be zero by the
triangularity condition, see (2.3).

This construction is reversible, hence we obtain the following characterization of
(g e).

Lemma5.1. There is an invertible linear map(Z) = M from d x d real matrices Z
having all row and column sums zero onto the s€tlof 1) x (d — 1) real matrices M
such that

Q(e,e) = {Z € Mq:¢(Z) has a positive triangular factorizatign (5.4)

Proof. To describe the map, given anyd x d matrix Z, let Zl-11 denote theéd — 1) x
(d — 1) matrix obtained by deleting rowand columnj from Z. The mapy is derived
from (5.2). If we drop the last column of both sides, it becomes

zlod _ _palLd,

hence

9(Z) = =z At (5.5)
Here we use the fact thatl>9l is invertible, as isAl'-J1 for any pair(, j). To see thap
is invertible, note thaM determinesZ[¢d = —M A4l whenceZ is recovered using

the fact that all its row and column sums are zero.

The argument just before the lemma showed that each eleméhtep) leads to
a positive triangular factorization (5.3) 8. Conversely, a positive factorization bf
leads to a positive set of equations (5.1), which certifies@@ad) € Sym(d) x Sym(d)
is a legal exchange sequence far O

Now we reformulate thel-step conjecture in terms of positive triangular factoriza-
tions. To do this, we observe first that the criterion for membership(in o) analogous
to (5.2)is
Zr (1 @

Ze(2) S (3)
. = _Mr,o . ) 7,0 € Syn(d) (56)

Zr(d-1) So(d)
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The(d — 1) x (d — 1) matrix M becomedM ¢ in this notation. The matriceld, , are
related under the action of a finite group@fof (d —1) x (d — 1) matrices isomorphic
to Sym), which we denote

A

S = {Q,:0 € Sym(d)}.
The matrixQ, is defined by

1 it j=o).
(Qij=14 0 if j#o(@) and 1l<o(i)=<d-1, (5.7
~1  if o@)=d.

Thus ifo (d) = d, the matrixQ,, is a(d — 1) x (d — 1) permutation matrix, otherwise it
is such a matrix with one row replaced byl's. The groupg;_; of permutation matrices
is a subgroup of inded in &. The group lawQ, Q, = Q., is easily checked.

This(d — 1)-dimensional representati& is inherited from th&d — 1)-dimensional
representation of Sygracting onMy, taking as the choice of a basis of the fust- 1
rows andd — 1 columns ofZ. In particular, for anyZ € My,

(P, 2)% = Q, %,

To compute the action & on M., we introduce the permutationfor which

S S
S S3

Qr] : = : s
Si-1 Sd

which is the cyclic permutation(i) =i + 1(modd).
Lemma5.2. Letn € Sym(d) denote the permutation(i) =i + 1(modd). For each
pair (z, o) € Sym(d) x Sym(d),

M:o = Q:MeeQ ? (5.8)

non~t
Proof. A computation based an + z, + - - - + zg = O yields
Z Z(1)
Q| : =\ :
Z4-1 Zr(d-1)
The relations, + s, + - - - + 5y = 0 used with the permutatiopyields
S S (2
Qnon’l =
S S )
Multiplying (5.2) by Q. and then substituting in the last two equations yields (5.8).
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As o runs over Synd), non~! runs over Synd), hence
{Meo:7,0 € Symd)} = {Q:MQ,:7,0 € Sym(d)).

Recall that 8d — 1) x (d — 1) matrix M is said to be ircompletely general position
if for every pair(z, o) € Sym(d) x Sym(d) the matrixQ, M Q, has a nondegenerate
triangular factorization, i.e., no zero elementd.iandU except in the triangular parts.
The set of completely general positidh is an open dense subset of the space of real
(d —1) x (d — 1) matrices.

To each matriXM in completely general position there is associated a Dantzig figure
(P, w1, wy), as follows. First find the unique pair\y, Z) associated taM by (5.2),
which is then in general position. Set

P = P(Aq, 2)
d d n
= [(?»1,~-~,)»2d)12?»i5 +Z?~i+d2i = O,Z)\i =1x > 0}- (5.9)
i-1 i—1 i—1

This polytope isd-dimensional, and lies in tha-dimensiond flat

d d d
F = !(ul, c20)T ) MiS ) pisaZzi = 0. i = 1] : (5.10)
i=1 i=1 i=1

It has 2l facets corresponding to eagh = 0, and its antipodal vertices ave;, =
0,0,...,0,1/d,...,1/d) andw, = (1/d,1/d,...,1/d,0, ..., 0) having lastd co-
ordinates and firal coordinates equal to/tl, respectively.

