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Abstract. The exchange of radiant energy (e.g., visible light, infrared radiation) in simple 
macroscopic physical models is sometimes approximated by the solution of a system of 
linear equations (energy transport equations). A variable in such a system represents the total 
energy emitted by a discrete surface element. The coefficients of these equations depend on 
the form factors between pairs of surface elements. A form factor is the fraction of energy 
leaving a surface element which directly reaches another surface element. Form factors 
depend only on the geometry of the physical model. Determining good approximations of 
form factors is the most time-consuming step in these methods, when the geometry of the 
model is complex due to occlusions. 

In this paper, we introduce a new characterization of form factors based on concepts 
from integral geometry. Using this characterization, we develop a new and asymptotically 
efficient Monte Carlo method for the simultaneous approximation of all form factors in an 
occluded polyhedral environment. The approximation error is bounded without recourse to 
special hypothesis. This algorithm is, for typical scenes, one order of magnitude faster than 
methods based on the hemisphere paradigm or on Monte Carlo ray-shooting. 

Let A be any set of convex nonintersecting polygons in R 3 with a total of n edges and 
vertices. Let e be the error parameter and let d be the confidence parameter. We compute 
an approximation of each nonzero form factor such that with probability at least 1 - ~ the 
absolute approximation error is less than e. The expected running time of the algorithm is 
O((e -2 log/~-i )(n log 2 n -1- K log n)), where K is the expected number of regular intersec- 
tions for a random projection of A. The number of regular intersections can range from 0 to 
quadratic in n, but for typical applications it is much smaller than quadratic. The expectation 
is with respect to the random choices of the algorithm and the result holds for any input. 

* A preliminary version of this paper appeared in Proceedings of the 11 th ACM Symposium on Computa- 
tional Geometry, pp. 287-296, June 1995, Vancouver. 
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1. Introduction 

1. I. Radiant Energy Transport in Heat Engineering 

The determination of  radiation interchange between surfaces is a central problem in 
heat transfer, illumination engineering, and applied optics [SH1]. Complex radiation 
interchange problems are simplified using a variety of assumptions and approximations. 
One of the simplest models in heat transfer is that in which (i) each surface is "black" 
(i.e., there is no reflected radiation and all emitted energy is diffuse) and (ii) each surface 
emits diffuse radiation uniformly in each direction and from each point of the surface 
(see [SH1] for an extended treatment). The balance of  energy in the model is described 
by a system of linear equations (energy transport equations). For a surface i in a set of 
n surfaces, let Ei be the emissivity (i.e., the energy produced by the surface i), let Pi 
be the diffuse reflectance (i.e., the proportion of received energy that is re-emitted), and 
let B, be the total energy emitted by surface i. Denoting by F~j the form factor between 
surface i and surface j ,  the energy transport equation for surface i is 

ai ---- E, + Pi ~ Fij B j, 
3 

where the summation is extended to all surfaces different from i. All the transport 
equations form a linear system in the variables B1 . . . . .  Bn. The values of Pi and Ei 
are known for a given model. The form factor (also called configuration factor or view 
factor) is defined as the fraction of the diffuse energy leaving one surface that directly 
reaches another surface. Under the conditions of the model, form factors depend only 
on the geometry of the surfaces and are independent from all the other parameters of  
the model. The determination of the form factor is an essential preliminary step to the 
solution of  the system. 

1.2. Radiosity Problems in Graphics 

In graphics, the goal of  synthesizing realistic images has been pursued by computing 
the balance of  light reaching each surface. Such an approach is known as radiosity 
computation. ACM SIGGRAPH and Eurographics annual conferences have sessions 
devoted to radiosity computations, and since 1990, Eurographics has organized annual 
workshops on rendering, featuring many papers on radiosity. The SIGGRAPH on-line 
bibliography lists more than 240 rifles including the word "radiosity" in the period from 
1983 to 1995. Some papers often cited in the literature are: [GTGB], [NN], [CG], [K], 
[WRC], [WEH], [SP], [HSA], [M1 ], and [Sh]. For more recent results we refer the reader 
to the proceedings of  specialized conferences and workshops (e.g., [HP], [B J], and [TT]). 

When we consider only the effect of diffuse light we can use assumptions similar to 
those used in the study of heat transfer and we obtain the same model described above 
(in graphics known as the Lambertian model). Again, the determination of form factors 
is a central computational problem. 

Exact analytical computation of form factors is difficult except for restricted special 
cases, none of which considers occlusions. References to analytic solutions for special 
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cases or to computer programs for general cases can be found in the book by Siegel and 
Howell [SH 1 ]. Several approximation schemes have been devised to cope with realistic 
environments. 

1.3. Current Approximation Algorithms 

There are currently several methods available for computing approximations of  form fac- 
tors. Monte Carlo ray tracing is chronologically the first method proposed. This method 
is still much used and researched because of its flexibility and ease of  implementation. 
The method is based on simulating the exchange of energy by performing ray-shooting 
operations. One of the most popular schemes for a direct estimation of form factors is 
the hemicube algorithm [CG], which is an elaboration of the hemisphere method of Nus- 
selt [SH1]. Hanrahan et al. [HSA] have proposed methods for computing form factors 
based on defining each form factor as a matrix of subform factors and on an efficient 
hierarchical block decomposition of such matrices. 

