Discrete Comput Geom 17:283-286 (1997)

Lattice Coverings and Gaussian Measures of *n*-Dimensional Convex Bodies*

W. Banaszczyk¹ and S. J. Szarek²

¹Institute of Mathematics, Lódź University, 90-238 Lódź, Poland wbanasz@krysia.uni.lodz.pl

²Department of Mathematics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-7058, USA sjs13@po.cwru.edu

Abstract. Let $\|\cdot\|$ be the euclidean norm on \mathbb{R}^n and let γ_n be the (standard) Gaussian measure on \mathbb{R}^n with density $(2\pi)^{-n/2}e^{-\|x\|^2/2}$. Let $\vartheta \ (\simeq 1.3489795)$ be defined by $\gamma_1([-\vartheta/2, \vartheta/2]) = \frac{1}{2}$ and let L be a lattice in \mathbb{R}^n generated by vectors of norm $\leq \vartheta$. Then, for any closed convex set V in \mathbb{R}^n with $\gamma_n(V) \geq \frac{1}{2}$, we have $L + V = \mathbb{R}^n$ (equivalently, for any $a \in \mathbb{R}^n$, $(a + L) \cap V \neq \emptyset$). The above statement can also be viewed as a "nonsymmetric" version of the Minkowski theorem.

Let U, V be a pair of convex sets in \mathbb{R}^n containing the origin in the interior. We define $\beta(U, V)$ as the smallest r > 0 satisfying the following condition: to each sequence $u_1, \ldots, u_n \in U$ there correspond signs $\varepsilon_1, \ldots, \varepsilon_n = \pm 1$ such that $\varepsilon_1 u_1 + \cdots + \varepsilon_n u_n \in rV$. Upper and lower bounds for $\beta(U, V)$ for various sets U and V (usually centrally symmetric) were investigated by several authors. We mention some of their results once the appropriate notation is introduced, see also the references in [3].

Let L be a lattice in \mathbb{R}^n , i.e., an additive subgroup of \mathbb{R}^n generated by n linearly independent vectors. The quantities (again, usually defined for centrally symmetric sets)

 $\lambda_n(L, U) = \min\{r > 0: \dim \operatorname{span}(L \cap rU) = n\},$ $\mu(L, V) = \min\{r > 0: L + rV = \mathbf{R}^n\}$

^{*} Part of this research was done while the first author was visiting Case Western Reserve University under a cooperation grant from KBN (Poland) and NSF (USA). The second author was supported in part by the National Science Foundation.

are called the *n*th minimum and the covering radius of L with respect to U and V, respectively; sometimes $\mu(L, V)$ is called "the *n*th covering minimum" and denoted $\mu_n(L, V)$. We define

$$\alpha(U, V) = \sup_{L} \frac{\mu(L, V)}{\lambda_n(L, U)},$$

where the supremum is taken over all lattices L in \mathbb{R}^n . A standard elementary argument shows that $\alpha(U, V) \leq \beta(U, V)$ (see, e.g., Lemma 4 in [3]).

By B_n we denote the closed euclidean unit ball in \mathbb{R}^n . Let E be an *n*-dimensional ellipsoid in \mathbb{R}^n with center at zero and principal semiaxes $\alpha_1, \ldots, \alpha_n$. The result of [4], that closed connected additive subgroups of nuclear locally convex spaces are linear subspaces, was essentially based on the fact that

$$\alpha(B_n, E) = \frac{1}{2}(\alpha_1^2 + \dots + \alpha_n^2)^{1/2}.$$

Then it was proved in [2] that

$$\beta(B_n, E) = (\alpha_1^2 + \cdots + \alpha_n^2)^{1/2}.$$

Let K_n be the unit cube in \mathbb{R}^n . Consider the rectangular parallelepiped

$$P = \{(x_1,\ldots,x_n) \in \mathbf{R}^n \colon |x_k| \le \alpha_k \text{ for } k = 1,\ldots,n\},\$$

where $\alpha_1, \ldots, \alpha_n > 0$. This paper was motivated by an attempt to give possibly best upper bounds for $\alpha(B_n, P)$ and $\beta(B_n, P)$ as functions of $\alpha_1, \ldots, \alpha_n$ (for $\beta(K_n, P)$, see [5] and [9] where it was, in particular, proved that $\beta(K_n, K_n) = O(\sqrt{n})$ as $n \to \infty$; see also [1]). In particular, we were interested in the so-called Komlós conjecture which asserts that $\beta(B_n, K_n)$ remains bounded as $n \to \infty$.