Lemmas 5.1 and 5.2 combine to yield:

Theorem 5.1. Fora(d — 1) x (d — 1) matrix M in completely general position the
number of ordered pair¢zr, o) € Sym(d) x Sym(d) for which Q. MQ, has a posi-

tive triangular factorization is equal to the number of d-step paths between antipodal
matrices in the Dantzig figuréP, w1, w,) associated to M

Proof. Lemma5.2shows thateach o) corresponds to a particular simplex exchange

(t, n~to~1n) for the pair(Aq4, Z) associated td1. Lemma 5.1 says that such a simplex
exchange is legal if and only if the triangular factorization derived from (5.1) is positive.
Lemma 3.1 gives a one-to-one correspondence between legal simplex exchanges and
d-step paths if{P, wy, wy). O

These considerations lead to our reformulation of the simplex exchange conjecture.
Gaussian Elimination Sign Conjecture GEy). For each(d — 1) x (d — 1) matrix

M in completely general position there is some pairo) € Sym(d) x Sym(d) such
that the matrix QM Q, has a positive triangular factorization U .

1 One constraint is redundant singi‘j:ls = Zid=1 Z = 0, so that there are exactly linearly
independent constraints definikg
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It is now easy to verify that this conjecture is equivalent todksep conjecture.

Theorem 5.2. For each d> 2, the d-step conjectura(d, 2d) = d is equivalent to
the Gaussian elimination sign conjecture GE

Proof. By Theorem 3.1 it suffices to prove equivalenceGk, to the simplex basis
exchange conjectur®Ey. The discussion above combined with Lemma 5.1 implies that
SE impliesG E4. Here we use the fact that every completely general posiiarises
from a pair(Ag, Z) in general position.

The converse direction holds similarly, except that some general posiignz)
give rise to a matrixM = Mg, in (5.2) that is not in completely general position.
To handle this, we use the fact that general posi#ofall into open cells inMy in
which the combinatorial type of the associated Dantzig figltew;, w,) is constant.
Consequently, we can deforgslightly without changing éP, wy, wy) in such a way
that the newM is in completely general position. O

The Gaussian elimination sign conjecture is concerned with the sign patterns in the
matrices in triangular factorizations of tke!)?> matrices

T = {Q:MQ,:0, T € Sym(d)}, (5.11)

namely whether there always is a factorizatlon'U with L andU both positive. The
number of possible sign patterns of entries.iandU together is #-2°. This number
grows much more rapidly thag!)? asd — co. A simple heuristic to consider is that
the Gaussian elimination sign conjecture is false for largarely from the proliferation
of possible sign patterns af andU. We call this thesign-pattern heuristic

The proliferation of sign patterns can easily be used to prove that the smaller set
contained inZy, consisting of thed — 1)!% matrices

{P,MP;:0, 7 € Symd — 1)}, (5.12

under the action of Syfd — 1) x Sym(d — 1) need not contain any matrix having a
positive triangular factorization. To see this, note that higaving a positive triangular
factorization (4.5) must have a first roii, ..., My 4_1) consisting of positive ele-
ments. Since permutations of rows and columnbigireserve the property of having a
positive row, any matridM such that the set (5.12) contains some matrix with a positive
triangular factorization must have a positive row. A matvixchosen with random signs
will typically not have this property.

The sign-pattern heuristic is nevertheless completely inaccurate in describing sign
patterns of triangular factorizations of matrices in the 3ajsgenerated by the action
of Sym(d) x Sym(d). This is shown theoretically by Theorem 6.1 of the next section,
and experimentally fod < 9 by the data in Section 7.

6. Sign Patterns in Gaussian Elimination

In this section we make use of themplete triangular factorization
M =L"1DU,
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in which D is a diagonal matrix, andl (resp.U) is a lower triangular (resp. upper
triangular) matrix with diagonal elements equal to 1. This decomposition exists and is
unique for any nonsingular matrM that has an.~ 1U decomposition, with. = L and

U = DU.

We show that for “genericM the group Synid) acting on the right oid —1) x (d—1)
matrices produces a matrix having an'U factorization withU positive, and that
Sym(d) acting on the left ond — 1) x (d — 1) matrices produce a matrix having an

L~1U decomposition with_ positive. Thus the sign-pattern heuristic fails farwhen
applied to eithel or U separately. We actually prove a stronger result involving the

L-1DU decomposition, for which the permutation produced in &ynis unique.