A detailed description of these and other algorithms is beyond the scope of this paper. 
We postpone some considerations to Sections 1.8 and 1.9. In the Appendix we give some 
more details while we attempt to compare these methods with the result presented in this 
paper. 

1.4. New Results in this Paper 

Within the discipline of  design and analysis of algorithms, approximation methods are 
compared according to two main measures: one is the computational resources (time, 
storage) used, the second is the quality of the approximation, i.e., a bound on the error 
of the approximation. The two measures are not independent, in general. Until now the 
form factors problem has been unyielding to this type of analysis. In this paper we present 
the following results: 

(1) 

(2) 

We give an integral geometric interpretation to the form factors using the style and 
notation of Santal6 [Sa], and we show that the analytic and geometric formulations 
previously used are specializations of this formula. 
We derive an efficient Monte Carlo algorithm to compute approximations of  
form factors for which we have simultaneously an asymptotic expected upper 
bound on the running time and an exact a priori upper bound, which holds 
with high probability, on the absolute approximation error of  each form factor. 
The algorithm has better asymptotic running time, for typical scenes, than other 
methods for which a comparable analysis of  the running time is possible (in 
particular, Nusselt 's hemisphere method, and Monte Carlo ray tracing). 

More precisely the algorithmic result in this paper is the following. Let A be a set of  
convex nonintersecting polygons in R 3 with a total of n edges and vertices. 1 We fix an 

I We can think of these polygons as forming a covering of the facets of the input polyhedra. 
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error bound e and a confidence 8. Let Kr(A,  v) be a certain subset of  the intersection 
points among the orthogonal projections of  the edges of  A in direction o, which we 
call, following Mulmuley, regular intersections. We denote by K the expected size of  
Kr (A, V) over a choice of v uniform at random in the set of all directions. 

T h e o r e m  1. We can compute in expected time O ((e-2 log 8-1 ) (n log 2 n + K log n)) an 
approximation o f  each nonzero form factor  such that with probability 1 - 8 the absolute 
error on each form factor is less than e. 

The number of  regular intersections can range from 0 to quadratic in n, but for typical 
applications it is much smaller than quadratic. A typical input is a set of  polygons in 
which polygons are rather fat or, to put it negatively, not long and thin. This is a typical 
input because in these conditions the assumptions of  the Lambertian model are more 
likely to be realistic. 

1.5. What ls a Form Factor? 

The first task we set out to accomplish is to give a simple definition of a form factor in the 
style and notation of Santal6 [Sa]. The connection between the measure of  sets of  lines 
and form factors is the basis behind any derivation of the form factors integral. Here we 
apply this idea in a way fundamentally different from previous known derivations. The 
original definition of a form factor, as the fraction of diffuse energy leaving a surface that 
directly reaches another surface, belongs more to physics than to geometry. A further 
elaboration [SH1] equates the form factor to a double area integral in which the kernel 
function is diverging, thus creating problems of numerical instability. Nusselt gives a 
geometric interpretation of a form factor in terms of central projections on the surface 
of a sphere, which holds only when one of the two surfaces is infinitesimally small (a 
so-called differential area). Alternatively, researchers have used the connection between 
measure of  lines and form factors to develop sampling strategies in spaces of  rays or 
lines. 

The author whose starting point is closest to the one used in this paper is Sbert [Sb] 
(see also [SPNP] and [SPP]). After noting that Lambert 's  cosine law is equal to one of 
the expressions for the differential element of  lines, Sbert interprets the form factor as a 
geometric probability in a space of lines. Then a method is proposed based on choosing 
a set of  lines randomly and counting the intersections between.the lines and objects. 

Starting from first principles, we show that form factors can be interpreted as the 
ratio between the measure of certain sets of  lines in 3-space, which is independent o f  
any particular parametrization of  lines. We then show that the characterization of form 
factors previously used in the literature are equivalent to our "abstract" characterization 
for specific choices of line coordinates. The benefit of starting from first principles is that 
proving the correctness of  the new integral expressions of  form factors becomes almost 
trivial within the framework provided by Santal6's exposition of  integral geometric 
theory. 
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1.6. A New General Method 

Our definition of form factor via integral geometric theory is abstract in the sense that 
it is not immediately computable, and also in the sense that it is independent of  any 
coordinates of  lines in 3-space. When we decide on specific coordinates of  lines we 
obtain an equivalent formulation that is, in principle, computable. 

The next step in our research hinges on the choice of  coordinates of  the lines, so 
that the resulting concrete formulation for the form factor contains quantities that can 
be computed easily and efficiently using computation geometry techniques [PS]. In our 
case we use only orthogonal projections and the area of  planar convex polygons, for this 
reason we refer to our method as the orthogonal projection method. This formulation 
involves an integral which is simpler than those previously known. 

1.7. An Efficient Algorithm 

We use Monte Carlo integration to approximate the value of the integral defining the 
form factor as derived by the previous analysis. The integration is based on sampling on 
the unit sphere of directions. This domain has only two parameters and has a bounded 
measure. These are important properties that we use to derive an exact bound on the 
variance of the integrand function and, consequently, a bound on the absolute error of  
the Monte Carlo integration. 

