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Abstract. The d-step conjecture is one of the fundamental open problems concerning
the structure of convex polytopes. Let1(d, n) denote the maximum diameter of a graph of
a d-polytope that hasn facets. Thed-step conjecture1(d, 2d) = d is proved equivalent
to the following statement: For each “general position”(d − 1) × (d − 1) real matrixM
there are two matricesQτ , Qσ drawn from a finite group̂Sd of (d− 1)× (d− 1)matrices
isomorphic to the symmetric group Sym(d) ond letters, such thatQτ M Qσ has the Gaussian
elimination factorizationL−1U in which L andU are lower triangular and upper triangular
matrices, respectively, that havepositivenontriangular elements. If #(M) is the number of
pairs(σ, τ ) ∈ Sym(d) × Sym(d) giving a positiveL−1U factorization, then #(M) equals
the number ofd-step paths between two vertices of an associated Dantzig figure. One
consequence is that #(M) ≤ d!. Numerical experiments all satisfied #(M) ≥ 2d−1, including
examples attaining equality for 3≤ d ≤ 15. The inequality #(M) ≥ 2d−1 is proved for
d = 3. Ford ≥ 4, examples with #(M) = 2d−1 exhibit a large variety of combinatorial
types of associated Dantzig figures. These experiments and other evidence suggest that the
d-step conjecture may be true in all dimensions, in the strong form #(M) ≥ 2d−1.

1. Introduction

Thed-step conjecture is one of the fundamental open problems in the structure of convex
polytopes. Let1(d, n) denote the maximum diameter of the graph (of the 1-skeleton)
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of a simpled-polytope having exactlyn facets. The (bounded) Hirsch conjectureasserts
that

1(d, n) ≤ n− d.

Thed-step conjectureis the special casen = 2d, and asserts that

1(d, 2d) = d.

(Thed-cube shows that necessarily1(d, 2d) ≥ d.) Klee and Walkup [8] showed that the
truth of thed-step conjecture for alld implies the truth of the (apparently more general)
Hirsch conjecture for alln andd. The d-step conjecture has been proved ford ≤ 5.
The Hirsch conjecture has been proved ford ≤ 3 and alln, and also for all pairs(d, n)
havingn− d ≤ 5. These results and others are described in the comprehensive review
of Klee and Kleinschmidt [7].

Several natural generalizations of thed-step conjecture are known to be false. For
example, thed-step conjecture fails for unbounded polyhedra in dimension 4 [8], and
extended versions of the dual version of thed-step conjecture fail to hold for triangulated
spheres in high dimensions [10]. Based on such counterexamples, the consensus view
is that thed-step conjecture will also be false for larged. Klee and Kleinschmidt [7]
write: “We strongly suspect that thed-step conjecture fails when the dimension is as
large as 12.”

This paper presents a theoretical framework and experimental data suggesting that
thed-step conjecture may be true in all dimensions, in a strong form. These results are
based on a reformulation of thed-step conjecture in terms of the sign patterns of the
matricesL andU in Gaussian elimination factorizationsL−1U of a set of(d!)2 matrices
{Qτ M Qσ : σ, τ ∈ Sym(d)} constructed from an arbitrary(d − 1) × (d − 1) matrix
M . Here Ŝd = {Qσ : σ ∈ Sym(d)} is a certain group of(d − 1) × (d − 1) matrices
isomorphic to Sym(d). Recall that a triangular factorizationM = L−1U is one where
L is lower triangular with ones on the diagonal andU is upper triangular with arbitrary
diagonal elements. A triangular factorization exists and is unique for “general position”
M . We call anL−1U factorizationpositive if all nontriangular elements inL andU
are positive. The reformulation of thed-step conjecture, which we call theGaussian
elimination sign conjecture, asserts that, for each “general position”M , the set of(d!)2

matrices{Qτ M Qσ : σ, τ ∈ Sym(d)}, where Sym(d) is the symmetric group ond letters,
contains at least oneQτ M Qσ having a positiveL−1U factorization (Theorem 5.2).

We show that the number of positiveL−1U factorizations among the(d!)2 possibilities
counts the number ofd-step paths between distinguished verticesw1 andw2 and of a
certain Dantzig figure(P,w1,w2) associated toM . A Dantzig figure(P,w1,w2) is a
simpled-polytope having exactly 2d facets, given with verticesw1 andw2 and which
are antipodal in the sense thatw1 andw2 are the intersection of disjoint sets ofd facets.
Each combinatorial type of Dantzig figure arises from someM .

The Gaussian elimination sign conjecture raises questions concerning the sign patterns
of triangular factorizations of random matrices. A natural heuristic to consider is that such
sign patterns should be random, when averaged over the action of Sym(d)×Sym(d). This
must be very far from the truth if the Gaussian elimination sign conjecture is to be true.
We show that this heuristic is indeed far from the truth, in the sense that a matrixQσ exists
such thatM Qσ has anL−1U factorization withU positive, and there are 2d elements
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Qτ such thatQτ M has anL−1U factorization withL positive (Theorem 6.1). This result
leads to consideration of an alternative “random permutation mapping” heuristic, for
which the expected number #(M) of positiveL−1U factorizations is 2d−1.

The Gaussian elimination sign conjecture is amenable to numerical experimentation.
Part of its appeal is that it suggests unusual probability distributions to use in searching for
counterexamples to thed-step conjecture. We report on extensive numerical experiments
for 3 ≤ d ≤ 15 in Sections 7 and 8. We made the empirical discovery that the number
#(M) of positiveL−1U factorizations ofM appears to always satisfy

#(M) ≥ 2d−1,

and we found examples attaining equality for 3≤ d ≤ 15. The examples attaining
#(M) = 2d−1 for d ≥ 6 were discovered using distributions based on theL−1U factor-
ization. In contrast, “uniform” Gaussian distribution onM gave a very different distri-
bution of values of #(M), having large values comparable in size to the general upper
bound #(M) ≤ d!.

We went on to study the Dantzig figures(P,w1,w2) associated to examples with
#(M) = 2d−1, and discovered that these exhibit a wide variety of combinatorial types.
For example, in dimension 4 we found examples spanning the full range of allowed
vertex numbers, from 14 to 20. The bound #(M) ≥ 2d−1 held under small perturbations
of M that changed the combinatorial type of the associated Dantzig figure.

This empirical evidence suggests that thed-step conjecture may well be true in the
strong form #(M) ≥ 2d−1. We call this thestrong d-step conjecture. The discussion
following Theorem 6.1 shows that the inequality #(M) ≥ 2d−1, if true, would also have
a theoretical interpretation as a “positive correlation” among the permutations8M and
9∗M constructed in Theorem 6.1.

We remark that the best theoretical bounds currently known for1(n, d)are1(n, d) ≤
2d−3n, due to Larman [9], and1(n, d) ≤ 2nlog2 d, due to Kalai and Kleitman [5], see also
[4] and Theorem 3.10 of [14]. The latter bound gives1(d, 2d) ≤ 2d2+log2 d. Kalai [4]
remarks that the bound1(d, 2d) ≤ d2+log2 d can be derived by a more detailed analysis
of his argument. General references on polytopes include [3], [13], and [14]. For some
information on Gaussian elimination and its stability properties, see [2] and [12].

The contents of this paper are as follows. In Section 2 we precisely state the Gaussian
elimination sign conjecture. This conjecture was derived from a study of the simplex
exchange version of thed-step conjecture, a version formulated by Klee [6]. Section 3
recalls known results on the simplex basis exchange version of thed-step conjecture.
Section 4 describes a parameter spaceMd for the simplex basis exchange conjecture.
Section 5 derives the Gaussian elimination sign conjecture and proves its equivalence to
thed-step conjecture. Section 6 proves a result about sign patterns in Gaussian elimi-
nation factorizations for the families of matricesM Qσ andQσ M , whereQσ runs over
matrices in a(d − 1) × (d − 1) representation of the symmetric group Sym(d) on d
letters. Section 7 describes computational experiments concerning the Gaussian elim-
ination sign conjecture, which computed values #(M) for various distributions ofM .
The final section reports on computations concerning the combinatorial type of Dantzig
figures(P,w1,w2) associated toM having #(M) = 2d−1. The Appendix describes the
unique Gaussian distribution invariant under Sym(d)×Sym(d) acting on the parameter
spaceMd.
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2. Gaussian Elimination Sign Conjecture

A triangular factorizationof a (d − 1)× (d − 1) real matrixM is a factorization

M = L−1U, (2.1)

in which L is lower triangular with all diagonal elementsLii = 1, andU is upper
triangular. Such factorizations are directly related to the Gaussian elimination algorithm.
For invertible matricesM , a triangular factorization (7.1) is unique if it exists, and it is
constructed using the Gaussian elimination algorithm without pivoting, see Section 1.4 of
[11]. There is an exceptional set of invertible matrices having no triangular factorization,
consisting of those matrices on which the Gaussian elimination algorithm encounters a
zero pivot.

