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Abstract. Consider a sequence of stationary tessellations {�n}, n = 0, 1, . . . of R
d con-

sisting of cells {Cn(xn
i )} with the nuclei {xn

i }. An aggregate cell of level one, C1
0 (x

0
i ), is the

result of merging the cells of �1 whose nuclei lie in C0(x0
i ). An aggregate tessellation �n

0
consists of the aggregate cells of level n, Cn

0 (x
0
i ), defined recursively by merging those cells

of �n whose nuclei lie in Cn−1(x0
i ).

We find an expression for the probability for a point to belong to a typical aggregate
cell, and obtain bounds for the rate of its expansion. We give necessary conditions for the
limit tessellation to exist as n → ∞ and provide upper bounds for the Hausdorff dimen-
sion of its fractal boundary and for the spherical contact distribution function in the case of
Poisson-Voronoi tessellations {�n}.

1. Motivation

A tessellation of R
d is a countable collection of closed bounded sets called cells

such that

(a) union of all cells is the whole space;
(b) intersection of any two different cells has d-Lebesgue measure zero;
(c) each bounded set intersects a finite number of cells.

Tessellations are widely used to model different cellular systems (see, e. g., [7] and
references therein).

We assume that each cellCi is associated with a unique nucleus x(Ci) according
to a certain rule satisfying an obvious compatibility condition: θx(Ci) = x(θCi)

for any shift transformation θ in R
d . For example, the Voronoi tessellation has cells

defined as

C(xi) = {x ∈ R
d : ‖x − xi‖ ≤ ‖x − xj‖, ∀j �= i},

K. Tchoumatchenko: France Telecom R&D, 38-40 rue du Général Leclerc, 92794 Issy-Mou-
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where ‖ · ‖ is the Euclidean norm. Thus, the cell with nucleus xi consists of the
points that are closer to xi than to any other nucleus. A random tessellation with
nuclei can be viewed as a marked point process M = {(xi, C(xi))}. In this paper
we deal with stationary tessellations, i. e., M is stationary with respect to shifts θ .

Recently, random Voronoi tessellations were used as models of service zones of
telecommunication stations. The main advantage of these models is that they dra-
matically reduce the number of structuring parameters of the model to just a few
parameters of the underlying stochastic process and often allow for an analytical
treatment of complex networks characteristics (see [1], [2]).

In many cases, however, models using Voronoi tessellation over-simplify the
complex geometry of service zones. For instance, in the case of wireless communi-
cations the base station that will handle a call from a mobile terminal is determined
by the signal strength rather than Euclidean distance to the stations. Affected by
the wave attenuation phenomena, the zones’ boundaries have extremely irregular,
distorted shapes.

This calls for development of more complex tessellation models that are still
described in terms of a small number of parameters and simple enough to be ana-
lytically treatable.

For this we introduce an operation of aggregation on independent stationary
tessellations equipped with nuclei. Let �0 = {C0(x0

i )} and �1 = {C1(x1
i )} be two

such tessellations. Define the aggregate cells of �1
0 = �0 ◦ �1 as

C1
0(x

0
i ) =

⋃
j : x1

j ∈C0(x0
i )

C1(x1
j ) .

In words, C1
0(x

0
i ) is the union of all the cells of �1 whose nuclei lie in C0(x0

i ). Due
to the independence and stationarity assumptions, with probability 1 every x1

j lies in

unique cell of �0. Hence, �1
0 is again a tessellation, though some of its cells C1

0(x
0
i )

may be empty. It is easy to verify that the operation of aggregation is associative and
that the aggregate tessellation �1

0 is itself stationary. Let {�n}n∈N be a sequence of
independent stationary tessellations with the nuclei sets �n = {xn

i }, n ∈ N. The
aggregation of the first n terms of the sequence yields the aggregate tessellation of
order n: �n

0 = �0 ◦ �1 ◦ . . . ◦ �n with the nuclei set �0 = {x0
i }. The cells of this

tessellation will be called aggregate n-cells and denoted by Cn
0 (x

0
i ).

Figure 1 shows simulated Poisson-Voronoi aggregate tessellations, quoted as
PVAT in the sequel, for which the elements of the sequence {�n}n∈N are all Voronoi
tessellations generated, respectively, by mutually independent homogeneous Pois-
son point processes �n, n ∈ N. The diagrams were produced by computer program
pvat1 written by one of the authors. It can be seen that the cells of PVAT are, in
general, neither convex nor connected; nor do they need to contain the nucleus.

It is clear that the higher the growth rate of the successive intensities, the less
the boundary of cell Cn+1

0 (x0
i ) deviates from the boundary of Cn

0 (x
0
i ). On the oth-

er hand, for close intensity values the boundary becomes very irregular, cells are
more likely to split, and quite often there is no point of �n+1 in Cn

0 (x
0
i ), so that

1 Available from http://www.stams.strath.ac.uk/˜sergei
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Fig. 1. Initial Voronoi tessellation and n-level aggregate cells in PVAT model with geo-
metrically growing intensities λn = λn. Left image: n = 3, λ = 10. Right image: n = 25,
λ = 1.2

Cn+1
0 (x0

i ) is empty. Using an analogy with branching processes, we may think of
the nuclei of the �n-cells that make up the aggregate cell Cn

0 (x
0
i ) as of n-generation

offspring of a 0-level parent nucleus x0
i . If we connect by segments the nuclei �n

of each level n with their offsprings at the next level �n+1, we will obtain a family
of spanning trees studied for Poisson-Voronoi case in [3]. In the present paper we
address properties of the aggregate cells rather than those of the spanning trees.

New phenomena appear in the limit, when n tends to infinity. As we have seen
above, there are models in which with positive probability some of the aggregate
cells are empty. A priori it is not clear if we do not end up with all the 0-nuclei �0
dying out with probability 1. Even if we do not, will �n

0 converge in some sense
to a limit, say, �∞

0 that is a tessellation? It is easy to imagine that �∞
0 may have

a fractal boundary (it also may not! – see Section 3) and thus it is unclear if the
boundary has d-Lebesgue measure 0 and whether only a finite number of the limit
aggregate cells hits a bounded set.