For the case of  two polygons, the algorithmic techniques needed are standard and 
can be found in [PS]. For the case of many polygons, we use the vertical cylindrical 
decomposition of Mulmuley [M2] to compute efficiently the terms of the summations in 
the Monte Carlo approximation of the integral. Such data structures are built via plane 
sweep and dynamic maintenance of polygonal planar maps. 

1.8. On the Difficulty of Comparing Algorithms 

Comparing the result presented in this paper with standard practice in graphics is diffi- 
cult. The main contribution of our work on the theoretical side is a provable correlation 
between error and running time within the standard model used in computational geom- 
etry. An additional benefit is that the algorithm is almost linear in the number n of  input 
vertices and in the average number K of regular intersections among edges. 

Error analysis published in the graphics literature to my knowledge use additional 
assumptions, sometimes justifiable on pragmatic grounds, but usually avoided in com- 
putational geometry. For example, a widely referenced paper in the computer graphics 
community by Shirley [Sh] proves that a straightforward Monte Carlo radiosity compu- 
tation requires a number of  rays linear in the number of  objects present in the scene to 
attain estimates of  the energy emitted by each surface within a predefined variance. This 
result is obtained in a rather strong model for which, among other assumptions, the total 
surface of the objects remains constant as the number of  objects increases [Sh, p. 462]. 
No such assumption is used in this paper. 

In [Sb] the input objects are enclosed in a sphere S and a certain number of random 
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lines meeting the sphere is produced. The number of  lines needed to obtain a predefined 
error bound with high probability on each form factor depends on the ratio between 
the area of  the surface of  the sphere and the smallest area of  an object. A further case 
that is analyzed in [Sb] is one in which the number of  patches increases as a result of  a 
subdivision of the objects initially present at the scene. Our result does not depend on 
any hypothesis on the minimum area of the surfaces or on the diameter of  the input; and 
it holds also when the number of objects increases, say, by the addition of new objects 
to the scene. 

Most of  the currently known algorithm are hard to analyze and therefore the corre- 
lation between running time and approximation error has been investigated by means 
of  experiments, rather than algorithmic analysis. Another approach has been to produce 
error analysis a posteriori, that is, an error analysis based on values computed by the 
algorithm itself [LSG]. 

In the Appendix we attempt the following type of  comparison. We translate some of 
the popular methods within the model used by our algorithm. Whenever possible we try 
to use exact computations instead of nonexact computations whose contribution to the 
error is not quantified. 

1.9. On the Standard Monte Carlo Ray-Tracing Technique 

In the standard Monte Carlo ray-tracing technique we send random rays from a surface 
and we count the number  of such rays reaching a second surface. The ratio between the 
two numbers is an estimator of  the from factor relative to the two surfaces. 

It is easy to prove that for a predefined level of  error and confidence the needed 
number of  such rays is constant per surface (see, e.g., [Sb]), and roughly proportional 
to e -2. Thus to estimate all the form factors we need to trace O(e-2n) rays among n 
surfaces. The complexity of ray tracing is still an open field of  investigation. Currently 
the best asymptotic bounds in exact analytical models for ray tracing require roughly 
O(m~ ~ operations to trace m rays among n triangles [P1], [AM]. These methods, 
besides being quite complex and mostly of theoretical interest, are not known to exhibit 
a dependence on other combinatorial parameters of  the input, such as the number K 
of  regular intersections. An interesting feature of  our algorithm is that, still in an exact 
model, we are able to derive a simple algorithm whose running time is almost linear in 
n and K. 

From a more practical point of view, it is well known that, as a rule of  thumb, 
sampling in a lower-dimensional space reduces the variance of an estimate by a Monte 
Carlo method [BGS+]. In the case of  a straightforward Monte Carlo ray tracing where 
the rays are sampled uniformly among those meeting the first object, the variance of  the 
associated random variable is equal to F l 2  - -  F?2- The expression for the variance in our 
method, given in (1 1), is bounded by 2F12 -- F22 , and is much smaller than such bounds 
in certain cases. For example, when the area of the second surface is less than half of  
the area of  the first surface the variance of our method is smaller than the variance of 
straightforward Monte Carlo ray-shooting. My conjecture is that for values of the form 
factor below a threshold the variance of our method is always better than the variance of 
the ray-shooting method. 
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1.10. Organization of the Paper 

In Section 2 we give the two characterizations of form factors used most frequently 
in the literature. In Section 3 we introduce an "abstract" characterization via integral 
geometry. In Section 4 we derive a new "concrete" integral definition of the form factor. In 
Section 5 we derive the error bound on the Monte Carlo evaluation of such an integral. In 
Section 6 we give the algorithm to compute all form factors simultaneously. In Section 7 
we speculate on possible extensions of our method to non-Lambertian models, where 
the total energy emitted by a surface is not uniform. In the Appendix we attempt a rough 
comparison between several methods for form factor computations. 

