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Abstract. We prove that for anyd, k ≥ 1 there are numbersq = q(d, k) andh = h(d, k)
such that the following holds: LetK be a family of subsets of thed-dimensional Euclidean
space, such that the intersection of any subfamily ofK consisting of at mostq sets can be
expressed as a union of at mostk convex sets. Then the Helly number ofK is at mosth.
We also obtain topological generalizations of some cases of this result. The main result was
independently obtained by Alon and Kalai, by a different method.

1. Results and Open Questions

LetRd denote thed-dimensional Euclidean space. A famous theorem of Helly, discov-
ered in 1913, asserts that ifF is a finite family of convex sets inRd such that anyd+ 1
or fewer sets ofF have a point in common, then also the intersection of all sets ofF is
nonempty. Over the years, a vast body of analogs and generalizations of this result has
been accumulated in the literature, see [Ec] for a recent survey.

A general scheme of a Helly-type theorem is captured by the following definition.
LetK be an arbitrary family of sets. We say thatK hasHelly number h(h is a natural
number) if the following holds for any finite subfamilyF ⊆ K: if the intersection of
any subfamily ofF consisting of≤h sets is nonempty, then

⋂
F (the intersection of all

sets ofF ) is nonempty. Thus, the familyC of all convex sets inRd has Helly number
d + 1.
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Geometry, 1995.
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We prove the following Helly-type result:

Theorem 1. For any k≥ 1, d ≥ 1 there are numbers q= q(d, k) and h= h(d, k)
with the following property. LetK be a family of subsets ofRd such that the intersection
of any subfamily ofK consisting of q or fewer sets can be expressed as a union(not
necessarily disjoint) of at most k convex sets. ThenK has Helly number at most h.

This result was independently obtained by Alon and Kalai [AKa]. Their method is
more complicated than the one presented here (and quite different), on the other hand, they
obtain the result as a consequence of a powerful theorem concerning piercing numbers
of certain families, which they prove by a method developed by Alon and Kleitman
[AK1].

The estimates of the numerical values of the Helly numbers and of the numbers
q(d, k) following from our proof of Theorem 1 are quite large. For instance, for unions
of convex sets in the plane, the current proof gives estimatesh(2, 2) ≤ 20,h(2, 3) ≤ 90,
h(2, 4) ≤ 231, etc. Small improvements are possible by refining the argument, but we
are still probably quite far from the best values. It would be interesting to get better upper
bounds and/or some nontrivial lower-bound examples.

We also prove a partial topological analog of Theorem 1. Before stating it, we recall
the notion of a j -connectedtopological space. A topological spaceX is said to be
(−1)-connected if it is nonempty. Forj = 0, 1, 2, . . . , X is j -connected if it is( j − 1)-
connected and moreover any continuous mappingf of the sphereSj into X can be
extended to a continuous mappinḡf : B j+1 → X, whereB j+1 is the ball bounded
by Sj . In particular, a 0-connected set means just path-connected and nonempty, and 1-
connected means 0-connected and simply connected. Intuitively, a 1-connected subspace
of R3 may not have any “tunnels” but may have “bubbles.”

Theorem 2. For any d≥ 2, k ≥ 1 there is a number h= h(d, k) (where h(d, 1) ≤
d + 2 for d even and h(d, 1) ≤ d + 3 for d odd) with the following property. LetK be
a family of subsets ofRd such that the intersection of any nonempty finite subfamily of
K has at most k path-connected components, each of which is(dd/2e − 1)-connected.
(In particular, for d = 2 we require that any intersection of a finite subfamily ofK has
at most k path-connected components.) ThenK has Helly number at most h.

The author learned of a proof of the simple special cased = 2, k = 1 of Theorem 2
(in a slightly different context) from Nina Amenta. We suspect it was also observed by
others a long time ago, but currently we have no explicit reference.

Currently we do not know whether it is sufficient to restrict the assumption to at most
q-wise intersections for some boundedq = q(d, k) (as can be done in Theorem 1). We
believe that there might be a general result saying that if all at mostq-wise intersections
of sets of a familyK in Rd have “topological complexity” bounded byk, then the Helly
number ofK is bounded in terms ofd andk; hereq would depend onk, d. A definition
of “topological complexity” of a set suitable in this context is yet to be found; perhaps
it could be the minimum number of simplices needed to triangulate the set, or some
number derived from the homology groups.