The structure of the paper is the following. Section 2 presents the main results.
We find an expression for the coverage probability function for a typical aggregate
n-cell (the one with nucleus at the origin under the Palm distribution of the pro-
cess �0) via the corresponding characteristics of �0, . . . ,�n. This result is valid
for any stationary aggregate tessellation although a closed form expression can be
obtained only in a few cases. Further we deal mainly with PVAT. We find uniform
upper bounds on the diameter of a typical cell and on the range of variation of its
boundary. Next, we show that with positive probability there is a ball contained in
all n-level aggregate cells Cn

0 (0). This property is sufficient in the self-similar case
for the limit cells, defined as the set lower limit of {Cn

0 (x
0
i )}n∈N, to form a tessel-

lation. Defined by a simple recursive procedure, the boundary of the limit PVAT
has an intricate self-similar structure at any scale allowing us to call it fractal. To
characterize its degree of irregularity, we provide an upper bound for its Hausdorff
dimension which is based on the analysis of the boundary contact distribution func-
tion. Note that the parts of the cell’s fractal boundary are highly dependent making
most of previously developed techniques for random fractals inapplicable to PVAT
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(a presentation of modern methods used in studying fractals can be found, e. g.,
in K. Falconer’s book [5]). Section 3 contains examples of aggregate tessellations
manifesting various properties. Finally, Section 4 contains the proofs of the main
statements of Section 2. Other proofs and further details can be found in [9].

The following notation is used throughout the paper. By P we denote the distri-
bution in a probability space carrying the sequence of independent stationary point
processes �0,�1, . . . , and by P0

n, the Palm distribution with respect to the process
of nuclei �n. Most frequently we consider the Palm distribution with respect to
�0, for which we simply write P0 instead of P0

0. Similar notation is used for the
corresponding expectations. �n(B) stands for the number of points of �n in a Borel
set B ⊂ R

d . The intensity of �n is denoted by λn, so that En �n(B) = λn|B|, and
it is the only parameter characterizing a homogeneous Poisson process. We also
assume that λ0 = 1, which is just a matter of scale choice. Finally, b(x, r) is the
closed ball centered in x with radius r , and bd = πd/2/�(d/2 + 1) is the volume
of a unit ball in R

d .

2. Main results

2.1. Coverage probability

Consider a tessellation �n of fixed level n. Under Palm probability P0
n, there is

almost surely a point of �n at the origin 0. Since the density of cells is λn, the
volume of a typical cell is E0

n |Cn(0)| = λ−1
n (see, e. g., [6], Corollary 5.2, equation

(5.6)). Therefore,

λn

∫
P0
n

{
y ∈ Cn(0)

}
dy = λn E0

n

∫
1I(y ∈ Cn(0)) dy = λn E0

n |Cn(0)|,

which is 1, so that the function fn(y) = λnP0
n

{
y ∈ Cn(0)

}
is a distribution density

in R
d .

The next statement provides a formula for calculating the probability that a
point y ∈ R

d is covered by a typical aggregate cell of level n.

Theorem 1. Let f0,n(y) = P0
{
y ∈ Cn

0 (0)
}
. Then for each natural n, it equals the

convolution

f0,n(y) = f0 ∗ f1 ∗ · · · ∗ fn(y).

Let us take a closer look at the coverage probability for Poisson-Voronoi ag-
gregate tessellations. For PVAT we have:

fn(y) = λn exp
{−λnbd‖y‖d

}
. (1)

In R
2 this corresponds to the normal distribution with zero mean and the covariance

matrix (
(2πλn)

−1 0
0 (2πλn)

−1

)
. (2)
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Therefore, the convolution also corresponds to a normal r.v. with zero mean and
the covariance matrix being the sum of (2). The corresponding density is thus

f0,n(y) = Ln exp
{−Lnπ‖y‖2} , where L−1

n =
n∑

i=0

λ−1
i ,

which is the same as for a typical cell in the ordinary Voronoi tessellation with the
nuclei intensity Ln. Such “mean field” approximation is valid only in this planar
case, the reason being the stability of the distributions 1 in d = 2. The general
formula for the characteristic function of f0,n in R

d and explicit expression for the
density in R

1 can be found in [9].

2.2. Evolution of PVAT cells

Here we investigate the behavior of the typical aggregate cell Cn
0 (0) as n tends to

infinity on the Palm space of the process �0. The maximal and the minimal distance
from a point z to the cell’s boundary can be defined, respectively, as

Rn(z) =
{

min{r : b(z, r) ⊃ Cn
0 (0)} if Cn

0 (0) �= ∅,
0 otherwise;

rn(z) =
{

max{r : b(z, r) ⊂ Cn
0 (0)} if z ∈ Cn

0 (0),

0 otherwise.

The definition takes into account that the aggregate cell of order n ≥ 1 might not
contain z or might be empty. Our aim is to characterize the distribution of

R∞(z) = sup
n

Rn(z), r∞(z) = inf
n

rn(z).

Theorem 2. Let φ(y) be the inverse of the function y(x) = xex . Assume that

c =
∞∑
n=1

(φ(λn)

λn

)1/d =
∞∑
n=1

e−φ(λn)/d < ∞ . (3)

Then for PVAT the following inequalities hold for all ρ > c
√
d and any z ∈ R

d :

P0{R∞(z) > ρ + ‖z‖} ≤ a1

∞∑
n=1

e−φ(λn)A(ρ) , (4)

P0{r∞(z) = 0
∣∣ r0(z) > ρ

} ≤ a1

∞∑
n=1

e−φ(λn)A(ρ) , (5)

where a1 = 2
(
(3/2)d − 1

)
bdd

d/2cd−1 and A(ρ) = (ρ/c
√
d)d + 1/d − 1.
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Remark 1. By definition, logφ(x) + φ(x) = log x. Therefore, for x ≥ 1 one has
φ(x) ≤ log x. Since e−φ(λn) = φ(λn)/λn and λn > 1 for all sufficiently large n,
the conditions

∞∑
n=1

( log λn

λn

)1/d
< ∞ or

∞∑
n=1

λ
−1/d+ε
n < ∞ (6)

for some 0 < ε < 1/d are sufficient for (3) to hold.

Corollary 1. For PVAT with exponentially growing intensities λn = λn for some
λ > 1, one has for all ρ > c∗ and any z ∈ R

d ,

P0{R∞(z) > ρ + ‖z‖} ≤ c1 exp
{−c2ρ

d
}
, (7)

P0{r∞(z) = 0
∣∣ r0(z) > ρ

} ≤ c1 exp
{−c2ρ

d
}
. (8)

One may take c∗ = ((log c1)/c2)
1/d ,

c1 = a1

(
1 + d

1 + φ(λ)

φ(λ) log λ

)
eφ(λ), and c2 = φ(λ) (c

√
d)−d .

Corollary 2. Under conditions of Theorem 2, with probability one, each family of
cells {Cn

0 (x
0
i )}n∈N is uniformly bounded in R

d .