2. Currently Used Concrete Characterizations 

The algorithms known in the literature to compute form factors are mainly based on two 
formulations of  form factors. In the first formulation (which is sometimes taken as the 
definition tout court) the form factor is a weighted double area integral [SH1]. Given a 
set of disjoint surfaces 2 S in 3-space, the form factor between two surfaces Si and Sj in 
S is 

1 fp fq f (p ,q)dpdq,  (1) 

where 

f (P, q) = cos 0, (p, q) cosOj(p, q) V (p, q, S);  
zrlpql 2 

Ai is the area of the surface Si; O,(p, q) is the angle between the normal vector to Si at 
point p and the line through p and q; 01( p, q) is the angle between the normal vector 
to Sj at point q and the line through p and q; IPql is the distance between point p and 
point q; and V(p, q, S) is a predicate that has value 1 if the open segment pq does not 
meet any surface, and is 0 otherwise. 

The second characterization due to Nusselt [SH1] defines the form factor between a 
differential surface of area dA, and a finite surface Aj geometrically as follows. Consider 
the set of  points of  Aj visible from a point p ~ dAi and the central projection from p of 
such a set onto the surface of a sphere centered at p. Orthogonally project such a set of 
points from the sphere onto the plane tangent to dAi at p. The area of  the set of  points 
obtained from the second projection is the value of the (differential) form factor between 
dAi and Aj. To obtain the value of the form factor between Si and Sj we then need to 
integrate over Si and divide by A,. The analytic equivalent of  Nusselt 's  formulation is 

1 
Fij = --~i fp~s, f ~  g(p,w)dpdog, (2) 

where 

g(p, o9) = cos O,(p, co) V (p, co, Sj, S);  
y( 

2 In this paper we consider mainly polygonal surfaces, but most observations hold for a larger class of  
surfaces. 
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f2 is the set of  directions; 0, (p, o)) is the angle formed by the normal to Si at p and the 
ray from p in direction oa; and V (p, oa, Sj, S) is a predicate whose value is 1 if the ray 
from p in direction o2 meets Sj before any other surface in S. An analytic closed form of 
Nusselt 's  characterization of the differential form factor for polygonal objects in 3-space 
was found by Lambert  [L] (see also [A]). 

3. An  Abstract  Characterizat ion 

3.1. Unoccluded Case 

We give an abstract characterization of form factors starting with the case in which we 
have only two polygons Sl and $2 and no occlusion between them. Let us go back to the 
original intuitive meaning of form factor as the fraction of  the diffuse energy leaving one 
surface that directly reaches another surface. In radiation models with nonparticipating 
mediums energy is transferred along linear trajectories, i.e., along lines. Thus we can 
measure the total energy Z1 leaving one surface SI by summing the energy carried by 
each single line. Since there are infinite lines meeting a given surface $1 the measure is 
more precisely defined by an integral 

Z~ = [ I(L) dL, (3) 
JL 

where I (L)  is the density of  the energy on the line L. Under the assumptions of  the 
Lambertian model, I(L)  is a constant L Thus we are left with a purely geometric 
integral to compute 

fL dL = m({L : L fq S1 yk 0}). (4) 
nS~ 50 

We introduce the notation m (s to denote such an integral evaluated over the domain 12. 
It is convenient to look at formula (4) using the theory of integral geometry as revealed 
in the book by Santal6 [Sa]. One of the concerns of  integral geometry is measuring 
sets of  a geometric object (i.e., associating a positive real number to a set) in such a 
way that the measure is invariant under rigid transformations of  the space. In our case 
we want the measure of  the set of  lines meeting the surface S to be invariant under 
rigid transformation of  the Euclidean three-dimensional space. The differential form 
dL denotes a differential for which this property of  invariance holds. For any given 
parametrization of the lines in 3-space there is a corresponding formulation of dL that 
is unique up to constant multiplicative factors [Sa]. Thus formula (4) is nothing but the 
(invariant) measure of  the set of  lines meeting $I. 

The amount of  energy Zl2 leaving a surface Sl and reaching a surface $2, if there are 
no occlusions, is given by the following integral over the lines meeting S1 and $2: 

Z12 = f I (L)  dL. (5) 
.I L OSl ~ALNS2~k~J 

Since I (L) is constant and equal to [ we are interested in the measure of  the set of  lines 
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meeting both surfaces given by the integral 

m({L : LnS~  # O A L n S z  ~ 0}). (6) 

The form factor F12 is given by the ratio of the two intensities (3) and (5) 

~12 fLNSr~OALNS2r162 dL 
F12 -- -- (7) 

Z1 fLnS~ ~ dL 

From now on we use (7) as our integral geometric definition of  a form factor in the 
absence of occlusions. From a classical result of integral geometry adapted to polygons 
[Sa, p. 246] we have that 

m({L ~ s A $1 ~ 0}) = 7rAl, 

where A 1 is the area of S~. Since we can easily compute the area of a convex polygon, 
we concentrate our attention on the numerator of the fraction in (7). 

Formula (7) is valid for any coordinatization of the lines. In order to obtain a more 
concrete formula (as opposed to the somewhat abstract formulation in (7)) we need to 
decide what coordinates we use for parametrizing the line L. As a consequence we have 
a unique expression for dL as a differential form in the chosen coordinates. 

It is easy to prove that, when we use as coordinates of a line L the two intersection 
points of L with the surfaces $1 and $2, formulation (7) becomes formula (1) [Sa, p. 230]. 
It is now clear that formula (1) is linked to a particular choice of line coordinates. 
The hemisphere characterization of Nusselt can be derived from (7) when we use as 
coordinates of a line the intercept of L on a fixed plane (the plane tangent to dA1) and 
the direction of L [Sa, p. 211]. In Section 4 we use a different parametrization of  lines 
in 3-space and the correspondent invariant differential form to derive a new concrete 
formulation of (7). 