The rest of the paper is structured as follows. In Section 2 we describe some previous
work related to our result and we mention a recent new motivation for studying Helly-
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type problems. This part is not needed for understanding the proofs. The proofs are given
in Sections 3 (Theorem 1) and 4 (Theorem 2). Section 5 presents two examples whose
meaning is discussed in Section 2 below.

2. Motivation and Related Work

LP-Type Problems. Recently, a new motivation for studying Helly-type results came
from geometric optimization algorithms. Sharir and Welzl [SW] defined a class of op-
timization problems, the so-calledLP-type problems, which encompasses linear pro-
gramming, convex programming, and other natural geometric optimization problems.
They gave an efficient algorithm for solving problems in this class (provided that certain
primitive operations can be implemented efficiently for the problem in question). Also
several other algorithms can be applied for LP-type problems; see [G], [C], [MSW], and
[Ma]. A crucial parameter in these problems is theirdimension, and this is closely related
to the Helly number of suitable set systems inRd. Roughly speaking, if it is desired to
show that the above-mentioned algorithms work fast for an optimization problem with
some set of constraints, then it is necessary to bound the Helly number of certain derived
set systems by a small number. These relations have been investigated by Amenta [A1],
[A2]. We believe that studying Helly-type properties is important for understanding the
structure of LP-type problems and potentially also for developing and analyzing yet
more-efficient algorithms for these problems, or perhaps proving lower bounds for such
algorithms.

Previous Work: Disjoint Unions. Grünbaum and Motzkin [GM] considered Helly-type
theorems for disjoint unions of convex sets. They conjectured the following:

Theorem 3. LetKbe a family of sets inRd such that the intersection of any its subfamily
of size at most k can be expressed as a disjoint union of k closed convex sets. Then the
Helly number ofK is at most k(d + 1).

In this theorem it is important to assume that not only the members ofK, but also their
≤k-wise intersections can be expressed as disjoint unions of at mostk closed convex sets.
For instance, the family of all unions of disjoint pairs of closed convex sets has no finite
Helly number. For the same reason, in Theorem 1 we need an assumption concerning
≤q-wise intersections of sets ofK (rather than sets ofK only).

Examples show that the boundk(d + 1) for the Helly number in Theorem 3 is the
best possible in general. Gr¨unbaum and Motzkin [GM] proved Theorem 3 fork = 2, the
k = 3 case was established by Larman [L], and the general case was proved by Morris
[Mo].1 A short elegant proof of Theorem 3 was given by Amenta [A1].2

1 To which Eckhoff [Ec] remarks “However, Morris’ proof. . . is extremely involved and the validity of
some of his arguments is, at best, doubtful.”

2 Grünbaum and Motzkin in fact conjectured a more general result in an abstract setting. LetB be a family
of sets which isintersectional(that is,B1 ∩ B2 ∈ B for any B1, B2 ∈ B) andnonadditive(that is, no finite
disjoint union of at least two nonempty sets ofB belongs toB) and has Helly number at mosth. Let [B]k

denote the family of all disjoint unions of at mostk members ofB. The conjecture of [GM] can be formulated
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We note that our Theorem 1 implies that, in particular, under the assumptions of
Theorem 3, the Helly number is bounded, but the proof only provides a much worse
bound than the correct valuek(d + 1). On the other hand, in our Theorem 1 the unions
need not be disjoint and the convex sets considered need not be closed.

The closedness assumption in Theorem 3 is important for the value of the Helly
number. We consider a familyK in the plane such that each set as well as the intersection
of each two sets is a disjoint union of two convex sets (not necessarily closed). Gr¨unbaum
and Motzkin [GM] construct such a family with Helly number 9 (instead of 6 as would
be obtained with convex sets replaced by closed convex sets). On the other hand, it is
still possible that the Helly number of any suchK is bounded; Gr¨unbaum and Motzkin
conjecture that 9 is the correct value. Theorem 1 implies a weaker statement, namely
that if it is assumed that the intersection of any at most three sets ofK is a union of at
most two convex sets, then the Helly number is bounded by a constant.

