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Abs t r ac t .  A halving hyperplane of  a set S of n points in R d contains d affinely independent  

points of S so that equally many of  the points off the hyperplane lie in each of the two half- 
spaces. We prove bounds  on the number  of halving hyperplanes under  the condi t ion that 
the ratio of  largest over  smallest  distance between any two points is at mos t  3n TM, 8 some 
constant. Such a set S is called dense. 

In d = 2 d imens ions  the number  of halving lines for a dense  set can be as much  as 
~2 (n log n), and it cannot  exceed O (nS/4/log* n). The upper bound  improves  over the current  
best bound of  O(na/2/log* n) which holds more generaUy without  any densi ty assumption.  
In d = 3 dimensions  we show that O(n 7/3) 'is an upper bound  on  the number  of  halving 

planes for a dense  set. The  proof  is based on a metric a rgument  that  can be extended to 
d _> 4 dimensions,  where  it leads to O (n d-2/d ) as an upper bound  for the number  of  halving 
hyperplanes. 
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1. Introduction 

Dense point sets are sets with a bounded ratio of largest over smallest distance between 
points. We present extremal properties of  dense point sets for the number of halving 
hyperplanes and for the stabbing number of  geometric d-uniform hypergraphs. In this 
section we introduce and discuss notions and results. 

Dense Sets. Let 8 > 0. A set S of n points in ~a  is 8-dense if the ratio of the maximum 
over the minimum distance between two points in S is at most  ~n l/d. We use dense short 
for 8-dense if 8 is a constant. Note that values of  8 that admit arbitrarily large 8-dense sets 

cannot be arbitrarily small. For example in ~2, 8 > 80 = ~ 2 ~ / r t  ~ 1.05 is necessary 
and sufficient. Arbitrarily large 80-dense sets can be constructed as the intersection of  
a triangle grid with a disk. For our purposes, it is possible to suppose the minimum 
distance is 1, so S is 8-dense if the diameter of  S is at most 8n l/a. 

Various combinatorial extremal problems previously considered for arbitrary point 
sets have recently been studied for dense sets. These include convex and empty convex 
subsets [2], [20], [21], separation discrepancy [1], and mutual avoidance and crossing 
families [21]. The complexity of the convex hull problem for 8-dense sets was determined 
in [21]. 

The investigation of dense point sets is motivated by the common discrepancy between 
the complexity of  algorithms in the worst case and in practical cases. The complexity of  
a geometric algorithm typically depends on certain combinatorial parameters associated 
with the geometric data, and it is often the case that these parameters obtain their extrema 
only for bizarre and rare data sets. In particular, extremal point sets constructed in the 
literature often exhibit large distance ratios, sometimes exponential in the number of  
points. This is related to the fact that there are combinatorial types of  point configurations 
that require the distance ratio be at least double-exponential in the number of points, see 
[ 14] and [ 15]. Such sets are unlikely to occur in practical applications. As a consequence, 
researchers spend a substantial amount of  time and effort battling difficulties that are 
too rare to be relevant in practical applications. The notion of  density can be seen as an 
attempt to make the theoretical analysis of  algorithms more relevant to practice. 

There are two related concepts. Random sets o f  points uniformly distributed in the 
unit square, and sets of  points with small integer coordinates (grid points). Dense point 
sets behave differently from such sets, at least in some respect. For example, a random set 
of  n points in the unit square is likely to have a pair at distance O (1/n) ,  and is therefore 
not dense. Similarly, a dense set of n points in the plane can include the vertices of  
a convex m-gon, m = s (x/n), which is impossible for any set of  points with integer 
coordinates between 0 and some constant times x/ft- 

It is perhaps worthwhile mentioning that dense point sets have been considered in 
computer graphics [8], and that they commonly appear in nature (eye-photoreceptor 
distributions, minimum distance constraints for molecules, atoms of proteins, etc.). 

