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Abstract. Consider a sequence of stationary tessellations {@"}, n = 0, 1,... of R? con-
sisting of cells {C" (x")} with the nuclei {x/'}. An aggregate cell of level one, C3(x?), isthe
result of merging the cells of @' whose nuclei liein C°(x?). An aggregate tessellation @
consists of the aggregate cells of level n, C (x?), defined recursively by merging those cells
of @" whose nuclei liein C"1(x?).

We find an expression for the probability for a point to belong to a typical aggregate
cell, and obtain bounds for the rate of its expansion. We give necessary conditions for the
limit tessellation to exist as n — oo and provide upper bounds for the Hausdorff dimen-
sion of itsfractal boundary and for the spherical contact distribution function in the case of
Poisson-Voronoi tessellations {©@"}.

1. Motivation

A tessellation of R? is a countable collection of closed bounded sets called cells
such that

(a) union of al cellsisthe whole space;
(b) intersection of any two different cells has d-L ebesgue measure zero;
(c) each bounded set intersects a finite number of cells.

Tessellations arewidely used to model different cellular systems (seg, e. g., [7] and
references therein).

Weassumethat each cell C; isassociated with auniquenucleusx (C;) according
to a certain rule satisfying an obvious compatibility condition: 6x(C;) = x(6C;)
for any shift transformation 6 in R¢. For example, the Voronoi tessellation has cells
defined as

Clxi)=f{x eRY ¢ |lx — x|l < llx — x;ll, Vj # i},
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where || - || is the Euclidean norm. Thus, the cell with nucleus x; consists of the
points that are closer to x; than to any other nucleus. A random tessellation with
nuclei can be viewed as a marked point process M = {(x;, C(x;))}. In this paper
we deal with stationary tessellations, i. e., M is stationary with respect to shifts6.

Recently, random Voronoi tessell ationswere used as model s of service zones of
telecommunication stations. The main advantage of these modelsis that they dra-
matically reduce the number of structuring parameters of the model to just a few
parameters of the underlying stochastic process and often allow for an analytical
treatment of complex networks characteristics (see[1], [2]).

In many cases, however, models using Voronoi tessellation over-simplify the
complex geometry of service zones. For instance, in the case of wireless communi-
cationsthe base station that will handle acall from amobileterminal isdetermined
by the signal strength rather than Euclidean distance to the stations. Affected by
the wave attenuation phenomena, the zones' boundaries have extremely irregular,
distorted shapes.

This calls for development of more complex tessellation models that are still
described in terms of a small number of parameters and simple enough to be ana-
Iytically treatable.

For this we introduce an operation of aggregation on independent stationary
tessellations equipped with nuclei. Let ° = {C%(x%)} and @' = {C1(x})} betwo
such tessellations. Define the aggregate cells of 05 = 0% 0 6! as

audh= Y cd.

2o . 1-~0(,0
./.ijC (x7)

Inwords, C3(x?) isthe union of &l the cellsof © whose nuclei liein CO(x?). Due
to theindependence and stationarity assumptions, with probability 1 every x} liesin

uniquecell of ©°. Hence, 6§ isagain atessellation, though someof itscells C(x?)
may beempty. It iseasy to verify that the operation of aggregation isassociativeand
that the aggregate tessellation @(1, isitself stationary. Let {©"},, <y be a sequence of
independent stationary tessellations with the nuclei sets 11, = {x]'}, n € N. The
aggregation of thefirst n terms of the sequence yields the aggregate tessellation of
order n: ©f = ©%0 0o ...0 6" withthenuclei set ITo = {x°}. The cells of this
tessellation will be called aggregate n-cells and denoted by Cg (xio).

Figure 1 shows simulated Poisson-Voronoi aggregate tessellations, quoted as
PVAT inthe sequel, for which the elements of the sequence {©"}, <N areall Voronoi
tessellations generated, respectively, by mutually independent homogeneous Pois-
sonpoint processes1,,, n € N. Thediagramswere produced by computer program
pvat 1 written by one of the authors. It can be seen that the cells of PVAT are, in
general, neither convex nor connected; nor do they need to contain the nucleus.

It is clear that the higher the growth rate of the successive intensities, the less
the boundary of cell Cg(x?) deviates from the boundary of Cfi(x?). On the oth-
er hand, for close intensity values the boundary becomes very irregular, cells are
more likely to split, and quite often there is no point of 11,1 in Cj (xl.o), so that

1 Available from http://www.stams.strath.ac.uk/~sergei
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Fig. 1. Initial Voronoi tessellation and n-level aggregate cells in PVAT model with geo-
metrically growing intensities 1, = A". Leftimage: n = 3, A = 10. Right image: n = 25,
A=12

C3+1(xi0) is empty. Using an analogy with branching processes, we may think of
thenuclei of the @ -cellsthat make up the aggregate cell Cj (xl.o) asof n-generation
offspring of a O-level parent nucleus xf’. If we connect by segments the nuclei 11,
of each level n with their offsprings at the next level 11,1, we will obtain afamily
of spanning trees studied for Poisson-Voronoi casein [3]. In the present paper we
address properties of the aggregate cells rather than those of the spanning trees.