We denote by γ_n the (standard) Gaussian measure on \mathbb{R}^n with density $(2\pi)^{-n/2}e^{-||x||^2/2}$, where ||x|| is the euclidean norm of x. Let ϑ ($\simeq 1.3489795$) be the positive number given by $\gamma_1([-\vartheta/2, \vartheta/2]) = \frac{1}{2}$, i.e.,

$$\int_0^{\vartheta/2} e^{-t^2/2} \, dt = \frac{\sqrt{2\pi}}{4}.$$

By a ϑ -coset in \mathbb{R}^n we mean a coset modulo a lattice L generated by vectors of Euclidean norm $\leq \vartheta$, i.e., satisfying $\lambda_n(L, B_n) \leq \vartheta$. The aim of this paper is to prove the following fact:

Theorem. If V is a closed convex set in \mathbb{R}^n with $\gamma_n(V) \ge \frac{1}{2}$, then V intersects every ϑ -coset.

Corollary. If V is as in the theorem, then $\alpha(B_n, V) \leq \vartheta^{-1}$. In particular $\alpha(B_n, K_n) = O(\sqrt{\log n})$ as $n \to \infty$.

We point out that, in full generality, the theorem is sharp and that, similarly, the first part of the corollary cannot be significantly improved. However, it is conceivable that $\alpha(B_n, \cdot)$ may be replaced by $\beta(B_n, \cdot)$ in the corollary; see the conjecture at the end of this paper.

For the proof we need the following.

Lattice Coverings and Gaussian Measures of n-Dimensional Convex Bodies

Lemma. If V is a closed convex set in \mathbb{R}^n with $\gamma_n(V) \ge \frac{1}{2}$ and M is a linear subspace of \mathbb{R}^n of dimension m, then $\gamma_m(V \cap M) \ge \frac{1}{2}$.

Remark 1. An analysis of the proof shows that unless V is a half-space, or an infinite cylinder orthogonal to M, the inequality in the assertion of the lemma is strict.

We need some preparation for the proofs of the lemma and the theorem. For a convex set V in \mathbb{R}^n and $x \in \mathbb{R}$ denote

$$V_x = \{ (x_1, \dots, x_{n-1}) \in \mathbf{R}^{n-1} \colon (x_1, \dots, x_{n-1}, x) \in V \}.$$
(1)

Recall now an inequality of Ehrhard (see Theorem 3.2 of [6]). If A, B are nonempty convex Borel subsets of \mathbb{R}^n and $0 \le \lambda \le 1$, then

$$\Phi^{-1}(\gamma_n(\lambda A + (1-\lambda)B)) \ge \lambda \Phi^{-1}(\gamma_n(A)) + (1-\lambda)\Phi^{-1}(\gamma_n(B)),$$
(2)

where

$$\Phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} \, dy, \qquad x \in \mathbf{R},$$

is the (standard) Gaussian cumulative distribution function. It follows in particular that $g(x) = \Phi^{-1}(\gamma_{n-1}(V_x))$ is a concave function of x on the interval $I = \{x: \gamma_{n-1}(V_x) > 0\}$. Consequently,

$$W = \{(x, y) \in \mathbf{R}^2 : x \in I \text{ and } y \le g(x)\}$$
(3)

is a closed convex subset of \mathbb{R}^2 . Note that $\gamma_1(W_x) = \gamma_1((-\infty, g(x))) = \gamma_{n-1}(V_x)$ for $x \in \mathbb{R}$, where W_x is defined analogously to V_x ; in particular, $\gamma_n(V) = \gamma_2(W)$.

Proof of the Lemma. Clearly, it is enough to consider the case m = n - 1 and (by the rotationary invariance of the Gaussian measure) $M = \{(x_1, \ldots, x_n): x_n = 0\}$. For V with $\gamma_n(V) \ge \frac{1}{2}$ we construct $W \subset \mathbb{R}^2$ as above, the assertion of the lemma is then equivalent to $\gamma_1(W_0) \ge \frac{1}{2}$ or $(0, 0) \in W$. To conclude the argument it remains to note that $(0, 0) \notin W$, together with W being closed and convex, would imply $\frac{1}{2} > \gamma_2(W) = \gamma_n(V)$, a contradiction.