We say that a triangular factorization (2.1) isnondegenerateif all nontriangular entries
of L andU are nonzero, i.e., if

L = [Li j ] with Li j 6= 0 for i ≥ j,
U = [Ui j ] with Ui j 6= 0 for i ≤ j .

(2.2)

The set of matricesM that possess a nondegenerate triangular factorization is an open
dense subset of all(d − 1)× (d − 1) real matrices.

We say that a triangular factorization (2.1) ispositiveif all nontriangular entries ofL
andU are positive, i.e., if

Li j > 0 for i ≥ j ; Ui j > 0 for i ≤ j . (2.3)

The Gaussian elimination sign conjecture involves a groupŜd of (d−1)× (d−1)
matrices which is isomorphic to the symmetric group Sym(d) on d letters. Given
σ ∈ Sym(d), there correspondsQσ ∈ Ŝd given by

(Qσ )i j =
 1 if j = σ(i ) ≤ d − 1,

0 if j 6= σ(i ) and 1≤ σ(i ) ≤ d − 1,
−1 if σ(i ) = d,

and Qτ Qσ = Qτσ for all σ, τ ∈ Sym(d) Thus Ŝd is the set of(d − 1) × (d − 1)
matrices consisting of all permutation matrices, together with all matrices obtained from
a permutation matrix by replacing one row with a row of−1’s. For example,

Ŝ3 =
{[

1 0
0 1

]
,

[
0 1
1 0

]
,

[−1 −1
0 1

]
,

[−1 −1
1 0

]
,

[
1 0
−1 −1

]
,

[
0 1
−1 −1

]}
.

We say that a(d− 1)× (d− 1) real matrixM is in completely general positionif all
(d!)2 matrices

Qτ M Qσ for σ, τ ∈ Sym(d)

are nondegenerate, i.e., have a triangular factorization satisfying (2.2). The set of com-
pletely general position matrices is an open dense subset of(d − 1) × (d − 1) real
matrices.
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Gaussian Elimination Sign Conjecture (GEd). For each(d−1)×(d−1) real matrix
M in completely general position there is some pair(τ, σ ) ∈ Sym(d) × Sym(d) such
that the matrix Qτ M Qσ has a positive triangular factorization L−1U .

In Section 5 we prove that for each fixedd the Gaussian elimination sign conjecture
GEd is equivalent to thed-step conjecture1(d, 2d) = d (Theorem 5.2). Furthermore,
the number of pairs(σ, τ ) for which Qτ M Qσ has a positive triangular factorization
counts the number ofd-step paths between antipodal vertices of a particular Dantzig
figure associated toM (Theorem 5.1).

3. Simplex Exchange Variant of thed-Step Conjecture

We set basic terminology. Apolyhedronis the intersection of a finite number of closed
half-spaces inRd, and apolytopeis a bounded polyhedron. This paper deals exclusively
with polytopes. Afaceof a polytope is its intersection with a supporting hyperplane,
and ani-face is a face of dimensioni . A d-polytope is a polytope of dimensiond, and a
facetof ad-polytope is a(d− 1)-face. A(d, n)-polytopeis ad-polytope having exactly
n facets. Ad-polytope issimple if each vertex (0-face) ofP is contained in exactly
d facets, or, equivalently, if there are exactlyd edges (1-faces) incident on each of its
vertices.

The graph G(P) of a polytope Pis the abstract undirected graph representing the
incidence structure of the 0-faces (vertices) and 1-faces (edges) ofP. G(P) contains
no loops or multiple edges. It is well known that the graphG(P) of a d-polytope is
d-connected. A polytopeP is simple if and only if the graphG(P) is d-regular, i.e., it
has exactlyd edges incident on each vertex. Ifu andv are vertices ofG(P) thedistance
δP(u, v) betweenu and v is the minimal number of edges that must be traversed in
G(P) to travel fromu to v. Thediameterδ(P) is the diameter of the graphG(P), i.e.,
δ(P) = maxu,v δP(u, v).

Let 1(d, n) denote the maximal diameterδ(P) whereP runs over alld-polytopes
havingn facets. TheHirsch conjectureasserts that

1(d, n) ≤ n− d whenever n ≥ d + 1.

Klee and Walkup [8, Theorem 2.8] show that the value1(d, n) is always attained by
some simpled-polytope.

The d-step conjecture asserts that1(d, 2d) = d. By the remark above, the value
of 1(d, 2d) is attained byδ(P) for some simple(d, 2d)-polytope. There is a further
simplification due to Klee and Walkup [8]. Given a simple(d, 2d)-polytopeP we say
that two of its verticesw1 andw2 areantipodal, or make up anantipodal pair, if they
lie in the intersection of disjoint sets ofd facets, respectively. Such a triple(P,w1,w2)

is called aDantzig figure. Klee and Walkup show that the value1(d, 2d) is attained by
δP(w1,w2) for some Dantzig figure(P,w1,w2); see their Theorem 2.8. Let #(P,w1,w2)

count the number ofd-step paths betweenw1 andw2 in G(P). Thed-step conjecture
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1(d, 2d) = d may be restated as

#(P,w1,w2) ≥ 1

for all Dantzig figures(P,w1,w2) in Rd.
The simplex exchange variant of thed-step conjecture is a re-encoding of the condition

for the existence of ad-step path connecting two antipodal vertices of a simple(d, 2d)-
polytope. To state it, asimplicial basis Bof Rd−1 is an ordered set ofd vectorsB =
{b1, . . . ,bd} that form the vertices of a(d − 1)-simplex containing0 in its interior.

We also need a notion of general position. A finite set of vectorsA in Rm is said to
be aHaar setif every subset of sizem in A is linearly independent. We say that two
simplicial basesB andB′ are ingeneral positionif B ∪ B′ is a Haar set.

Simplex Exchange Conjecture (SEd). For any two simplicial bases B and B′ ofRd−1

that are in general position, there is a sequence B0, B1, B2, . . . , Bd of simplicial bases
ofRd−1, with B0 = B and Bd = B′, such that each Bi+1 is obtained from Bi by adding
a vertex in B′ and removing a vertex in B.

The name “simplex exchange” refers to the exchange step fromBi to Bi+1 which adds
some vectorb′ of B′ and removes some vectorb of B. Associated to each pair(B, B′)
of simplicial bases are(d!)2 exchange sequences B0 = B, B1, B2, . . . , Bd = B′, which
are labeled by pairs of permutations(τ, σ ) ∈ Sym(d) × Sym(d) as follows: Bi+1 is
obtained fromBi by adding the vectorb′τ(i ) ∈ B′ and removing the vectorbσ(i ) of B.
We call an exchange sequence(τ, σ ) legal if all the resulting basesBi are simplicial
bases. Let #(B, B′) count the number of legal exchange sequences for the pair(B, B′)
of simplicial bases.

Theorem 3.1. For each d ≥ 2, the d-step conjecture is equivalent to the simplex
exchange conjecture SEd.

This is proved by Klee and Kleinschmidt [7, 2.6] via an equivalence between simplicial
pairs(B, B′) and Dantzig triples(P,w1,w2) which we now describe.

To each general position pair(B, B′) of simplicial bases ofRd−1 there corresponds a
Dantzig triple(P,w1,w2) in Rd. HereP := P(B, B′) is defined by

P(B, B′) :=
{
(λ1, . . . , λ2d):

d∑
i=1

λi bi +
d∑

i=1

λi+db′i = 0,
2d∑

i=1

λi = 1, λi ≥ 0

}
,

whereP is viewed as lying in a particulard-dimensional flatHd in R2d, namely

Hd :=
{
(λ1, . . . , λ2d):

d∑
i=1

λi bi +
d∑

i=1

λi+db′i = 0,
2d∑

i=1

λi = 1

}
.

Since B and B′ are simplicial bases there are positive relations
∑d

i=1 λi bi = 0 and∑d
i=1 λ

′
i b
′
i = 0, with

∑d
i=1 λi =

∑d
i=1 λ

′
i = 1, hence there is a strictly positive relation

1
2

d∑
i=1

λi bi + 1
2

d∑
i=1

λ′i b
′
i = 0,
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which shows thatP(B, B′) is full-dimensional in the flatHd. The polytopeP(B, B′)
has 2d facets

Fi = {(λ1, . . . , λ2d) ∈ P(B, B′): λi = 0} for 1≤ i ≤ 2d,

and P(B, B′) is a simple polytope because(B, B′) are in general position. The distin-
guished verticesw1 andw2 of P are the points of intersection ofF1∩ F2∩ · · · ∩ Fd and
Fd+1 ∩ Fd+2 ∩ · · · ∩ F2d, respectively. We check that these intersection points actually
lie in P. Forw2 this follows fromB being a simplicial basis: there is a unique positive
relation

d∑
i=1

λi bi = 0,
d∑

i=1

λi = 1 all λi > 0.

Similarlyw1 ∈ P follows fromB′ being a simplicial basis. Thus(P,w1,w2) is a Dantzig
figure.

