Lattice Coverings and Gaussian Measures of n-Dimensional Convex Bodies*

W. Banaszczyk ${ }^{1}$ and S. J. Szarek ${ }^{2}$
${ }^{1}$ Institute of Mathematics, Lódź University, 90-238 Lódź, Poland
wbanasz@krysia.uni.lodz.pl
${ }^{2}$ Department of Mathematics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7058, USA
sjs13@po.cwru.edu

Abstract

Let \| • \| be the euclidean norm on \mathbf{R}^{n} and let γ_{n} be the (standard) Gaussian measure on \mathbf{R}^{n} with density ($\left.2 \pi\right)^{-n / 2} e^{-\|x\|^{2} / 2}$. Let $\vartheta(\simeq 1.3489795$) be defined by $\gamma_{1}([-\vartheta / 2, \vartheta / 2])=\frac{1}{2}$ and let L be a lattice in \mathbf{R}^{n} generated by vectors of norm $\leq \vartheta$. Then, for any closed convex set V in \mathbf{R}^{n} with $\gamma_{n}(V) \geq \frac{1}{2}$, we have $L+V=\mathbf{R}^{n}$ (equivalently, for any $\left.a \in \mathbf{R}^{n},(a+L) \cap V \neq \emptyset\right)$. The above statement can also be viewed as a "nonsymmetric" version of the Minkowski theorem.

Let U, V be a pair of convex sets in \mathbf{R}^{n} containing the origin in the interior. We define $\beta(U, V)$ as the smallest $r>0$ satisfying the following condition: to each sequence $u_{1}, \ldots, u_{n} \in U$ there correspond signs $\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1$ such that $\varepsilon_{1} u_{1}+\cdots+\varepsilon_{n} u_{n} \in$ $r V$. Upper and lower bounds for $\beta(U, V)$ for various sets U and V (usually centrally symmetric) were investigated by several authors. We mention some of their results once the appropriate notation is introduced, see also the references in [3].

Let L be a lattice in \mathbf{R}^{n}, i.e., an additive subgroup of \mathbf{R}^{n} generated by n linearly independent vectors. The quantities (again, usually defined for centrally symmetric sets)

$$
\begin{aligned}
\lambda_{n}(L, U) & =\min \{r>0: \operatorname{dim} \operatorname{span}(L \cap r U)=n\} \\
\mu(L, V) & =\min \left\{r>0: L+r V=\mathbf{R}^{n}\right\}
\end{aligned}
$$

[^0]are called the nth minimum and the covering radius of L with respect to U and V, respectively; sometimes $\mu(L, V)$ is called "the nth covering minimum" and denoted $\mu_{n}(L, V)$. We define
$$
\alpha(U, V)=\sup _{L} \frac{\mu(L, V)}{\lambda_{n}(L, U)},
$$
where the supremum is taken over all lattices L in \mathbf{R}^{n}. A standard elementary argument shows that $\alpha(U, V) \leq \beta(U, V)$ (see, e.g., Lemma 4 in [3]).

By B_{n} we denote the closed euclidean unit ball in \mathbf{R}^{n}. Let E be an n-dimensional ellipsoid in \mathbf{R}^{n} with center at zero and principal semiaxes $\alpha_{1}, \ldots, \alpha_{n}$. The result of [4], that closed connected additive subgroups of nuclear locally convex spaces are linear subspaces, was essentially based on the fact that

$$
\alpha\left(B_{n}, E\right)=\frac{1}{2}\left(\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}\right)^{1 / 2} .
$$

Then it was proved in [2] that

$$
\beta\left(B_{n}, E\right)=\left(\alpha_{1}^{2}+\cdots+\alpha_{n}^{2}\right)^{1 / 2} .
$$

Let K_{n} be the unit cube in \mathbf{R}^{n}. Consider the rectangular parallelepiped

$$
P=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{R}^{n}:\left|x_{k}\right| \leq \alpha_{k} \text { for } k=1, \ldots, n\right\}
$$

where $\alpha_{1}, \ldots, \alpha_{n}>0$. This paper was motivated by an attempt to give possibly best upper bounds for $\alpha\left(B_{n}, P\right)$ and $\beta\left(B_{n}, P\right)$ as functions of $\alpha_{1}, \ldots, \alpha_{n}$ (for $\beta\left(K_{n}, P\right)$, see [5] and [9] where it was, in particular, proved that $\beta\left(K_{n}, K_{n}\right)=O(\sqrt{n})$ as $n \rightarrow \infty$; see also [1]). In particular, we were interested in the so-called Komlós conjecture which asserts that $\beta\left(B_{n}, K_{n}\right)$ remains bounded as $n \rightarrow \infty$.