Remark 2. For the proof of the theorem we use the lemma with n = 2 and m = 1, a special case that can be proved without appealing to Ehrhard's inequality (2). However, the proof of the theorem itself does use Ehrhard's inequality. See also [10] for results related to the lemma.

Proof of the Theorem. We use induction on n. For n = 1, the theorem is rather trivial. So, suppose that for a certain $n \ge 2$ the theorem is true for all dimensions strictly less than n. Take an arbitrary ϑ -coset H in \mathbb{R}^n and a convex set V in \mathbb{R}^n disjoint with H. We are to prove that $\gamma_n(V) < \frac{1}{2}$.

Fix some $u \in H$ and consider the lattice L = H - u. By assumption, we have $\lambda_n(L, B_n) \leq \vartheta$. Choose $a_1, \ldots, a_n \in L \cap \vartheta B_n$ generating L and let M be the linear

span of a_1, \ldots, a_{n-1} . As before, we may assume that $M = \{(x_1, \ldots, x_n): x_n = 0\}$. Let H' be the orthogonal projection of H onto the *n*th coordinate axis of \mathbb{R}^n (i.e., onto the orthogonal complement of M). Clearly, H' is a ϑ -coset. Additionally, if $x \in H'$, then, by our inductive hypothesis, $\gamma_{n-1}(V_x) < \frac{1}{2}$ and so $(x, 0) \notin W$ (V_x and W have the same meaning here as in (1) and (3)). The case n = 1 of the theorem now yields that $\gamma_1(W \cap \{(x, 0): x \in \mathbb{R}\}) < \frac{1}{2}$ and the lemma then implies that $\frac{1}{2} > \gamma_2(W) = \gamma_n(V)$, as required.

Conjecture. There exists a function f on (0, 1) such that for each symmetric convex set V in \mathbb{R}^n one has $\beta(B_n, V) \leq f(\gamma_n(V))$.

Remark 3. Let T be a bounded linear operator from a Hilbert space H to a Banach space X. We say that T is *tight* if the image of every connected additive subgroup of H is dense in its linear span in X. If X is a Hilbert space, then T is tight if and only if it is a Hilbert-Schmidt operator; sufficiency was proved in [4], the proof of necessity can easily be obtained by standard methods. The argument of [4] together with the theorem proved above imply that ℓ -operators are tight (for the definition of ℓ -operators, see p. 38 of [8]). An interesting problem, closely connected with the Komlós conjecture, is to describe tight diagonal operators from l_2 to c_0 .

Remark 4. In connection with Problem 1 of McMullen and Wills [7, p. 263] it is worth noting the following fact. Let S be an arbitrary *n*-dimensional simplex in \mathbb{R}^n disjoint with the integer lattice \mathbb{Z}^n and let r(S) be the radius of the inscribed ball. Then it follows immediately from our theorem that $r(S) < c(1 + \log n)^{1/2}$ where c > 0 is a numerical constant. Hence, by the result of Steinhagen mentioned on p. 255 of [7], the minimal width of S is less than $c_1 n^{1/2} (1 + \log n)^{1/2}$.

References

- 1. K. Ball and S. J. Szarek, in preparation.
- W. Banaszczyk, A Beck-Fiala-type theorem for euclidean norms, European J. Combin. 11 (1990), 497– 500.
- 3. W. Banaszczyk, Balancing vectors and convex bodies, Studia Math. 106 (1993), 93-100.
- W. Banaszczyk and J. Grabowski, Connected subgroups of nuclear spaces, Studia Math. 78 (1984), 161– 163.
- 5. J. Beck and J. Spencer, Integral approximation sequences, Math. Programming 30 (1984), 88-98.
- 6. A. Ehrhard, Symétrisation dans l'espace de Gauss, Math. Scand. 53 (1983), 281-301.
- 7. P. McMullen and J. M. Wills, Minimal width and diameter of lattice-point-free convex bodies, *Mathematika* 28 (1981), 255–264.
- 8. G. Pisier, The Volume of Convex Bodies and Banach Space Geometry, Cambridge University Press, Cambridge, 1989.
- 9. J. Spencer, Six standard deviations suffice, Trans. Amer. Math. Soc. 289 (1985), 679-705.
- S. J. Szarek and E. Werner, Confidence regions for means of multivariate normal distributions and a nonsymmetric correlation inequality for Gaussian measures, Preprint.

Received March 6, 1995, and in revised form January 26, 1996.