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Abstract. Let II - It be the euclidean norm on R ~ and let y~ be the (standard) Gaus- 
sian measure on R n with density (2~r)-~/2e-"X"2/2. Let 0 (----- 1.3489795) be defined by 
Yl ( [ - 0 / 2 ,  0/2]) = �89 and let L be a lattice in R n generated by vectors of norm < O. 
Then, for any closed convex set V in R n with yn(V) >_ �89 we have L + V = R ~ (equiva- 
lently, for any a ~ R ~, (a + L) N V ~ fl). The above statement can also be viewed as a 
"nonsymmetric" version of the Minkowski theorem. 

Let U, V be a pair of  convex sets in R n containing the origin in the interior. We define 

f l ( U ,  V )  as the smallest  r > 0 satisfying the following condit ion:  to each sequence  

ul . . . . .  un ~ U there correspond signs el . . . . .  e~ = 4-1 such that e l u l  + �9 �9 �9 + e ~ u ~  

r V .  Upper and lower bounds for /~(U,  V) for various sets U and V (usually central ly  

symmetric) were investigated by several authors. We ment ion  some of their results once  

the appropriate notat ion is introduced, see also the references in [3]. 
Let L be a lattice in R ~, i.e., an additive subgroup of R n generated by n l inear ly  

independent  vectors. The quantities (again, usually defined for centrally symmetr ic  sets) 

kn(L,  U) ----- min{r > 0: dim span(L A r U )  = n } ,  

/ z ( L , V )  = min{r > 0 : L + r V = R  n} 
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are called the nth minimum and the covering radius of  L with respect to U and V, 
respectively; somet imes /z (L ,  V) is called "the nth covering minimum" and denoted 
/z~(L, V). We define 

/z(L, V) 
a ( U ,  V) = sup Z~(L, U ) '  

where the supremum is taken over all lattices L in R n. A standard elementary argument 
shows that or(U, V)  < fl(U, V)  (see, e.g., Lemma 4 in [3]). 

By B~ we denote the closed euclidean unit ball in R ~. Let E be an n-dimensional 
ellipsoid in R n with center at zero and principal semiaxes oq . . . . .  ot~. The result of  [4], 
that closed connected additive subgroups of nuclear locally convex spaces are linear 
subspaces, was essentially based on the fact that 

ot(B., E) = I 2 0t2)1/2 ~ ( o q  + - . -  + ~ . 

Then it was proved in [2] that 

~(B~, e )  = (~2 + . . .  + ~2)~/2. 

Let K~ be the unit cube in R ~. Consider the rectangular parallelepiped 

P = {(xl . . . . .  x~) s R~: IXkl _< a t  f o r k  = 1 . . . . .  n}, 

where oq . . . . .  otn > 0. This paper was motivated by an attempt to give possibly best 
upper bounds for ot(B~, P)  and fl(B,,, P)  as functions ofoq  . . . . .  ot~ (for fl(K,,, P) ,  see 
[5] and [9] where it was, in particular, proved that f l (K, , ,  K~) = O(~fff) as n --~ c~; 
see also [1]). In particular, we were interested in the so-called Koml6s conjecture which 
asserts that f l (B~,  K~) remains bounded as n --~ oo. 

We denote by Yn the (standard) Gaussian measure on R ~ with density (2:,r)-n/2e-Ilxl12/2, 
where I[x 11 is the euclidean norm ofx.  Let 0 (--~ 1.3489795) be the positive number given 
by Y1 ( [ - -0 /2 ,  0 /2 ] )  = �89 i.e., 

f0 o/2 e - t2/2dt  = --~ 

By a 0-coset  in R n we mean a coset modulo a lattice L generated by vectors of Euclidean 
norm < 0,  i.e., satisfying )~, (L, B,) < 0. The aim of this paper  is to prove the following 
fact: 

Theorem.  I f  V is a closed convex set in R n with y , ( V )  > 4, then V intersects every 
O-coset. 

Corollary.  I f  V is as in the theorem, then ot ( Bn , V)  < 0 -1. In part icular  a ( Bn , Kn ) = 
0 (Ci-6-ff-ff) a s  n ~ ~ .  

We point out that, in full generality, the theorem is sharp and that, similarly, the first 
part of  the corollary cannot be significantly improved. However, it is conceivable that 
ot(Bn, -) may be replaced by f l(Bn, .) in the corollary; see the conjecture at the end of 
this paper. 

For the proof  we need the following. 
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L e m m a .  I f V  is a closedconvexset in  R n with yn(V) > 1 a n d M  i sa  l inearsubspace 

o f R  n o f  dimension m, then ym(V N M) > �89 

R e m a r k  1. A n  analysis  of  the proof  shows that unless V is a ha l f -space ,  or  an infinite 
cyl inder  or thogonal  to M,  the inequali ty in the assertion o f  the l emma  is strict. 