Theorem 6.1. There is an open dense setdf— 1) x (d — 1) real matrices M having
the following properties

(i) For eachr € Sym(d) there exists a unique € Sym(d) such that QM Q, has
a triangular factorization L-*U in which U is positive
(i) Foreacho € Sym(d) there exists a unique € Sym(d) such that QM Q,, has
a complete triangular factorizatioh ~*DU in which L and D are positive
(iii) For eacho e Sym(d) there exist exactl2? choices ofr € Sym(d) such that
Q.M Q, has a triangular factorization £'U in which L is positive

Remark. Theorem 6.1(i) and (ii) strengthen Lemma 4.2(iii). Indeed Lemma 4.2(iii)
asserts that for each € Sym(d) there is at most one € Sym(d) such thatQ, M Q,

has apositivetriangular factorization, and similarly that for eaclke Sym(d) there is at
most oney € Sym(d) with a positive triangular factorization.

Proof. Throughout the proof we consider only matriddssuch that al(d!)? matrices
Q.MQ, have ar. ~*DU decomposition. Thubl is invertible. This restriction excludes
a closed set of measure zero in the spac@oef 1) x (d — 1) real matrices.

() By replacingM with Q. M, we may without loss of generality suppose thas
the identity.

The groupéd has a left-coset decomposition

d
. "
= U EWSy,
k=1

in which the coset representativE&” are given by

A -1 if i=k
Ejko={ 0 if i#] i#Kk (6.1)
1 if i=]#Kk

for1 < k < d — 1, andE@ is the identity matrix. Elements of the grouf_, of
(d — 1) x (d — 1) permutation matrices themselves have a unique decomposition

P‘Tl PGz e PUdfz’
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in which eachyj := (] kj+1) is a transposition of with kj1, andj < k41 <d — 1.
Thus a general elemefll, € & has a unique decomposition

Q, = E®P,P,--- P, ,. (6.2)

in which there arel choices forE® andd — i choices forP,,, 1 <i <d — 2.

We first show that for “genericM there is a unique choice &® in (6.2) such that
MQ, = L~!U, has a positive first row i). Indeed, the first row of) is the first row
of MQ,, which coincides with the first row of E® up to the order of its elements.
For1< k < d— 1, ME® reverses the signs in theh column of M, and subtracts
columnk from all other columns. For this step the “generic” restrictionMns that
all elements of its first row are distinct and nonzero. There is then a unique chdice of
such thatM E® has a positive first row, which ks = d if the first row of M is positive,
and otherwisd indexes that column which contains the (unique) negative element that
minimizes{M,;:1 < j <d —1}.

We next prove, by induction on for 1 < i < d — 1, that for a dense open set of
M there is a unique choice &®, P, , ..., P, _, such that, for eachp, in (6.2) taking
these values, the matrM Q, = L~1U has the first rows ofU (strictly) positive, and,
conversely, if the first rows of U are strictly positive, then the unique decomposition
of Q, in (6.2) assigns these values ﬁé‘o, Ps,, ..., Ps_,. The base case= 1 was
completed above. For the induction step, 8¢ = ME®P, ... P, . = LU and

write its partial Gaussian elimination decomposition for the fitgtlumns
LOND = U(i),

inwhich L® is an upper triangular unipotent matrix with nonzero off-diagonal elements
only in the firsti rows, which upper-triangularizes the fiistows of U@, The firsti
rows ofU © agree with the first rows ofU, up to permutation of columns, hence these
are strictly positive by the induction hypothesis. We must choose the pivot cddumn
withi < ki;; < nsothatthgi 4+ 1)st row ofU is positive. We claim that for “generic”
M this choicek;; is unique, and it uniquely determines = (i ki 1). If columnk of
N® s picked to pivot on, the elements of ttie+ 1)st row of the matrixU @ would be
transformed to

0]

. ) uU. )
(i+1) . @) Lk @) ; :
QSJ:U¢M‘TﬁTq5 i+1<j<d-1 (6.3)
ik

In order for all these elements to be strictly positive, we must have
ub; Ul

- >
@) i
Ui Uik

i+1l1<j=<d-1 j#k (6.4)

(Here we usediJifij) > O0fori +1 < j <d -1, by the induction hypothesis for) We
now choose that = ki, which minimizes the ratios
u®
LK 41 <k<d—1}. (6.5)

0
Ui,k
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To get uniqueness d§ ;1 we add the “generic” condition that all the ratios (5.3) be
unequal. With this choice d?,,, every element of thé + 1)st row becomes positive,
and otherwise not. This completes the induction step.

The induction proves the existence and uniquenes3,ofAll the “generic” condi-
tions imposed in the course of the induction exclude (a finite number of) closed sets of
codimension at least 1, hence the remaining “genévicform a dense open set in the
space of al(d — 1) x (d — 1) matrices.