Corollary 3. Under conditions of Theorem 2, for any y ∈ R
d with positive prob-

ability, there exists x0
i ∈ �0 such that y ∈ int

( ∩n Cn
0 (x

0
i )

)
. The lower bound for

such probability is given in (21).

Bounds for the probability of a cell’s extinction can be found in [9].
The next theorem reinforces, in some sense, Theorem 2 showing that not only

the radius but also the range of the cells’ boundaries evolution is related to the sum
in (3). Recall the definitions of Minkowski operations ⊕ and � for two sets A,B

in a vector space:

A ⊕ B = {a + b : a ∈ A, b ∈ B}, A � B = (Ac ⊕ B)c .

For 0 ≤ m < n ≤ ∞ introduce the variable γ n
m, which shows how far the boundary

of Cn
0 (0) stretches from the boundary of its predecessor Cm

0 (0). Put

γ n
m = inf{r : Cm

0 (0) � b(0, r) ⊆ Cn
0 (0) ⊆ Cm

0 (0) ⊕ b(0, r)}

if both Cm
0 (0) and Cn

0 (0) are non-empty, otherwise put γ n
m = 0.

Theorem 3. Let φ(y) be the inverse of the function y(x) = xex and let

c(m, n) =
n∑

k=m+1

e−φ(λk)/d .



204 K. Tchoumatchenko, S. Zuyev

Then for 1 ≤ m < n ≤ ∞, one has for all ρ > c(m, n)
√
d,

P0{γ n
m > ρ

∣∣ diam Cm
0 (0) ≤ r0

}
≤ bdd

d/2cd(m, n)
(3

2
+ r0

ρ

)d
n∑

k=m+1

e−φ(λk)A(ρ,m,n),

where A(ρ,m, n) = (
ρ/

√
dc(m, n)

)d − 1 .

The proof mimics the one of Theorem 2 and can be found in [9].

Corollary 4. Assume that (3) is satisfied. Then limn→∞ γ n+k
n = 0 in probability

uniformly in k ≥ 1.

2.3. Limit tessellation

Heuristic arguments suggest that the difference between two successive aggregate
cells becomes smaller and smaller if the intensities of the point processes grow
sufficiently fast. In the case of PVAT, Corollary 4 shows that it is indeed the case.
Moreover, by Corollary 3 with positive probability the family of cells {Cn

0 (x
0
i )}

centered in the same nucleus x0
i possesses a non-empty “core” int

( ∩n Cn
0 (x

0
i )

)
.

Therefore, it is important to know, whether there exists and in what sense a limit
object for the process of aggregation, and if the answer is positive, whether this
limit object is itself a tessellation.

It is possible to define the limit cells in various other ways. We show that under
a suitable condition the most natural definitions are equivalent and yield the same
limit tessellation.

Let {An} be a sequence of closed subsets of R
d . Recall the definitions of Pain-

levé-Kuratowski lower and upper set limits:

lim inf
n

An = {x : ∃{xn} such that xn ∈ An and x = lim
n

xn} ,
lim sup

n
An = {x : ∃{xnk } such that lim

k
nk = ∞, xnk ∈ Ank , and x = lim

k
xnk } .

In words, a point belongs to lim infn An if and only if any of its neighborhoods
intersects with all sets An starting from some m; a point belongs to lim supn An if
and only if any its neighborhoods intersects infinitely many sets An. Both limits
are closed sets and their coincidence is equivalent to convergence in the so-called
Fell topology on closed sets (see, e. g., [4]). Define the sets

C∞
0 (x0

i ) = cl
(∪m ∩n≥m Cn

0 (x
0
i )

)
, D∞

0 (x0
i ) = cl

(∩m ∪n≥m Cn
0 (x

0
i )

)
, (9)

E∞
0 (x0

i ) = lim inf
n

Cn
0 (x

0
i ) , F∞

0 (x0
i ) = lim sup

n
Cn

0 (x
0
i ) . (10)

Let Cn
m(x

m
i ) be the cells of the aggregate tessellation �n

m defined as

�n
m = �m ◦ �m+1 ◦ . . . ◦ �n .
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Theorem 4. Assume that condition

P{∃m, xm
j ∈ �m : 0 ∈ int

(∩n≥mC
n
m(x

m
j )

)} = 1 . (11)

is satisfied. Then the sets C∞
0 (x0

i ), D
∞
0 (x0

i ), E
∞
0 (x0

i ), and F∞
0 (x0

i ) defined by (9–
10) have coinciding interiors and constitute the same tessellation �∞

0 .

Remark 2. This theorem enables us to define cells of the limit tessellation �∞
0 as

the sets Ai ≡ cl
(
int C∞

0 (x0
i )

)
. Since the interiors of the sets (9-10) and of Ai co-

incide, a natural question is whether the sets themselves coincide. Another related
question is whether there is a convergence of the boundaries

�n
0 = R

d \ ∪i int
(
Cn

0 (x
0
i )

)
and �∞

0 = R
d \ ∪i int Ai . (12)

The answers are, in general, negative: Ai may be strictly smaller than (9-10). The
difference is that the latter sets are not necessarily regular, i. e., they do not neces-
sarily coincide with the closures of their interiors. As to the second question, we
show in the proof of Theorem 4 that there is a limit �′ ≡ limn �n

0 in Fell topology,
one has �∞

0 ⊆ �′, but they need not coincide. An expression for �′ is also given.

Corollary 5. Under condition (11), for each y ∈ R
d ,

lim
n

P0{y ∈ Cn
0 (0)

} = P0{y ∈ C∞
0 (0)

}
,

lim
n

|Cn
0 (0)| = |C∞

0 (0)| a.s.

and thus E0 |C∞
0 (0)| = λ0.

Call a sequence of tessellations �n self-similar if there exists ν > 0 such that
for all n ∈ N the scaled tessellation ν�n, defined through its boundary ν�(�n) =
{νy : y ∈ �(�n)}, has the same distribution as �n−1.

Theorem 5. For a sequence of self-similar tessellations

P
{∃x0

i ∈ �0 : 0 ∈ int(∩∞
n=0C

n
0 (x

0
i ))

}
> 0 , (13)

implies (11); in particular, (13) implies the statements of Theorem 4 and its corol-
laries.

Corollary 6. Theorem 5 together with Example 2 imply that {C∞
0 (x0

i )} in self-sim-
ilar case constitute a tessellation if and only if (13) holds.