3.2. Occluded Case 

Now we consider the general case in which we want to define the form factor Fl2 between 
Sl and $2 in the presence of other objects $3 . . . . .  Sk. First of all, to simplify the situation, 
we notice that we need only consider the objects clipped within the convex hull of  $1 
and $2, since (portions of) objects outside CH(Sl U $2) cannot possibly occlude a line 
meeting S1 and $2. 

Therefore we want to compute the measure of the set of lines meeting Sl and $2, and 
missing all the clipped polygons S~ . . . . .  S~. Let s ~- {LI(L fq Sl ~ 0) A (L N S 2 ~;~ 

k L 0) Ai=3( N S~ = 0)} be such a set of lines. The new abstract formula for the form 
factor is 

m(/~12) 
FI2 ~--- m({LIL fq $1 ~ 131)" (8) 
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4. A N e w  Concrete  Characterizat ion of  F o r m  Factors  

4.1. Unoccluded Case 

Let us consider two disjoint convex planar polygons in 3-space, namely, Sa and $2. From 
the abstract definition in (7) we just need to evaluate the integral 

m({LIL f~ S~ # 0 A L N $2 ~ 0}). 

From Santal6 [Sa] we have that one of the possible parametrizations of the line L is 
by giving the plane P(L) through the origin and orthogonal to L, and the intersection 
point L f3 P(L). Using this coordinatization, the form of the invariant density for lines 
in 3-space is dL = dcr/x du, where dcr is the invariant density of points on a plane 
through the origin and orthogonal to L, and du is the invariant density of unoriented 
planes through the origin (equivalent to the points on the unit two-dimensional sphere 
U centered at the origin where opposite points are identified). 

We fix a point u e U and we integrate over the density dcr of the plane through the 
origin and orthogonal to the vector Ou, which we call P(u). A line L orthogonal to P(u) 
meets both $1 and $2 if and only if the intersection point L N P(u) is in the intersection 
of the projection of S1 onto P(u) and the projection of $2 onto P(u). But the integral 
of the density of points in a given planar set is just the area of that set. So, denoting by 
A 12 (u) the area of the intersections of projections of  $1 and $2 onto P (u) we have that 

f{LILnS~^LnS2~} dL = f ~ v  A12(u) du, (9) 

Here we consider the case of two objects only and therefore there is no issue of occlu- 
sions. We can compute approximately the integral in formula (9) by using Monte Carlo 
integration [BGS+], [DR]. For a fixed direction u we can compute A 12(u) in time O(n), 
where n is the number of vertices of the polygons S1 and $2, for example, by using a 
sweeping line approach. We choose uniformly at random, on the unit sphere U, a set of  
N points ul . . . . .  UN, then the Monte Carlo approximation we obtain is 

2~ N 
m({LIL N S1 r O A L fq S2 ~ 0 ] )  ~ --~- Z Al2(ui). 

i = l  

We can find an approximation to the form factor of two unoccluded polygons in 3- 
space in time O (Nn). An upper bound on the error developed in Section 5 for the occluded 
case also holds in the unoccluded case. Here we show the high-level pseudocode of  the 
algorithm to compute the approximate form factor betwee.n two polygons in 3-space 
without occlusions.. 

proc ff(A,B:3D-polygon; eps,de:real) :real 

begin 

N = floor(i/(eps * eps * de)); 

ff = 0; 

for i = 1 to N do 
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u = random-direction; 

A1 = projection of A along u; 

B2 = projection of B along u; 

ff = ff+(area(intersection(Ai,B2)); 

end for; 

return (2 * ff)/(N * area(A)); 

end 
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4.2. Importance Sampling 

We can improve on the basic idea of algorithm f f by filtering out efficiently the directions 
for which the contribution to the summation is zero. We sketch here the method. We 
assume, without loss of  generality, that the plane spanning Sl does not meet $2 and vice 
versa. 3 Consider the convex hull C = CH(S1  t3 $2). Assuming a general position, a 
facet f of  C, except $1 and $2, is incident to an edge e of  S1 and to a vertex v of  $2, 
or vice versa. Moreover, the plane spanning f leaves $1 and $2 oh the same side. We 
find, using a sort of  binary search, the plane incident to e that instead leaves Sl and 
$2 on opposite sides (we call positive the side containing Sl). We find such planes for 
every facet f and we translate them to the origin. We take the intersection of all the 
translated positive half-spaces. We obtain a double cone with apex at the origin, which 
we call, for lack of a better name, the anti-convex-hull of $1 and $2. It is easy to see that, 
for a projection direction u that falls outside the anti-convex-hull, the projections of the 
surfaces cannot meet. Instead, if the direction u falls within the anti-convex-hull, then 
the projections have a nonempty intersection. The convex hull and the anti-convex-hull 
can be built in time O( n  log n). After preprocessing we can decide whether a sampled 
direction is inside the anti-convex-hull in time O (log n), since the problem is equivalent 
to locating a point in a planar convex polygon of O(n)  sides. 