We denote by γ_{n} the (standard) Gaussian measure on \mathbf{R}^{n} with density $(2 \pi)^{-n / 2} e^{-\|x\|^{2} / 2}$, where $\|x\|$ is the euclidean norm of x. Let $\vartheta(\simeq 1.3489795)$ be the positive number given by $\gamma_{1}([-\vartheta / 2, \vartheta / 2])=\frac{1}{2}$, i.e.,

$$
\int_{0}^{\vartheta / 2} e^{-t^{2} / 2} d t=\frac{\sqrt{2 \pi}}{4} .
$$

By a ϑ-coset in \mathbf{R}^{n} we mean a coset modulo a lattice L generated by vectors of Euclidean norm $\leq \vartheta$, i.e., satisfying $\lambda_{n}\left(L, B_{n}\right) \leq \vartheta$. The aim of this paper is to prove the following fact:

Theorem. If V is a closed convex set in \mathbf{R}^{n} with $\gamma_{n}(V) \geq \frac{1}{2}$, then V intersects every ϑ-coset.

Corollary. If V is as in the theorem, then $\alpha\left(B_{n}, V\right) \leq \vartheta^{-1}$. In particular $\alpha\left(B_{n}, K_{n}\right)=$ $O(\sqrt{\log n})$ as $n \rightarrow \infty$.

We point out that, in full generality, the theorem is sharp and that, similarly, the first part of the corollary cannot be significantly improved. However, it is conceivable that $\alpha\left(B_{n}, \cdot\right)$ may be replaced by $\beta\left(B_{n}, \cdot\right)$ in the corollary; see the conjecture at the end of this paper.

For the proof we need the following.

Lemma. If V is a closed convex set in \mathbf{R}^{n} with $\gamma_{n}(V) \geq \frac{1}{2}$ and M is a linear subspace of \mathbf{R}^{n} of dimension m, then $\gamma_{m}(V \cap M) \geq \frac{1}{2}$.

Remark 1. An analysis of the proof shows that unless V is a half-space, or an infinite cylinder orthogonal to M, the inequality in the assertion of the lemma is strict.

We need some preparation for the proofs of the lemma and the theorem. For a convex set V in \mathbf{R}^{n} and $x \in \mathbf{R}$ denote

$$
\begin{equation*}
V_{x}=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \in \mathbf{R}^{n-1}:\left(x_{1}, \ldots, x_{n-1}, x\right) \in V\right\} \tag{1}
\end{equation*}
$$

Recall now an inequality of Ehrhard (see Theorem 3.2 of [6]). If A, B are nonempty convex Borel subsets of \mathbf{R}^{n} and $0 \leq \lambda \leq 1$, then

$$
\begin{equation*}
\Phi^{-1}\left(\gamma_{n}(\lambda A+(1-\lambda) B)\right) \geq \lambda \Phi^{-1}\left(\gamma_{n}(A)\right)+(1-\lambda) \Phi^{-1}\left(\gamma_{n}(B)\right) \tag{2}
\end{equation*}
$$

where

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y, \quad x \in \mathbf{R}
$$

is the (standard) Gaussian cumulative distribution function. It follows in particular that $g(x)=\Phi^{-1}\left(\gamma_{n-1}\left(V_{x}\right)\right)$ is a concave function of x on the interval $I=\left\{x: \gamma_{n-1}\left(V_{x}\right)>0\right\}$. Consequently,

$$
\begin{equation*}
W=\left\{(x, y) \in \mathbf{R}^{2}: x \in I \text { and } y \leq g(x)\right\} \tag{3}
\end{equation*}
$$

is a closed convex subset of \mathbf{R}^{2}. Note that $\gamma_{1}\left(W_{x}\right)=\gamma_{1}((-\infty, g(x)])=\gamma_{n-1}\left(V_{x}\right)$ for $x \in \mathbf{R}$, where W_{x} is defined analogously to V_{x}; in particular, $\gamma_{n}(V)=\gamma_{2}(W)$.

Proof of the Lemma. Clearly, it is enough to consider the case $m=n-1$ and (by the rotationary invariance of the Gaussian measure) $M=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{n}=0\right\}$. For V with $\gamma_{n}(V) \geq \frac{1}{2}$ we construct $W \subset \mathbf{R}^{2}$ as above, the assertion of the lemma is then equivalent to $\gamma_{1}\left(W_{0}\right) \geq \frac{1}{2}$ or $(0,0) \in W$. To conclude the argument it remains to note that $(0,0) \notin W$, together with W being closed and convex, would imply $\frac{1}{2}>\gamma_{2}(W)=$ $\gamma_{n}(V)$, a contradiction.