Remark 3. Since the sequence of Poisson-Voronoi tessellations with exponentially
growing intensities λn = λn for λ > 1 are self-similar (with ν = λ1/d ), then in
view of Corollary 3, the condition (13) is satisfied, so that the family {C∞

0 (x0
i )}

constitutes a tessellation of R
d . Closely examining the proof of Theorem 5 it is seen

that the key step is to find a vanishing upper bound for the LHS of (22). For instance,
for PVAT with super-exponential growth of intensities: lim infn λn+1/λn > 1, it
will again be bounded by pn, since P{Tn < ∞ ∣∣Tn−1 = k} is not increasing in
k for all sufficiently large k, so that (11) also holds for that case and thus a limit
tessellation �∞

0 exists.
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2.4. Fractal boundary of the limit cells

From now on we confine ourselves to PVAT with exponentially growing intensities.
As we have shown in Remark above, the limit Poisson-Voronoi tessellations exist
and the boundary of the limit cells �∞

0 is a random closed set defined by (12).
As the distributions of �∞

0 and �∞
n scaled by λn/d coincide, the boundary of the

limit tessellation is statistically self-similar. This property is rather different from
geometrical self-similarity in the sense of �∞

0 being a union of scaled copies of self.
However, by construction, �∞

n−1 consists of parts of �∞
n , and therefore, �∞

0 has a
similar structure at any scale of observation, which allows us to call it a fractal.

One of its important characteristics of the boundary is the spherical contact
distribution function H(r), defined as

H(r) = P
{
�∞

0 ∩ b(0, r) �= ∅ ∣∣ 0 �∈ �∞
0

}
, r ≥ 0.

Here, as Theorem 5 shows, the probability of the condition is one, thus H(0) = 0.
Some information on the degree of variability of the cell boundary can be derived
from the rate at which H(r) decreases as r tends to zero.

Theorem 6. For PVAT with exponentially growing intensities: λn = λn for some
λ > 1, there exist constants K > 0 and q ∈ (0, 1) such that for all r ≥ 0,

H(r) = P
{
b(0, r) ∩ �∞

0 �= ∅} ≤ Krdq.

The values of q and K are given in (30).

The primary characteristic of a fractal is its dimension, which can be defined in
several ways. We will be interested in the Hausdorff dimension of �∞

0 (see, e. g., [5,
p. 20–23] for definitions of different dimensions that we use here).

Theorem 7. Letq be the constant defined in (30). Then for PVAT with exponentially
growing intensities: λn = λn for some λ > 1, one has

dimH �∞
0 = E dimH � a.s.,

dimH �∞
0 < d(1 − q) a.s.

3. Examples and counterexamples

The examples in this section are all in R
1, but d-dimensional analogues can be con-

structed by taking Cartesian product of independent realizations of the described
tessellations.

Example 1.
(i) aggregate cells may never die;

(ii) asymptotic behavior of aggregate cells depends on the nuclei choice;
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(iii) limit tessellation may not be fractal;

Consider a stationary tessellation �n of R
1 obtained by shifting the regular

mesh of intervals of length λ−1
n with a vertex at the origin by a random vector

uniformly distributed in [0, λ−1
n ].

Assume that {λn} is a non-decreasing sequence and λ0 = 1. Choose α ∈ [0, 1]
and define the nucleus of each cell (segment) to be the point dividing it in propor-
tion α : (1 − α) from left to right. It is easy to see by induction that the size of
any �n

0-cell along each coordinate axis is at least λ−1
n , so there is always at least

one nucleus of �n+1 in each cell. As a result, all aggregate cells are all segments
and the cells never die. Moreover, for each n, the sizes of the aggregate cells along
the line do not change if λn+1/λn is a natural number and change periodically if
λn+1/λn is a rational one. By construction, the boundaries of the �n-cells have
coordinates λ−1

n (k + un), k ∈ Z, where un are independent uniformly distributed
in (0, 1) random variables describing the shifts.

It is straightforward to verify that the evolution of the boundaries of �n
0-cells

are given by the following recursion

an
k = an−1

k + dn
k , where

dn
k = λ−1

n

(
1 − α − 〈λna

n−1
k − α − un〉

)
with 〈z〉 = z − max{k ∈ Z : k ≤ z} being the fractional part of a real number z.
Note that for any z and for any u uniformly distributed in (0, 1), the r.v. 〈z + u〉 is
again uniform in (0, 1). Therefore,

E dn
k = λ−1

n (1/2 − α) , var dn
k = 1/(12λ2

n),

so that there is a systematic drift to the right or to the left if α < 1/2 or α > 1/2,
respectively. We have |dn

k | ≤ 1. By the well known result on random series con-
vergence, the boundaries of the aggregate cells almost surely stabilize as n → ∞
if and only if both series (1/2 − α)

∑
n λ

−1
n and

∑
n λ

−2
n converge. We see a no-

ticeable dependence on the nuclei choice when, say, λn = n. In this case the cells
stabilize only if α = 1/2 and float to plus or minus infinity depending on whether
α is smaller or greater than 1/2.

Example 2.
(i) it is possible thatE∞

0 (x0
i ) = F∞

0 (x0
i ) for all x0

i , but these cells do not constitute
a tessellation;

(ii) existence of limit of coverage probabilities does not imply existence of a limit
tessellation;

Let �̂ be a tessellation of R
1 with non-connected cells i + [−5/6,−3/6] ∪

[−1/6, 1/6] ∪ [3/6, 5/6] and nuclei i ∈ Z. Put �n = 3−n(�̂ + un), where un

are independent uniformly distributed in [0, 1] r.v.’s. It is easy to see that �n
0 =

�̂
n

0 + ∑n
i=0 3−iui , where �̂

n

0 = �̂ ◦ 3−1�̂ ◦ · · · ◦ 3−n�̂. The cells of �̂
n

0, consist
of 3n+1 segments:

i − 1 +
3n+1−1⋃
k=0

[ 4k + 1

2 · 3n+1
,

4k + 3

2 · 3n+1

]
i ∈ Z .
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Geometrically, next generation aggregate cells are obtained by swapping neigh-
boring thirds between the segments at their boundary points. Therefore, D∞

0 (i) =
E∞

0 (i) = F∞
0 (i) = i + [−1, 1] + 2v, where v is uniform in [−1, 1], so that almost

each point y is covered by 2 limit cells: E∞
0 (i) with |y − i| ≤ 1 and thus it is

not a tessellation. In contrast, C∞
0 (i) = ∅ for all i. Note also that P{y ∈ Cn

0 (0)}
converges to a non-degenerate distribution.

