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Abstract. We prove that for ang, k > 1 there are numbers= q(d, k) andh = h(d, k)

such that the following holds: L&t be a family of subsets of thiddimensional Euclidean
space, such that the intersection of any subfamili{ @fonsisting of at mog sets can be
expressed as a union of at mastonvex sets. Then the Helly number/6fis at mosth.

We also obtain topological generalizations of some cases of this result. The main result was
independently obtained by Alon and Kalai, by a different method.

1. Results and Open Questions

Let RY denote thal-dimensional Euclidean space. A famous theorem of Helly, discov-
ered in 1913, asserts that#f s a finite family of convex sets iR? such that ang + 1

or fewer sets ofF have a point in common, then also the intersection of all sefs isf
nonempty. Over the years, a vast body of analogs and generalizations of this result has
been accumulated in the literature, see [Ec] for a recent survey.

A general scheme of a Helly-type theorem is captured by the following definition.
Let IC be an arbitrary family of sets. We say thiathasHelly number h(h is a natural
number) if the following holds for any finite subfamilff € K: if the intersection of
any subfamily ofF consisting of<h sets is nonempty, thef F (the intersection of all
sets of F) is nonempty. Thus, the familg of all convex sets iR has Helly number
d+1.

* This research was supported by Czech Republic Grar€®201/94/2167, Charles University Grants
Nos. 351 and 361 and by EC Cooperative Action IC-1000 (project ALTEC: Algorithms for Future Technolo-
gies). A preliminary version appearedmnoceedings of the 10th Annual ACM Symposium on Computational
Geometry1995.
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We prove the following Helly-type result:

Theorem 1. Forany k> 1,d > 1there are numbers g q(d, k) and h= h(d, k)
with the following propertyLet XC be a family of subsets & such that the intersection
of any subfamily ofC consisting of q or fewer sets can be expressed as a Unioh
necessarily disjointof at most k convex sefshenk has Helly number at most h

This result was independently obtained by Alon and Kalai [AKa]. Their method is
more complicated than the one presented here (and quite different), on the other hand, they
obtain the result as a consequence of a powerful theorem concerning piercing numbers
of certain families, which they prove by a method developed by Alon and Kleitman
[AK1].

The estimates of the numerical values of the Helly numbers and of the numbers
g(d, k) following from our proof of Theorem 1 are quite large. For instance, for unions
of convex sets in the plane, the current proof gives estintg2®) < 20,h(2, 3) < 90,

h(2, 4) < 231, etc. Small improvements are possible by refining the argument, but we
are still probably quite far from the best values. It would be interesting to get better upper
bounds and/or some nontrivial lower-bound examples.

We also prove a partial topological analog of Theorem 1. Before stating it, we recall
the notion of aj-connectedtopological space. A topological spa¢eis said to be
(—1)-connected if itis nonempty. Fgr=0, 1, 2, ..., X is j-connected if it igj — 1)-
connected and moreover any continuous mapgingf the sphereSi into X can be
extended to a continuous mappirig Bi*? — X, whereBi+! is the ball bounded
by SI. In particular, a 0-connected set means just path-connected and nonempty, and 1-
connected means 0-connected and simply connected. Intuitively, a 1-connected subspace
of R® may not have any “tunnels” but may have “bubbles.”

Theorem 2. For any d > 2,k > 1 there is a number h= h(d, k) (where hd, 1) <

d + 2ford even and td, 1) < d + 3 for d odd with the following propertyLet XC be

a family of subsets d&¢ such that the intersection of any nonempty finite subfamily of
K has at most k path-connected componesgeh of which ig[d/2] — 1)-connected

(In particular, for d = 2 we require that any intersection of a finite subfamilykohas

at most k path-connected componeérithenk has Helly number at most h

The author learned of a proof of the simple special chse2, k = 1 of Theorem 2
(in a slightly different context) from Nina Amenta. We suspect it was also observed by
others a long time ago, but currently we have no explicit reference.