Lemma 3.1. Let(B, B′) be a pair of simplicial bases ofRd−1 in general position, with
associated Dantzig figure(P,w1,w2). Then the number of legal exchange sequences for
(B, B′) is equal to the number of d-step paths betweenw1 andw2 in the graph G(P),
i.e.,

#(B, B′) = #(P,w1,w2). (3.1)

Conversely, for every Dantzig figure(P,w1,w2) there is a pair of simplicial bases
(B, B′) giving rise to(P,w1,w2).

Proof. Each simplicial basisB′′ ⊆ B ∪ B′ defines a vertex ofP, and vice versa. IfB1

andB2 are two such simplicial bases that have|B1∩ B2| = d− 1, then they correspond
to two vertices inP that haved − 1 facets in common, hence they determine an edge
of P, in the intersection of thed − 1 common facets. Thus legal exchange sequences
correspond to moving along edge paths inP from w1 to w2, and conversely. The only
possible way to get fromB to B′ in d exchange steps involves entering an element ofB′

and removing an element ofB at each step. Thus (3.1) follows.
The converse assertion is proved on pp. 725–726 of [7].

4. Parameter Space for the Simplex Exchange Conjecture

In this section we construct a reduced setMd of simplicial basis pairs that includes a
counterexample to the simplex exchange conjectureSEd if one exists. The setMd is a
real linear space of dimension(d−1)2, and we call it aparameter spacefor the simplex
basis exchange conjectureSEd.

We reduce the set of simplicial basis pairs to consider using the following two oper-
ations that preserve #(B, B′).

Lemma 4.1. Let (B, B′) be a pair of simplicial bases ofRd−1.
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(i) If L :Rd−1→ Rd−1 is an invertible linear transformation, then

#(L(B), L(B′)) = #(B, B′). (4.1)

(ii) Given a strictly positive vectorµ = (µ1, . . . , µd) ∈ Rd, and an ordered set of
vectors B= {b1, b2, . . . ,bd} setµ◦B := {µ1b1, µ2b2, . . . , µdbd}. For any two
such vectorsµ andµ′,

#(µ ◦ B,µ′ ◦ B′) = #(B, B′). (4.2)

Remark. Both of these operations preserve the combinatorial type of the associated
Dantzig figure; we omit the straightforward proof.

Proof. (i) Clearly,L(Bi ) contains0 in its interior if and only ifBi does.
(ii) If a set of vectors{bi } satisfies a normalized positive linear relation

m∑
i=1

λi bi = 0,
m∑

i=1

λi = 1,

then{µi bi } satisfies the normalized positive linear relation

m∑
i=1

λ̃i (µi bi ) = 0,
m∑

i=1

λ̃i = 1,

with λ̃i := (λi /µi )
(∑m

i=1(λi /µi )
)−1

.

Given an arbitrary simplicial basis pair(B, B′), we use Lemma 4.1 to reduce to the
case thatB equals thestandard simplex1d := {s1, . . . , sd}, which is a regular simplex
with centroid0. First takeB to B̃ = µ ◦ B having centroid0, and second applyL that
sendsd − 1 vertices ofB̃ to those of1d. Then L(B̃) = 1d because the centroid is
preserved. To get a canonical representation we regardRd−1 as embedded inRd as the
hyperplane

〈e〉⊥ :=
{

x = (x1, . . . , xd): 〈e, x〉 =
d∑

i=1

xi = 0

}
, (4.3)

in which

e= e1+ e2+ · · · + ed = (1, 1, . . . ,1),
whereei denotes thei th unit coordinate vector. Then the vertexsi is the orthogonal
projection on〈e〉⊥ of ei , that is

si = ei − 1

d
e, 1≤ i ≤ d.

Certainly,

s1+ s2+ · · · + sd = 0. (4.4)
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We view B andB′ as sitting inRd in the hyperplane〈e〉⊥. We choose a rescaling ofB′

that takes it to

Z ≡ {z1, z2, . . . , zd} := µ′B′ = {µ′1b′1, µ2b′2, . . . , µdb′d},
in such a way that

z1+ z2+ · · · + zd = 0. (4.5)

This rescaling is unique up to multiplication ofB′ by a scalar. Lemma 4.1 implies
that if (B, B′) is a counterexample to thed-step conjecture, then(1d, Z) is also a
counterexample.

Theparameter spaceMd enumerates all pairs(1d, Z) such thatZ = {z1, . . . , zd}
satisfies (4.5). We represent elements ofMd asd × d matrices:

Z =


z1

z2

· · ·
zd

 , (4.6)

subject to the linear constraints
d∑

i=1

zi = 0,

〈e, zi 〉 = 0, 1≤ i ≤ d.

These constraints say that all row and column sums ofZ are zero. ThusMd is a linear
space of dimension(d − 1)2. Note thatMd contains some extra “ideal elements” not
corresponding to any simplicial basisB′, i.e., matricesZ of rank less thand − 1.

We next describe the effect of permutations onMd. The symmetric group Sym(d)
has ad-dimensional representation as the setSd = {Pσ : σ ∈ Sym(d)} of permutation
matrices Pσ1 wherePσ is defined by

(Pσ )i j =
{

1 if j = σ(i ),
0 otherwise.

(4.7)

The identity element of Sym(d) is denotede, so thatPe = I . The set of permutation
matricesSd has a one-dimensional invariant subspace〈e〉 generated bye= (1, 1, . . . ,1),
and a complementary(d − 1)-dimensional invariant subspace〈e〉⊥ = {z: 〈e, z〉 = 0}.
The representationSd splits into a (trivial) one-dimensional representation on〈e〉 and a
(d − 1)-dimensional representation on〈e〉⊥. For everyZ ∈Md, the rows ofZ are in
〈e〉⊥, as are its columns, hence the parameter spaceMd is invariant under both the left
and right action ofSd, that is,Pτ Z ∈Md andZ Pσ ∈Md for anyτ, σ ∈ Sym(d). The
action ofSd on the columns of matrices inMd is the(d−1)-dimensional representation
above, which is explicitly realized as a setŜd of (d − 1) × (d − 1) matrices given in
Section 5.

The parameter spaceMd contains thestandard simplex matrix

1 :=


s1

s2
...

sd

 . (4.8)
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It plays a special role, because it is the orthogonal projection matrix onto the(d − 1)-
dimensional subspace〈e〉⊥ of Rd, so that12 = 1 and

Md = {Z = 1N1: N ad × d matrix}.
In addition,1 commutes with all permutation matrices, i.e.,

Pσ1 = 1Pσ =


sσ(1)
sσ(2)
...

sσ(d)

 , σ ∈ Sym(d). (4.9)

Inside the parameter spaceMd there are regionsÄ(τ, σ ) defined by the property that
the permutation(τ, σ ) ∈ Sym(d) × Sym(d) gives a legal exchange sequence from the
simplicial basis1d = {s1, . . . , sd} to the simplicial basisZ = {z1, . . . , zd} and1d ∪ Z
is a Haar set. Basic properties ofÄ(τ, σ ) are as follows.

Lemma 4.2.

(i) EachÄ(σ, τ) is an open set ofMd.
(ii) For eachτ, σ ∈ Sym(d),

Ä(τ, σ ) = PτÄ(e, e)P
−1
σ with Pτ , Pσ ∈ Sd. (4.10)

(iii) For fixedτ , the regionsÄ(τ, σ ) are pairwise disjoint asσ varies. Similarly, for
fixedσ , the regionsÄ(τ, σ ) are pairwise disjoint asτ varies.

Remarks. (1) Property (ii) implies thatÄ(τ, σ ) all are isometric sets with respect to
the Euclidean metric onMd, because permutation of coordinates is a Euclidean motion.

(2) A stronger version of property (iii) appears as Theorem 6.1.

Proof. (i) Ä(τ, σ ) is an open set, because the conditions that(1d, Z) be a Haar set,
and that0 lie in the interior of the simplicesBi for 1 ≤ i ≤ d, are preserved under
sufficiently small perturbations.

(ii) We have

Pτ

 z1
...

zd

 =
 zτ(1)

...

zτ(d)

 for τ ∈ Sd,

hence

Ä(τ, σ ) = PτÄ(e, σ ).

The effect ofσ permuting thesi is equivalent to permuting the coordinates ofRd by Pσ ,
because thesi are the orthogonal projections of the unit coordinate vectorsei onto〈e〉⊥,
see (4.9). Thus the exchange ofzτ(i ) andsσ(i ) becomes, after permutation of coordinates,
the exchange ofzτ(i )Pσ with si , so that

Ä(e, σ ) = Ä(e, e)P−1
σ ,
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and (4.10) follows. It is easily verified that if1d∪ Z is a Haar set, then so is1d∪ Pτ Z Pρ
for τ, ρ ∈ Sym(d).

(iii) We prove, by induction oni , that{τ( j ): j ≤ i } determines{σ( j ): j ≤ i }. The
base caseB0 is vacuous. In going fromBi−1 to Bi , let the vectorzτ(i ) enter Bi . The
simplex determined byBi is the convex hull of a facet of the simplex determined by
Bi−1, together withzτ(i ). It includes0 in its interior, hence the ray from0 in the direction
−zτ(i ) must hit this facet, while staying inside the simplex determined byBi−1. This
determines the facet uniquely, so the leaving vertexsσ(i ) must be the unique vertex of
Bi−1 not in this facet. This completes the induction step.