Remark 2. For the proof of the theorem we use the lemma with $n=2$ and $m=1$, a special case that can be proved without appealing to Ehrhard's inequality (2). However, the proof of the theorem itself does use Ehrhard's inequality. See also [10] for results related to the lemma.

Proof of the Theorem. We use induction on n. For $n=1$, the theorem is rather trivial. So, suppose that for a certain $n \geq 2$ the theorem is true for all dimensions strictly less than n. Take an arbitrary ϑ-coset H in \mathbf{R}^{n} and a convex set V in \mathbf{R}^{n} disjoint with H. We are to prove that $\gamma_{n}(V)<\frac{1}{2}$.

Fix some $u \in H$ and consider the lattice $L=H-u$. By assumption, we have $\lambda_{n}\left(L, B_{n}\right) \leq \vartheta$. Choose $a_{1}, \ldots, a_{n} \in L \cap \vartheta B_{n}$ generating L and let M be the linear
span of a_{1}, \ldots, a_{n-1}. As before, we may assume that $M=\left\{\left(x_{1}, \ldots, x_{n}\right)\right.$: $\left.x_{n}=0\right\}$. Let H^{\prime} be the orthogonal projection of H onto the nth coordinate axis of \mathbf{R}^{n} (i.e., onto the orthogonal complement of M). Clearly, H^{\prime} is a ϑ-coset. Additionally, if $x \in H^{\prime}$, then, by our inductive hypothesis, $\gamma_{n-1}\left(V_{x}\right)<\frac{1}{2}$ and so $(x, 0) \notin W$ (V_{x} and W have the same meaning here as in (1) and (3)). The case $n=1$ of the theorem now yields that $\gamma_{1}(W \cap\{(x, 0): x \in \mathbf{R}\})<\frac{1}{2}$ and the lemma then implies that $\frac{1}{2}>\gamma_{2}(W)=\gamma_{n}(V)$, as required.

Conjecture. There exists a function f on $(0,1)$ such that for each symmetric convex set V in \mathbf{R}^{n} one has $\beta\left(B_{n}, V\right) \leq f\left(\gamma_{n}(V)\right)$.

Remark 3. Let T be a bounded linear operator from a Hilbert space H to a Banach space X. We say that T is tight if the image of every connected additive subgroup of H is dense in its linear span in X. If X is a Hilbert space, then T is tight if and only if it is a Hilbert-Schmidt operator; sufficiency was proved in [4], the proof of necessity can easily be obtained by standard methods. The argument of [4] together with the theorem proved above imply that ℓ-operators are tight (for the definition of ℓ-operators, see p. 38 of [8]). An interesting problem, closely connected with the Komlós conjecture, is to describe tight diagonal operators from l_{2} to c_{0}.

Remark 4. In connection with Problem 1 of McMullen and Wills [7, p. 263] it is worth noting the following fact. Let S be an arbitrary n-dimensional simplex in \mathbf{R}^{n} disjoint with the integer lattice \mathbf{Z}^{n} and let $r(S)$ be the radius of the inscribed ball. Then it follows immediately from our theorem that $r(S)<c(1+\log n)^{1 / 2}$ where $c>0$ is a numerical constant. Hence, by the result of Steinhagen mentioned on p. 255 of [7], the minimal width of S is less than $c_{1} n^{1 / 2}(1+\log n)^{1 / 2}$.

References

1. K. Ball and S. J. Szarek, in preparation.
2. W. Banaszczyk, A Beck-Fiala-type theorem for euclidean norms, European J. Combin. 11 (1990), 497500.
3. W. Banaszczyk, Balancing vectors and convex bodies, Studia Math. 106 (1993), 93-100.
4. W. Banaszczyk and J. Grabowski, Connected subgroups of nuclear spaces, Studia Math. 78 (1984), 161163.
5. J. Beck and J. Spencer, Integral approximation sequences, Math. Programming 30 (1984), 88-98.
6. A. Ehrhard, Symétrisation dans l'espace de Gauss, Math. Scand. 53 (1983), 281-301.
7. P. McMullen and J. M. Wills, Minimal width and diameter of lattice-point-free convex bodies, Mathematika 28 (1981), 255-264.
8. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, Cambridge, 1989.
9. J. Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985), 679-705.
10. S. J. Szarek and E. Werner, Confidence regions for means of multivariate normal distributions and a nonsymmetric correlation inequality for Gaussian measures, Preprint.

Received March 6, 1995, and in revised form January 26, 1996.

[^0]: * Part of this research was done while the first author was visiting Case Western Reserve University under a cooperation grant from KBN (Poland) and NSF (USA). The second author was supported in part by the National Science Foundation.