4. Proofs

4.1. Theorem 1

Proof. By definition, for n = 0, obviously, f0(y) = P0
{
y ∈ C0(0)

}
. Suppose,

the statement of theorem holds for n − 1. By the Campbell theorem (see, e. g., [8,
p. 119]),

P0{y ∈ Cn
0 (0)

} = E0
∑

xn
i ∈�n

1I
(
xn
i ∈ Cn−1

0 (0)
)

1I
(
y ∈ Cn(xn

i )
)

= λn

∫
Rd

P0{z ∈ Cn−1
0 (0)

}
P0
n

{
y − z ∈ Cn(0)

}
dz.

It is easy to see that this expression corresponds to what was stated:

f0,n(y) =
∫

Rd

f0,n−1(z) fn(y − z) dz.

4.2. Theorem 2

Proof. We begin with inequality (4). Since

P0{R∞(z) > ρ + ‖z‖} ≤ P0{R∞(0) > ρ
}
,

it is sufficient to prove (4) for z = 0. Let {ρn} be a monotonously increasing
sequence of positive numbers converging to ρ. Then we have

{R∞(0) > ρ} ⊂ ∪∞
n=0{Rn(0) > ρn}.

Next, we use the following inequality: if B ⊂ ∪∞
n=0Bn, then

P(B) ≤ P(B0) +
∞∑
n=1

P(Bn ∩ B̄n−1) ≤ P(B0) +
∞∑
n=1

P(Bn

∣∣ B̄n−1) .

Hence,

P0{R∞(0) > ρ
} ≤ P0{R0 > ρ0

} +
∞∑
n=1

P0{Rn(0) > ρn

∣∣Rn−1(0) ≤ ρn−1
}
.

(14)
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Fig. 2. Large increase in Rn(0) implies existence of a large empty ball

Given that Rn−1(0) ≤ ρn−1, the event {Rn(0) > ρn}, implies the existence of a
Voronoi cell Cn(xn

i ) with the nucleus inside of the ball b(0, ρn−1) containing some
point y on the sphere ∂b(0, ρn). Therefore, the interior of the ball b(y, ‖y − xn

i ‖)
contains no points of �n (see Figure 2).

Denote 1n = ρn−ρn−1. Take u ∈ [−1/2, 1/2]d and consider the collection of
mesh cubes of side 1n/

√
d whose centers zm are those grid points (Zd +u)1k/

√
d

that lie inside the annulus b(0, ρn+1n/2)\b(0, ρn−1n/2). Denote by N = N(u)

their number. If z(y) is the center of the cube containing y, then for any point
x ∈ K(z(y), u) one has

‖x − y‖ ≤ ‖x − z(y)‖ + ‖z(y) − y‖ ≤ 1k/2 + 1k/2 = 1k ≤ ‖y − xk
i ‖.

Thus the cube K(z(y), u) lies in the closure of b(y, ‖y − xk
i ‖) and contains no

point of �n inside. This yields for the summands in (14) the following bound:

1 −
(

1 − exp
{ − λn(1n/

√
d)d

})N

, (15)

which is the probability that at least one of the mesh cubes contains no points of �n.
To estimate N , let u be uniformly distributed in [0, 1]d . Then (Zd + u)1k/

√
d

is a stationary point process with intensity (
√
d/1k)

d . Therefore, the mean number
of its points inside the annulus equals

Eu N = (
√
d/1k)

dbd
[
(ρn + 1n/2)d − (ρn − 1n/2)d

]
.

Hence there exists u0 such that

N = N(u0) ≤ (
√
d/1k)

dbd
[
(ρn + 1n/2)d − (ρn − 1n/2)d

]
= bd1n(

√
d/1k)

d
d−1∑
k=0

(ρn + 1n/2)k(ρn − 1n/2)d−k−1
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< bd1n(
√
d/1k)

d
d−1∑
k=0

(3/2ρ)kρd−k−1

= 2
(
(3/2)d − 1

)
bdd

d/2 (ρ/1n)
d−1 .

Since 1 − (1 − a)N < aN for any 0 < a < 1 and N ≥ 1, the value of (15) does
not exceed

2
(
(3/2)d − 1

)
bdd

d/2(ρ/1n)
d−1 exp

{ − λn(1n/
√
d)d

}
. (16)

Next, choose a specific sequence {ρn} with the increments 1n = ρc−1 e−φ(λn)/d

with c defined in (3). It is easy to see that ρn monotonously converges to ρ. For
such {ρn}, from (16) it follows that the right-hand side of (14) is bounded by

a1c
1−d

∞∑
n=0

exp
{ − (

ρ/c
√
d
)d
φ(λn) + (d − 1)

(
log c + φ(λn)/d

)}
, (17)

which is equivalent to (4). We have used here the definition of φ, due to which
e−φ(λn) = φ(λn)/λn. The function A(ρ) = O(ρd) increases to infinity and is
greater than 1/d for all ρ > c

√
d . Therefore, for such ρ, the series in (4) converges

and the whole bound tends to 0 as ρ → ∞ providing the almost sure finiteness
of R∞(z).

Inequality (5) is proved much in the same manner. Fix a small 0 < ε < 1 and
consider a sequence {ρ′

n} with ρ′
0 = ρ that monotonously decreases to ερ. First,

from

{r∞(z) = 0, r0(z) > ρ} ⊂ ∪∞
n=1{rn(z) < ρ′

n, r0(z) > ρ}

it follows that

P0{r∞(z) = 0
∣∣ r0(z) > ρ

}
≤

∞∑
n=1

P0{rn(z) < ρ′
n, rn−1(z) ≥ ρ′

n−1

∣∣ r0(z) > ρ
}
. (18)

The event {rn(z) < ρ′
n, rn−1(z) ≥ ρ′

n−1} implies the existence of a Voronoi cell
Cn(xn

i ) with the nucleus outside of the ball b(z, ρ′
n−1) having some point y ∈

Cn(xn
i ) inside b(z, ρ′

n). Hence, there exists a ball of radius at least 1′
n = ρ′

n−1 −ρ′
n

centered on the sphere ∂b(z, ρ′
n−1). Note that this event is independent of the

event {r0(z) > ρ}. Thus the summands in (18) can be bounded as in (15) with
1′

n = (1 − ε)1n. With that choice of 1′
n the right hand side of (18) is bounded by

an expression similar to (17) with c replaced by (1 − ε)c. Due to the arbitrariness
of ε, expression (17) also provides an upper bound. The rest of the proof remains
unchanged.
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4.3. Corollary 1