New phenomena appear in the limit, when n tendsto infinity. Aswe have seen
above, there are models in which with positive probability some of the aggregate
cellsare empty. A priori it isnot clear if we do not end up with al the O-nuclei I1g
dying out with probability 1. Even if we do not, will & converge in some sense
to alimit, say, ©F° that is atessellation? It is easy to imagine that @g° may have
a fractal boundary (it also may not! — see Section 3) and thus it is unclear if the
boundary has d-L ebesgue measure 0 and whether only afinite number of the limit
aggregate cells hits a bounded set.

The structure of the paper isthe following. Section 2 presents the main results.
We find an expression for the coverage probability function for atypical aggregate
n-cell (the one with nucleus at the origin under the Palm distribution of the pro-
cess I1p) viathe corresponding characteristicsof @9, ... | @". Thisresult isvalid
for any stationary aggregate tessellation although a closed form expression can be
obtained only in afew cases. Further we deal mainly with PVAT. We find uniform
upper bounds on the diameter of atypical cell and on the range of variation of its
boundary. Next, we show that with positive probability thereis aball contained in
all n-level aggregate cells Cy (0). This property issufficient in the self-similar case
for the limit cells, defined as the set lower limit of {Cg(x?)},,eN, to form atessel-
lation. Defined by a simple recursive procedure, the boundary of the limit PVAT
has an intricate self-similar structure at any scale allowing us to call it fractal. To
characterizeits degree of irregularity, we provide an upper bound for its Hausdorff
dimension which ishased on the analysis of the boundary contact distribution func-
tion. Note that the parts of the cell’s fractal boundary are highly dependent making
most of previously devel oped techniques for random fractalsinapplicable to PVAT
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(a presentation of modern methods used in studying fractals can be found, e. g.,
in K. Falconer’'s book [5]). Section 3 contains examples of aggregate tessellations
manifesting various properties. Finally, Section 4 contains the proofs of the main
statements of Section 2. Other proofs and further details can be found in [9].

Thefollowing notation is used throughout the paper. By P we denote the distri-
bution in a probability space carrying the sequence of independent stationary point
processes o, I11, ... ,and by Pf,’, the Palm distribution with respect to the process
of nuclel IT,,. Most frequently we consider the Palm distribution with respect to
o, for which we simply write P° instead of P8. Similar notation is used for the
corresponding expectations. I1,,(B) standsfor the number of pointsof 11, inaBorel
set B ¢ RY. Theintensity of I7,, is denoted by A, so that E,, IT,(B) = ,|B|, and
it is the only parameter characterizing a homogeneous Poisson process. We also
assume that Ao = 1, which isjust a matter of scale choice. Finaly, b(x, r) isthe
closed ball centered in x with radius r, and by = 7%/2/I'(d/2 + 1) is the volume
of aunit ball in R4,

2. Main results
2.1. Coverage probability

Consider a tessellation @" of fixed level n. Under Palm probability P,?, there is
almost surely a point of I1,, at the origin 0. Since the density of cellsis 2,, the
volume of atypical cell isE? |C”(0)| = 4! (see, e. g., [6], Corollary 5.2, equation
(5.6)). Therefore,

An / POy e C"(O)} dy = 1, E,?/ 1(y € C"(0))dy = 1, EC |C"(0)],

whichis 1, sothat thefunction f, (y) = 1,P%{y € C"(0)} isadistribution density
inR4,

The next statement provides a formula for calculating the probability that a
point y € R? is covered by atypical aggregate cell of level n.

Theorem 1. Let fo,(y) = P°{y € C§(0)}. Then for each natural », it equalsthe
convolution

fO,n(y) = fO* fl* *fn(y)-

Let us take a closer look at the coverage probability for Poisson-Voronoi ag-
gregate tessellations. For PVAT we have:

[ () = An eXp{—Anballyll¥} . (6h)

InR? this correspondsto the normal distribution with zero mean and the covariance

matrix
@yt 0
( 0 (ann)l) : )
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Therefore, the convolution also corresponds to a normal r.v. with zero mean and
the covariance matrix being the sum of (2). The corresponding density is thus

n
fon() = Luexp{~Lux|y|?}, where Lyt =32,
i=0

which isthe same asfor atypical cell inthe ordinary Voronoi tessellation with the
nuclei intensity L,. Such “mean field” approximation is valid only in this planar
case, the reason being the stability of the distributions 1 in d = 2. The general
formulafor the characteristic function of fp,, in R and explicit expression for the
density in R! can befound in [9].