Depth of Intersections and n-Convexity. As was observed in [GM], ifK is a family
such that the intersection of any≤k sets ofK is a union of at mostk closed convex sets,
then the intersection ofany numberof sets ofK is a union of at mostk closed convex sets.
This leads to the question whether something similar holds in the situation of Theorem 1.
Specifically, we might ask for whichd andk there are numbersc = c(d, k), K = K (d, k)
such that the following statement holds:

Statement 4. Suppose thatK is a family inRd such that the intersection of any at most
c sets ofK can be expressed as a union of at mostk convex sets. Then the intersection
of any finite subfamily ofK is a union of at mostK convex sets.

A simple example, presented as Example 9 in Section 5 below, shows that, withK = k
(which would be the strongest form), Statement 4 holds for noc, even in the simplest
cased = k = 2. Example 10 then implies that, ford ≥ 4,k ≥ 2, Statement 4 holds with
noc, K at all.

Example 9 was noted by Pavel Valtr. Later the author found out that a related question
has been investigated in several previous papers (see [PS], [BK], and references therein)
under the heading ofn-convexity, and the examples were essentially known. In particular,
the four-dimensional Example 10 uses almost the same construction as an example due to
Perles (published in [KPS]). We thus include the examples for the reader’s convenience
only.

For d = 2 and perhaps ford = 3, Statement 4 might be true with large enoughc
andK . For d = 2, the results of Perles and Shelah [PS] easily imply that Statement 4

holds, after replacing “convex sets” by “closed convex sets,” withc(2, k) ≤
(

k+ 1

2

)
,

as follows:If K is a family of sets such that the intersection of any at most k sets ofK belongs to[B]k, then the
Helly number ofK is at most kh. The family of all closed (resp. open) convex sets inRd is both intersectional
and nonadditive. On the other hand, nonadditivity fails for the family of all convex sets. Thek = 2, 3 cases
were proved in the above-mentioned papers [GM] and [L], respectively; for largerk, only Morris’ proof seems
to be available: Amenta’s proof of Theorem 3 can also be stated in an abstract setting, but different from the
one just described.
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K (2, k) ≤ k6. A forthcoming paper [MV] improves the boundk6 to O(k3), and shows
that, ford = 2, Statement 4 holds for allk (with suitablec(2, k) andK (2, k)). The case
d = 3 seems to be wide open.

Topological Helly-Type Theorems. Helly’s theorem on convex sets has various topo-
logical generalizations. Helly himself gave a topological version of his theorem in [H].
A modern proof and some generalizations were given by Debrunner [D]. To state some
of them, we recall a few more topological notions.

A topological spaceX is called ahomology cellif it is nonempty and its (singular,
reduced) homology groups of all dimensions vanish; in particular, convex sets are ho-
mology cells. More generally,X is called j -acyclic if all its homology groups up to
dimensionj vanish. We remark that aj -connected topological space isj -acyclic, and
for j ≥ 2 a j -cyclic 1-connected space isj -connected (but acyclic spaces exist which
are not 1-connected).

Helly’s result can be rephrased as follows (see [D]):LetF be a finite family of open
subsets ofRd such that the intersection of any at most d members ofF is a homology
cell, and the intersection of any d+ 1 members is nonempty. Then

⋂
F is a homology

cell; in particular, it is nonempty. As a consequence, assuming that the intersection of
any at mostd members of a familyK of open sets inRd is a homology cell, we get that
the Helly number ofK is d + 1. Debrunner [D] shows that it is enough to assume that
the j -wise intersections of sets ofF are(d − j )-acyclic, j = 1, 2, . . . ,d + 1. He also
generalizes the results to families of open subsets of an arbitraryd-manifold.

In this context, Theorem 2 is of some interest also fork = 1, since the topological the-
orems just mentioned require that the sets in the considered family are homology cells,
while our result allows them to have “holes,” more precisely, a nonzero homology in di-
mensionsdd/2e throughd−1. On the other hand, we assume(dd/2e−1)-connectedness
for all intersections, which is a very strong requirement.

3. Proof for Unions of Convex Sets

In this section we prove Theorem 1.

Let [n] denote the set{1, 2, . . . ,n}. For a setX and a natural numbert , let

(
X

t

)
denote the set of allt-element subsets ofX (we sometimes call themt-sets).

We need a suitabled-dimensional generalization of the well-known fact that a planar
graph withn vertices has onlyO(n) edges. We setb = dd/2e + 1.