Proof. Recall the following integral estimate:
∑∞

n=1 h(n) ≤ h(1) + ∫ ∞
1 h(x)dx

for any non-increasing positive function h(x). We have

∞∑
n=1

e−φ(λn)A(ρ) ≤ e−φ(λ)A(ρ) +
∫ ∞

1
e−φ(λx)A(ρ)dx

= e−φ(λ)A(ρ) + 1

log λ

∫ ∞

φ(λ)

(1 + y−1)e−yA(ρ)dy

after the variable change y = φ(λx). Next, since 1 + y−1 ≤ 1 + φ(λ)−1 on the
integration domain, the whole expression can be bounded by

e−φ(λ)A(ρ) + 1 + φ(λ)−1

A(ρ) log λ
e−φ(λ)A(ρ) <

(
1 + 1 + φ(λ)−1

d−1 log λ

)
e−φ(λ)A(ρ) ,

so that (4-5) become (7-8), respectively. It can be immediately verified that these
estimates become nontrivial if ρ > c∗ and that c∗ > c

√
d.

4.4. Corollary 2

Proof. Let τx be the stationary shift defined on the probability space 6 such that
�n(τxω)(B) = �n(ω)(B − x) for any Borel set B ⊂ R

d and any n. In this no-
tation, τx0

i
Rn(0) for x0

i ∈ �0 is the maximal distance from x0
i to the boundary of

Cn
0 (x

0
i ) that corresponds to the above definition of Rn(0) with Cn

0 (0) replaced with
Cn

0 (x
0
i ) = τx0

i
Cn

0 (0). The probability that there exists an unbounded family of cells
with the nucleus in a ball b(0, N) equals

P
⋃

xi∈�0∩b(0,N)

{
τx0

i
R∞(0) = ∞} ≤ E

∑
xi∈�0∩b(0,N)

1I
{
τx0

i
R∞(0) = ∞}

= bdN
d E0 1I{R∞(0) = ∞} = 0 ,

where we have used the Campbell theorem and (4). Letting N grow to infinity
proves the assertion.

4.5. Corollary 3

Proof. It is sufficient that the distance from y to the boundary of the �0-cell con-
taining y is sufficiently large so that the boundaries of the progressing n-cells never
reach y. The probability of the latter event is positive by (5).

Due to stationarity, we may put y = 0. Consider the following representation:

P
{∃x0

i : 0 ∈ int
( ∩n Cn

0 (x
0
i )

)} = E
∑

x0
i ∈�0

1I
(

0 ∈ int
( ∩n Cn

0 (x
0
i )

))
.
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By the Campbell theorem and by the isotropy, the right-hand side equals∫
Rd

P0{ − z ∈ int
( ∩n Cn

0 (0)
)}

dz

≥
∫

Rd

P0{z ∈ int
( ∩n Cn

0 (0)
) ∣∣b(z, ρ) ⊆ C0(0)

}
P0{b(z, ρ) ⊆ C0(0)

}
dz (19)

for arbitraryρ > 0. By Theorem 2, the first factor under the integral in (19) is greater

than 1−a1
∑∞

n=1

(
φ(λn)/λn

)A(ρ) provided that ρ ≥ c
√
d. The second factor is the

probability that no points of �0 lie in the figure ∪‖z−z′‖=ρb(z
′, ‖z′‖). This figure

is obtained by rotation of a cardioid around its symmetry axis; by construction, it
is contained in the ball b(z, ‖z‖ + 2ρ). Therefore,

P0{b(z, ρ) ⊆ C0(0)
}
> exp

{−bd(‖z‖ + 2ρ)d
}
.

Using this estimate we get∫
Rd

P0{b(z, ρ) ⊆ C0(0)
}
dz >

∫
Rd

exp
{−bd(‖z‖ + 2ρ)d

}
dz

>

∫ ρ

0
rd−1dbd exp

{−bd(3ρ)
d
}
dr

= bdρ
d exp

{−bd(3ρ)
d
}
. (20)

Hence

P
{∃x0

i : y ∈ int
( ∩n Cn

0 (x
0
i )

)}
> sup

ρ≥c
√
d

[
bdρ

d exp
{−bd(3ρ)

d
}(

1 − a1

∞∑
n=1

(φ(λn)

λn

)A(ρ)
)]

> 0 . (21)

4.6. Theorem 4

Proof. The proof consists of two parts: in the first one we prove that the setsC∞
0 (x0

i )

constitute a tessellation, in the second we show that the interiors of the alternatively
defined limit cells coincide.

Part I. Recall the definition of a tessellation from Section 1. We start by verify-
ing condition (b). Consider disjoint open sets Oi = ∪m int

( ∩n≥m Cn
0 (x

0
i )

)
. Every

xm
j ∈ �m is contained in an almost surely unique aggregate cell Cm−1

0 (x0
i ). Thus

if (11) holds, the set �′ ≡ R
d \ ∪iOi a.s. misses the origin, which implies that

|�′| = 0. Since Oi ⊂ C∞
0 (x0

i ), we have C∞
0 (x0

i )∩C∞
0 (x0

j ) ⊂ �∞
0 ⊆ �′ for i �= j .

Let us verify (c). For a bounded Borel set B ⊂ R
d introduce a random variable

N(B) = lim sup
n→∞

∑
xn
i ∈�n

1I{C∞
n (xn

i ) ∩ B �= ∅}.

Obviously, if N(B) < ∞, only a finite number of cells C∞
0 (x0

i ) intersects B. De-
note by σn the σ -algebra generated by the sequence of processes {�k , k ≥ n},
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and note that the event {N(B) = ∞} belongs to the tail sigma-algebra σ∞ =
∩nσn. Since all the processes �k are independent, the zero-one law applies so that
P{N(B) = ∞} = 0 or 1. From (11) it follows that for some ε > 0,

P
{∃xm

j ∈ �m : b(0, ε) ∈ int(∩∞
n=mC

n
m(x

m
j ))

}
> 0 ,

and hence, P{N(b(0, ε)) = ∞} = 0. Every bounded set B ⊂ R
d can be covered by

a finite family {b(tk, ε)}k≤K of copies ofb(0, ε) shifted by tk . Because of stationarity,
N(b(0, ε)) and N(b(tk, ε)) have the same distribution for each tk ∈ R

d , therefore

P{N(B) = ∞} ≤
K∑

k=1

P{N(
b(tk, ε)

) = ∞} = 0.