2.2. Evolution of PVAT cells
Here we investigate the behavior of the typical aggregate cell Cjj(0) asn tendsto

infinity on the Palm space of the process ITo. The maximal and the minimal distance
from apoint z to the cell’s boundary can be defined, respectively, as

min{r : b(z,r) D C5(0)} if C5(0) # 9,
0 otherwise;

Rn(Z) = {

:max{r © b(z,r) C CR(0)} if z € CL(0),
rn(z) = .
0 otherwise.

The definition takes into account that the aggregate cell of order n > 1 might not
contain z or might be empty. Our aim isto characterize the distribution of
Roo(2) = SUP Ry (2), roo(2) = inf 7y (2).

Theorem 2. Let ¢ (y) bethe inverse of the function y(x) = xe*. Assume that

=3 () = Tt <ox. ®

n=1

Then for PVAT the following inequalities hold for all p > c+/d and any z € R¢:

o0
PURwo(2) > p + lIzll} < a1 ) e ?00A@), 4
n=1
o0
Po{roo(Z) = 0|r0(Z) > p} <a Zefqb(kn)A(p) , (5)
n=1

where ar = 2((3/2)¢ — 1) bgd??c?~t and A(p) = (p/evV/d)? +1/d — 1.
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Remark 1. By definition, log¢ (x) + ¢ (x) = logx. Therefore, for x > 1 one has
¢ (x) < logx. Sincee @) = ¢ (r,)/A, and A, > 1 for all sufficiently large n,
the conditions

o0

Z (IOQA">l/d <oo or ikgl/dﬂ < o0 (6)
n=1

An

for some0 < ¢ < 1/d are sufficient for (3) to hold.

Corollary 1. For PVAT with exponentially growing intensities A, = A" for some
A > 1,onehasfor all p > ¢, andany z € R?,

PY{Ro(2) > p + lIzll} < crexp{—c2p?}. ©
Po{roo(z) = 0|ro(z) >pl<ca exp{—chd} . (8)
Onemay take ¢, = ((logc1)/c2) Y4,

1+¢M)
¢ (1) log 2

Corollary 2. Under conditions of Theorem 2, with probability one, each family of
cells {C2 (x2)},en is uniformly bounded in RY.

1= a1<1+ d )e‘ﬁ(}‘), and c2=¢(0) (eNd)™ .

Corollary 3. Under conditions of Theorem 2, for any y € R? with positive prob-
ability, there exists x? € ITo such that y € int (N, C4(x?)). The lower bound for
such probability is given in (21).

Bounds for the probability of acell’s extinction can be found in [9].

The next theorem reinforces, in some sense, Theorem 2 showing that not only
the radius but also the range of the cells' boundaries evolution isrelated to the sum
in (3). Recall the definitions of Minkowski operations @ and © for two sets A, B
in avector space:

A®B={a+b:acA, be B}, ASB=(A°® B)°.

For 0 < m < n < oo introducethevariable y,:, which shows how far the boundary
of Cj5(0) stretches from the boundary of its predecessor Ciy' (0). Put

ym =inf{r : C§(0)©b(0,r) S C5(0) < Cg'(0) & b(0, 1)}
if both Cy' (0) and Cj5(0) are non-empty, otherwise put y,; = 0.

Theorem 3. Let ¢ (y) betheinverse of the function y(x) = xe* and let

n
c(m,n) = Z e~ PO/d,
k=m+1
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Thenfor 1 < m < n < oo, onehasfor all p > c(m, n)Vd,
Po{y"r; > ,0| diam Cg' (0) < ro}

n
< bgd®2c (m., n)@ + r_0>" S e eOn A,
P k=m+1

where A(p. m, n) = (p/~/dc(m, m)* — 1.
The proof mimics the one of Theorem 2 and can be found in [9].

Corollary 4. Assume that (3) is satisfied. Then lim,,_, », "% = 0 in probability
uniformlyink > 1.

2.3. Limit tessellation

Heuristic arguments suggest that the difference between two successive aggregate
cells becomes smaller and smaller if the intensities of the point processes grow
sufficiently fast. In the case of PVAT, Corollary 4 shows that it is indeed the case.
Moreover, by Corollary 3 with positive probability the family of cells {Cg (xio)}
centered in the same nucleus xio possesses a hon-empty “core” int ( Nn Cp (xl.o)).
Therefore, it is important to know, whether there exists and in what sense a limit
object for the process of aggregation, and if the answer is positive, whether this
limit object isitself atessellation.

It is possible to define the limit cellsin various other ways. We show that under
a suitable condition the most natural definitions are equivalent and yield the same
limit tessellation.