(i) SinceU = DU is positive if and only ifD andU are separately positive, part (i)
showed for* genencM that for each there is a unique such thaQ,MQ, = L-1DU
with D andU positive. We obtain (i) from (i) by taking inverses, as follows.

By (i) applied witht = e, for a “generic’M there is a unique), € & such that

MQ, =L"'DU (6.6)
hasD andU strictly positive. Taking inverses gives
Q,*Mt=uU"'DL,

which exchanges the role bfandU but reverses the triangular structure. To fix this, we
use the permutation matrRR, € §;_; which reverses the ordering, i.e.(i) =d—1—i
for 1 <i <d — 1, and which satisfieR, = P_ 1. The last equation yields

P.(Q,'M™hP,1:=L"'DU, (6.7)
in which
L=PUP? D=P,D!P1, U=P,LP1, (6.8)

have the correct forms to give a complete triangular factorization. Observe next that (6.8)
shows thal_ and D are positive matrices if and only # and D are positive matrices,
because the effect &1, is only to permute matrix entries ari* is positive only ifD

is. Now setQ. := P,Q,*andM = M~*P_%, and (6.7) becomes

Q.M = L"1DU. (6.9)

The uniqueness d@, makingU andD positive in (6.6) translates to the uniqueness of
Q. € § makingL andU positive in (6.9), completing (ii).
(iii) We prove the analogous result for;

Claim. Givent e Sym(d) there are exacth2? choices ofc € Sym(d) such that
Q.M Q, has a complete triangular factorization with U positive

Proof of Claim  This is similar to the proof of (i) above. The matiix = DU may

now have rows each of which is either all positive or all negative. To make the first row
all negative there is a unique choice Bf9, i.e., E® is the identity if M has an all
negative first row and otherwideis chosen to be that column containing the (unique)
positive elementM; x that maximize§M; j:1 < j < d — 1}. Similarly, to obtain the
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(i + L)strow ofU all negative we reverse the inequality (5.2) and choosekroywo be
the largest of the ratios (6.5). Thus at each step of constructimg have two choices.
We obtain 2 choices in all, and the associated matri€e#n the complete triangular
factorizations take all®possible sign patterns. O

Now part (iii) for L follows from the claim by the same argument by which (i) was
derived from (i). O

The triangular factor& andU play a nonsymmetrical role in Theorem 6.1, because
L has ones on the diagonal while has no restrictions on its diagonal elements. We
associate td/ a function®y,: Sym(d) — Sym(d) for which ®(r) = o for thato given
by Theorem 6.1(i). We also associateNba 1 to 2' multivalued map¥y, in which
Wy (o) is the set of 2 permutations given by Theorem 6.1(iii). Positive factorizations
(z, 0) correspond to “fixed points{z, o) in which ®y () = o andt € ¥pu (o). In
looking for such “fixed points” there is one extra constraint to take into account. For any
possibleQ, MQ, = L~U in which L=t andU are both positive, it is necessary that

detL™'U) = det(Q,) detQ,) detM) > 0, (6.10)

so that we may exclude exactly half of the permutatioabove indy (o). We therefore
defire a 1 to 8 multivalued map¥;; that associates to eaeh € Sym(d) the 21
permutationsr given in Theorem 6.1(iii) whose determinant has the correct sign to
make (5.8) hold. A “fixed point{z, o) is one with®y (r) = o ando € ¥y (7).

Theorem 6.1 shows that the sign-pattern heuristic fails for the action ofBym
Sym(d) on (d — 1) x (d — 1) matrices. The mapping®y and ¥}, lead to an alter-
nate heuristic to consider: How would “fixed points” be distributedjf: Sym(d) —
Sym(d) were a random function andly;: Sym(d) — P(Sym(d)) were a random 1 to
29-Imultivalued mapping?

Lemma6.1. Let f: Sym(d) — Sym(d) be a random mapping drawn uniformly from
the set of all such functiongnd let g Sym(d) — P(Sym(d)) be an independent
multivalued random mapping drawn uniformly from the set ofLatl 24~ multivalued
maps Then the expected number of “fixed points’, ) of the pair(f, g) is 24-1.