Halving Hyperplanes. Let S be a set of n points in ]~a. A hyperplane in ~d is called a 
halvbzg hyperplane of S if it contains d affinely independent points of  S so that equally 
many of the points off the hyperplane lie in each of  the two half-spaces. A notion that 
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is closely related to and somewhat more general than a halving hyperplane is that of  a 
k-set. A subset T c__ S of a finite set S c R a is a k-set if card T = k and there is a 
half-space so that T is the intersection of S with this half-space. The number of  k-sets, 
for some fixed k, arises in the analysis of geometric algorithms, see, e.g., [6], [7], and 
[ 11 ]. The number of  k-sets obtains its maximum when the points are in general position, 
which we henceforth assume. 

The problem of bounding the maximum number of k-sets possible for a set o f n  points 
turns out to be notoriously difficult, even in d ---- 2 dimensions. The largest k for which 
matching upper and lower bounds are known is 3, see [ 18]. The most difficult case seems 
to be when k is roughly n/2, which is the reason why this case receives special attention 
as the problem of bounding the number of  halving lines. The best upper bounds for 
general point sets in IR 2 is O(n3/2/log * n), see [17], and there are constructions of  sets 
with g2(n logn)  halving lines [10], [13]. Our results for dense sets in ]R 2 consist of  an 
adaptation of the lower bound in [10] and of the upper bound O(nS/n/log * n). 

In three and higher dimensions the problem seems even harder. The first nontrivial 
upper bound for d = 3 dimensions has been given in [5]. This bound has been improved 
in [4] and [12] and the current best bound is O(nS/3), as derived in [9]. In d > 4 dimen- 
sions there are minute improvements over the trivial O(n d) bound based on algebraic 
topology arguments about the nonembeddability of certain complexes, see [22]. We have 
O(n d-z/d) as an upper bound for dense sets in all d > 3 dimensions. 

Outline. Section 2 shows the f2 (n log n) lower bound on the number of halving lines 
is asymptotically unaffected by the density assumption. Section 3 gives a proof of  the 
O(n 5/4 log* n) upper bound on the number of halving lines for a dense set of n points 
in ]R 3. The crux of the argument is a reduction to k-sets for about ~ subsets of  size at 
most about ~ each. Section 4 considers point sets in R 3. The approach to proving an 
upper bound rests on an area argument combined with an observation about centroids 
of  subsets of the set. This is extended to d > 4 dimensions in Section 5. Alternatively, 
the metric argument can be combined with an upper bound on the stabbing number of  
geometric d-uniform hypergraphs known as Lov~isz' lemma [16]. This is discussed in 
Section 6. 

2. L o w e r  Bound  in the Plane 

The constructions in [ 10] and [ 13] establishing the f2 (n log n) lower bound on the number 
of  halving lines are not dense: with minimum distance 1 they require the maximum 
distance to be at least some constant times n. This section shows that asymptotically 
the same lower bound can also be obtained for dense sets. We begin by modifying the 
construction in [ 10] so that the x 1-coordinates of the points are contiguous integers. 

Lemm a .  For any positive even integer m there are points Pl, P2 . . . . .  Pm in ~2 SO that 

(i) for  all i the xl-coordinate of  pi is i, and 
(ii) there are at least (m/6) log 3 (m/2) halving lines. 
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Proof. Assume first that rn = 2 �9 3 k, k > 0, and denote the number  o f  halving lines of  
a set S by  h(S).  We construct  sets S t ,  card(Sk) = 2 �9 3 ~, with a slightly higher number  
o f  halving lines than claimed, namely, h(Sk) = (k + 1) �9 3 k = ( m / 2 )  log3(3m/2) .  

For k = 0 we have m = 2, So = {(1, 0), (2, 0)}, and h(So) = 1. We continue by 
induction. Sk+l is the union of  three sets, To, T1, T2, each an affinely t ransformed copy of  
Sk as described below. By horizontal translation, along the xl -axis ,  make  sure the points 
in T/have  x l -coordinates  from im -4- 1 through (i + 1)m. Next,  shrink the x2-coordinates 
of  all points in T~ by a sufficiently large factor. Then move  the points  vertically, along the 
x2-axis, so that the shrunk x2-coordinates become vertical d isplacements  with respect  to 
a line, one for  each T,.. The three lines meet  in point  ((2m + 1)/2,  0) and have slopes 
0, 1, and - 1 .  The line for To is x2 = 0, the one for  TI is x2 = xl  - (2m + 1)/2, and 
the one for  T2 is x2 = - x l  -4- (2m + 1)/2. So, in fact, the only difference between Sk 
and To is in the x2-coordinates which are scaled down for  To; the points in T1 and T2 
also experience horizontal  translation and vertical d isp lacement  other  than scaling. The 
shrinking factor for  each set T / i s  chosen sufficiently large so that any line through two 
points o f  T/ separates T/+I and T/+2, where indices are taken modu lo  3. 