4.3. Occluded Case 

We compute the measure of  the set of lines in formula (8) by  integrating the motion 
invariant unit element d L  discussed in the previous subsection. We indicate by S~ the 
surfaces clipped within C H ( S I  U $2). We indicate by the superscr ipt"  to a set, the set 
obtained by orthogonal projection in direction u. We denote by  A'12 the area of the set 

,, ,, k S c , (S 1 A $2) / Uj=3( j ) �9 The numerator of the fraction in (8) is thus equal to 

m(/212) = fu A'12(u) du.  
~u 

(lo) 

In Section 6 we see how to compute the terms A~j (u) simultaneously for all pairs i j  
for a fixed direction u. In the next section we give an upper bound to the error in a Monte 
Carlo approximation of the form factor using integral (10). 

3 This assumption can be eliminated easily by splitting each surface in at most two parts. 
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5. Error Estimate 

5.1. Bounding the Variance 

M. Pellegdni 

In order to bound the error of our method we use an elementary analysis of Monte Carlo 
methods as described in [BGS +] and [DR]. This type of analysis relies on a bound on the 
variance of the integrand function over the domain of integration. This bound is hard to 
obtain for the integrand functions used in previous methods for form-factor computation. 
Luckily, in our case, a bound on the variance is obtained very easily. We recall that the 
measure of the set U is 2~r. We introduce a function ((u) 

((u) = 2A~2(u) 

A1 

We have that the expected value E of ((u) over all directions U is the value of the form 
factor FI2 

I f 2A'12(U)du=F12" 1 ~(U) du = ~ a l  
27r ~v ~v 

Now we estimate the variance D of the function ( over the set of directions U 

D(g(u)) = E(g(u) 2) - [E(g(u)] 2 (11) 

= [~---~ fu~u4(m~z(U))2du]--F~2 (12) 

= ~ fu (2Al-g-2(u) ] (A]2(u)  ~ du -- F22 (13) 
2zr ~ v \  Al . / \  A1 } 

_< 2F12 - F?2 _< 1, (14) 

where we exploit the fact that A'i2(u) < Al2(U) is always smaller than or equal to A1. 

5.2. A Bound Obtained Using Chebyshev's Inequality 

For any random variable Y and t > 0, Chebyshev's inequality [F, p. 232] is 

E(Y 2) 
Prob(IYI > t) < t----T--, 

where E(  ) indicate the expected value. Let SA, = )'-~=1 f(ui), /z = E(( ) ,  and let cr 2 be 
the variance of ((ui). We apply Chebyshev's inequality, obtaining 

> t  < ~ .  

Rearranging and dividing by N, we obtain 

( ( ~ ) 1  t~NN) 1 Prob m _ tz > < ~ .  
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Equivalently, if we call the absolute error e, we have e = tor/~/'N and t = e~/-N/or. 
The probability of exceeding the error bound is 8 = 1/t  2 : txE/e2N. The probability of  
being within the error bound is conversely 1 - 8. 

In the previous section we proved O rE _~< 1, thus we can derive the number of samples 
attaining the desired precision as a function of e and 8. We have N = [1/e28]. We have 
proved the following lemma. 

Lemma 1. The Monte Carlo evaluation of formula (10) results in an approximation 
of the form factor within an absolute error e, with probability at least 1 - 8, when we 
choose N = [1/e28]. 

5.3. Reducing the Number of Samples 

From the previous section we have that the number of samples needed for an (e, 8) ap- 
proximation algorithm is N = [ 1/e28]. It is possible to reduce the number of  samples to 
N = O((1/e)  2 log( l /8))  by using a trick reported in [KKK+], originally used in [JVV]. 

For completeness we describe this method. We use the algorithm described in Section 
6 with a constant value for the confidence parameter, say 8 = 1/4. We run the algorithm 
Q times, and we take the median value as the outcome of the algorithm for F O. We 
obtain an (e, 8)-approximation by choosing Q = c log(l /8)  for an appropriate constant 
c. We give a sketch of  the proof in the rest of this subsection. 

We call a value Xi good if it has a distance e from the expected value E(X),  and 
bad otherwise. In our experiment a sample will be bad with probability 1/4 and good 
with probability 3/4. If  the median is bad, then there are at least [Q /2 ]  bad samples. 
Therefore the probability of a bad median is less than the probability of  having at least 
[Q/2]  bad samples. To bound this second probability we use the Chernoff bound in a 
form reported in [Sp]. Let Yi = l if Xi is bad and let Yi = 0 if Xi is good. We have that 

P r ~  <e-2a2/Q" 

Using E(Y)  = 1/4 and a = Q/4 we obtain 

i 

Thus, to reach a confidence level 8 we just need to repeat the algorithm Q = O (log(1/8)) 
times. 