A similar proof shows that{σ( j ): j ≥ i } determines{τ( j ): j ≥ i }: exchange the
roles ofZ and1d.

The following lemma gives an upper bound for #(B, B′), and an equivalent upper
bound for the number ofd-step paths for Dantzig figures.

Lemma 4.3. For all simplicial basis pairs(B, B′) inRd−1 that are in general position,

#(B, B′) ≤ d!. (4.11)

Equivalently, for all Dantzig figures(P,w1,w2) in Rd, the number of d-step paths from
w1 to w2 satisfies

#(P,w1,w2) ≤ d!. (4.12)

Proof. The bound (4.11) follows from Lemma 4.2(iii). For eachτ ∈ Sym(d), at
most oneσ ∈ Sym(d) gives a legal exchange sequence. Now (4.12) follows from
Lemma 3.1.

These bounds are sharp, for (4.12) is attained for the Dantzig figure consisting of the
unit d-cube, with the antipodal vertices(0, 0, . . . ,0) and(1, 1, . . . ,1).

The simplex exchange conjecture asserts that the(d!)2 regionsÄ(τ, σ ) must cover
all ofMd, aside from an “exceptional set” of codimension 1. This raises two questions:
What is the structure ofÄ(τ, σ )? How do the setsÄ(τ, σ ) overlap?

For the first question, Lemma 4.2(ii) shows that allÄ(τ, σ ) are isometric, so it suffices
to characterizeÄ(e, e). This we do in Lemma 5.1 below.

For the second question, Lemma 4.3 shows that at any point ofMd at mostd! of the
Ä(τ, σ ) overlap. The example of the unitd-cube has exactlyd! d-step paths between
antipodal vertices. Any small deformation of the 2d facet hyperplanes yields a polytope
with the combinatorial type of thed-cube. This corresponds to an open region in the
parameter spaceMd.

One natural approach to disproving thed-step conjecture for larged would be to show
by a “volume argument” that most points ofMd are covered by noÄ(τ, σ ). Such an
argument consists of finding a probability measureν onMd that is invariant under the
action of Sym(d)× Sym(d), assigns measure 0 to the “exceptional set,” and for which
the total measures covered by allÄ(τ, σ ) separately is less than 1. Under this hypothesis,



64 J. C. Lagarias, N. Prabhu, and J. A. Reeds

all Ä(σ, τ) have equal measure by Lemma 4.2(ii), so it would suffice to show that

ν(Ä(e, e)) <
1

(d!)2
.

A natural candidate measure is provided by the (essentially unique) Gaussian measure
νG onMd that is invariant under Sym(d) × Sym(d). Appendix A gives a description
of νG.

In Section 4 we obtain a description ofÄ(e, e). It is a formidable task to evaluate
νG(Ä(e, e)), and we do not attempt it. Numerical experiments ford ≤ 9 described in
Section 7 suggest that this measure is in fact concentrated in the “bad” region ofMd

where manyÄ(τ, σ ) overlap.

5. Gaussian Elimination and thed-Step Conjecture

The connection of triangular factorizations of a(d − 1) × (d − 1) matrix with thed-
step conjecture arises from study of the setÄ(e, e) in the parameter spaceMd of the
simplex exchange conjecture. A set of simplicial bases{1d, Z} is in the setÄ(e, e) if
the sequence of simplex exchanges fromB0 = 1d to Bd = Z given by

B1 = {z1, s2, s3, . . . , sd},
B2 = {z1, z2, s3. . . . , sd},

· · ·
Bd−1 = {z1, z2, . . . , zd−1, sd}

is legal. A necessary and sufficient condition for this to happen is that there are strictly
positive relations

λ11z1+ λ12s2+ · · · + λ1dsd = 0,

λ21z1+ λ22z2+ · · · + λ2dsd = 0,

· · · (5.1)

λd−1,1z1+ λd−1,2z2+ · · · + λd−1,dsd = 0.

We write this as
λ11 0 · · · 0
λ22 λ22 · · · 0
...

...

λd−1,1 · · · λd−1,d−1




z1

z2
...

zd−1

 = −

λ12 λ13 · · · λ1d

0 λ23 · · · λ2d
...

...

0 0 · · · λd−1,d




s2

s3
...

sd

 .
Since each nonnegative linear relation (5.1) is determined up to multiplication by a
positive scalar, we may (uniquely) rescale these relations to require that

λi i = 1, 1≤ i ≤ d − 1.
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Thus, if we define the(d − 1)× (d − 1) matrix M by
z1

z2
...

zd−1

 = −M


s2

s3
...

sd

 , (5.2)

thenM has the triangular factorization

M = L−1U, (5.3)

in which bothL andU arepositive triangular matrices, by which we mean that all
entries ofL andU are strictly positive except for those entries that must be zero by the
triangularity condition, see (2.3).

This construction is reversible, hence we obtain the following characterization of
Ä(e, e).

Lemma 5.1. There is an invertible linear mapϕ(Z) = M from d× d real matrices Z
having all row and column sums zero onto the set of(d− 1)× (d− 1) real matrices M,
such that

Ä(e, e) = {Z ∈Md:ϕ(Z) has a positive triangular factorization}. (5.4)

Proof. To describe the mapϕ, given anyd×d matrix Z, let Z[i, j ] denote the(d−1)×
(d − 1) matrix obtained by deleting rowi and columnj from Z. The mapϕ is derived
from (5.2). If we drop the last column of both sides, it becomes

Z[d,d] = −M1[1,d],

hence

ϕ(Z) = −Z[d,d](1[1,d])−1. (5.5)

Here we use the fact that1[1,d] is invertible, as is1[i, j ] for any pair(i, j ). To see thatϕ
is invertible, note thatM determinesZ[d,d] = −M1[1,d] , whenceZ is recovered using
the fact that all its row and column sums are zero.

The argument just before the lemma showed that each element ofÄ(e, e) leads to
a positive triangular factorization (5.3) ofM . Conversely, a positive factorization ofM
leads to a positive set of equations (5.1), which certifies that(e, e) ∈ Sym(d)×Sym(d)
is a legal exchange sequence forZ.

Now we reformulate thed-step conjecture in terms of positive triangular factoriza-
tions. To do this, we observe first that the criterion for membership in1(τ, σ ) analogous
to (5.2) is 

zτ(1)
zτ(2)
...

zτ(d−1)

 = −Mτ,σ


sσ(2)
sσ(3)
...

sσ(d)

 , τ, σ ∈ Sym(d). (5.6)
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The(d − 1)× (d − 1) matrix M becomesMe,e in this notation. The matricesMτ,σ are
related under the action of a finite group ofŜd of (d− 1)× (d− 1)matrices isomorphic
to Symd, which we denote

Ŝd := {Qσ : σ ∈ Sym(d)}.
The matrixQσ is defined by

(Qσ )i, j =
 1 if j = σ(i ),

0 if j 6= σ(i ) and 1≤ σ(i ) ≤ d − 1,
−1 if σ(i ) = d.

(5.7)

Thus ifσ(d) = d, the matrixQσ is a(d−1)× (d−1) permutation matrix, otherwise it
is such a matrix with one row replaced by−1’s. The groupSd−1 of permutation matrices
is a subgroup of indexd in Ŝd. The group lawQτ Qσ = Qτσ is easily checked.

This(d−1)-dimensional representation̂Sd is inherited from the(d−1)-dimensional
representation of Symd acting onMd, taking as the choice of a basis of the firstd − 1
rows andd − 1 columns ofZ. In particular, for anyZ ∈Md,

(Pσ Z)[d,d] = Qσ Z[d,d] .

To compute the action of̂Sd on Mτ,σ , we introduce the permutationη for which

Qη


s1

s2
...

sd−1

 =


s2

s3
...

sd

 ,
which is the cyclic permutationη(i ) ≡ i + 1(modd).

Lemma 5.2. Letη ∈ Sym(d) denote the permutationη(i ) = i + 1(modd). For each
pair (τ, σ ) ∈ Sym(d)× Sym(d),

Mτ,σ = Qτ Me,eQ−1
ηση−1. (5.8)

Proof. A computation based onz1+ z2+ · · · + zd = 0 yields

Qτ

 z1
...

zd−1

 =
 zτ(1)
...

zτ(d−1)

 .
The relations2+ s2+ · · · + sd = 0 used with the permutationη yields

Qηση−1

 s2
...

sd

 =
 sσ(2)

...

sσ(d)

 .
Multiplying (5.2) by Qτ and then substituting in the last two equations yields (5.8).
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As σ runs over Sym(d), ηση−1 runs over Sym(d), hence

{Mτ,σ : τ, σ ∈ Sym(d)} = {Qτ M Qσ : τ, σ ∈ Sym(d)}.
Recall that a(d− 1)× (d− 1)matrix M is said to be incompletely general position

if for every pair(τ, σ ) ∈ Sym(d) × Sym(d) the matrixQτ M Qσ has a nondegenerate
triangular factorization, i.e., no zero elements inL andU except in the triangular parts.
The set of completely general positionM is an open dense subset of the space of real
(d − 1)× (d − 1) matrices.