Lemma 5. Let d andα > 0 be fixed, and let n= n(d, α) be sufficiently large. Let P

be an n-point set inRd, and letS ⊆
(

P

b

)
be a family of b-sets of P with|S| ≥ α

(
n

b

)
.

Then disjoint sets S, S′ ∈ S exist such thatconv(S) ∩ conv(S′) = ∅.

We remark that, for our proof, it would be sufficient to have this lemma, e.g., with
d + 1 instead ofb, only we get somewhat worse values forq(d, k) andh(d, k). Such a
statement is explicitly proved by Alonet al. [ABFK] (see also [BFL]).
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For d = 3, Lemma 5 is a special case of the results of Dey and Edelsbrunner [DE].
Dey and Pach [DP] consider extensions of a similar method into higher dimensions; they
explicitly prove the statement of the Lemma withd instead ofb, and it seems that their
method can be extended to yield the lemma itself.

Another proof for a general dimension can be given along the lines of Alonet al.
[ABFK]; we only sketch the method here. Consider the hypergraphH with vertex set
V(H) = {(i, j ); i = 1, 2, 3, j = 1, 2, . . . ,b} and edge set

E(H) = {{(i1, 1), (i2, 2), . . . , (i b, b)}; i1, i2, . . . , i b ∈ {1, 2, 3}}

(a completeb-partiteb-uniform hypergraph). By a result of van Kampen [vK] (mentioned
in [S]), the simplicial complex whose maximal simplices are the edges ofH cannot be
embedded intoRd so that no two vertex-disjoint simplices intersect. By the Erd¨os–Stone
theorem, the hypergraph with vertex setP and edge setS contains a copy ofH, see
[ABFK], and the lemma follows.

Our basic approach is to prove Theorem 1 by induction on the number of sets in the
considered finite familyF . One problem here is that we only assume that the intersection
of any subfamily of size≤q is “nice,” i.e., is a union ofk convex sets. As was mentioned
in Section 2 (see Statement 4 and also Example 10 in Section 5), this does not necessarily
mean that intersections of larger subfamilies must be “nice” in this sense. We circumvent
this by introducing another notion of “nice,” which behaves more regularly in this respect.

Definition 6. Let t, j be natural numbers,t ≥ j , and letX be a set inRd. We say that
X hasproperty P(t, j ) if for any t-setT ⊆ X a j -setJ ⊆ T exists such that the convex
hull of J is contained inX.

We note that if a setX is a union of at mostk convex sets andt ≥ k( j −1)+1, thenX
has propertyP(t, j ) (by the pigeonhole principle). PropertyP(t, j ) is more convenient
to work with for our purposes than the property “being a union of≤k convex sets,”
because of the following easy lemma:

Lemma 7. LetK be a family of sets inRd such that the intersection of any at most(
t

j

)
sets ofK has property P(t, j ). Then the intersection of any subfamily ofK has

property P(t, j ).

Proof. Let X be the intersection of a subfamilyF ⊆ K, and suppose that property
P(t, j ) fails for X, that is, at-setT ⊆ X can be found such that none of the convex

hulls of its j -sets is fully contained inX. For eachJ ∈
(

T

j

)
, fix a setFJ ∈ F with

conv(J) 6⊆ FJ . Then propertyP(t, j ) also fails for the intersection⋂
J∈(T

j )

FJ .
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We fix t = k(b− 1) + 1, q = q(d, k) =
(

t

b

)
. Then the assumption of Theorem 1

with this value ofq implies that the intersection of any at mostq sets of sets ofK has
propertyP(t, b), and by Lemma 7 any intersection of sets ofK has propertyP(t, b).
Hence Theorem 1 is proved by establishing the following:

Proposition 8. For any d≥ 1, t ≥ b = dd/2e + 1 there is a number h= h(d, t) with
the following property. LetK be a family of subsets ofRd such that the intersection of
any of its finite subfamily has property P(t, b). ThenK has Helly number at most h.

Proof. Throughout the proof,d andt are treated as constants (in theO, Ä notation).
Let h be sufficiently large so that all estimates below are valid (by inspecting the current
proof and a proof of Lemma 5, a specific value forh = h(d, t) can be found).