Let {A,} beasequence of closed subsets of R¢. Recall the definitions of Pain-
leve-Kuratowski lower and upper set limits:

liminf A, = {x : 3{x,} suchthatx, € A, andx =limx,},
n n

limsup A, = {x : 3{x,,} suchthat li;innk =00, Xp, € Ay, adx = “{nx’”}'

n

In words, a point belongs to liminf,, A, if and only if any of its neighborhoods
intersects with all sets A,, starting from some m; apoint belongsto limsup, A, if
and only if any its neighborhoods intersects infinitely many sets A,,. Both limits
are closed sets and their coincidence is equivalent to convergence in the so-called
Fell topology on closed sets (seeg, €. g., [4]). Define the sets

CE (D) = d(Un Nuzm CEGD)) . DY) = (N U CEGD) ., (9)
ESC(xQ) = liminf CA(xY), F§o(x2) = limsup CA (xD) . (10)
n n

Let C;, (x") bethe cells of the aggregate tessellation @), defined as

O =" o0 lo. 00",
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Theorem 4. Assume that condition
P{3m, xT ell, : O¢ int(ﬂnzmc,’;, (x}"))} =1. (NN

is satisfied. Then the sets C5°(x?), DS°(xD), ES (x2), and F§°(x?) defined by (9-
10) have coinciding interiors and constitute the same tessellation ©g°.

Remark 2. This theorem enables us to define cells of the limit tessellation ©F° as
thesets A; = cl(intCg° (xl.o)). Since the interiors of the sets (9-10) and of A; co-
incide, a natural question iswhether the sets themselves coincide. Another related
question is whether there is a convergence of the boundaries

=R\ Uint (CaxY) and TP =RI\UintA;. (12)

The answers are, in general, negative: A; may be strictly smaller than (9-10). The
differenceisthat the latter sets are not necessarily regular, i. e., they do not neces-
sarily coincide with the closures of their interiors. As to the second question, we
show in the proof of Theorem 4 that thereisalimit I = lim,, I'{) in Fell topology,
onehas I'y® € I, but they need not coincide. An expression for I is also given.

Corollary 5. Under condition (11), for each y € RY,
. 0 n _ po 00
I|rEnP {y e C50)} =P°|y e C§°(0)},
lim|Cy(0)| = |C5°(0)| as.

and thus E° |C3°(0)| = Ao.

Call asequence of tessellations " self-similar if there exists v > 0 such that
for al n € N the scaled tessellation v@™, defined through its boundary vI'(©") =
{vy : y € I'(@")}, has the same distribution as ©” .

Theorem 5. For a sequence of self-similar tessellations
P{ax? € IIp : 0 eint(N®oCax?)} >0, (13)

implies (11); in particular, (13) implies the statements of Theorem 4 and its corol-
laries.

Coroallary 6. Theorem5 together with Example 2 imply that {C§° (xio)} inself-sim-
ilar case constitute a tessellation if and only if (13) holds.

Remark 3. Sincethe sequence of Poisson-Voronoi tessellations with exponentially
growing intensities 1, = A" for A > 1 are self-similar (with v = A1), then in
view of Corollary 3, the condition (13) is satisfied, so that the family {Cgo(x?)}
constitutes atessellation of R¢. Closely examining the proof of Theorem 5itisseen
that thekey stepisto find avanishing upper bound for the LHS of (22). For instance,
for PVAT with super-exponential growth of intensities: liminf, A, 11/, > 1, it
will again be bounded by p”, since P{T,, < oo | T,—1 = k} isnot increasing in
k for al sufficiently large k, so that (11) also holds for that case and thus a limit
tessellation OF° exists.
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2.4. Fractal boundary of the limit cells

From now on we confine ourselvesto PVAT with exponentially growing intensities.
As we have shown in Remark above, the limit Poisson-Voronoi tessellations exist
and the boundary of the limit cells I'g® is a random closed set defined by (12).
As the distributions of I'S® and I'}° scaled by A"/ coincide, the boundary of the
limit tessellation is statistically self-similar. This property is rather different from
geometrical self-similarity inthesense of I'3° being aunion of scaled copies of self.
However, by construction, I';° ; consists of parts of I';°, and therefore, I'S° has a
similar structure at any scale of observation, which allows usto cal it afractal.

One of its important characteristics of the boundary is the spherical contact
distribution function H (r), defined as

H(r)=P{I'gFnbO,r)#0|0& 17}, r>0.
Here, as Theorem 5 shows, the probability of the condition is one, thus H (0) = 0.
Some information on the degree of variahility of the cell boundary can be derived

from the rate at which H (r) decreases as r tends to zero.

Theorem 6. For PVAT with exponentially growing intensities: A, = A" for some
A > 1, thereexist constants K > O and ¢ € (0, 1) such that for all » > 0,

H(r) =P{bO, 1) NI £ 0} < Krdd.
Thevalues of ¢ and K are givenin (30).
The primary characteristic of afractal isits dimension, which can be defined in
several ways. Wewill beinterested in the Hausdor ff dimension of I'g° (see, e. g., [5,

p. 20-23] for definitions of different dimensions that we use here).