To each matrixM in completely general position there is associated a Dantzig figure
(P,w1,w2), as follows. First find the unique pair(1d, Z) associated toM by (5.2),
which is then in general position. Set

P = P(1d, Z)

=
{
(λ1, . . . , λ2d):

d∑
i=1

λi si +
d∑

i=1

λi+dzi = 0,
n∑

i=1

λi = 1, λi ≥ 0

}
. (5.9)

This polytope isd-dimensional, and lies in thed-dimensional1 flat

F :=
{
(µ1, . . . , µ2d):

d∑
i=1

µi si +
d∑

i=1

µi+dzi = 0,
d∑

i=1

µi = 1

}
. (5.10)

It has 2d facets corresponding to eachλi = 0, and its antipodal vertices arew1 =
(0, 0, . . . ,0, 1/d, . . . ,1/d) andw2 = (1/d, 1/d, . . . ,1/d, 0, . . . ,0) having lastd co-
ordinates and firstd coordinates equal to 1/d, respectively.

Lemmas 5.1 and 5.2 combine to yield:

Theorem 5.1. For a (d − 1) × (d − 1) matrix M in completely general position the
number of ordered pairs(τ, σ ) ∈ Sym(d) × Sym(d) for which Qτ M Qσ has a posi-
tive triangular factorization is equal to the number of d-step paths between antipodal
matrices in the Dantzig figure(P,w1,w2) associated to M.

Proof. Lemma 5.2 shows that each(τ, σ ) corresponds to a particular simplex exchange
(τ, η−1σ−1η) for the pair(1d, Z) associated toM . Lemma 5.1 says that such a simplex
exchange is legal if and only if the triangular factorization derived from (5.1) is positive.
Lemma 3.1 gives a one-to-one correspondence between legal simplex exchanges and
d-step paths in(P,w1,w2).

These considerations lead to our reformulation of the simplex exchange conjecture.

Gaussian Elimination Sign Conjecture (GEd). For each(d − 1) × (d − 1) matrix
M in completely general position there is some pair(τ, σ ) ∈ Sym(d) × Sym(d) such
that the matrix Qτ M Qσ has a positive triangular factorization L−1U .

1 One constraint is redundant since
∑d

i=1 si =
∑d

i=1 zi = 0, so that there are exactlyd linearly

independent constraints definingF .
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It is now easy to verify that this conjecture is equivalent to thed-step conjecture.

Theorem 5.2. For each d≥ 2, the d-step conjecture1(d, 2d) = d is equivalent to
the Gaussian elimination sign conjecture GEd.

Proof. By Theorem 3.1 it suffices to prove equivalence ofGEd to the simplex basis
exchange conjectureSEd. The discussion above combined with Lemma 5.1 implies that
SEd impliesGEd. Here we use the fact that every completely general positionM arises
from a pair(1d, Z) in general position.

The converse direction holds similarly, except that some general position(1d, Z)
give rise to a matrixM = Me,e in (5.2) that is not in completely general position.
To handle this, we use the fact that general positionZ fall into open cells inMd in
which the combinatorial type of the associated Dantzig figure(P,w1,w2) is constant.
Consequently, we can deformZ slightly without changing #(P,w1,w2) in such a way
that the newM is in completely general position.

The Gaussian elimination sign conjecture is concerned with the sign patterns in the
matrices in triangular factorizations of the(d!)2 matrices

6M := {Qτ M Qσ : σ, τ ∈ Sym(d)}, (5.11)

namely whether there always is a factorizationL−1U with L andU both positive. The
number of possible sign patterns of entries inL andU together is 2(d−1)2. This number
grows much more rapidly than(d!)2 asd → ∞. A simple heuristic to consider is that
the Gaussian elimination sign conjecture is false for larged purely from the proliferation
of possible sign patterns ofL andU . We call this thesign-pattern heuristic.

The proliferation of sign patterns can easily be used to prove that the smaller set
contained in6M , consisting of the(d − 1)!2 matrices

{Pσ M Pτ : σ, τ ∈ Sym(d − 1)}, (5.12)

under the action of Sym(d − 1) × Sym(d − 1) need not contain any matrix having a
positive triangular factorization. To see this, note that anyM having a positive triangular
factorization (4.5) must have a first row(M11, . . . ,M1,d−1) consisting of positive ele-
ments. Since permutations of rows and columns ofM preserve the property of having a
positive row, any matrixM such that the set (5.12) contains some matrix with a positive
triangular factorization must have a positive row. A matrixM chosen with random signs
will typically not have this property.

The sign-pattern heuristic is nevertheless completely inaccurate in describing sign
patterns of triangular factorizations of matrices in the sets6M generated by the action
of Sym(d) × Sym(d). This is shown theoretically by Theorem 6.1 of the next section,
and experimentally ford ≤ 9 by the data in Section 7.

6. Sign Patterns in Gaussian Elimination

In this section we make use of thecomplete triangular factorization

M = L̃−1D̃Ũ ,
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in which D̃ is a diagonal matrix, and̃L (resp.Ũ ) is a lower triangular (resp. upper
triangular) matrix with diagonal elements equal to 1. This decomposition exists and is
unique for any nonsingular matrixM that has anL−1U decomposition, withL = L̃ and
U = D̃Ũ .

We show that for “generic”M the group Sym(d)acting on the right on(d−1)×(d−1)
matrices produces a matrix having anL−1U factorization withU positive, and that
Sym(d) acting on the left on(d − 1) × (d − 1) matrices produce a matrix having an
L−1U decomposition withL positive. Thus the sign-pattern heuristic fails forŜd when
applied to eitherL or U separately. We actually prove a stronger result involving the
L̃−1D̃Ũ decomposition, for which the permutation produced in Sym(d) is unique.

Theorem 6.1. There is an open dense set of(d−1)× (d−1) real matrices M having
the following properties:

(i) For eachτ ∈ Sym(d) there exists a uniqueσ ∈ Sym(d) such that Qτ M Qσ has
a triangular factorization L−1U in which U is positive.

(ii) For eachσ ∈ Sym(d) there exists a uniqueτ ∈ Sym(d) such that Qτ M Qσ has
a complete triangular factorizatioñL−1D̃Ũ in which L̃ and D̃ are positive.

(iii) For eachσ ∈ Sym(d) there exist exactly2d choices ofτ ∈ Sym(d) such that
Qτ M Qσ has a triangular factorization L−1U in which L is positive.

Remark. Theorem 6.1(i) and (ii) strengthen Lemma 4.2(iii). Indeed Lemma 4.2(iii)
asserts that for eachσ ∈ Sym(d) there is at most oneτ ∈ Sym(d) such thatQτ M Qσ

has apositivetriangular factorization, and similarly that for eachτ ∈ Sym(d) there is at
most oneσ ∈ Sym(d) with a positive triangular factorization.

Proof. Throughout the proof we consider only matricesM such that all(d!)2 matrices
Qτ M̃ Qσ have anL̃−1D̃Ũ decomposition. ThusM is invertible. This restriction excludes
a closed set of measure zero in the space of(d − 1)× (d − 1) real matrices.

(i) By replacingM with Qτ M , we may without loss of generality suppose thatτ is
the identity.

The groupŜd has a left-coset decomposition

Ŝd =
d⋃

k=1

Ê(k)Sd−1,

in which the coset representativesE(k) are given by

Ê(
i j k) =

−1 if i = k
0 if i 6= j, i 6= k,
1 if i = j 6= k,

(6.1)

for 1 ≤ k ≤ d − 1, and Ê(d) is the identity matrix. Elements of the groupSd−1 of
(d − 1)× (d − 1) permutation matrices themselves have a unique decomposition

Pσ1 Pσ2 · · · Pσd−2,
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in which eachσj := ( j kj+1) is a transposition ofj with kj+1, and j ≤ kj+1 ≤ d − 1.
Thus a general elementQσ ∈ Ŝd has a unique decomposition

Qσ = Ê(k)Pσ1 Pσ2 · · · Pσd−2, (6.2)

in which there ared choices forE(k) andd − i choices forPσi , 1≤ i ≤ d − 2.
We first show that for “generic”M there is a unique choice of̂E(k) in (6.2) such that

M Qσ = L−1U , has a positive first row inU . Indeed, the first row ofU is the first row
of M Qσ , which coincides with the first row ofM Ê(k) up to the order of its elements.
For 1 ≤ k ≤ d − 1,M Ê(k) reverses the signs in thekth column ofM , and subtracts
columnk from all other columns. For this step the “generic” restriction onM is that
all elements of its first row are distinct and nonzero. There is then a unique choice ofk
such thatM Ê(k) has a positive first row, which isk = d if the first row ofM is positive,
and otherwisek indexes that column which contains the (unique) negative element that
minimizes{M2, j : 1≤ j ≤ d − 1}.