To prove thatK has Helly numberh it is enough to show that ifF ⊆ K is any
subfamily ofh+ 1 sets ofK such that the intersection of eachh sets ofF is nonempty,
then

⋂
F 6= ∅ (the case of a largerF is then handled by induction on the number of

elements ofF ). Let the sets ofF be numberedF1, F2, . . . , Fn, n = h+ 1. For eachi ,
choose a pointpi ∈

⋂
j∈[n]\{i } Fj .

Consider at-set J ∈
(

[n]

t

)
. All the points pj , j ∈ J, belong to the intersection

XJ =
⋂

j∈[n]\J Fj . SinceXJ has propertyP(t, b), we can fix ab-setK = K (J) ⊆ J
such that1K := conv{pj ; j ∈ K } is contained inXJ (if there are more choices for
K (J) fix one arbitrarily). In this situation we assign the setJ\K to theb-setK = K (J)
as a label.

As we fix theK (J) for eacht-set J, labels are assigned tob-sets. Oneb-setK can
receive one or several labels, or no label at all. IfL is one of the labels ofK , then we
know that the(b− 1)-simplex1K is contained in all setsFj with j 6∈ L ∪ K . We call
a b-setK good if it has at least one label but the intersection of all its labels is empty,
and callK badotherwise. Thus, for a goodb-setK ,1K is contained in all setsFj with
j 6∈ K .

Each badb-set is assigned at most

(
n− b− 1

t − b− 1

)
labels, and there are

(
n

b

)
b-sets,

thus at mostO(nt−1) labels are assigned to badb-sets. Since

(
n

t

)
labels are assigned

altogether, at leastÄ(nt ) labels are assigned to goodb-sets. A goodb-set is assigned
O(nt−b) labels, therefore there areÄ(nb) goodb-sets.

By Lemma 5, there are two disjoint goodb-setsK , K ′ with 1K ∩1K ′ 6= ∅. By the
above-mentioned property of a goodb-set,1K is contained in all setsFj with j 6∈ K ,
and similarly for1K ′ . Thus,∅ 6= 1K ∩1K ′ ⊆

⋂n
j=1 Fj .

4. Proof of the Topological Result

The proof of Theorem 2 begins similarly to the proof of Proposition 8. We consider a
family F = {F1, . . . , Fn}, with n = h + 1 sufficiently large, and pointsp1, . . . , pn,
with pi belonging to all sets ofF but possiblyFi . We sett = k + 1, and consider
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a t-set J ∈
(

[n]

t

)
. We know that all pointspj , j ∈ J, belong to the intersection

XJ =
⋂

i∈[n]\J Fi , and this is a union of at mostk path-connected components. Therefore,
there is a pairP(J) = { j1, j2} ⊂ J of indices such thatpj1 andpj2 belong to a common
path-connected component ofXJ (in fact, there may be many pairs, so we fix one
arbitrarily for eacht-setJ).

The t-set considered is linearly ordered, and the pairP(J) can be uniquely encoded
by specifying a pair of elements of the set{1, 2, . . . , t} (we call it thetypeof the pair

P(J)). The number of possible types is

(
t

2

)
, the important fact is that it is bounded by

a function oft . In this way, eachJ ∈
(

[n]

t

)
is assigned one of a bounded number of

types, which can be viewed as coloring allt-sets on [n]. If m is a prescribed parameter
andn = n(m, t) is chosen sufficiently large, by Ramsey’s theorem (see, e.g., [GRS]) an

m-element subsetM ⊆ [n] exists such that allt-setsJ ∈
(

M

t

)
have the same color. In

our case this means that they all have the same type of the pairP(J).

The Planar Case. First we finish the proof for the cased = 2, which is somewhat
simpler than the case of an arbitrary dimension. Choose a fixed nonplanar graphG, say
G = K5, and letV be its vertex set andE its edge set. We assume that a setM ⊆ [n]
has been selected as above, so that allt-sets have the same type ofP(J), and|M | is
sufficiently large (as we will see,|M | ≥ 5+10(t−2) suffices). We illustrate the method
for k = 2 (thent = 3) and assuming that the type of the pair is�� ��• • ◦ , the other cases
are quite similar. To each vertexv ∈ V we assign a pointϕ(v) ∈ M and to each edge
e∈ E we assign at-set8(e) of points ofM , in such a way that:

(C1) For any two disjointe, e′ ∈ E, we have8(e) ∩8(e′) = ∅, and ife 6= e′ share
a vertexv, then8(e) ∩8(e′) = {ϕ(v)}.