Theorem 7. Letg betheconstant definedin (30). Thenfor PVAT with exponentially
growing intensities; A,, = A" for some A > 1, one has

dimy I'y” = Edimyg I’ as.,
dimy I'y” <d(1—¢q) as.

3. Examples and counterexamples

Theexamplesin thissection areall in R1, but 4-dimensional anal ogues can be con-
structed by taking Cartesian product of independent realizations of the described
tessellations.

Example 1.
(i) aggregate cells may never die;
(if) asymptotic behavior of aggregate cells depends on the nuclei choice;
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(iii) limit tessellation may not be fractal;

Consider a stationary tessellation ©" of R! obtained by shifting the regular
mesh of intervals of length k;l with a vertex at the origin by a random vector
uniformly distributed in [0, A, 1].

Assumethat {A,} isanon-decreasing sequence and Ag = 1. Choose« € [0, 1]
and define the nucleus of each cell (segment) to be the point dividing it in propor-
tiona : (1 — «) from left to right. It is easy to see by induction that the size of
any ©)-cell along each coordinate axis is at least A%, so there is always at least
one nucleus of IT,41 in each cell. Asaresult, al aggregate cells are all segments
and the cells never die. Moreover, for each n, the sizes of the aggregate cells along
the line do not change if A,,4+1/A, isanatural number and change periodically if
Ant1/An is arationa one. By construction, the boundaries of the @"-cells have
coordinates A, Yk +uy,), k € Z, where u,, are independent uniformly distributed
in (0, 1) random variables describing the shifts.

Itis straightforward to verify that the evolution of the boundaries of @j-cells
are given by the following recursion

al =atd, where
di = A;l(l — (Anay I_a— u,,))

with (z) = z — max{k € Z : k < z} being the fractional part of areal number z.
Note that for any z and for any u« uniformly distributed in (0, 1), ther.v. (z + u) is
again uniformin (0, 1). Therefore,

Ed! =1, 11/2—a), var d! = 1/(1232),

so that there is a systematic drift to theright or to theleft if « < 1/2 or o > 1/2,
respectively. We have |d}| < 1. By the well known result on random series con-
vergence, the boundaries of the aggregate cel Isamost surely stabilizeasn — oo
if and only if both series (1/2 — «) Y, 2,1 and 3°, A, 2 converge. We see a no-
ticeable dependence on the nuclei choice When say, A, = n. Inthis casethe cells
stabilize only if « = 1/2 and float to plus or minusinfinity depending on whether
« issmaller or greater than 1/2.

Example 2.

(i) itispossiblethat E§°(x?) = F$°(x?) for all x?, but these cellsdo not constitute
atessellation;

(ii) existence of limit of coverage probabilities does not imply existence of a limit
tessellation;

Let © be atessellation of R with non-connected cells i +[-5/6,-3/6] U
[—1/6,1/6] U[3/6,5/6] and nuclel i € Z. Put ®" = 37"(O + u,), where u,,
are independent uniformly distributed in [0, 1] r.v.'s. It is easy to see that O] =
Op+ Y o3 u;,where @y = © 03 1@0---0370. Thecellsof @y, consist
of 3*+1 segments:

4 +1 4k+3 .
i—1+ U [ T’ W] ie’Z.
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Geometrically, next generation aggregate cells are obtained by swapping neigh-
boring thirds between the segments at their boundary points. Therefore, Dg° (i) =
ES(i) = Fg°(i) =i +[—1, 1] + 2v, where v isuniformin[—1, 1], so that almost
each point y is covered by 2 limit cells: EG°(i) with |y —i| < 1 and thusit is
not atessellation. In contrast, C;°(i) = ¢ for all i. Note also that P{y € Cy(0)}
converges to a non-degenerate distribution.

4. Proofs
4.1. Theorem1

Proof. By definition, for n = 0, obviously, fo(y) = P%{y € C°(0)}. Suppose,
the statement of theorem holds for n — 1. By the Campbell theorem (see, e. g., [8,
p. 119]),

Py e Ca@} =E® Y 1(x! € Cp7H@) A(y € C"(x]))

xl'ell,
= An/ PPz e g 10} Py —z € C"(0)} dz.
Rd
It is easy to see that this expression corresponds to what was stated:

fon () =/ fon—1(2) fuly —2)dz.
Rd

4.2. Theorem2

Proof. We begin with inequality (4). Since
PY{Reo(2) > p + lzll} < PY{Rs(0) > p}.

it is sufficient to prove (4) for z = 0. Let {p,} be a monotonously increasing
sequence of positive numbers converging to o. Then we have

{Rx(0) > p} C U?,OZO{Rn(O) > On}.