We next prove, by induction oni , for 1 ≤ i ≤ d − 1, that for a dense open set of
M there is a unique choice of̂E(k), Pσ1, . . . , Pσi−1 such that, for eachQσ in (6.2) taking
these values, the matrixM Qσ = L−1U has the firsti rows ofU (strictly) positive, and,
conversely, if the firsti rows ofU are strictly positive, then the unique decomposition
of Qσ in (6.2) assigns these values tôE(k), Pσ1, . . . , Pσi−1. The base casei = 1 was
completed above. For the induction step, setN(i ) = M E(k)Pσ1 · · · Pσi−1 = L−1U and
write its partial Gaussian elimination decomposition for the firsti columns

L (i )N(i ) = U (i ),

in which L (i ) is an upper triangular unipotent matrix with nonzero off-diagonal elements
only in the firsti rows, which upper-triangularizes the firsti rows of U (i ). The firsti
rows ofU (i ) agree with the firsti rows ofU , up to permutation of columns, hence these
are strictly positive by the induction hypothesis. We must choose the pivot columnki+1

with i ≤ ki+1 ≤ n so that the(i + 1)st row ofU is positive. We claim that for “generic”
M this choiceki+1 is unique, and it uniquely determinesσi = (i ki+1). If column k of
N(i ) is picked to pivot on, the elements of the(i + 1)st row of the matrixU (i ) would be
transformed to

U (i+1)
i+1, j := U (i )

i+1, j −
U (i )

i+1,k

U (i )
i,k

U (i )
i, j , i + 1≤ j ≤ d − 1. (6.3)

In order for all these elements to be strictly positive, we must have

U (i )
i+1, j

U (i )
i, j

>
U (i )

i+1,k

U (i )
i,k

, i + 1≤ j ≤ d − 1, j 6= k. (6.4)

(Here we usedU (i )
i, j > 0 for i + 1 ≤ j ≤ d − 1, by the induction hypothesis fori .) We

now choose thatk = ki+1 which minimizes the ratios{
U (i )

i+1,k

U (i )
i,k

: i + 1≤ k ≤ d − 1

}
. (6.5)
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To get uniqueness ofki+1 we add the “generic” condition that all the ratios (5.3) be
unequal. With this choice ofPσi , every element of the(i + 1)st row becomes positive,
and otherwise not. This completes the induction step.

The induction proves the existence and uniqueness ofQσ . All the “generic” condi-
tions imposed in the course of the induction exclude (a finite number of) closed sets of
codimension at least 1, hence the remaining “generic”M form a dense open set in the
space of all(d − 1)× (d − 1) matrices.

(ii) SinceU = D̃Ũ is positive if and only ifD̃ andŨ are separately positive, part (i)
showed for “generic”M that for eachτ there is a uniqueσ such thatQτ M Qσ = L̃−1D̃Ũ
with D̃ andŨ positive. We obtain (ii) from (i) by taking inverses, as follows.

By (i) applied withτ = e, for a “generic”M̃ there is a uniqueQρ ∈ Ŝd such that

M̃ Qρ = L−1DU (6.6)

hasD andU strictly positive. Taking inverses gives

Q−1
ρ M̃−1 = U−1D−1L ,

which exchanges the role ofL andU but reverses the triangular structure. To fix this, we
use the permutation matrixPω ∈ Sd−1 which reverses the ordering, i.e.,ω(i ) = d−1− i
for 1≤ i ≤ d − 1, and which satisfiesPω = P−1

ω . The last equation yields

Pω(Q
−1
ρ M̃−1)P−1

ω := L̃−1D̃Ũ , (6.7)

in which

L̃ =: PωU P−1
ω , D̃ = PωD−1P−1

ω , Ũ = PωL P−1
ω , (6.8)

have the correct forms to give a complete triangular factorization. Observe next that (6.8)
shows thatL̃ and D̃ are positive matrices if and only ifU andD are positive matrices,
because the effect ofPω is only to permute matrix entries andD−1 is positive only ifD
is. Now setQτ := PωQ−1

ρ andM = M̃−1P−1
ω , and (6.7) becomes

Qτ M = L̃−1D̃Ũ . (6.9)

The uniqueness ofQρ makingU andD positive in (6.6) translates to the uniqueness of
Qτ ∈ Ŝd makingL̃ andŨ positive in (6.9), completing (ii).

(iii) We prove the analogous result for̃U :

Claim. Given τ ∈ Sym(d) there are exactly2d choices ofσ ∈ Sym(d) such that
Qτ M Qσ has a complete triangular factorization with U positive.

Proof of Claim. This is similar to the proof of (i) above. The matrixU = D̃Ũ may
now have rows each of which is either all positive or all negative. To make the first row
all negative there is a unique choice ofE(k), i.e., E(k) is the identity if M̃ has an all
negative first row and otherwisek is chosen to be that column containing the (unique)
positive elementM̃1,k that maximizes{M̃1, j : 1 ≤ j ≤ d − 1}. Similarly, to obtain the
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(i + 1)st row ofU all negative we reverse the inequality (5.2) and choose rowki+1 to be
the largest of the ratios (6.5). Thus at each step of constructingU we have two choices.
We obtain 2d choices in all, and the associated matricesD̃ in the complete triangular
factorizations take all 2d possible sign patterns.

Now part (iii) for L̃ follows from the claim by the same argument by which (ii) was
derived from (i).

The triangular factorsL andU play a nonsymmetrical role in Theorem 6.1, because
L has ones on the diagonal whileU has no restrictions on its diagonal elements. We
associate toM a function8M : Sym(d)→ Sym(d) for which8(τ) = σ for thatσ given
by Theorem 6.1(i). We also associate toM a 1 to 2d multivalued map9M in which
9M(σ ) is the set of 2d permutationsτ given by Theorem 6.1(iii). Positive factorizations
(τ, σ ) correspond to “fixed points”(τ, σ ) in which8M(τ ) = σ andτ ∈ 9M(σ ). In
looking for such “fixed points” there is one extra constraint to take into account. For any
possibleQσ M Qτ = L−1U in which L−1 andU are both positive, it is necessary that

det(L−1U ) = det(Qσ ) det(Qτ ) det(M) > 0, (6.10)

so that we may exclude exactly half of the permutationsτ above in8M(σ ). We therefore
define a 1 to 2d multivalued map9∗M that associates to eachσ ∈ Sym(d) the 2d−1

permutationsτ given in Theorem 6.1(iii) whose determinant has the correct sign to
make (5.8) hold. A “fixed point”(τ, σ ) is one with8M(τ ) = σ andσ ∈ 9∗M(τ ).

Theorem 6.1 shows that the sign-pattern heuristic fails for the action of Sym(d) ×
Sym(d) on (d − 1) × (d − 1) matrices. The mappings8M and9∗M lead to an alter-
nate heuristic to consider: How would “fixed points” be distributed if8M : Sym(d) →
Sym(d) were a random function and9∗M : Sym(d) → P(Sym(d)) were a random 1 to
2d−1multivalued mapping?

Lemma 6.1. Let f : Sym(d)→ Sym(d) be a random mapping drawn uniformly from
the set of all such functions, and let g: Sym(d) → P(Sym(d)) be an independent
multivalued random mapping drawn uniformly from the set of all1 to 2d−1 multivalued
maps. Then the expected number of “fixed points”(σ, τ ) of the pair( f, g) is 2d−1.

Proof. The expected valueE is

E =
∑

σ∈Sym(d)

∑
τ∈Sym(d)

Prob[f (τ ) = σ ] Prob[τ ∈ g(σ )]

=
∑

σ∈Sym(d)

∑
τ∈Sym(d)

1

d!

(
2d−1

d!

)
= 2d−1,

as required.

7. Numerical Experiments: Number of Paths

We performed extensive computational experiments to study the Gaussian elimination
sign conjecture for dimensions 4≤ d ≤ 9, and more limited experiments for dimensions
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10≤ d ≤ 15. The algorithms were designed to count the number #(M) of legal exchange
sequences associated to a givenM . These computations were done in floating point, with
the consequence that none of the computations we report is rigorously guaranteed to be
correct. Indeed, Gaussian elimination with no pivoting is completely ill-conditioned, so
round-off error is an (infinitely) serious problem. We used the multiprecision package
of Bailey [1], which permits as much precision as desired (up to 50,000 digits.) In
our original tests we followed anad hocprocedure of running examples over and over
at higher levels of precision until the(L ,U ) factorizations, counts of legal exchange
sequences, and entries of matrices stabilized. Based on this experience, we concluded
that 250 digits of precision would be reliable on (nearly) all examples computed and
we used this precision level for the computations. With these caveats we believe the
computational data to be trustworthy.

The basic algorithm used a branch-and-bound tree search using the recursive presen-
tation of the matrixQσ given by (6.2), in whichE(k) is the first level of the tree,Pσ1 the
second level, etc. At levelk of the tree, the appropriate permutationσ was found to make
the firstk rows ofU positive (using Theorem 6.1(i)). If the firstk rows of the correspond-
ing L contained a negative element, the tree was pruned. In this fashion allQτ M Qσ

with positiveL−1U decomposition were located. Note that roundoff error could result
in accidentally pruning parts of the tree that contained legal sequences. In our original
numerical experiments this did occur, and we found many putative counterexamples
to thed-step conjecture; none of them survived sufficient increase in precision of the
computation. (If we had found a candidate counterexample to thed-step conjecture that
survived floating-point tests to an extremely high level of precision, our intention was
to re-do the computations using multiprecision fixed-point rational arithmetic to get a
rigorous proof.)