Any halving line o f  T/ is  also a halving line of  Sk+l. In addition, Sk+l has m/2  halving 
lines connecting a point  of  Ti with a point of  T/+I each, for  i = 0, 1, 2. It follows that 

3m 
h(Sk+l)  = h(To) -4- h(T1) + h(T2) -4- - -  

2 
= 3h(Sk) + 3 k+l 

= (k + 2)3 k+l. 

To extend this construction to arbitrary positive even m observe that all halving lines of  
Sk+l have bounded slope. We can thus add equally many  points above and below all these 
lines and retain them as halving lines. To satisfy the integer coordinate  requirement, we 
add the points with contiguous integer xl-coordinates,  starting at 2-  3 k -4- 1. After adding 
j points above and j points below all halving lines of  Sk, we get a set o f  m = 2 . 3  k + 2 j  
points, which we denote by Pm for  later reference. We m a y  assume j < 2 . 3  k, so P,, has 
fewer  than three t imes as many  points than Sk, which implies the c la imed lower bound 
for h(Pm). [] 

The integer Xl-COordinates can be used to control the density of  t ransformed copies 
of  Pro. This is done in the lower-bound construction below. 

T h e o r e m  1. For any even n > 2 there is a 2-dense set o f  n points in R 2 with at least 
(n /12)  log 3 n - n halving lines. 

Proof. We may  assume that n > 312, for  otherwise the c la im is void. Define m = 
2 �9 and M = 2-  [~"ff] + 9; so m is even and M is odd. Let  Y be the annulus of  
points on and between the two circles with radii m and 2m, both centered at the origin. 
For 1 < i < M,  let Ri be the half-line with angle (i - 1 ) / M  �9 2Jr starting at the origin. 
The intersection R i f-I Y is a line segment  of  length m. For  e > 0 and 1 < i < M find an 
affine t ransformation ai  of  em SO that 

(i) Qi ~ Y, 
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(ii) the distance of  any p e Qi from R; is at most e, and 
(iii) the distance between any two points in U ~ I  Qi is at least 1. 

For example, shrink the x2-coordinates of  the points in Pm to within [--e,  el, rotate the 
set by (i - 1 ) / M  �9 2rr about the origin, and translate along Ri until all points lie in Y. 
Define S = U ~ I  Q,. For sufficiently small e > 0, every halving line o f  Qi is also a 
halving line o f  S. 

Finally, we adjust the number  of  points from card S = M.m = (2 [,r + 9 )  (2 [~/-ff/4J ) 
to n. Notice that 

Vrff 11 x/-ff 
n < n + - - ~ - - - 1 8 < c a r d S < n + - - - - ~  < n +  12m. 

We can delete points f rom 12 sets Q~ until a set S' c_ S with card S'  = n remains. 
By choosing half  these points from Q j, 1 < j < 6, and the other half  f rom Q j,  
(M + 1) /2  < j _< (M + 11)/2, the halving lines o f  the remaining sets Q, are still 
halving lines o f  S'. Therefore, 

h(S ' )  >_ ( M - 1 2 ) .  h(Pm) 

> (2vrn - 3) �9 Vcff - 4 l~ ~ / n -  4 

- 12 
n 

> - -  log 3 n - n. 
- 12 

The diameter o f  S' is less than 4m and the number of  points is n _ 4m 2. The density o f  
S' is therefore 8 < 4 m /  4C~"mfm 2 = 2. [] 

R e m a r k .  It is possible to improve the density factor by setting m ~ ~/~'3/(4~r) .  

x/-ff ~ 0 .37~/n and M ~ 2 /~ /3  �9 2rrrn ~ ~ .  ~fff --~ 2.69~/-ff and by placing the 

m points of  Qi alternately at distances roughly m + �88 m + 1 + �88 . . . . .  2m - 1 + �88 and 
3 3 at distances roughly m + ~, m + 1 + ~ . . . . .  2m - 1 + ~ f rom the origin. The diameter 

is smaller than 4m, so the density is at most 2 ~ / ~ z r  ~ 1.49. The number  o f  halving 
lines is at least (n /12)  log 3 n - n. 