Currently we do not know whether it is sufficient to restrict the assumption to at most
g-wise intersections for some boundgd-= q(d, k) (as can be done in Theorem 1). We
believe that there might be a general result saying that if all at qr@s8se intersections
of sets of a familyiC in RY have “topological complexity” bounded tky then the Helly
number ofkC is bounded in terms af andk; hereq would depend o, d. A definition
of “topological complexity” of a set suitable in this context is yet to be found; perhaps
it could be the minimum number of simplices needed to triangulate the set, or some
number derived from the homology groups.

The rest of the paper is structured as follows. In Section 2 we describe some previous
work related to our result and we mention a recent new motivation for studying Helly-
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type problems. This part is not needed for understanding the proofs. The proofs are given
in Sections 3 (Theorem 1) and 4 (Theorem 2). Section 5 presents two examples whose
meaning is discussed in Section 2 below.

2. Motivation and Related Work

LP-Type Problems Recently, a new motivation for studying Helly-type results came
from geometric optimization algorithms. Sharir and Welzl [SW] defined a class of op-
timization problems, the so-callddP-type problemswhich encompasses linear pro-
gramming, convex programming, and other natural geometric optimization problems.
They gave an efficient algorithm for solving problems in this class (provided that certain
primitive operations can be implemented efficiently for the problem in question). Also
several other algorithms can be applied for LP-type problems; see [G], [C], [MSW], and
[Ma]. A crucial parameter in these problems is tl#inensionand this is closely related

to the Helly number of suitable set system&&h Roughly speaking, if it is desired to
show that the above-mentioned algorithms work fast for an optimization problem with
some set of constraints, then it is necessary to bound the Helly number of certain derived
set systems by a small number. These relations have been investigated by Amenta [A1],
[A2]. We believe that studying Helly-type properties is important for understanding the
structure of LP-type problems and potentially also for developing and analyzing yet
more-efficient algorithms for these problems, or perhaps proving lower bounds for such
algorithms.

Previous WorkDisjoint Unions  Griinbaum and Motzkin [GM] considered Helly-type
theorems for disjoint unions of convex sets. They conjectured the following:

Theorem 3. LetK be afamily of setsiRY such that the intersection of any its subfamily
of size at most k can be expressed as a disjoint union of k closed convéeihagishe
Helly number ofC is at most kd + 1).

In this theorem it is important to assume that not only the membé¢s ladit also their
<k-wise intersections can be expressed as disjoint unions of akmlasted convex sets.
For instance, the family of all unions of disjoint pairs of closed convex sets has no finite
Helly number. For the same reason, in Theorem 1 we need an assumption concerning
<qg-wise intersections of sets &f (rather than sets df only).

Examples show that the boukdd + 1) for the Helly number in Theorem 3 is the
best possible in general. Glaum and Motzkin [GM] proved Theorem 3 foe= 2, the
k = 3 case was established by Larman [L], and the general case was proved by Morris
[Mo].* A short elegant proof of Theorem 3 was given by Amenta [A1].

1 To which Eckhoff [Ec] remarks “However, Morris’ proof . is extremely involved and the validity of
some of his arguments is, at best, doubtful.”

2 Griinbaum and Motzkin in fact conjectured a more general result in an abstract settifdo atfamily
of sets which igntersectional(that is,B; N B, € B for any By, B, € B) andnonadditive(that is, no finite
disjoint union of at least two nonempty sets®fbelongs to3) and has Helly number at mokt Let [B]x
denote the family of all disjoint unions of at mdsmembers of5. The conjecture of [GM] can be formulated



4 J. Matowsek

We note that our Theorem 1 implies that, in particular, under the assumptions of
Theorem 3, the Helly number is bounded, but the proof only provides a much worse
bound than the correct vallgd + 1). On the other hand, in our Theorem 1 the unions
need not be disjoint and the convex sets considered need not be closed.