Proof. The expected valuk is

E= > ) Prob[f(r) =0c]Probfr € g(o)]
oeSym(d) reSym(d)

= Z Z L <_2dl) — pd-1
dl \ d! ’
oeSym(d) reSym(d)

as required. |

7. Numerical Experiments: Number of Paths

We performed extensive computational experiments to study the Gaussian elimination
sign conjecture for dimensions4 d < 9, and more limited experiments for dimensions
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10 < d < 15. The algorithms were designed to count the numpnbf legal exchange
sequences associated to a ginThese computations were done in floating point, with

the consequence that none of the computations we report is rigorously guaranteed to be
correct. Indeed, Gaussian elimination with no pivoting is completely ill-conditioned, so
round-off error is an (infinitely) serious problem. We used the multiprecision package
of Bailey [1], which permits as much precision as desired (up to 50,000 digits.) In
our original tests we followed aad hocprocedure of running examples over and over

at higher levels of precision until th@, U) factorizations, counts of legal exchange
sequences, and entries of matrices stabilized. Based on this experience, we concluded
that 250 digits of precision would be reliable on (nearly) all examples computed and
we used this precision level for the computations. With these caveats we believe the
computational data to be trustworthy.

The basic algorithm used a branch-and-bound tree search using the recursive presen-
tation of the matrixQ, given by (6.2), in whichE™® is the first level of the treeR,, the
second level, etc. At levélof the tree, the appropriate permutatimwas found to make
the firstk rows ofU positive (using Theorem 6.1(i)). If the firstows of the correspond-
ing L contained a negative element, the tree was pruned. In this fashigh ®lIQ,
with positive L~U decomposition were located. Note that roundoff error could result
in accidentally pruning parts of the tree that contained legal sequences. In our original
numerical experiments this did occur, and we found many putative counterexamples
to thed-step conjecture; none of them survived sufficient increase in precision of the
computation. (If we had found a candidate counterexample td-s$tep conjecture that
survived floating-point tests to an extremely high level of precision, our intention was
to re-do the computations using multiprecision fixed-point rational arithmetic to get a
rigorous proof.)

This computational approach via*U decomposition is on the face of it an inefficient
way to test thel-step conjectureA priori it has O(d!) running time and is extremely
ill-conditioned; by contrast there are other algorithms to generate “randepolytopes
with 2d facets that run in tim® (4%). The appeal of the ~1U approach is that it suggests
interesting probability distributions to try to find counterexamples, which are not apparent
by other approaches. These are products of probability distributions assigned.to the
andU factor separately. The computational data describes experiments using several
probability distributions. We report on four different sorts of distribution; we tried many
more in less systematic fashion. Note that the dimension of the parameter/spase
so large that we cannot reasonably search even an infinitesimal piece of it.

The first distribution we studied was the (essentially unique) Gaussian distribution
vg on(d — 1) x (d — 1) matrices invariant under the action §f x &. It is described
in the Appendix.

The remaining distributions are all based on picking matrigedased on some
assignment of probabilities to is andU factors. To test the sign-pattern heuristic
the second distribution chose entrieslirandU picked independently and identically
distributed (i.i.d.) uniformly from {1, 1].

The third distribution was based on permuting the entriek aihdU. We picked
a fixed set of(d — 1)? elements, which were chosen to be a small perturbation of an
arithmetic progression, then assigned them to the elementsaotiU in a randomly
permuted order.
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The fourth distribution, which we call the “twisted” distribution, depends on a positive
real parametex. Its construction was motivated by the observation that if counterexam-
ples exist, there must be a regionfofy not covered by any regidf2 (o, 7). Then at least
onef (o, t) would touch on this region, and using the symmetry under@ymsSym(d)
the sef2 (e, e) also has this property. Thus to find such a region, it suffices to take a small
step outside&2 (e, e) in the appropriate direction. Nof (e, €) has a nonlinear “twisted”
shape created by in Lemma 5.1. To obtain a large “twist,” we chose a fixed- 0
and considered matricésgenerated by

o I if 0>,
L =11 it =], (7.2)
0 if i<j,

wherer;; are random variables drawn i.i.d. uniformin [d. The matrixXJ was generated
in a similar fashion. To step outside the regiage, e), we then set

Lg_11=—1 (7.2)

We report on experiments using the values 5, 10, and 20. We discovered empirically
that stepping outsid& (e, e) by setting the valud4_;; = —1 made no apparent
difference in the distribution of the values ofM), compared with remaining inside
Q (e, e) by generatind-4_1 1 using (7.1). The data in Table 7.1 was actually produced
using (6.1) without the substitution (7.2).

The data on #M) for 50 trials each on each of these distributions, for the range
4 < d < 9, using 250 digits precision, are given in Table 7.1. The major observations
from Table 7.1 are:

(1) The values of #M) are very large for the invariant Gaussian distribution.

(2) The i.i.d. uniform 1, 1] distribution results fol. andU show that the sign-
pattern heuristic fails in a fairly decisive way fdr, U) taken together, fadl < 9.