In order to prove (a), we need to show that the set � = R
d \ ∪iC

∞
0 (x0

i ) is
a.s. empty. Observe that � ⊆ �∞

0 , and therefore � contains only boundary points
if non-empty. For such a point y ∈ �, there exists a sequence {yk} ⊂ ∪iC

∞
0 (x0

i )

converging to y. Being itself a bounded set, this sequence visits only a finite number
of limit cells C∞

0 (x0
i ). At least one of these cells contains an infinite subsequence

{ykn}, it contains also y because cells are closed sets. We come to a contradiction
with the non-emptiness of �.

Part II. We will show that the interiors of the cells defined in (9-10) coin-
cide with int(cl(Oi)) a.s. Because cl(Oi) ⊆ C∞

0 (x0
i ) ⊆ D∞

0 (x0
i ) ⊆ F∞

0 (x0
i )

and cl(Oi) ⊆ E∞
0 (x0

i ) ⊆ F∞
0 (x0

i ), it is sufficient to show that int(cl(Oi)) =
int

(
F∞

0 (x0
i )

)
.

Suppose x �∈ int(cl(Oi)). Every open neighborhood v(x) of x contains a point
y �∈ cl(Oi). Therefore, v(x) contains an open subset v(y) disjoint of cl(Oi). Since
|�′| = 0, there exists a point z ∈ v(y)∩Oj for some j �= i. But Oj ∩F∞

0 (x0
i ) = ∅

and thus x �∈ int
(
F∞

0 (x0
i )

)
.

Hence, the boundary �∞
0 is common for the tessellations defined by (9–10).

We now prove that �′ is the limit of the boundaries �n
0 as it was mentioned in

Remark 2. Let us verify that �′ ⊆ lim infn �n
0. If x ∈ �′, then any neighborhood

v(x) of x hits at least two disjoint sets Oi and Oj . Therefore, v(x) hits ∩n≥mC
n
0 (x

0
i )

and ∩n≥mC
n
0 (x

0
j ) starting from some m. Then it must also hit �n

0 for all n ≥ m.
Now we prove that lim supn �n

0 ⊆ �′. Let nk be a sequence of natural numbers
such that limk nk = ∞. Suppose xnk ∈ �nk

0 and x = limk xnk . If x �∈ �′, then
x ∈ Oi for some i. Then x ∈ int ∩n≥mC

n
0 (x

0
i ) for some m, and the sequence of

xnk ∈ �nk
0 cannot converge to x. From this contradiction it follows that x ∈ �′.

4.7. Corollary 5

Proof. By Theorem 4, P0
{
y ∈ C∞

0 (0)
} = P0

{
y ∈ D∞

0 (0)
}
. Using the continuity

property of the probability measures, we obtain

P0{y ∈ C∞
0 (0)

} = lim
m

P0{y ∈ ∪n≥mC
n
0 (0)

} ≥ lim
n

P0{y ∈ Cn
0 (0)

}
,

P0{y ∈ C∞
0 (0)

} = lim
m

P0{y ∈ ∩n≥mC
n
0 (0)

} ≤ lim
n

P0{y ∈ Cn
0 (0)

}
.

The second statement is obtained by simply replacing P0
{
y ∈ ·} by | · | above.
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4.8. Theorem 5

Proof. Suppose, the tessellations �n are self-similar with the coefficient ν > 0.
Let v(0) be an open neighborhood of the origin, and let xn(0) be the point of �n

such that 0 ∈ Cn(xn(0)). Consider the following r.v.’s:

T1 = min
{
k > 0 : v(0) �⊂ Ck

0

(
x0(0)

)}
,

T2 = min
{
k > T1 : v(0) �⊂ νT1+1Ck

T1+1

(
xT1+1(0)

)}
,

. . .

Tn+1 = min
{
k > Tn : v(0) �⊂ νTn+1Ck

Tn+1

(
xTn+1(0)

)}
, etc.

Thus defined r.v.’s are stopping times and the distribution of Tn+1 given {Tn = k}
depends only on {�n}n>k . By self-similarity we have P{Tn+1 < ∞ ∣∣Tn < ∞} =
P{T1 < ∞} = p, which is strictly smaller than 1 by assumption (13). Therefore,

P{T1 < ∞, . . . , Tn < ∞} = pn . (22)

Thus P{∀k, Tk < ∞} = 0 and a.s. there exists n such that Tn < ∞, Tn+1 = ∞,
meaning that condition (11) is satisfied with m = Tn + 1.

4.9. Theorem 6

Proof. Consider the cells of the limit tessellation {C∞
n (xn

i )} defined in the same
way as in (9). Let X(n, r) be the nuclei of those cells whose boundary crosses the
ball b(0, r), i. e.,

X(n, r) = {xn
i ∈ �n : ∂C∞

n (xn
i ) ∩ b(0, r) �= ∅}.

We will first prove the estimate: for each n ≥ 1 and for each s > 0,

P
{
b(0, r) ∩ �∞

0 �= ∅}
< f (r, n, s)n , (23)

where f (r, n, s) = 1 − P
{
X(n, r) ⊆ b(0, s)

}
P
{
b(0, s) ⊆ Cn−1(xn−1(0))

}
, and

xn−1(0) denotes the closest point of �n−1 to 0.
Consider the events E(m, r) = {b(0, r)∩�∞

m �= ∅}, where �∞
m is the boundary

of the tessellation {C∞
m (xm

i )}. Note that E(0, r) is the event in the left-hand side
of (23). Since �∞

m ⊆ �∞
m+1, we have E(m, r) ⊆ E(m + 1, r) and therefore,

P
{
E(0, r)

} = P
{
E(1, r)

}
P
{
E(0, r)

∣∣E(1, r)
}

= P
{
E(n, r)

} n∏
m=1

P
{
E(m − 1, r)

∣∣E(m, r)
}

<

n∏
m=1

P
{
E(m − 1, r)

∣∣E(m, r)
}
. (24)

We assert that for every m and sm > 0,

P
{
E(m − 1, r)

∣∣E(m, r)
} ≤ f (r,m, sm). (25)
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Indeed, if b(0, r) ∩ �∞
m �= ∅ and

X(m, r) ⊆ b(0, sm) ⊆ Cm−1(xm−1(0)),

then the cells C∞
m (xm

i ) for which xm
i ∈ X(m, r) join in C∞

m−1(x
m−1(0)) so that

b(0, r) ∩ �∞
m−1 = ∅.