6. Measuring Vertical Visibility 

The arguments in the previous sections reduce the problem of computing form factors to 
the problem of computing areas of intersections of planar polygons on a Euclidean plane. 
We compute such areas using an algorithm for vertical space partition as an algorithmic 
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skeleton. A good asymptotic performance is obtained using the cylindrical partition of 
Mulmuley [M2]. Let S be a set of  interior disjoint convex polygons in 3-space and let 
C(S) be the set of  edges of  polygons in S. We choose u as the vertical direction. Let q be 
an intersection among the orthogonal vertical projections of  el E E(8)  and e2 E E(8) .  
Such a point is called a regular intersection point if  the vertical line through q does 
not intersect any polygon of S between el and e2. I f  we call kr the number of  regular 
intersections and k the number of intersections, we have that 0 < kr < k < n 2. In typical 
situations, though, kr will be much smaller than n 2. The vertical decomposition H(8)  
for the set 8 is a decomposition of R3/8 into maximal vertical prisms 4 such that: (i) 
each prism does not intersect 8;  and (ii) the two bases of  the prism are subsets of  two 
polygons in 8 .  

Clearly, for every pair of polygons Si and Sj, the value of AIj is obtained by summing 
the area of  the projection of cylinders with bases in Si and Sj. The cylindrical partition 
H(8)  has size O(n + kr) and is built in time O(n logEn + kr logn)  where k~ is the 
number of  regular intersection points [M2]. 

6.1. Overall Algorithm 

We summarize here the whole algorithm to compute form factors. Cij is a counter for the 
pair of  surfaces with indices i < j ,  which is initialized to 0. We organize such counters 
using an array indexed from 1 to n, holding pointers to dynamic binary search trees. The 
counters are at the leaves of the trees. Clearly we need to store only c o u n t e r s  Cij which, 
during the construction, are found to have a value different from 0. If  a counter is not in 
the data structure its value is by default 0. In this way we can exploit the sparsity of  the 
visibility structure and we avoid using quadratic storage if we do not need to. We use Q 
of  such data structures. 

The external loop is executed Q = O(log8 -1) times. In the internal loop we select 
randomly and uniformly for N = [4/e 2] times a plane through the origin (i.e., a vertical 
direction). We compute the vertical cylindrical decomposition of Mulmuley for that 
choice of  the vertical direction. For each prism whose bases are supported by Si and Sj, 
we add the area of  the projection of the prism to the c o u n t e r  Cij. 

At the exit of  the external loop we save the median value of the Q values for Cij. 
When we want to compute the approximation of Fij we a c c e s s  Cij and divide 2Cij by 
NAi.  To approximate Fji we divide by NAj.  We can easily find all nonzero approximate 
form factors by visiting the data structure. The size of  the data structure is proportional 
to the number of  nonzero approximations to form factors. 

6.2. Observations 

(1) By choosing a value of the confidence parameter n28 we obtain that, with probability 
1 - 8, all the nonzero form factors have a simultaneous good approximation. The running 
time is increased only by a factor O (log n). 

4 A prism here is a solid obtained by intersecting an infinite prism with two half-spaces. 
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(2) Our algorithm is particularly suitable in scenes with large emitting surfaces (e.g., 
a window). Sometimes scenes have small sources of  large radiant emission. In this 
case our algorithm might estimate to 0 the form factor between this small source and 
small distant visible objects. On the other hand, the fact that the source is small causes 
no trouble in computing form factors between the source and large close visible sur- 
faces. 

(3) It is possible to customize the algorithm to compute only the form factors involving 
a specific polygon Si by restricting the computation to the vertical cylinder based o n  S i . 

The running time in this case would depend on the average number  of  regular intersections 
within the projection of Si. This is desirable if we want to place more stringent error 
conditions on a form factor involving a bright surface S,. 

(4) Unlike methods based on formula (1) our method does not have any divergence 
problem due to surfaces too close to each other. 

(5) Our algorithm does not spend time in computing zero form factors, thus it is 
particularly suited for scenes where the form-factor matrix is sparse. Moreover, if a form 
factor is zero, its approximation is by default also zero. 

(6) Implementing the algorithm for the case of two surfaces without occlusions should 
be easy. For the general problem, the difficult part is the computation of the vertical 
cylindrical decomposition. The three-dimensional sweeping algorithm of Mulmuley, 
which gives us the best bound, is challenging to implement since it relies on the dynamic 
maintenance of  planar maps [PT]. If we are willing to relax the time bound we can 
instead project all the surfaces onto a plane and use as an algorithmic skeleton the line 
sweep algorithm of Bentley and Ottman [BO]. 

7. Conc lus ions  and Extensions 

In this paper we have presented a new method, or paradigm, for  computing the form fac- 
tors among polygons in 3-space with occlusions (christened the orthogonal projections 
method). We derive a bound on the absolute approximation error under the assumption 
that the integrand function is computed using exact real arithmetic in the RAM model. 
We describe a simple algorithm for computing an approximation to the form factor be- 
tween two disjoint nonoccluded polygons in 3-space. We describe an asymptotically 
efficient algorithm to approximate every nonzero form factor between disjoint polygons 
in an occluded three-dimensional scene. 