(3) All examples tested satisfied the bound

#M) > 29-1,

Equality held in many examples, for 3 d < 9, for the “twisted” distri-
bution, with the frequency of such examples increasing as the paraméter
increased.

The last observation came as a surprise! We went on to check that the bdding-#
29-1 held on a wide variety of other distributions. In particular, we fortuitously discov-
ered (by a programming mistake) a modified form of the “twisted” distribution which
produced a high proportion of matric& attaining #M) = 29-1. An initial matrix M
was first computed using the “twisted” distribution for parameteFhis was inserted as
the firstd — 1 rows andd — 1 columns of @ x d matrix V whose last row and column
were set to zero. The new matik = AV A was computed, and its upper left corner
M = VI4dl is the matrix produced by the modified “twisted” distribution. Experimental
data for this distribution for 7< d < 10 appears in Table 7.2, for parameter values
a =5, 10, and 20.
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Table 7.1. Experimental data, dimensions 4-9 (50 trials each distribution).

Dimension  Distribution Min. 1-Quartle Median 3-Quartile Max. Counk# = 24-1
Gaussian 8 12 14 18 24 1
d=4 iid. [-1,1] 8 10 12 14 24 10
Permuted 8 8 12 12 18 16
a=5 8 8 8 8 16 39
dl=24 o =10 8 8 8 8 12 47
o =20 8 8 8 8 16 49
Gaussian 28 40 48 60 120 0
d=5 iid.[-1,1] 16 28 33 42 104 2
Permuted 16 24 28 34 50 1
a=5 16 16 20 22 30 18
d'=120 «a =10 16 16 16 16 26 37
a=20 16 16 16 16 22 44
Gaussian 72 152 183 220 454 0
d=6 iid. [-1,1] 54 83 101 143 207 0
Permuted 41 81 96 112 152 0
a=5 32 34 39 46 70 9
d'=720 «=10 32 32 32 36 44 32
o =20 32 32 32 32 48 44
Gaussian 352 572 818 1,001 2,242 0
d=7 iid.[-1,1] 185 287 346 445 740 0
Permuted 140 198 231 293 558 0
a=5 68 78 88 96 127 0
d'=5040 « =10 64 64 68 76 128 18
o =20 64 64 64 64 86 38
Gaussian 1,748 2,890 3,482 4,489 8,858 0
d=38 iid.[-1,1] 521 932 1,167 1,589 2,875 0
Permuted 355 689 854 988 1,637 0
a=5 129 173 202 233 566 0
d!' =40,320 o =10 128 138 148 172 230 5
a=20 128 128 132 138 188 21
Gaussian 8,129 12,286 15,269 19,444 38,783 0
d=9 iid.[-1,1] 1,367 4,044 4,972 5,786 7,596 0
Permutation 1,298 2,389 3,084 3,772 7,040 0
a=5 286 365 391 441 531 0
d! =362,880 « =10 256 286 323 353 447 2
o =20 256 256 266 278 394 14

We also computed a smaller number of examples in dimensiogsd k 15, using
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the modified “twisted” distribution with parameter= 20. These appear in Table 7.3.

(The branch-and-bound algorithm was quite efficient; approximate running times were

roughly proportional to(1.5)9%(M). Running times for thal = 15 examples were

about 1 hour each on a Cray YMP.) None of our computations produced exceptions to

#(M) > 2d4-1,

These computations suggest the possible truth ofitkeep conjecture, in the strong

form:
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Table 7.2. Modified “twisted” distribution, dimensions 6—10 (50 trials each distribution).

Dimension Distribution Min. 1-Quartile Median 3-Quartile Max. Couh = 24-1

a=5 32 32 32 40 64 29

d=6 a=10 32 32 32 32 48 37
a=20 32 32 32 32 36 48

a=5 64 64 76 88 148 19

d=7 a=10 64 64 64 64 96 40
a=20 64 64 64 64 116 42

a=5 128 128 152 176 258 13

d=38 a=10 128 128 128 144 192 33
a=20 128 128 128 128 192 42

a=5 256 268 334 392 590 11

d=9 a=10 256 256 256 296 488 25
a=20 256 256 256 256 384 42

d=10 «a=20 512 512 512 512 700 39

Strong d-Step Conjecture. For all general position simplicial basis pairéB, B')
in RY,

#(B, B') > 29-1.