Since the intensity of each �n equals λn, the distributions of

(�n,�n+1, . . . ) and (λ1/d�n+1, λ
1/d�n+2, . . . )

coincide. Consequently, the sets X(m+1, r) and λ−1/dX(m, λ1/dr) have the same
distribution, and

P
{
X(m + 1, r) ⊆ b(0, sm)

} = P
{
λ−1/dX(m, λ1/dr) ⊆ b(0, sm)

}
= P

{
X(m, λ1/dr) ⊆ b(0, λ1/dsm)

}
< P

{
X(m, r) ⊆ b(0, λ1/dsm)

}
,

as X(m, r) ⊆ X(m, λ1/dr). Also

P
{
b(0, sm) ⊆ Cm(xm(0))

} = P
{
b(0, λ1/dsm) ⊆ Cm−1(xm−1(0))

}
so that f (r,m− 1, λ1/dsm) < f (r,m, sm). Alternatively, f (r,m, sm) < f (r,m+
1, λ−1/dsm) < f (r, n, λ−(n−m)/dsm) by induction. Thus, taking sm = λ(n−m)/ds

in (25), by (24) we obtain (23).
Next, we find a bound for f (r, n, s). We have

1 − P
{
X(n, r) ⊆ b(0, s)

}
= 1 − P

{
X(0, λn/dr) ⊆ b(0, λn/ds)

}
< P

{∃x0
i : x0

i �∈ b(0, λn/ds) and C∞
0 (x0

i ) ∩ b(0, λn/dr) �= ∅}
< E

∑
x0
i ∈�0

1I
(‖x0

i ‖ > λn/ds and C∞
0 (x0

i ) ∩ b(0, λn/dr) �= ∅)
. (26)

Recall the definition of R∞(z) from Section 2.2. By the Campbell theorem, the last
expectation in (26) equals∫

‖z‖>λn/d s

P0{C∞
0 (0) ∩ b(−z, λn/dr) �= ∅}

dz

=
∫
‖z‖>λn/d s

P0{R∞(0) > ‖z‖ − λn/dr
}
dz

= λn

∫
‖z‖>s

P0{R∞(0) > λn/d(‖z‖ − r)
}
dz . (27)

Choose s = 2r . Then by (7), the right-hand side of (27) does not exceed

c1λ
n

∫
‖z‖>2r

e−c2λ
n(‖z‖−r)d dz = c1λ

n

∫ ∞

2r
dbdρ

d−1e−c2λ
n(ρ−r)d dρ

< c1λ
n

∫ ∞

2r
dbd(2ρ − 2r)d−1e−c2λ

n(ρ−r)d dρ

= (2d−1c1/c2)e
−c2λ

nrd .
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Denote a = (1/c2) log(2dc1/c2) and choose n = $d logλ(a/r)% + 1, where $ · %
is the integer part of a number. With such n, inequality a ≤ λnrd ≤ λa holds and
(2d−1c1/c2)e

−c2λ
nrd ≤ 1/2. Therefore,

P
{
X(n, r) ⊆ b(0, s)

} ≥ 1/2. (28)

Since there is only one Voronoi cell that may contain a ball, we may write

P
{
b(0, s) ⊆ Cn−1(xn−1(0))

} = P
{
b(0, λ(n−1)/ds) ⊆ C0(x0(0))

}
= E

∑
x0
i ∈�0

1I
{
b(0, λ(n−1)/ds) ⊆ C0(x0

i )
}

=
∫

P0{b(z, λ(n−1)/ds) ⊆ C0(0)
}
dz .

Using the lower bound from (20), for s and n chosen as above we obtain

P
{
b(0, s) ⊆ Cn−1(xn−1(0))

}
> bdλ

n−1sd exp
{−bdλ

n−1(3s)d
}

≥ (2dabd/λ) exp
{−6dabd

}
. (29)

Putting together (28) and (29) we get from (23)

P
{
b(0, r) ∩ �∞

0 �= ∅} ≤
[
1 − (2d−1abd/λ) exp

{−6dabd
}]$d logλ(a/r)%+1

≤ Krdq,

where

q = − logλ

[
1 − (2d−1abd/λ) exp

{−6dabd
}]

and K = a−dq . (30)

Since λ > 1, we have 0 < q < 1. The theorem is proved.

4.10. Theorem 7

Proof. Consider the collection of mesh cubes of size M in R
d and let {θα} be the

family of shifts translating the cube at the origin [0,M)d by the vector Mα, where
α = (α1, . . . , αd) ∈ Z

d . Introduce also

�(M) = �∞
0 ∩ [0,M)d , θα�(M) = �∞

0 ∩ θα[0,M)d .

Since θα�(M) ⊆ �∞
0 , with probability 1 for all α ∈ Z

d , we have

dimH �∞
0 ≥ dimH θα�(M).

Denote �N = {α : |αi | ≤ N, i = 1, . . . , d}. Obviously,

dimH �∞
0 ≥ sup

α∈�N

dimH θα�(M).
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Now by the ergodic theorem,

dimH �∞
0 ≥ lim

N→∞
sup
α∈�N

dimH θα�(M)

≥ lim
N→∞

1

(2N)d

∑
α∈�N

dimH θα�(M) = E dimH �(M).

Letting M → ∞ in this inequality and using the property of monotonicity of
the Hausdorff dimension, we get dimH �∞

0 ≥ E dimH �, which implies the first
equality of the theorem.

To prove the second inequality, we make use of the estimate of the Hausdorff
dimension of a set by its upper box dimension (see, e. g.,[5, p. 24]). Let Nε(B) be
the smallest number of closed balls of radius ε that cover B. Then

dimH �∞
0 (M) ≤ lim sup

ε→0

logNε(�∞
0 (M))

− log ε
.

Take expectations at both sides of this inequality. It can be easily verified that
[0,M)d , and hence�∞

0 (M), can be covered by a family {bi}of less than
(
M

√
d/2ε

)d
balls of radius ε. Thus the function in the right-hand side under the limit is bounded
by a constant not depending on ε, and therefore, we can exchange the limit and the
expectation. Moreover, the function log(·) is concave, hence E log(·) ≤ log E(·).
Therefore,

E dimH �∞
0 (M) ≤ lim sup

ε→0

log ENε(�(M))

− log ε
.

Recalling the definition of the contact distribution H(r) from the previous section,
we get

ENε(�
∞
0 (M)) ≤ E

∑
i

1I(bi ∩ �∞
0 (M)) �= ∅) ≤ (

M
√
d/2ε

)d
H(ε).

From Theorem 6 it follows that

E dimH �∞
0 (M)

≤ lim sup
ε→0

d log(M
√
d/2) − d log ε + logK + dq log ε

− log ε
= d(1 − q) ,

and it remains to let M → ∞ to obtain the second statement of the theorem.
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