(C2) For eache = {u, v} ∈ E, the pointsϕ(u) andϕ(v) are just the points of the
pair P(8(e)).

Such an assignment, for the particular type of the pairP(J) of 3-sets, may be chosen
as indicated in Fig. 1 (the solid circles represent the pointsϕ(v1), . . . , ϕ(v5), the open
circles the other points ofM , and the triples are marked by the segments at various levels
connected to their points). For largert and/or other types of the pairsP(J), we proceed
similarly: First we map the vertices ofG by ϕ to distinct points ofM , leaving large
enough gaps among them. For each edgee= {u, v}, its8-image consists ofϕ(u) and
ϕ(v) andt − 2 other points ofM , chosen so that they do not occur in the image of any
other edge, and so thatP(8(e)) = {ϕ(u), ϕ(v)}.

Now by (C2), for each edgee= {u, v} ∈ E, the pointspϕ(u) andpϕ(v) lie in the same
path-connected component of the intersectionX8(e) =

⋂
j∈[n]\8(e) Fj , so we can choose

a path1e ⊆ X8(e) connectingpϕ(u) and pϕ(v). These paths together yield a drawing of
K5, so some two paths belonging to vertex-disjoint edgese, e′ cross. The intersection
of these paths belongs to all setsFi with i 6∈ 8(e), and also to allFi with i 6∈ 8(e′).
However,8(e) ∩8(e′) = ∅ by (C1) and we are done.
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Fig. 1. The embedding8 for the graphK5.

Arbitrary Dimension. To complete the proof of Theorem 2 for a general dimensiond,
we need a finitedd/2e-dimensional simplicial complexS, which will play the role of the
nonplanar graphK5 used in the planar case. Precisely, we use the following property:
Wheneverf : ‖S‖ → Rd is a continuous mapping, vertex-disjoint simplicess, s′ ∈ S
exist such thatf (‖s‖) ∩ f (‖s′‖) 6= ∅ (here‖S‖ denotes thepolyhedronof S, which is
the topological space of some geometric realization ofS, and, for a simplexs ∈ S, ‖s‖
means the closed subset of‖S‖ corresponding to the simplexs; see, e.g., [Mu] for an
introduction to simplicial complexes). We might use, e.g., the complex mentioned in the
proof sketch for Lemma 5, or we may apply a more well-known result of van Kampen
[vK] and Flores [F], which says that ifS is the j -skeleton of the(2 j + 2)-dimensional
simplex, then it has the required property ford ≤ 2 j .

Let a suitable simplicial complexS be fixed. We letG be its 1-skeleton, consisting
of the vertices and 1-simplices (edges) ofS. HenceG is formally a one-dimensional
simplicial complex, but we may also regard it as a graph with vertex setV and edge set
E consisting of all one-dimensional simplices ofS. We perform forG the construction
we did for K5 in the planar case. Thus, we have a sufficiently large setM ⊆ [n] of
indices such that allt-sets ofM have the same type, an injective mappingϕ: V → M , a

mapping8: E →
(

M

t

)
satisfying (C1) and (C2), and a “drawing” ofG in Rd, that is,

a continuous mappingf : ‖G‖ → Rd. This f satisfiesf (v) = pϕ(v) for all v ∈ V and
f (‖e‖) ⊆ X8(e) for each edgee∈ E.

We extend the mappingf continuously to the whole‖S‖. First we extend the definition
of the mapping8 to all simplicess ∈ S. 8(s) is already defined ifs ∈ S is an edge
(1-simplex). Ifs= {v} ∈ S is a vertex, we simply put8(s) = {ϕ(v)}, and fors ∈ S of
dimension≥ 2 we let

8(s) =
⋃

e∈E;e⊆s

8(e).