We need some preparat ion for the proofs of  the l emma  and the theorem.  Fo r  a convex 
set V in R n and x ~ R denote  

Vx = {(xl . . . . .  x n - l )  ~ R n - l :  (xl . . . . .  x~_ l , x )  ~ V}. (1) 

Recall  now an inequal i ty  of  Ehrhard (see Theorem 3.2 o f  [6]). I f  A, B are n o n e m p t y  
convex Bore l  subsets  o f  R ~ and 0 < Z < 1, then 

�9 -~(yn(kA + (1 - Z)B))  >_ )~@-~(yn(A)) + (1 - ~ . ) ~ - l ( ~ ' n ( B ) )  , (2) 

where 

F l e -y2/2 dy, x ~ R, 
* ( x )  = oo 

is the (s tandard)  Gauss ian  cumulat ive distr ibution function. I t  fol lows in par t icular  that  
g(x) = ep- l (Y~-l (Vx)) is a concave function o f x  on the interval  I = {x: Yn- 1 (Vx) > 0}. 

Consequent ly ,  

W = {(x, y)  e RE:x  e I a n d y  <_ g(x)} (3) 

is a c losed  convex subset  o f  R 2. Note that Y1 (Wx) = YI ( ( - o o ,  g ( x ) ] )  = Yn-i (Vx) for  
x ~ R, where  W~ is defined analogously to Ix ;  in particular,  y~(V) = v2(W).  

Proof o f  the Lemma. Clearly, it is enough to consider  the case  m = n --  1 and (by the 
rotat ionary invariance o f  the Gaussian measure)  M = {(xl . . . . .  xn): xn = 0}. Fo r  V 

1 with yn(V)  >_ ~ we construct  W C R 2 as above, the assert ion o f  the l e m m a  is then 
l equivalent  to )'1 (Wo) _> 5 or  (0, 0) e W. To conclude the a rgument  it remains  to note  

that (0, 0) ~ W,  together  with W being c losed  and convex, would  i m p l y  1 > y2(W)  = 
~/n (V),  a contradict ion.  [ ]  

R e m a r k  2. Fo r  the p roof  of  the theorem we use the l e m m a  with n = 2 and m = 1, a 
special case  that  can be proved without appeal ing  to Ehrha rd ' s  inequal i ty  (2). However ,  
the p roo f  o f  the theorem itself  does use Ehrhard ' s  inequali ty.  See a lso  [10] for  resul ts  
related to the lemma.  

Proof o f  the Theorem. We use induction on n. For  n = 1, the  theorem is rather  trivial.  
So, suppose  that for  a certain n _> 2 the theorem is true for all  d imens ions  strictly less  
than n. Take an arbi trary O-coset  H in R n and a convex set V in R n d i s jo in t  wi th  H .  We 

1 are to p rove  that  yn(V) < 5" 
Fix  some  u ~ H and consider  the lat t ice L = H - u. By assumpt ion ,  we  have  

~.n(L, Bn) _< tg. Choose  a l  . . . . .  an ~ L fq OBn generat ing L and let  M be the l inear  
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span of at  . . . . .  an- l .  As before, we may assume that M ----- {(xl . . . . .  Xn):X~ = 0}. Let 
H '  be the orthogonal projection of H onto the nth coordinate axis of  R n (i.e., onto the 
orthogonal complement of M). Clearly, H '  is a #-coset. Additionally, if x ~ H ' ,  then, 
by our inductive hypothesis, Yn-l(Vx) < �89 and so (x, 0) ~ W (Vx and W have the 
same meaning here as in (1) and (3)). The case n = 1 of  the theorem now yields that 

1 and the lemma then implies that �89 > y2(W) = yn(V), as y l ( W A { ( x , O ) : x  ~ R}) < 
required. [] 

Conjecture.  There exists a function f on (0, 1) such that for  each symmetric convex 
set V in R n one has fl(Bn, V) < f ( yn (V) ) .  

R e m a r k  3, Let T be a bounded linear operator from a Hilbert space H to a Banach 
space X. We say that T is tight if the image of every connected additive subgroup of H 
is dense in its linear span in X. I f  X is a Hilbert space, then T is tight if and only if it 
is a Hilbert-Schmidt  operator; sufficiency was proved in [4], the proof  of necessity can 
easily be obtained by standard methods. The argument of  [4] together with the theorem 
proved above imply that e-operators are tight (for the definition of  e-operators, see p. 38 
of  [8]). An interesting problem, closely connected with the Koml6s conjecture, is to 
describe tight diagonal operators from/2 to co. 

R e m a r k  4. In connection with Problem 1 of McMullen and Wills [7, p. 263] it is worth 
noting the following fact. L e t S  be an arbitrary n-dimensional simplex in R n disjoint 
with the integer lattice Z n and let r (S) be the radius of  the inscribed ball. Then it follows 
immediately from our theorem that r(S)  < c(1 + logn)  1/2 where c > 0 is a numerical 
constant. Hence, by the result of  Steinhagen mentioned on p. 255 of  [7], the minimal 
width of  S is less than clnl/2(1 + logn)  1/2. 
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