This computational approach viaL−1U decomposition is on the face of it an inefficient
way to test thed-step conjecture.A priori it hasO(d!) running time and is extremely
ill-conditioned; by contrast there are other algorithms to generate “random”d-polytopes
with 2d facets that run in timeO(4d). The appeal of theL−1U approach is that it suggests
interesting probability distributions to try to find counterexamples, which are not apparent
by other approaches. These are products of probability distributions assigned to theL
andU factor separately. The computational data describes experiments using several
probability distributions. We report on four different sorts of distribution; we tried many
more in less systematic fashion. Note that the dimension of the parameter spaceMd is
so large that we cannot reasonably search even an infinitesimal piece of it.

The first distribution we studied was the (essentially unique) Gaussian distribution
νG on (d − 1)× (d − 1) matrices invariant under the action ofŜd × Ŝd. It is described
in the Appendix.

The remaining distributions are all based on picking matricesM based on some
assignment of probabilities to itsL and U factors. To test the sign-pattern heuristic
the second distribution chose entries inL andU picked independently and identically
distributed (i.i.d.) uniformly from [−1, 1].

The third distribution was based on permuting the entries ofL andU . We picked
a fixed set of(d − 1)2 elements, which were chosen to be a small perturbation of an
arithmetic progression, then assigned them to the elements ofL andU in a randomly
permuted order.
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The fourth distribution, which we call the “twisted” distribution, depends on a positive
real parameterα. Its construction was motivated by the observation that if counterexam-
ples exist, there must be a region ofMd not covered by any regionÄ(σ, τ). Then at least
oneÄ(σ, τ)would touch on this region, and using the symmetry under Sym(d)×Sym(d)
the setÄ(e, e) also has this property. Thus to find such a region, it suffices to take a small
step outsideÄ(e, e) in the appropriate direction. NowÄ(e, e) has a nonlinear “twisted”
shape created byL−1 in Lemma 5.1. To obtain a large “twist,” we chose a fixedα > 0
and considered matricesL generated by

Li j =
α

i− j r i j if i > j,
1 if i = j,
0 if i < j,

(7.1)

whereri j are random variables drawn i.i.d. uniform in [0, 1]. The matrixU was generated
in a similar fashion. To step outside the regionÄ(e, e), we then set

Ld−1,1 = −1. (7.2)

We report on experiments using the valuesα = 5, 10, and 20. We discovered empirically
that stepping outsideÄ(e, e) by setting the valueLd−1,1 = −1 made no apparent
difference in the distribution of the values of #(M), compared with remaining inside
Ä(e, e) by generatingLd−1,1 using (7.1). The data in Table 7.1 was actually produced
using (6.1) without the substitution (7.2).

The data on #(M) for 50 trials each on each of these distributions, for the range
4 ≤ d ≤ 9, using 250 digits precision, are given in Table 7.1. The major observations
from Table 7.1 are:

(1) The values of #(M) are very large for the invariant Gaussian distribution.
(2) The i.i.d. uniform [−1, 1] distribution results forL andU show that the sign-

pattern heuristic fails in a fairly decisive way for(L ,U ) taken together, ford ≤ 9.
(3) All examples tested satisfied the bound

#(M) ≥ 2d−1.

Equality held in many examples, for 3≤ d ≤ 9, for the “twisted” distri-
bution, with the frequency of such examples increasing as the parameterα is
increased.

The last observation came as a surprise! We went on to check that the bound #(M) ≥
2d−1 held on a wide variety of other distributions. In particular, we fortuitously discov-
ered (by a programming mistake) a modified form of the “twisted” distribution which
produced a high proportion of matrices̃M attaining #(M̃) = 2d−1. An initial matrix M
was first computed using the “twisted” distribution for parameterα. This was inserted as
the firstd− 1 rows andd− 1 columns of ad× d matrix V whose last row and column
were set to zero. The new matrix̃V = 1V1 was computed, and its upper left corner
M̃ = Ṽ [d,d] is the matrix produced by the modified “twisted” distribution. Experimental
data for this distribution for 7≤ d ≤ 10 appears in Table 7.2, for parameter values
α = 5, 10, and 20.
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Table 7.1. Experimental data, dimensions 4–9 (50 trials each distribution).

Dimension Distribution Min. 1-Quartile Median 3-Quartile Max. Count #(M) = 2d−1

Gaussian 8 12 14 18 24 1
d = 4 i.i.d. [−1, 1] 8 10 12 14 24 10

Permuted 8 8 12 12 18 16
α = 5 8 8 8 8 16 39

d! = 24 α = 10 8 8 8 8 12 47
α = 20 8 8 8 8 16 49

Gaussian 28 40 48 60 120 0
d = 5 i.i.d. [−1, 1] 16 28 33 42 104 2

Permuted 16 24 28 34 50 1
α = 5 16 16 20 22 30 18

d! = 120 α = 10 16 16 16 16 26 37
α = 20 16 16 16 16 22 44

Gaussian 72 152 183 220 454 0
d = 6 i.i.d. [−1, 1] 54 83 101 143 207 0

Permuted 41 81 96 112 152 0
α = 5 32 34 39 46 70 9

d! = 720 α = 10 32 32 32 36 44 32
α = 20 32 32 32 32 48 44

Gaussian 352 572 818 1,091 2,242 0
d = 7 i.i.d. [−1, 1] 185 287 346 445 740 0

Permuted 140 198 231 293 558 0
α = 5 68 78 88 96 127 0

d! = 5040 α = 10 64 64 68 76 128 18
α = 20 64 64 64 64 86 38

Gaussian 1,748 2,890 3,482 4,489 8,858 0
d = 8 i.i.d. [−1, 1] 521 932 1,167 1,589 2,875 0

Permuted 355 689 854 988 1,637 0
α = 5 129 173 202 233 566 0

d! = 40,320 α = 10 128 138 148 172 230 5
α = 20 128 128 132 138 188 21

Gaussian 8,129 12,286 15,269 19,444 38,783 0
d = 9 i.i.d. [−1, 1] 1,367 4,044 4,972 5,786 7,596 0

Permutation 1,298 2,389 3,084 3,772 7,040 0
α = 5 286 365 391 441 531 0

d! = 362,880 α = 10 256 286 323 353 447 2
α = 20 256 256 266 278 394 14

We also computed a smaller number of examples in dimensions 11≤ d ≤ 15, using
the modified “twisted” distribution with parameterα = 20. These appear in Table 7.3.
(The branch-and-bound algorithm was quite efficient; approximate running times were
roughly proportional to(1.5)d#(M). Running times for thed = 15 examples were
about 1 hour each on a Cray YMP.) None of our computations produced exceptions to
#(M) ≥ 2d−1.

These computations suggest the possible truth of thed-step conjecture, in the strong
form:
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Table 7.2. Modified “twisted” distribution, dimensions 6–10 (50 trials each distribution).

Dimension Distribution Min. 1-Quartile Median 3-Quartile Max. Count #(M) = 2d−1

α = 5 32 32 32 40 64 29
d = 6 α = 10 32 32 32 32 48 37

α = 20 32 32 32 32 36 48

α = 5 64 64 76 88 148 19
d = 7 α = 10 64 64 64 64 96 40

α = 20 64 64 64 64 116 42

α = 5 128 128 152 176 258 13
d = 8 α = 10 128 128 128 144 192 33

α = 20 128 128 128 128 192 42

α = 5 256 268 334 392 590 11
d = 9 α = 10 256 256 256 296 488 25

α = 20 256 256 256 256 384 42

d = 10 α = 20 512 512 512 512 700 39

Strong d-Step Conjecture. For all general position simplicial basis pairs(B, B′)
in Rd,

#(B, B′) ≥ 2d−1.

Equivalently, all d-dimensional Dantzig figures(P,w1,w2) in Rd have

#(P,w1,w2) ≥ 2d−1.

This conjecture is true whend = 3. Ford = 3 there is a unique combinatorial type of
Dantzig figure(P,w1,w2) with #(P,w1,w2) = 4. It consists of a tetrahedron with two
corners sliced off, and its graph is pictured in Fig. 7.1. We omit details of the proof, which
can be carried out by enumeration, since thef -vector of any simple (3,6)-polyhedron is
(8, 12, 6), and since the graphs of 3-polytopes are characterized as 3-connected planar
graphs, see [14]. The strongd-step conjecture is open ford ≥ 4.

Comparing the strongd-step conjecture with the random permutation mapping heuris-
tic embodied in Lemma 6.1, we see that it essentially asserts that there is apositive
correlation(actually a nonnegative correlation) between any two permutation mappings
8M and9∗M of Section 6, as far as “fixed points” are concerned.