The closedness assumption in Theorem 3 is important for the value of the Helly
number. We consider a familg in the plane such that each set as well as the intersection
of each two sets is a disjoint union of two convex sets (not necessarily closedp&bm
and Motzkin [GM] construct such a family with Helly number 9 (instead of 6 as would
be obtained with convex sets replaced by closed convex sets). On the other hand, it is
still possible that the Helly number of any sukhis bounded; Quifibaum and Motzkin
conjecture that 9 is the correct value. Theorem 1 implies a weaker statement, namely
that if it is assumed that the intersection of any at most three séfsi®f union of at
most two convex sets, then the Helly number is bounded by a constant.

Depth of Intersections and n-ConvexityAs was observed in [GM], ifC is a family

such that the intersection of arsk sets ofK is a union of at mosk closed convex sets,
then the intersection @iny numbebf sets ofC is a union of at modt closed convex sets.
This leads to the question whether something similar holds in the situation of Theorem 1.
Specifically, we might ask for whiathandk there are numbers= c(d, k), K = K(d, k)

such that the following statement holds:

Statement 4. Suppose thaft is a family inRY such that the intersection of any at most
¢ sets ofKC can be expressed as a union of at mosbnvex sets. Then the intersection
of any finite subfamily ofC is a union of at mosK convex sets.

A simple example, presented as Example 9in Section 5 below, shows thal, witk
(which would be the strongest form), Statement 4 holds foc,reven in the simplest
casead = k = 2. Example 10 then implies that, fdr> 4,k > 2, Statement 4 holds with
noc, K atall.

Example 9 was noted by Pavel Valtr. Later the author found out that a related question
has been investigated in several previous papers (see [PS], [BK], and references therein)
under the heading @f-convexityand the examples were essentially known. In particular,
the four-dimensional Example 10 uses almost the same construction as an example due to
Perles (published in [KPS]). We thus include the examples for the reader’s convenience
only.

Ford = 2 and perhaps fod = 3, Statement 4 might be true with large enough
andK. Ford = 2, the results of Perles and Shelah [PS] easily imply that Statement 4

k+1
holds, after replacing “convex sets” by “closed convex sets,” with k) < ( er )

as follows:If K is a family of sets such that the intersection of any at most k sétdefongs td Bk, then the

Helly number ofC is at most khThe family of all closed (resp. open) convex set&fhis both intersectional

and nonadditive. On the other hand, nonadditivity fails for the family of all convex setsk Ene, 3 cases

were proved in the above-mentioned papers [GM] and [L], respectively; for llygety Morris’ proof seems

to be available: Amenta’s proof of Theorem 3 can also be stated in an abstract setting, but different from the
one just described.
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K (2, k) < k®. A forthcoming paper [MV] improves the bourkd to O(k®), and shows
that, ford = 2, Statement 4 holds for dtl(with suitablec(2, k) andK (2, k)). The case
d = 3 seems to be wide open.

Topological Helly-Type TheoremsHelly's theorem on convex sets has various topo-
logical generalizations. Helly himself gave a topological version of his theorem in [H].
A modern proof and some generalizations were given by Debrunner [D]. To state some
of them, we recall a few more topological notions.

A topological spaceX is called ahomology celif it is nonempty and its (singular,
reduced) homology groups of all dimensions vanish; in particular, convex sets are ho-
mology cells. More generallyX is called j-acyclicif all its homology groups up to
dimensionj vanish. We remark that g-connected topological spacejisacyclic, and
for j > 2 aj-cyclic 1-connected space jsconnected (but acyclic spaces exist which
are not 1-connected).

Helly's result can be rephrased as follows (see [Dgt.F be a finite family of open
subsets oRY such that the intersection of any at most d members & a homology
cell, and the intersection of any ¢ 1 members is nonempfyhen( F is a homology
cell; in particular, it is nonemptyAs a consequence, assuming that the intersection of
any at mostl members of a familyC of open sets ilRY is a homology cell, we get that
the Helly number ofC isd + 1. Debrunner [D] shows that it is enough to assume that
the j-wise intersections of sets ¢f are(d — j)-acyclic,j = 1,2,...,d 4+ 1. He also
generalizes the results to families of open subsets of an arbdrargnifold.