For any fixed 8 > ~2~ /3 /z r  ~ 1.05, we can construct a 8-dense set o f  even size n 
with at least cn log n - n halving lines, where c = c(8) > 0 is independent  o f  n, as 
f o l l o w s .  P u t  m l  = 18v/-ff  a n d  m 2  = ( 1 8  - e)~/ rn ,  w h e r e  e = e(8) > 0 i s  s u f f i c i e n t l y  

small. Let  Y be the annulus of  points on and between the two circles with radii m I and 
m2, both centered at the origin. We find a set S of  4m2(ml -- m2) points in the annulus 
Y similarly as in the proof  of  Theorem 1 so that S has at least cn log n - n halving lines. 
Let T be a set o f  points o f  a triangle grid with minimum distance 1 which is symmetric  
around the origin and does not contain the origin. Let T'  be the intersection o f  T with 
the disk o f  radius m 2 - -  1 centered at the origin. We may certainly assume that each of  
the cn log n - n halving lines of  S cuts T '  into two equal-sized parts. Then S U T '  has 
at least cn log n -- n halving lines. I f  e > 0 was chosen sufficiently small, S U T '  has at 
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least  n points. Finally, we delete (card(S U T') - n ) /2  pairs o f  points of  T ' ,  each pair 
symmet r i c  around the origin, so that exactly n points remain in S t.J T ' .  This gives us a 
8-dense set o f  size n with at least cn log n - n halving lines. 

3. Upper  Bound  in the Plane 

Let  fk (n) be the m a x i m u m  number  of  k-sets in a set o f n  points in the plane, and let f (n) = 
max{fk(n):  0 < k < n}. As mentioned in the introduction, f ( n )  = O(n3/2/log* n) is 
the best  known upper  bound on f ( n ) .  We show that &dense  sets admit  smaller  bounds. 
In particular,  the result implies that O(nS/a/log * n) is an upper  bound for  dense sets. 

Theorem 2. The number of  halving lines of  a &dense set of  n points in ]~2 is at most 
O(8.vfff . f(36~/-ff)).  

Proof. Let  S be  a &dense set o f n  points in ]~2. Consider  a general  direction 2/ ~ [0, rr) 
and a line e = s  with direction y so that equally many  points o f  S lie on both side 
o f  s The  length of  g n cony S is at most  the diameter  o f  S, which is at mos t  8vrn. Let 
R = R ( y )  be the smallest  rectangle that contains the �89 of  s fq cony S; its 
length is at mos t  8~/'ff + 1, its width is 1, so its area is at mos t  8~/-~ + 1. For each point 
p ~ S 71R consider  the disk Dp = {x [ Ixp[ < �89 where Ixp] is the Euclidean distance 
be tween  x and p .  The  area of  R covered by Dp is at least ~r/8. Since all such disks are 
disjoint, this implies that 

6 ~ + 1  8 
card(S N R) < < - -  �9 8~/-n + 3. 

zr/8 Jr 

We say a line h meets  R shortside i f  h meets  the two short  sides, which have length 1 
each. A halving line of  S necessarily meets e within conv S and thus within R. It follows 
that  i f  h is a halving line, then it meets R shortside if its direction differs f rom y by at 
mos t  x ,  where  (&,/~ + �89 t anx  = �89 or, equivalently, x = aretan 1 / (2 .  ,S,c'-ff + 1). Since 
8qrh - is at least 1, we have 

1 1 1 zr 
arctan > > ~ > 

2 8 ~ +  1 - 2 8 ~ / n +  1 - 3-  8q/-ff 10.8~/-ff" 

Choose  m = [5 �9 84rff] and assume that all directions y = 0, (1 /m)zr ,  (2/m)Tr . . . . .  
( (m -- 1) /m)~r  are general in the sense that no two points o f  S lie on a line with such a 
direction. Two contiguous directions differ by less than 2x, so each halving line meets 
at least  one of  the rectangles R (y )  shortside. 