Table 7.3. Modified “twisted” distribution, dimensions 11–15 (10 trials each distribution).

Dimension Distribution Min. Median Max. Count #(M) = 2d−1

d = 11 α = 20 1,024 1,024 1,216 8
d = 12 α = 20 2,048 2,048 2,560 7
d = 13 α = 20 4,096 4,096 5,184 7
d = 14 α = 20 8,192 8,280 10,240 5
d = 15 α = 20 16,384 16,976 19,872 4
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Fig. 7.1. Graph of unique 3-polytope with #(P, w1, w8) = 4.

8. Numerical Experiments:d-Critical Dantzig Figures

We call any Dantzig figure(P,w1,w2) in Rd with a #(P,w1,w2) = 2d−1 a d-critical
Dantzig figure.

Our numerical experiments implicitly foundd-critical Dantzig figures for dimensions
4 ≤ d ≤ 15. Recall that from the dataM it is easy to construct(1d, Z), and from this
the graph of the associated Dantzig figure(P,w1,w2). The vertex set of

P = P(1d, Z) :=
{
(λ1, . . . , λ2d):

d∑
i=1

λi si +
d∑

i=1

λi+dzi = 0,
2d∑

i=1

λi = 1, λi ≥ 0

}

is located by settingλi = 0 for i ∈ S, whereS ranges over all

(
2d
d

)
subsets of size

d of {s1, . . . , sd, z1, . . . , zd}, and then solving the invertible linear system:
d∑

i=1

µi si +
d∑

i=1

µi+dzi = 0 with µi = 0 if i ∈ S,

2d∑
i=1

µi = 1.

(8.1)

If all µi ≥ 0, this is a vertex ofP, otherwise not. The setS specifies what facets this
vertex belongs to, and this determines the graph ofP.

We computed the vertex sets and graphs ofP for d-critical Dantzig figures found using
the “twisted” distribution and modified “twisted” distribution with parameterα = 20.
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Fig. 8.1. Graph of 14-vertex 4-polytope with #(P, w1, w14) = 8.

The vertices of suchP were located in a numerically stable way, by solving the linear
system (8.1) using Gaussian elimination with complete pivoting. These computations
permit an independent verification that #(M) = 2d−1, by directly locating the 2d−1 paths
in the graph of(P,w1,w2).

For dimensionsd ≥ 4 thed-critical Dantzig figures that we found exhibited a large
variety of combinatorial types. This is most easily illustrated by considering the number
of vertices of such polyhedra. In dimension 4 we foundd-critical Dantzig figures having
vertex numbersv(P) in the full range 14≤ v(P) ≤ 20, exceptv(P) = 19. Figures 8.1
and 8.2 give the graphs of two such 4-polytopes withv = 14 andv = 20, respectively.

Table 8.1 gives data from 50 samples of the “twisted” distribution for dimensions
4≤ d ≤ 8. It records the number of values having #(M) = 2d−1, and for these it lists the
maximum, minimum, and median values ofv(P). For comparison purposes Table 8.1
also lists the extreme values possible forv(P) according to the lower bound theorem and
the upper bound theorem. The median value ofv(P) seems to increase at an exponential
rateθn with θ > 2. In odd dimensions all values ofv(P) observed were even.

Table 8.2 gives similar data from 50 samples each of the modified “twisted” distri-
bution in dimensions 4≤ d ≤ 8. The distribution of vertex numbersv(P) is strikingly
different from that of Table 8.1. The median value of the vertex numbers observed seems
to be increasing at an exponential rateθn with 1.7 < θ < 1.9. In odd dimensions all
values ofv(P) observed were even.
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Fig. 8.2. Graph of 20-vertex 4-polytope with #(P, w1, w20) = 8.

Table 8.1. Vertex numbers ford-critical Dantzig figures (“twisted” distribution).

#d-Critical #Distinct Lower Upper
Dimension figures v(P) Min. Median Max. bound bound

4 49 3 16 18 20 14 20
5 44 5 34 38 42 22 42
6 44 18 80 89 100 32 112
7 37 20 166 202 222 44 240
8 30 26 422 461 499 58 660

Table 8.2. Vertex numbers ford-critical Dantzig figures (modified “twisted” distribution).

#d-Critical #Distinct Lower Upper
Dimension figures v(P) Min. Median Max. bound bound

4 49 6 14 16 20 14 20
5 48 6 26 32 36 22 42
6 48 15 48 57 66 32 112
7 44 16 86 102 120 44 240
8 42 33 159 187 220 58 660
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The diversity ofd-critical polytopes increases rapidly with the dimension. For the
cased = 7 we ran the modified “twisted” distribution with parameterα = 20 for 500
trials, obtaining 458d-critical polytopes, and these wereall combinatorially distinct
(using the vertex–face incidence matrix). The smallest vertex number obtained was 82,
the largest 130. The wide range of combinatorial types ofd-critical Dantzig figures is
encouraging evidence for the strongd-step conjecture.

Another feature that varies over the set ofd-critical Dantzig figures is the incidence
structure of the 2d−1 d-step paths between antipodal vertices. For example, in Figures
8.1 and 8.2 the eightd-critical paths are distributed among the edges exiting fromw1 as
4, 2, 1, 1 for thev(P) = 14 case and as 3, 1, 1, 3 in thev(P) = 20 case.

A final observation is that further numerical experiments with the modified “twisted”
distribution suggest that the number #(P,w1,w2) = 2d−1 is attained for Dantzig figures
associated to matricesM just “inside” the regionÄ(e, e) and also for nearbyM just
“outside” it. (These experiments were done by settingLd−1,1 to a small positive value
and to a small negative value.) In such cases there must necessarily be another region
Ä(σ, τ) sharing a boundary withÄ(e, e), because the permutation(e, e) ceases to give a
legal exchange sequence as one passes through the boundary ofÄ(e, e). This observation
suggests that there may be some kind of obstruction determining the 2d−1bound.
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Appendix. Sym(d)× Sym(d)-Invariant Gaussian Probability Measure on
the Parameter SpaceMd

There is, up to dilation, only one Gaussian probability measureνG on the spaceMd

of d × d matrices whose row and column sums vanish, invariant under the actions
(σ, τ ): Z 7→ Pτ Z Pσ for τ, σ ∈ Sym(d).

In the first place the mean of such a measure must be an elementZ ∈Md, fixed under
the Sym(d) × Sym(d) action. However, this already implies thatZ is the zero matrix:
invariance implies that all the components ofZ are equal, andZ ∈ Md then implies
that their common value is zero. So the mean of any invariant measureνG onMd must
be0.

Since mean0 Gaussian probability measures are completely classified by their co-
variances, it suffices to show that the quantities

ci j ,rs = E[Zi j Zrs]

are, up to a scalar multiple, uniquely determined, whereZ = (Zi j ) is a random element
inMd, distributed according to probability lawνG.

Invariance ofνG implies thatci j ,rs = cσ(i )τ ( j ),σ (r )τ (s), for all σ, τ ∈ Sym(d). Hence
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there are four real numberst, u, v, andw, such that

ci j ,rs =


t if r = i and s= j,
u if r = i and s 6= j,
v if r 6= i and s= j,
w if r 6= i and s 6= j .

The identity
∑d

k=1 Zik = 0, which holds with probability 1, implies

0= E

( d∑
k=1

Zik

)2
 = dt + (d2− d)u

and sou = −t/(d − 1). Similarly,

0= E

( d∑
k=1

Zkj

)2
 = dt + (d2− d)v

sov = −t/(d − 1), as well. Finally, the identity

0 =
d∑

k=1

Zik −
d∑

k=1

Zkj

=
d∑

k=1
k 6= j

Zik −
d∑

k=1
k 6=i

Zk j ,

which also holds with probability 1, implies

(d − 1)t + 2(d − 1)(d − 2)u− 2(d − 1)2w + (d − 1)t + 2(d − 1)(d − 2)v = 0,

and so, up to a scalar multiple oft , the entire covariance structure ofνG is determined.
It is easy to construct or simulate such an invariant Gaussian measureνG. Let G be

a randomd × d matrix whose matrix entries are i.i.d. Gaussian random variables. The
distribution ofG is invariant under the actionG 7→ PσG Pτ , but of courseG is, with
probability 1, not inMd.

Let1 = (si j ) be the matrix of the orthogonal projection onto〈e〉⊥, that is, onto the
subspace of vectors inRd whose entries sum to 0, see (4.8). The matrix1 commutes
with all d × d permutation matricesPσ , so Pσ1P−1

σ = 1. Consequently, the random
matrix Z = 1G1 has the desired invariant Gaussian distribution onMd.

As a final remark, we obtain a measure on the set of(d− 1)× (d− 1)matrices that
is invariant under the action of̂Sd × Ŝd by applying the mapϕ(Z) = M of Lemma 5.1.
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Note added in proof(April 1996). The strongd-step conjecture has been proved for
d = 4 and disproved ford ≥ 5 by F. Holt and V. Klee. They construct Dantzig figures
having #(P,w1,w2) = 3

4 · 2d−1, for d ≥ 5. Thed-step conjecture remains open.