In this context, Theorem 2 is of some interest als&kfer 1, since the topological the-
orems just mentioned require that the sets in the considered family are homology cells,
while our result allows them to have “holes,” more precisely, a nonzero homology in di-
mensiongd/2] throughd — 1. On the other hand, we assuffid/2] — 1)-connectedness
for all intersections, which is a very strong requirement.

3. Proof for Unions of Convex Sets

In this section we prove Theorem 1.
X
Let [n] denote the setl, 2, ..., n}. For a setX and a natural number, let (t)

denote the set of atlelement subsets of (we sometimes call themsets).
We need a suitablé-dimensional generalization of the well-known fact that a planar
graph withn vertices has onlYD(n) edges. We sdi = [d/2] + 1.

Lemmab5. Letd anda > 0be fixedand let n= n(d, «) be sufficiently largeLet P
P
be an n-point set ifRY, and letS < <b> be a family of b-sets of P wits| > a(E).
Then disjoint sets, 8 € S exist such thatonuS) N conuS) = ¢.
We remark that, for our proof, it would be sufficient to have this lemma, e.g., with

d + 1 instead ob, only we get somewhat worse values égd, k) andh(d, k). Such a
statement is explicitly proved by Aloet al. [ABFK] (see also [BFL]).
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Ford = 3, Lemma 5 is a special case of the results of Dey and Edelsbrunner [DE].
Dey and Pach [DP] consider extensions of a similar method into higher dimensions; they
explicitly prove the statement of the Lemma withinstead ofb, and it seems that their
method can be extended to yield the lemma itself.

Another proof for a general dimension can be given along the lines of éla
[ABFK]; we only sketch the method here. Consider the hypergfdphith vertex set
VH) ={(G,j);i=1,223j=12,...,b} and edge set

EH) = {{(i1, 1), (i2,2), ..., (ip, D)};i1,02,...,0p € {1, 2, 3}}

(a completd-partiteb-uniform hypergraph). By a result of van Kampen [vK] (mentioned
in [S]), the simplicial complex whose maximal simplices are the edgés cdinnot be
embedded int®9 so that no two vertex-disjoint simplices intersect. By thedSreStone
theorem, the hypergraph with vertex $&tand edge sef contains a copy o#, see
[ABFK], and the lemma follows. O

Our basic approach is to prove Theorem 1 by induction on the number of sets in the
considered finite family¥. One problem here is that we only assume that the intersection
of any subfamily of size<q is “nice,” i.e., is a union ok convex sets. As was mentioned
in Section 2 (see Statement 4 and also Example 10 in Section 5), this does not necessarily
mean that intersections of larger subfamilies must be “nice” in this sense. We circumvent
this by introducing another notion of “nice,” which behaves more regularly in this respect.

Definition 6. Lett, j be natural numbers$,> j, and letX be a setirRY. We say that
X hasproperty A, j) if for any t-setT C X a j-setd C T exists such that the convex
hull of J is contained inX.

We note that if a seX is a union of at mogt convex sets and> k(j — 1)+ 1, thenX
has propertyP(t, j) (by the pigeonhole principle). Proper(t, j) is more convenient
to work with for our purposes than the property “being a union<@&fconvex sets,”
because of the following easy lemma:

Lemma7. LetK be a family of sets ifRY such that the intersection of any at most
t
j sets ofKC has property Rt, j). Then the intersection of any subfamily/6fhas

property R, j).