To finish the argument  observe that each rectangle, R, is met  shortside by at most  
f ( (8/Jr)aqrf f  + 3) halving lines, because they all split S - R the same way. It follows 
that  the total number  of  halving lines is at most  

m .  f ( 8 , V " f f  + 3 ) =  O ( , V ~ - f ( 3 , ~ r  

as c laimed.  [] 
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R e m a r k .  Let fk  (n, 8) be the maximum number of k-sets in a 8-dense set o f  n points 
in the plane, and let f ( n ,  8) = max{ fk (n ,  8): 0 < k < n}. Thus, Theorem 2 yields 

f k (n ,  8) = O(8,/-n . f(38~fff)) ,  

where k = n / 2  - 1. An analogous argument also gives 

f (n, 8) = O(8~/'ff �9 f(38~/ '~)).  

Remark. We redefine R = R (y)  in the proof of  Theorem 2 to be the smallest rectangle 
that contains the e-neighborhood of  s f3 conv S, where e > 0 is a small positive constant. 
In this case the points o f  S N R are almost collinear. We call S ___ R 2 o f  size n 8-line-dense 
if  there is a line q such that the orthogonal projection of  S to q is a 3-dense set in the 
one-dimensional interpretation. 

Let lk (n, 8) be the maximum number of  k-sets in a 8-line-dense set o f  n points in the 
plane, and let l(n, 8) = max{lk (n, 8): 0 < k < n }. Analogous arguments as in Sections 2 

and 3 yield that, for any fixed 8 > 80 = ~/2~f3/zr and 8' > 1, 
1 

f (n, 8) = O(~rff �9 l(cl~t-n, 8')) = O ( f  (c2n, 8)), 

where Cl and c2 are two constants depending only on 8 and 8'. 
In particular, if the function f ( n ,  8) is smooth as a function o f  n (i.e., f ( c n ,  8) = 

O ( f ( n ,  8)) for any constant c), then 

f (n, 8) = O(Vc~ �9 l(v/-n, 8')), 

and determining the asymptotic behavior of  the maximum number  o f  halving lines is 
equally difficult for dense sets as for line-dense sets. We believe that the function f ( n ,  8) 
(and also the function f ( n ) )  is smooth but have no proof  at this moment .  

R e m a r k .  Note that Theorem 2 can be bootstrapped. So if dense sets asymptotically 
maximize the number  o f  halving lines, then this maximum is O(n  polylog n). 

4. Upper Bound in Space 

Let S be a dense set o f  n points in R 3. As mentioned in the Introduction, we derive 
an upper bound on the number  of  halving planes using an area argument for  triangles 
spanned by points in S. In particular, we need a lower bound on the total area o f  a 
collection of  m such triangles. We begin with two lemmas. The collection o f  subsets o f  
S with size k is denoted by (s). 

Lemma A.  Let  S be a set o f  n points with minimum distance 1 in ]~3. Then 

1 < 3 �9 n 5/3. 
{p.q}E(s) IPql - 
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Proof. Consider the ordered sequence of the N = (2) distances: Xl < x2 ~ - . -  < xN. 
The pigeonhole principle implies that for each index i there is a point with at least 2 i / n  
points at distance xi or less. So we have at least 2 i /n  + 1 points inside a ball of  radius xi. 
Because of  the minimum distance assumptions we get at least 2 i / n  + I pairwise disjoint 

1 1 By dividing volumes we get open balls of  radius ~ each inside a ball of  radius xi + ~. 

2i ( x i + � 8 9  3 
- - + 1 <  
n (�89 

- -  = 8(x,  + � 8 9  _< 33 

It follows that xi > �89 ( i / n )  1/3, a n d  therefore 

1 /~I  1 ~ i-1/3 n5/3. = - -  < 3n 1/3 < 3 .  
{p,q}E(s) [Pql .= x, i=1 

[] 

Based on the bound for distances we can now prove a bound for areas of triangles. 