The integrals considered in this paper can be seen as associated with a Galerkin method 
where the functional basis is piecewise constant. When one uses a Galerkin method over 
a more sophisticated functional basis (e.g., Legendre polynomials,  Jacobi polynomials, 
and wavelets) more complex integrals are obtained [Z], [GSCH], [TM], [HI. Usually 
approximate quadrature methods are invoked in order to estimate such integrals. In the 
context of  our method one has to redefine the kernels of  such integrals as a function of 
lines meeting pair~ of surfaces, as opposed to a function of points on such surfaces. Such 
an integral could then be split in an external integral on a domain of directions and an 
inner integral associated with an orthogonal projection. I f  our surfaces are polyhedral 
and the functional basis is polynomial, such inner integrals are easy to compute exactly 
(see [P2] for such a technique applied in a different context). One possible advantage 
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with respect to other methods is that dealing with occlusions without spoiling the quality 
of  the approximation is easy within our framework. 
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Appendix. Comparison of Algorithms for Approximating Form Factors 

The algorithms developed for computing form factors come under many different fami- 
lies, some are randomized (Monte Carlo), some deterministic. A large variety of approxi- 
mations in various aspects of the algorithm are used. Usually, neither the time bounds nor 
the error bounds are derived by analysis. For this reason we will not attempt to describe 
these methods as originally described in the literature. Still, it is instructive to compare 
our method of orthogonal projections with the other known methods. The comparison 
is based on the following criteria: 

(i) We consider the total cost of computing all form factors, that is, a form factor for 
each pair of  surfaces, in the presence of occlusions, for an input set of disjoint 
convex polygons in 3-space with n vertices and edges. 

(ii) We classify algorithms into families according to the formulation of the form 
factor as an integral that is used as a guideline of the computation. 

(iii) We consider in each such family the Monte Carlo method in which the domain 
of  integration is sampled uniformly at random and the integrand function is 
computed exactly in the real RAM model. 

(iv) For the exact computations of the integrand function we will refer to currently 
known method with known worst-case deterministic or expected time bounds. 

(v) When we are not able to bound the absolute error, we consider the less demanding 
requirement that the convergence rate of the error, as derived from simple analysis 
of  the Monte Carlo method in [DR], is at least O (e) on each form factor. Here 
we rule out, for example, the usual assumption done in the hemicube algorithm 
that the center of  a surface is sufficient to characterize form factors for the whole 
surface. 

Many methods used in practice are obtained by those listed below by using approx- 
imations in determining also the integrand function and/or  by using predefined lattice 
points instead of  random points. A survey of methods used to compute diffuse radia- 
tion form factors is in [EJLA]. The hierarchical decomposition method of Hanrahan et 
al. [HSA] falls somewhat outside our Monte Carlo framework and the comparison of 
the running time of  this algorithm with the running time of the method of orthogonal 
projections is more problematic. 
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1. Analytical.  The double area integral is solved analytically. This method is used 
in the simple case where occlusion is not present. For example, the method of  
SchrSder and Hanrahan [SH2] for two unoccluded convex polygons gives the 
exact value in time O (n 2) where n is the number of edges of  the polygons. Occlu- 
sions are not treated and the closed forms used contain transcendental functions 
(bilogarithmic functions). 

2. Monte  Carlo Ray Tracing. See Introduction (Section 1.9). 
3. Central Projection Methods (or Hemisphere Method).  This method is based 

on the Nusselt projection method [SH1] and is based on formula (2). An exact 
computation of  the integrand function in formula (2) entails the computation of  
a spherical visibility map from a point. If we adopt an approach without prepro- 
cessing, we obtain a cost O (ne -2 • Cost (lvisibility map)). Computing a visibility 
map may take time between linear and quadratic in n depending on the input. Thus 
the hemisphere method ranges in complexity between O(n2e -2) and O(n3e-2).  
More complex implementations involving preprocessing and/or output sensitive 
algorithms can improve the running time, although not in the worst case. 

The hemicube algorithm [CG] is based on an approximate (discrete) computa- 
tion of the visibility map using a rectangular grid and on using tabulated values of  
the kernel function in (2). 

4. Double Area Integration. This method corresponds to a direct Monte Carlo in- 
tegration of formula (1). We choose randomly points on two surfaces Si and Sj 
and, if the segment joining them does not intersect any other surface, we compute 
the integrand function in (1). The on-line approach to this method requires time 
O(n2z -2 x Cost(1 ray)) + Preproc(n). The considerations in Section 1.9 on ray 
shooting among polyhedra apply here as well. 

5. Hierarchical Radiosity Methods (HR). Hanrahan et al. [HSA] describe a method 
for computing a matrix that approximates the form factor between two surfaces 
Si and Sy. Surfaces Si and Sj are subdivided recursively into subpatches until the 
form factor between two patches drops below a (small) threshold value. The form 
factor between patches is bounded using the value of the differential form factor 
between the center of  one patch and a disk enclosing the other patch, for which a 
simple closed formula is available. The gist of the argument is that not every pair 
of subpatches need to be considered independently, instead, the resulting matrix of  
subform factors is structured into large rectangular blocks. Thus, even if we have 
expanded the computation of a single form factor into a (relatively) large matrix, 
the subsequent solution in terms of radiosity is speeded up by the block structure of 
the matrix. The correlation between the threshold values and the number of patches 
is studied experimentally. Similarly, the relation between the threshold value and 
the final error in estimating the form factor between the surfaces is explored by 
means of  experiments. 

Hierarchical radiosity methods of a second type deal with the problem of 
clustering the given surface into groups so to avoid computing all O (n 2) form 
factors independently [SAG]. Here the error analysis is of the a posteriori type 
and is based on bounding the maximum value of the kernel function in (1) between 
well-separated clusters of surfaces. 

6. Integral Geometric Characterizations.  See the Introduction (Section 1.8). 
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