Proof. Let X be the intersection of a subfamiff C K, and suppose that property
P(t, j) fails for X, that is, at-setT C X can be found such that none of the convex

hulls of its j-sets is fully contained irX. For eachd € ( . |, fix a setF; € F with

conuJ) € F;. Then propertyP(t, j) also fails for the intersection

ﬂ Fs. O

Je({)
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t
We fixt = k(b—-1)+ 1,9 =qd, k) = (b) Then the assumption of Theorem 1

with this value ofq implies that the intersection of any at magsets of sets ok has
property P(t, b), and by Lemma 7 any intersection of setskbhas propertyP(t, b).
Hence Theorem 1 is proved by establishing the following:

Proposition 8. Foranyd> 1,t > b = [d/2] 4 1 there is a number k= h(d, t) with
the following propertyLet K be a family of subsets & such that the intersection of
any of its finite subfamily has property(?b). Thenk has Helly number at most h

Proof. Throughout the proofl] andt are treated as constants (in B¢  notation).
Let h be sufficiently large so that all estimates below are valid (by inspecting the current
proof and a proof of Lemma 5, a specific value o= h(d, t) can be found).

To prove thatC has Helly numbeh it is enough to show that ifF € K is any
subfamily ofh + 1 sets offC such that the intersection of ealslsets ofF is nonempty,
then(| F # @ (the case of a largeF is then handled by induction on the number of
elements ofF). Let the sets ofF be numberedr,, F,, ..., F,,n = h + 1. For each,
choose a poinpi € ;i) Fi-

. n . . . .
Consider a-setJ ¢ ([t])' All the points pj, j € J, belong to the intersection

X5 = ﬂje[n]\J F;. Since X, has propertyP(t, b), we can fix ab-setK = K(J) € J
such thatAx = conV{p;; j € K} is contained inX; (if there are more choices for
K (J) fix one arbitrarily). In this situation we assign the &K to theb-setK = K(J)
as a label.

As we fix theK (J) for eacht-setJ, labels are assigned bBsets. Oné-setK can
receive one or several labels, or no label at alL & one of the labels oK, then we
know that the(b — 1)-simplexAk is contained in all set; with j ¢ L U K. We call
ab-setK goodif it has at least one label but the intersection of all its labels is empty,
and callK badotherwise. Thus, for a godatsetK, Ak is contained in all setB; with
j K.

Each badb-set is assigned at mo{t?

11> labels, and there arér;) b-sets,

thus at mosO(n'~1) labels are assigned to bhesets. Since(?) labels are assigned

altogether, at leas® (n') labels are assigned to gobesets. A goodb-set is assigned
O(n'~b) labels, therefore there afe(n®) goodb-sets.

By Lemma 5, there are two disjoint gobesetsK, K’ with Ax N Ag: # @. By the
above-mentioned property of a gobeset, Ak is contained in all set§; with j ¢ K,
and similarly forAy.. Thus,d # Ax N Ax C ﬂ?zl Fi. O

4. Proof of the Topological Result
The proof of Theorem 2 begins similarly to the proof of Proposition 8. We consider a

family 7 = {Fy, ..., Ry}, with n = h 4 1 sufficiently large, and pointps, ..., pn,
with p; belonging to all sets ofF but possiblyF;. We sett = k + 1, and consider
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n _ . . .
at-setd e <[t])' We know that all pointsp;, j € J, belong to the intersection

Xy = ﬂie[nm Fi, andthisis a union of at molspath-connected components. Therefore,
there is a paiP (J) = {j1, jo} € J of indices such thap;, and p;, belong to a common
path-connected component &f; (in fact, there may be many pairs, so we fix one
arbitrarily for eacht-setJ).

Thet-set considered is linearly ordered, and the 4id) can be uniquely encoded
by specifying a pair of elements of the &t 2, ..., t} (we call it thetypeof the pair

t
P(J)). The number of possible types(sz), the important fact is that it is bounded by
[n]
t

a function oft. In this way, eachl < is assigned one of a bounded number of

types, which can be viewed as coloringtaliets on fi]. If mis a prescribed parameter
andn = n(m, t) is chosen sufficiently large, by Ramsey’s theorem (see, e.g., [GRS]) an