L e m m a  B. Let S be a set of  n points with minimum distance 1 and maximum distance 
D in ~3. Then the total area o fm  > 12Dn 2 different triangles is at least 5~m3/2/n 5/6. 

Proof. For two points p, q ~ S consider all third points r ~ S so that the area of  
the triangle pqr  is at most A and pq is its longest edge. The distance from r to the 
line through p and q is therefore at most 2A/ lpq l ,  and r lies between the two planes 
through p and q normal to pq. The number of points r that can possibly lie inside this 
cylinder can be bounded by a packing argument. After growing by �89 in every direction, 
the volume of  the cylinder is 

( 21~ql ~ ) 2  87rA 2 zrlpql V < ( I p q [ + l )  + zr < ~ + 4 z r A + - -  
- I P q l  2 ' 

because I Pql + 1 < 21pq 1. It contains at most (6/zr)V pairwise disjoint open balls of  
radius �89 each. Using Lemma A we get an upper bound on the number of  triangles with 
area A or less: 

3Dn2 Z 6V~r < 144A2nS/3 + 12An2 + 2 " 
{p,q}E(s) 

I f  A1 < A2 < .. �9 < AM is the ordered sequence of  the M = (3) triangle areas, we can 
rewrite this as 

3Dn2 i < 144A2n 5/3 q- 12Ain 2 q- 2 " 

For i > 6Dn 2 this implies that at least one of  144A2n 5/3 and 12Ain 2 exceeds 
�89 - (3D/2)n  2) > 3i/8.  The first inequality implies 

i 1/2 

Ai > 20n5/6, 
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which is weaker than the second inequality provided i > ~5 n7/3. This is indeed the case 

1_ 1/3 which can be proved by a straightforward packing i f i  > 6Dn 2, because D > ~n , 
argument. Finally, the total area o f m  = 2i > 12Dn 2 triangles is at least 

m (m/2) U2 1 m 3/2 

(m -- i) - A, = i �9 At > ~ �9 20 .  n 5/6 > 57 n 5/6 " [] 

The lower bound on the total area o fm triangles is sufficient to prove an upper bound on 
the number  o f  halving planes of  a 3-dense set S. Assume n is odd and define k = ( n -  1)/2.  
For every subset T _ S of  size k, let YT be the centroid, that is, YT = (1 / k )  Y~pe r P" Let 
Sk be the set o f  k-fold centroids, that is, Sk = {Yr I T c_ S, card T = k}. The convex hull 
of  Sk is a three-dimensional convex polytope, Pk. Note that Pk is contained in the convex 
hull o f  S, and, by density assumption, its projections to the three coordinate planes have 
area at most  32n 2/3 each. It follows that the surface area of  Pk is less than 662n 2/3. 

We claim that if  the plane, h, through points p,  q, r e S is a halving plane, then a 
homothetic copy of  the triangle pqr  is a face of  Pk. Let U _ S be the subset o f  points on 
one side o f  h, so card U = k - 1. For each x 6 {p, q, r}, there is a plane that separates 
U tO {x} f rom S - U - {x}, and therefore Yvu[xl is a vertex o f  Pk. Furthermore, the 
centroids defined by U tO {p}, U tO {q}, and U tO {r} span a triangular face o f  Pk. This face 
is a homothet ic  copy of  pqr,  with scaling factor 1/k.  In summary,  if the plane through 
points p,  q,  r is a halving plane, then a homothetic copy of  p q r  is a face o f  Pk, and the 
area o f  pqr  is k 2 times the area of  the corresponding facet. Since the surface area o f  
Pk is less than 682n 2/3, the total area of  all triangles corresponding to halving planes is 
less than 6k262n 2/3 < 332n8/3. Lemma B thus implies the fol lowing upper bound on the 

number  of  halving planes: 

Theorem 3. The number of  halving planes of  a S-dense set o f  n points in I~ 3 is less 
than 20 �9 •4/3n7/3. 