It is easy to check that this extended8 satisfies:

(C1′) For any two vertex-disjoint simplicess, s′ ∈ S, we have8(s) ∩8(s′) = ∅.
The continuous extension of the mappingf is constructed inductively. Suppose thatf

has already been defined at all points of each‖s‖, wheres ∈ S is a simplex of dimension
less thanj (for some j, 2≤ j ≤ dd/2e), and moreover we have, for any suchs,

f (‖s‖) ⊆ X8(s). (1)
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We define f on j -dimensional simplices. Consider aj -dimensional simplexs ∈ S.
Let ‖∂s‖ denote the portion of‖s‖ corresponding to proper faces ofs. This set is
homeomorphic to the( j −1)-sphereSj−1, and f (‖∂s‖) is contained inX8(s), as follows
from (1) applied on the( j − 1)-faces ofs. Since‖∂s‖ is path-connected, its image
is contained in a single path-connected component ofX8(s). By our assumptions, this
component is( j −1)-connected, so we can extendf continuously to the relative interior
of ‖s‖, in such a way that the image is still contained inX8(s). This finishes the induction
step.

Having definedf on the whole‖S‖, by the choice ofS we know there are two vertex-
disjoint facess, s′ ∈ S with f (‖s‖)∩ f (‖s′‖) 6= ∅. By (1), we havef (‖s‖)∩ f (‖s′‖) ⊆
X8(s) ∩ X8(s′) = X8(s)∩8(s′) = X∅ =

⋂
[n] Fi , by (C1′). This concludes the proof.

5. Examples

In this section we present examples related to Statement 4 discussed in Section 2.

Example 9. For any odd integern, setsF1, . . . , Fn ⊆ R2 exist such that the intersection
of any at mostn − 1 of them is a union of two convex sets, while

⋂n
i=1 Fi cannot be

expressed as a union of fewer than three convex sets.

Proof. First, let C be a regular convexn-gon and letv1, . . . , vn denote its vertices
numbered along the circumference. We letFi beC minus the relative interior of the edge
vi vi+1 (vn+1 meaningv1). If the intersection

⋂n
i=1 Fi were a union of two convex sets,

there would be two consecutive verticesvi , vi+1 belonging to the same convex set, but
this is impossible, since the interior of the edgevi vi+1 is missing from the intersection.
On the other hand, for any intersectionX of fewer thann of the Fi , there is one edge,
sayvnv1, which is contained inX. Let A1 be the setX minus all verticesvi with i odd,
and letA2 be X minus all verticesvi with i even. Then we haveX = A1 ∪ A2 and it is
easily checked thatA1 andA2 are convex.

The example can be easily modified so that setsFi are closed (or open). Consider the
midpointmi of the edgevi vi+1. Movemi a little bit toward the center ofC, obtaining a
pointm̄i , and letFi beC minus the interior of the trianglevi m̄i vi+1. Figure 2 illustrates
the construction forn = 5: the left part shows the setF1, and the right part the set⋂5

i=1 Fi .

Example 10. For any given integersc, K , there aren and setsF1, . . . , Fn ⊆ R4 such
that the intersection of any at mostc of them is a union of two convex sets, while

⋂n
i=1 Fi

cannot be expressed as a union of fewer thanK convex sets.

Proof. LetG be aK -chromatic graph such that any subgraph ofG with at mostc edges
is 2-colorable (the existence of such a graph follows from [Er], say). LetC be a cyclic
polytope inR4 with |V(G)| vertices, and suppose that its vertices are identified with the
vertex setV of G. Any two vertices ofC are connected by an edge (one-dimensional
face) ofC. Let e1, . . . ,en be the edges ofG. Forei = {u, v}, we letFi beC minus the
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Fig. 2. Illustration to Example 9.

relative interior of the edgeuv of the polytopeC. The set
⋂n

i=1 Fi cannot be expressed
as a union of fewer thanK convex sets, since this would induce a proper coloring ofG
by less thanK colors. On the other hand, ifX =⋂ei∈E′ Fi , whereE′ is a set of at most
c edges ofG, we letχ : V → {1, 2} be a 2-coloring of the graph with edge setE′. For
j = 1, 2 we setAj = X\{v ∈ V;χ(v) 6= j }. As in the previous example, it may be
checked that theAj are convex and coverX. A modification with allFi closed or allFi

open is again possible.
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[BFL] I. B árány, Z. Füredi, and L. Lovász. On the number of halving planes.Combinatorica, 10:175–183,

1990.
[BK] M. Breen and D. C. Kay. General decomposition theorems form-convex sets in the plane.Israel J.

Math., 24:217–233, 1976.



12 J. Matoušek
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