. M
m-element subsd¥l C [n] exists such that ati-setsJ € ¢ have the same color. In

our case this means that they all have the same type of th& pajr

The Planar Case First we finish the proof for the cagk = 2, which is somewhat
simpler than the case of an arbitrary dimension. Choose a fixed nonplanar@ragh
G = Ks, and letV be its vertex set anét its edge set. We assume that aBeiC [n]
has been selected as above, so that-aéits have the same type BfJ), and|M| is
sufficiently large (as we will seéM | > 54 10(t — 2) suffices). We illustrate the method
for k = 2 (thent = 3) and assuming that the type of the paigdSs o), the other cases
are quite similar. To each vertexe V we assign a poinp(v) € M and to each edge
e € E we assign a-set®d(e) of points of M, in such a way that:

(C1) For any two disjoing, € € E, we haved(e) N &(¢') = @, and ife # € share
a vertexv, then®(e) N ®(€) = {p(v)}.

(C2) For eacke = {u, v} € E, the pointsp(u) and¢(v) are just the points of the
pair P(®(e)).

Such an assignment, for the particular type of the pdid) of 3-sets, may be chosen
as indicated in Fig. 1 (the solid circles represent the paiiits), .. ., ¢(vs), the open
circles the other points d¥l, and the triples are marked by the segments at various levels
connected to their points). For largeand/or other types of the pai(J), we proceed
similarly: First we map the vertices @ by ¢ to distinct points ofM, leaving large
enough gaps among them. For each eglge {u, v}, its ®-image consists ap(u) and
¢(v) andt — 2 other points oM, chosen so that they do not occur in the image of any
other edge, and so th&(®(e)) = {¢(u), p(v)}.

Now by (C2), for each edge= {u, v} € E, the pointsp,, andp,) lie in the same
path-connected component of the interseckaie) = () (e Fi» SO We can choose
a pathAe € Xo e connectingp,w) and p,«). These paths together yield a drawing of
Ks, so some two paths belonging to vertex-disjoint edges cross. The intersection
of these paths belongs to all séiswith i ¢ ®(e), and also to allF; with i ¢ ®(€).
However,®(e) N & (¢') = ¥ by (C1) and we are done.
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Fig. 1. The embedding for the graphKs.

Arbitrary Dimension To complete the proof of Theorem 2 for a general dimendion
we need a finitéd /2]-dimensional simplicial compleX, which will play the role of the
nonplanar graptKs used in the planar case. Precisely, we use the following property:
Wheneverf: ||S|| — RY is a continuous mapping, vertex-disjoint simplises’ € S
exist such thaf (||s|)) N f(||S'|]) # @ (here||S| denotes th@olyhedronof S, which is
the topological space of some geometric realizatiof,adnd, for a simples € S, ||s||
means the closed subset|#| corresponding to the simplex see, e.g., [Mu] for an
introduction to simplicial complexes). We might use, e.g., the complex mentioned in the
proof sketch for Lemma 5, or we may apply a more well-known result of van Kampen
[vK] and Flores [F], which says that & is the j-skeleton of th&2j + 2)-dimensional
simplex, then it has the required property bk 2j.

Let a suitable simplicial compleX be fixed. We lefG be its 1-skeleton, consisting
of the vertices and 1-simplices (edges)&fHenceG is formally a one-dimensional
simplicial complex, but we may also regard it as a graph with verte¥ setd edge set
E consisting of all one-dimensional simplices$®fWe perform forG the construction
we did for K5 in the planar case. Thus, we have a sufficiently largeMset [n] of
indices such that atlsets ofM have the same type, an injective mappiny — M, a

M
mapping®: E — (t ) satisfying (C1) and (C2), and a “drawing” & in RY, that is,

a continuous mapping: |G| — RY. This f satisfiesf (v) = Py forallv e V and
f(llell) € X for each edge € E.

We extend the mappinfycontinuously to the wholgS||. Firstwe extend the definition
of the mappingd to all simplicess € S. ®(s) is already defined i§ € S is an edge
(1-simplex). Ifs = {v} € S is a vertex, we simply pub(s) = {¢(v)}, and fors € S of
dimension> 2 we let

o) = |J @e@.

ecE;eCs
It is easy to check that this extendédsatisfies:
(CY) For any two vertex-disjoint simplices s’ € S, we haved(s) N ®(s') = @.