Equivalently all d-dimensional Dantzig figured, wi, wy) in RY have
#(P, Wy, wp) > 2971,

This conjecture is true wheh= 3. Ford = 3 there is a unique combinatorial type of
Dantzig figure(P, w1, wy) with #(P, wy, w,) = 4. It consists of a tetrahedron with two
corners sliced off, and its graph is pictured in Fig. 7.1. We omit details of the proof, which
can be carried out by enumeration, since theector of any simple (3,6)-polyhedron is
(8,12, 6), and since the graphs of 3-polytopes are characterized as 3-connected planar
graphs, see [14]. The stromgstep conjecture is open fdr> 4.

Comparing the strongr-step conjecture with the random permutation mapping heuris-
tic embodied in Lemma 6.1, we see that it essentially asserts that thengostae
correlation(actually a nonnegative correlation) between any two permutation mappings
oy andWy, of Section 6, as far as “fixed points” are concerned.

Table 7.3. Modified “twisted” distribution, dimensions 11-15 (10 trials each distribution).

Dimension Distribution Min. Median Max. CountM) = 2d-1
d=11 a =20 1,024 1,024 1,216 8
d=12 a =20 2,048 2,048 2,560 7
d=13 a =20 4,096 4,096 5,184 7
d=14 a =20 8,192 8,280 10,240 5
d=15 a =20 16,384 16,976 19,872 4
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Distance from w;

8 3
54 6 7 2
2 ) 4 1
1 0

Fig. 7.1. Graph of unique 3-polytope with(#, w1, wg) = 4.

8. Numerical Experiments:d-Critical Dantzig Figures

We call any Dantzig figur¢P, wi, wy) in RY with a #(P, wy, wy) = 29-1 ad-critical
Dantzig figure

Our numerical experiments implicitly fourticritical Dantzig figures for dimensions
4 < d < 15. Recall that from the datsl it is easy to construatAy, Z), and from this
the graph of the associated Dantzig figuRe wi, w»). The vertex set of

d d 2d
P=P(Ad.2) =10 ... h2) ) _AiS+ ) kiaz=0) hi=1x2> o}
i=1 i=1 i=1

is located by setting; = O fori € S, whereSranges over al de ) subsets of size

dof{s,...,s, 21, ..., 24}, and then solving the invertible linear system:
d d
Swis+Y sz = 0 with w=0 if ieS
i=1 i=1

2d
Z,U«i = 1
i-1

If all u; > 0, this is a vertex oP, otherwise not. The s& specifies what facets this
vertex belongs to, and this determines the grapR.of

We computed the vertex sets and graphB @r d-critical Dantzig figures found using
the “twisted” distribution and modified “twisted” distribution with parameates= 20.

(8.1
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Distance from

14 4

10, 11 1 13 3
6 8 9 s
2 3 2 5 1
1 0

Fig. 8.1. Graph of 14-vertex 4-polytope with(®, w1, wi4) = 8.

The vertices of sucl? were located in a numerically stable way, by solving the linear
system (8.1) using Gaussian elimination with complete pivoting. These computations
permit an independent verification that#) = 29-1, by directly locating the 21 paths

in the graph of P, wy, wy).

For dimensiongl > 4 thed-critical Dantzig figures that we found exhibited a large
variety of combinatorial types. This is most easily illustrated by considering the number
of vertices of such polyhedra. In dimension 4 we fodRckitical Dantzig figures having
vertex numbers(P) in the full range 14< v(P) < 20, excepw(P) = 19. Figures 8.1
and 8.2 give the graphs of two such 4-polytopes with 14 andv = 20, respectively.

Table 8.1 gives data from 50 samples of the “twisted” distribution for dimensions
4 < d < 8. Itrecords the number of values having#) = 29-1, and for these it lists the
maximum, minimum, and median valueswafP). For comparison purposes Table 8.1
also lists the extreme values possibleifoP) according to the lower bound theorem and
the upper bound theorem. The median value(®) seems to increase at an exponential
rated” with 6 > 2. In odd dimensions all values of P) observed were even.

Table 8.2 gives similar data from 50 samples each of the modified “twisted” distri-
bution in dimensions & d < 8. The distribution of vertex numbergP) is strikingly
different from that of Table 8.1. The median value of the vertex numbers observed seems
to be increasing at an exponential rafewith 1.7 < 6 < 1.9. In odd dimensions all
values ofv(P) observed were even.
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15

Distance from w,

4

Fig. 8.2. Graph of 20-vertex 4-polytope with(®, w1, wpg) = 8.

Table 8.1. Vertex numbers fod-critical Dantzig figures (“twisted” distribution).

#d-Critical #Distinct Lower Upper

Dimension figures v(P) Min. Median Max. bound bound
4 49 3 16 18 20 14 20
5 44 5 34 38 42 22 42

6 44 18 80 89 100 32 112

7 37 20 166 202 222 44 240

8 30 26 422 461 499 58 660

Table 8.2. Vertex numbers fod-critical Dantzig figures (modified “twisted” distribution).