Next, we use the following inequality: if B C U2 ,B,, then

P(B) < P(Bo) + » _P(B, N B,-1) < P(Bo) + » P(By|By-1).
n=1 n=1

Hence,

P{Roc(0) > p} < P{Ro > po} + Y P°{Ru(0) > pu | Ru-1(0) < pu1}.

n=1

(14)
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T by, lly = 27)

~

Fig. 2. Largeincreasein R, (0) implies existence of alarge empty ball

Given that R,_1(0) < p,—1, the event {R,(0) > p,}, implies the existence of a
Voronoi cell C" (x}") with the nucleusinside of theball 5(0, p,—1) containing some
point y on the sphere ab(0, p,). Therefore, the interior of the ball b(y, |y — x|
contains no points of I1,, (see Figure 2).

Denote A, = p, — pu—1. Takeu € [—1/2, 1/2]¢ and consider the collection of
mesh cubes of side A, /v/d whose centersz,,, arethosegrid points (Z4 +u) A //d
that lieinsidetheannulusb (0, p, + A, /2)\b (0, p, — A, /2). Denoteby N = N (u)
their number. If z(y) is the center of the cube containing y, then for any point
x € K(z(y), u) onehas

lx =yl < e =z + l2(y) = Yl < Ax/2+ Ar/2 = Ag < ||y — x[]l.

Thus the cube K (z(y), u) liesin the closure of b(y, ||y — x{‘||) and contains no
point of IT, inside. Thisyields for the summandsin (14) the following bound:

1 (1-ep| — Vi) . (15)

whichisthe probability that at |east one of the mesh cubes contains no pointsof I7,,.

To estimate N, let u be uniformly distributed in [0, 1]¢. Then (Z? + u) Ax/~/d
isastationary point processwith intensity (+/d/Ax)?. Therefore, the mean number
of its pointsinside the annulus equals

Eu N = (Vd/ A ba[(on + Bn/2 — (pn — Dn/2)].
Hence there exists ug such that

N = N(uo) < (Wd/A) bal(pn + A/ = (o0 — An/2)]
d—1
= ba A (Vd/ A Y (o + An/2) (py — A/
k=0
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d-1

< baAn(Vd/ A0 Y (3/20) p? T
k=0

= 2(3/2)! = 1) bad™? (p/ AR

Sincel— (1—a)¥N <aNforany0 <a < 1land N > 1, the value of (15) does
not exceed

2((3/2)9 — 1) bad?(p/ An)* L exp | — A (An/ VD)) . (16)

Next, choose a specific sequence {p,} with the increments A, = pc=1e=?%n)/d
with ¢ defined in (3). It is easy to see that p, monotonously converges to p. For
such {p,}, from (16) it follows that the right-hand side of (14) is bounded by

a1 S exp{ — (p/ev/d) ' ) + (@ — D(loge + () /d)}, (A7)
n=0

which is equivalent to (4). We have used here the definition of ¢, due to which
e~ ?0) = ¢(X,)/1,. The function A(p) = O(p?) increases to infinity and is
greater than 1/d for al p > c+/d. Therefore, for such p, the seriesin (4) converges
and the whole bound tendsto 0 as p — oo providing the aimost sure finiteness
of Ro(2).

Inequality (5) is proved much in the same manner. Fix asmal 0 < ¢ < 1 and
consider a sequence {p;} with pj = p that monotonously decreases to ¢p. First,
from

{reo(z) =0, ro(2) > p} CUX1{rn(2) < p,,, ro(z) > p}

it follows that
P{reo(z) = 0| ro(z) > p}

<Y PUr(@) < ). ra-1(2) = pj_1 | 10(2) > p}. (18)
n=1

The event {r,(z) < p;,, ra-1(z) > p,,_,} implies the existence of a Voronoi cell
C"(x!") with the nucleus outside of the ball b(z, p,_;) having some point y €
C"(x!") insideb(z, p;,). Hence, thereexistsaball of radiusat least A}, = p; _; —p;,
centered on the sphere db(z, p,,_,). Note that this event is independent of the
event {ro(z) > p}. Thus the summands in (18) can be bounded as in (15) with
Al = (1—¢)A,. With that choice of A/, theright hand side of (18) is bounded by
an expression similar to (17) with ¢ replaced by (1 — ¢)c. Due to the arbitrariness
of ¢, expression (17) also provides an upper bound. The rest of the proof remains
unchanged.
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4.3. Corollary 1

Proof. Recall the following integral estimate: Y 57 ; h(n) < h(1) + [;° h(x)dx
for any non-increasing positive function i (x). We have

o]

[

Ze—KP(A")A(P) < e—¢()t)A(P) +/ e—¢()»x)A(P)dx
1

n=1

1 ©

— ,— PN A(p) -1y ,—vA(p)

=e + / A+y e dy
|Og)» dL)

after the variable change y = ¢ (1*). Next, since1 + y~1 < 1+ ¢(1)~ on the
integration domain, the whole expression can be bounded by

-1 -1
0w L TEEM T sai _ (1+ 1+o0) )e—qs(A)A(p),
A(p)log A d-1logx

so that (4-5) become (7-8), respectively. It can be immediately verified that these
estimates become nontrivia if p > ¢, and that ¢, > cv/d.