The continuous extension of the mappihg constructed inductively. Suppose that
has already been defined at all points of ejggih wheres € S is a simplex of dimension
less thanj (for somej, 2 < j < [d/2]), and moreover we have, for any sugh

sl € Xo).- )
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We definef on j-dimensional simplices. Considerjadimensional simplexs € S.
Let ||as|| denote the portion ofis|| corresponding to proper faces of This set is
homeomorphic to thej — 1)-sphereSi—, and f (||3s||) is contained iXo ), as follows
from (1) applied on thej — 1)-faces ofs. Since||ds| is path-connected, its image
is contained in a single path-connected componerX&t,. By our assumptions, this
componentigj — 1)-connected, so we can extefatontinuously to the relative interior
of ||s||, in such a way that the image is still containedigs,. This finishes the induction
step.

Having definedf on the wholg|S||, by the choice of we know there are two vertex-
disjointfacess, s' € Swith f(||s|)N f(|IS'|]) # ¥. By (1), we havef (J|s|) N f (J|Is']]) <
XCD(S) N Xq)(sf) = Xrb(s)ﬂd)(s’) = Xy = m[n] F, by (Cl’) This concludes the prOOf. O

5. Examples
In this section we present examples related to Statement 4 discussed in Section 2.

Example 9. Forany oddinteger, setsFy, . .., F, € R?exist such thatthe intersection
of any at mosh — 1 of them is a union of two convex sets, whilg_, F; cannot be
expressed as a union of fewer than three convex sets.

Proof. First, letC be a regular conver-gon and letv,, ..., v, denote its vertices
numbered along the circumference. WeHgbeC minus the relative interior of the edge
vivi11 (uny1 Meaninguy). If the intersectiorﬂ{‘:l F; were a union of two convex sets,
there would be two consecutive verticgsvi 1 belonging to the same convex set, but
this is impossible, since the interior of the edge ;1 is missing from the intersection.
On the other hand, for any intersectighof fewer thann of the F;, there is one edge,
sayvnv1, Which is contained irX. Let A; be the seX minus all vertices; with i odd,
and letA; be X minus all vertices; with i even. Then we hav¥ = A; U A, and it is
easily checked thad; and A, are convex.

The example can be easily modified so that §gtsre closed (or open). Consider the
midpointm; of the edgey; vi 1. Move m; a little bit toward the center of, obtaining a
pointm;, and letF;, beC minus the interior of the triangle m; vi ;. Figure 2 illustrates
thg construction fon = 5: the left part shows the s&;, and the right part the set
M= Fi- 0

Example 10. For any given integers, K, there aren and sets, ..., F, € R* such
that the intersection of any at masvf them is a union of two convex sets, whild_, F;
cannot be expressed as a union of fewer tatonvex sets.

Proof. LetG be aK-chromatic graph such that any subgraplsafith at mostc edges
is 2-colorable (the existence of such a graph follows from [Er], say)CLbé a cyclic
polytope inR* with |V (G)| vertices, and suppose that its vertices are identified with the
vertex setv of G. Any two vertices ofC are connected by an edge (one-dimensional
face) ofC. Letey, ..., &, be the edges db. Fore = {u, v}, we letF beC minus the
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Fig. 2. lllustration to Example 9.

relative interior of the edgev of the polytopeC. The sef ), Fi cannot be expressed
as a union of fewer thal convex sets, since this would induce a proper colorinG of
by less tharK colors. On the other hand, X = [, ¢ Fi, whereE’ is a set of at most
c edges ofG, we letx: V — {1, 2} be a 2-coloring of the graph with edge €t For

j =1,2wesetA; = X\{v € V; x(v) # j}. As in the previous example, it may be
checked that thé; are convex and covet. A modification with allF; closed or allF;
open is again possible. O
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