5. Four and Higher Dimensions 

The area argument of  Section 4 can be extended to R d, d > 4. To simplify the argument, 
only dense sets of  n points in ~d are considered, so the diameter is D <_ 6n l/a for some 
constant 8. Suitable positive constants are used throughout this section and denoted as 
c, with or without sub- and superscript. A set T of  card T = k + 1 < d + 1 points in 
~d spans a k-simplex, err = conv T. Its k-dimensional Euclidean measure is denoted 
by Icrr t. We let Sk(A) denote the number of  k-simplices spanned by the points whose 
measure is A or less. All logarithms are to the base 2. 

Lemma C. 
by 

Let S be a dense set o f  n points in •d. Then Sk ( A ) is bounded from above 

{~ . nAd for  

nl+(~)/a A a -I- c'n k+(k-l)/d for  

where c and c' are constants depending on 8 and d only. 

k ~ l ,  

2 < k < d ,  
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P r o o f  Le t  F be an (i - 1)-flat, 1 < i < d. The (i - 1)-dimensional measure of  its 
intersection with cony S is less than D i-1.  The  d-dimensional  measure of  the set o f  

1 points o f  cony S at distance z + i or less from F is less than ci (z + �89 Di-1 .  With a 
different constant, #1, this is also an upper bound on the number  o f  points in S at distance 
z or less f rom F .  

Consider  an arbitrary ordering, P0, p l  . . . . .  pk, o f  the vertices o f  a k-simplex o-r, 
T c S. For  1 _< i < k, let x, be the distance o f  Pi f rom the (i - 1)-flat spanned by 
Po . . . . .  p i -1 .  I f  z l ,  z2 . . . . .  Zk is a sequence o f  distances so that xi <_ zi for all i, then 

1 k 1 k 

f Yf = H= zi. (1) 

The number  o f  k-simplices for which (1) holds is bounded from above by 

k 
I d - i + l  l - 1  c2n H [ ( z i  q- ~) D ]. 

i=1 

The number  of  k-simplices with at least one xl at most  1 is less than c �9 n k �9 D k-I <_ 
C t �9 n k+(k -1) /d .  For the others we can assume all zi exceed 1, so the upper bound can be 
simplified to 

k 
t k Z : _ l + l  " 

c2nO(2) 1--I (2) 
i = l  

For  a given A, we can now derive an upper bound on sk (A), the number  o f  k-simplices try 
with [arl  < A. For k = 1 set zl = A, get [cry[ = xl _< A from (1) and sI(A) < cr2nA d 

f rom (2). This completes the proof  o f  the first inequality in L e m m a  C. For k _> 2 we 
denote by Sk(A ) '  the number  of  k-simpliees with measure at mos t  A and with all xi 's 
bigger than 1. From above we have S k ( A )  < Stk(A)  -[- C' �9 n k+(k -1 ) /d .  We consider all 

sequences Zl through zk so that zi > 1, for all i, a n d  H k = l  Zi ~ k! A. We use induction 

and the fact that 1-I~_--~ zi = k ! ( A / z k ) .  So 

/~ 
t �9 Z d - k  D k - 1  dz .  S~k(A) < c .  Sk_ 1 

Z=I 

For k = 2 we get 

f~ s~(A)  < c"  c'2n z d - 2 O d z  
z 1 

ir < c 2 �9 n A d D ,  

and for k > 3 we get  by  induction 

f~ �9 " D (ki') �9 z a - k D  ~-1 d z  s'k(A) < c c 2 (k- l)'n 
Z=I 

llt 
< C 2 (k) �9 n A d D  (~). 

Thus, 

sk(A) < Stk(A) -q- c' �9 n k+(k-1)/d < c �9 n1+(~)/d Aa + c'n k+(k-l)/d. [] 
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The upper  bound  o n  Sk(A ) can be used to prove a lower  bound  on the total  measure  
of  a col lect ion o f  k-s impl ices ,  all spanned by S. 

L e m m a D .  Let S be a dense set o f  n points in R a. For 1 < k < d, the total k- 
dimensional measure o f  m > c" �9 n k+(k-l)/d k-simplices is at least 

m l + l / d  

C .  n(2d+k(k_l) /2d 2 . 