4.4. Corollary 2

Proof. Let 7, be the stationary shift defined on the probability space Q2 such that
I, (t,w)(B) = II,(w)(B — x) for any Borel set B ¢ R¢ and any n. In this no-
tation, 7,0 R, (0) for x2 € I is the maximal distance from x? to the boundary of
Co (xlo) that correspondsto the above definition of R, (0) with Cj(0) replaced with
Cg (x,.o) = 7,0C;(0). The probability that there exists an unbounded family of cells
with the nucleusin a ball b(0, N) equals

P J ({roRe@=00}<E > 1{r,0Re(0) = oo}
xiellonb(O,N) i €lloNb(O,N) '
= byNYEP1{R(0) = 00} = 0,

where we have used the Campbell theorem and (4). Letting N grow to infinity
proves the assertion.

4,5. Corollary 3

Proof. It is sufficient that the distance from y to the boundary of the ITp-cell con-
taining y issufficiently large so that the boundaries of the progressing n-cells never
reach y. The probability of the latter event is positive by (5).

Due to stationarity, we may put y = 0. Consider the following representation:

P{3:0 : Oeint(n, c5ed)} =E Y 1(0eint(n, Cpd))).

0
x; €llg
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By the Campbell theorem and by the isotropy, the right-hand side equals
/ P —zeint(n, C4(0))} dz
Rd
> /d Pz e int(N, C§(0) |b(z, p) S CO0)}P°{b(z, p) < C°(0)} dz (19)
R

forarbitrary p > 0. By Theorem 2, thefirst factor under theintegral in (19) isgreater

thanl—a1 Y02, (¢ (An)/k,1)A(p) provided that p > ¢+/d. The second factor isthe
probability that no points of ITp liein the figure Uy, ./ =,b(z’, |IZ’I). Thisfigure
is obtained by rotation of a cardioid around its symmetry axis; by construction, it
iscontained intheball b(z, ||z|| + 2p). Therefore,

PoUb(z, p) € C%0)} > exp{—ba(llzll + 20)"} .

Using this estimate we get
/ Po{b(z,p)gco(O)}dz>/ exp{—ba(llzll +2p)?} dz
R4 R4

P
> / ri=tdb, exp{—b4(3p)!} dr
0

= bap exp{—ba(3p)"}. (20)

Hence
p{gxlo tye int(ﬂn CS(XIO))}

> An) VAP
> s ool -t} (1-a Y (252)")] = 0. (e
p=cd n=1 "

4.6. Theorem4

Proof. Theproof consistsof two parts: inthefirst oneweprovethat thesets C5° (x)
congtitute atessellation, in the second we show that theinteriors of the alternatively
defined limit cells coincide.

Part |. Recall the definition of atessellation from Section 1. We start by verify-
ing condition (b). Consider disjoint open sets O; = Uy, int (Ny=m Ca(x?)). Every
x;" € II,, iscontained in an almost surely unique aggregate cell C{J”*l(x,.o). Thus
if (11) holds, the set I” = R? \ U; 0; a.s. misses the origin, which implies that
II"| =0.Since 0; C Cgo(xlp),Weha\/eCSO(x?)ﬂCSO(x?) crycrifori#j.

Let us verify (c). For abounded Borel set B R introduce arandom variable

N(B) =limsup " {CF&) N B # 0.

n— oo
xl'ell,

Obvioudly, if N(B) < oo, only afinite number of cells Cgo(xl.o) intersects B. De-
note by o, the o-algebra generated by the sequence of processes {11y, k > n},
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and note that the event {N(B) = oo} belongs to the tail sigma-algebra o, =
Nno,. Since al the processes 11, are independent, the zero-one law applies so that
P{N(B) = oo} = 0or 1. From (11) it follows that for some e > 0,

P{3xT € I1,, 1 b(0, &) €int(N2,, Cpr (x7))} >0,

=m—m

and hence, P{N (b(0, ¢)) = oo} = 0. Every bounded set B c R? can be covered by
afinitefamily {b(z, &) }x<x Of copiesof b(0, &) shifted by ;. Becauseof stationarity,
N (b(0, £)) and N (b(t, €)) have the same distribution for each 7, € R?, therefore

K
P{N(B) = o0} < Y P(N(b(t, £)) = 00} =0.
k=1

In order to prove (a), we need to show that the set @ = R? \ Uicgo(x?) is
a.s. empty. Observe that @ C I'3°, and therefore ¢ contains only boundary points
if non-empty. For such apoint y € @, there exists a sequence {y;} C U; Cg° (xl.o)
convergingto y. Beingitself abounded set, this sequence visitsonly afinite number
of limit cells C3° (xio). At least one of these cells contains an infinite subsequence
{yx, }, it contains also y because cells are closed sets. We come to a contradiction
with the non-emptiness of @.