#d-Critical #Distinct Lower Upper
Dimension figures v(P) Min. Median Max. bound bound
4 49 6 14 16 20 14 20
5 48 6 26 32 36 22 42
6 48 15 48 57 66 32 112
7 44 16 86 102 120 44 240
8 42 33 159 187 220 58 660
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The diversity ofd-critical polytopes increases rapidly with the dimension. For the
cased = 7 we ran the modified “twisted” distribution with parametee= 20 for 500
trials, obtaining 458&i-critical polytopes, and these weadl combinatorially distinct
(using the vertex—face incidence matrix). The smallest vertex number obtained was 82,
the largest 130. The wide range of combinatorial typed-ofitical Dantzig figures is
encouraging evidence for the strodigstep conjecture.

Another feature that varies over the setefritical Dantzig figures is the incidence
structure of the 21 d-step paths between antipodal vertices. For example, in Figures
8.1 and 8.2 the eightt-critical paths are distributed among the edges exiting fegras
4,2,1,1forthew(P) =14 caseand as 3, 1, 1, 3 in théP) = 20 case.

A final observation is that further numerical experiments with the modified “twisted”
distribution suggest that the numbeiP w,, w,) = 29~ is attained for Dantzig figures
associated to matricdd just “inside” the regior2(e, €) and also for nearby just
“outside” it. (These experiments were done by setling; ; to a small positive value
and to a small negative value.) In such cases there must necessarily be another region
Q (o, ) sharing a boundary witf2 (e, e), because the permutatioa €) ceases to give a
legal exchange sequence as one passes through the bound#eyef. This observation
suggests that there may be some kind of obstruction determining thiedind.
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Appendix. Sym(d) x Sym(d)-Invariant Gaussian Probability Measure on
the Parameter SpaceMy

There is, up to dilation, only one Gaussian probability measgren the spaceVy
of d x d matrices whose row and column sums vanish, invariant under the actions
(0,71):Z+— P.ZPB, fort,0 € Sym(d).

In the first place the mean of such a measure must be an el@reity, fixed under
the Symid) x Sym(d) action. However, this already implies thatis the zero matrix:
invariance implies that all the componentsdfare equal, an& € My then implies
that their common value is zero. So the mean of any invariant meaguwe My must
beO.

Since meard Gaussian probability measures are completely classified by their co-
variances, it suffices to show that the quantities

Cijrs = E[Zij Zts]

are, up to a scalar multiple, uniquely determined, wheee (Z;;) is a random element
in My, distributed according to probability laws.
Invariance ofvg implies thatCij rs = Cy(i)z(j),0)r(s), TOr all o, T € Sym(d). Hence
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there are four real numbetrsu, v, andw, such that

if r=i and s=]j,
if r=i and s#]j,
if r#i and s=j,
if r#i and s#j.

Cij,rs =

g < c

The identitny(’:1 Zix = 0, which holds with probability 1, implies
oy .

0=E (Zzik> =dt+ (d?> —dyu

and sou = —t/(d — 1). Similarly,

0=E

-y .
(Z ij) = dt+(d2—d)v
| k=1

sov = —t/(d — 1), as well. Finally, the identity

k=1 k=1
d d
=2 Zk— 2 2
k=1 k=1
ket ki

which also holds with probability 1, implies
d—Dt+2(d—-1(d—-2u—2d-1*w+(d- Dt +2(d - 1)(d -2v =0,

and so, up to a scalar multiple tfthe entire covariance structuregf is determined.

It is easy to construct or simulate such an invariant Gaussian measuret G be
a randomd x d matrix whose matrix entries are i.i.d. Gaussian random variables. The
distribution of G is invariant under the actio® — P, G P,, but of courseG is, with
probability 1, not inMy.

Let A = (sj) be the matrix of the orthogonal projection orfg®*, that is, onto the
subspace of vectors R whose entries sum to 0, see (4.8). The maftficommutes
with all d x d permutation matrice®,, soP, AP, 1 = A. Consequently, the random
matrix Z = AGA has the desired invariant Gaussian distribution\dg.

As a final remark, we obtain a measure on the sétlef 1) x (d — 1) matrices that
is invariant under the action & x & by applying the magp(Z) = M of Lemma 5.1.
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d

ote added in proofApril 1996). The strongl-step conjecture has been proved for
= 4 and disproved fod > 5 by F. Holt and V. Klee. They construct Dantzig figures

having P, wy, wy) = % . 29-1 for d > 5. Thed-step conjecture remains open.