( n ) k - s i m p l e x  Proof. LetA1 _< A 2  _< " ' "  _< AM be the ordered sequence o f  the M = k+l 

measures.  Assume  c" > 4c '  so the majori ty  of  any set o f  m k- s impl ices  have all  xi 
exceeding 1, see the p roo f  o f  L e m m a  C. For  i > m / 2  > 2c'n k+~k-l)/d, L e m m a  C y ie lds  
i < 2 c . n e a  d, where  e = 1 + (k)/d. Thus 

A, > c4 �9 (i �9 n-e) 1/d. 

For the total measure  we get  

m 

E A i  > 
i=1 ~=m/2 

1 ~ i l / d  
> C 4 " -  ~ 

t =ra / 2 

m l + l / d  
r 

> c 4 �9 ne /d  
[]  

R e m a r k .  For  d = 3, k = 2, and m ~ c �9 n 7/3,  the bound in L e m m a  D agrees  wi th  the 
bound in L e m m a  B up to a constant  factor. I f  m gets larger  than c .  n 7 /3 ,  then the bound  

in L e m m a  D gets worse  than the bound in Lemma B. 

For  k = d - 1, L e m m a  D says that m > c" �9 n d - 2 / d  (d - 1)-s impl ices  have total  

(d - D-d imens iona l  measure  at least  

m l + l / d  
C �9 > C 5 �9 n d + l / 2 - 3 / 2 d - 3 / d 2 .  

n (d2-d+2)/2d 2 

The exponent  o f  n exceeds  d - 1 / d  for d >__ 4. This is worth  not ic ing because  the same 
argument on centroids  which  leads to Theorem 3 in Sect ion 4 impl ies  that 

c 6 O d - l n  d -1  < ct6 n d - 1 / d  

is an upper  bound  on the total  measure  of  all (d - 1)-s implices  spanning  ha lv ing  hyper-  
planes. It fol lows that there  cannot  be m > c" �9 n d-2/d such (d  --  1)-s impl ices ,  because  
this would contradic t  L e m m a  D. This gives the following, the  de ta i led  p roo f  is omit ted.  

Theorem  4. The number  o f  halving hyperplanes of  a dense set o f  n points  in ]R d, d >_ 4, 
is less than c �9 n d - 2 / d .  
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6. Stabbing Number 

A s  d e s c r i b e d  by  San ta l6  [19], there is a m o t i o n - i n v a r i a n t  m e a s u r e  on l ines  in ]R 3 w i t h  the  

p r o p e r t y  tha t  the  m e a s u r e  o f  l ines  in te rsec t ing  a t r i ang le  is t w i c e  its area.  This  m e a s u r e  can  

be  u s e d  to e x t e n d  T h e o r e m  3 to the s tabbing  p r o b l e m  fo r  t r i ang les  de f ined  by a 8 -dense  set  

S __c ~3 .  T h e  m e a s u r e  o f  l ines in te rsec t ing  the  c o n v e x  hul l  o f  S is b o u n d e d  by 0($2n2 /3 ) .  

I f  w e  t ake  e v e r y  l ine  wi th  the mul t ip l i c i ty  o f  its s t abb ing  n u m b e r  in a set of  m t r i ang les  

de f ined  by  S, t hen  this measu re  is tw ice  the total  a r ea  o f  these  t r iangles .  L e m m a  B s h o w s  

that  this a r ea  is f2 (m3/2/n5/6) ,  prov ided  m > c~n 7/3. So  i f  the set  o f  t r iangles  has  the  

p r o p e r t y  that  e v e r y  l ine  stabs at m o s t  O ( n  2) o f  them,  then  m = 0(84/3n7/3) ,  w h i c h  

is the  s a m e  b o u n d  as in T h e o r e m  3. Lov~isz'  l e m m a  gua ran tees  that  this is i n d e e d  the  

case  fo r  t r i ang l e s  that  span ha lv ing  planes.  Thus ,  the  m o t i o n - i n v a r i a n t  m e a s u r e  fo r  l ines  

t o g e t h e r  w i t h  L o v ~ s z '  l e m m a  g ives  ano ther  p r o o f  o f  T h e o r e m  3 ba sed  on  the area  b o u n d  

in L e m m a  B. T h e  s a m e  can be  said about  d > 4 d i m e n s i o n s ,  T h e o r e m  4, and L e m m a  D.  
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