Part 1. We will show that the interiors of the cells defined in (9-10) coin-
cide with int(cl(0;)) as. Because ¢l(0;) € CP(x?) € DFP(D) € F§(x?)
and cl(0;) S EF(P) € F§°(xP), it is sufficient to show that int(cl(0;)) =
int (F5° (x)).

Suppose x ¢ int(cl(0;)). Every open neighborhood v (x) of x contains a point
y & cl(0;). Therefore, v(x) contains an open subset v(y) digoint of cl(0;). Since
|I'"| = O, thereexistsapointz € v(y) N O; forsome j # i. But O; ﬁFgo(le) =0
and thus x ¢ int (F$°(xD)).

Hence, the boundary I'g° is common for the tessellations defined by (9-10).

We now provethat I is the limit of the boundaries I'yy as it was mentioned in
Remark 2. Let us verify that I C liminf, I'}. If x e I"", then any neighborhood
v(x) of x hitsat least twodigoint sets O; and O, . Therefore, v(x) hitsN,>,, Cg (xio)
and N> Cp (x?) starting from some m. Then it must also hit 'y for all n > m.

Now we provethat limsup, I'} < I"". Let n; be a sequence of natural numbers
such that limy n; = oo. Suppose x,, € I'y" and x = limg x,,,. If x & I”, then
x € 0; forsomei. Thenx € int mnzmcg(x,.o) for some m, and the sequence of
xn, € I'y* cannot converge to x. From this contradiction it followsthat x € I".

4.7. Corollary 5

Proof. By Theorem 4, P{y € C3°(0)} = P°{y € D§°(0)}. Using the continuity
property of the probability measures, we obtain

P°{y € €O} =imP°{y € Up=n C O} = limP°{y € C3(0)}.
Po{y € €O} =imP°{y € Nu=w C3 (O} < limP°{y € C5(0)}.

The second statement is obtained by simply replacing P°{y € -} by | - | above.
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4.8. Theorem5

Proof. Suppose, the tessellations ©" are self-similar with the coefficient v > 0.
Let v(0) be an open neighborhood of the origin, and let x" (0) be the point of 11,
such that 0 € C"(x"(0)). Consider the following r.v.'s:

T1 = min{k > 0 : v(0) ¢ C§(x°(0)},
T, =minlk > Ty : v(0) ¢ vIPHC  (x"7H0))}

Tur1=minfk > T, : v(0) ¢ v"*Ck  (x™+1(0)}, etc.

Thus defined r.v.'s are stopping times and the distribution of 7,1 given {T,, = k}
depends only on {I1,,},~. By self-similarity we have P{T,,;1 < oo | T, < oo} =
P{T1 < oo} = p, whichisstrictly smaller than 1 by assumption (13). Therefore,

P{T1 <oo,..., T, <oo}=p". (22
Thus P{Vk, T; < oo} = 0 and as. there existsn such that 7,, < oo, T;,+1 = o0,
meaning that condition (11) is satisfied withm = T, + 1.
4.9. Theorem 6

Proof. Consider the cells of the limit tessellation {C.°(x!")} defined in the same
way asin (9). Let X (n, r) bethe nuclei of those cells whose boundary crosses the
bal 5(0, r),i.e,

X(n,r)y={x" e, : 3C;°(x]") Nb(0, r) # 0}.
We will first prove the estimate: for eachn > 1 and for each s > 0,
P{bO, 1) NIY # 0} < fr,n, )", (23)

where f(r,n,s) = 1— P{X(n,r) € b(0,5)}P{b(0,5) € C"1(x"~1(0))}, and
x"~1(0) denotes the closest point of I1,,_1 to 0.

Consider theevents E(m, r) = {b(0, r)N I # @}, where .’ isthe boundary
of the tessellation {C,,°(x/")}. Note that E (O, r) is the event in the left-hand side

of (23). Since I';” € I'y° 1, wehave E(m, r) € E(m + 1, r) and therefore,

P{E©,r} =P|{E@ r}P{EW©,r) |EQ, r}

=P{Em. r)} [[P{Em —1.r)| EGn,r)}

m=1
< HP{E(m—l,r)|E(m,r)}. (24)
m=1

We assert that for every m and s,,, > O,

P{E(m — 1. r)|E(m,r)} < f(r.m, sp). (25)
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Indeed, if b(0, r) NI # ¥ and
X(m,r) € b(0,s,) € C"1x"1(0)),

then the cells C;°(x") for which x!" € X (m,r) joinin C,ff_l(x’"‘l(O)) so that
bQO,ryNIy> ;=0
Since the intensity of each IT,, equals 1", the distributions of

Iy, My, ...) and WY, 1, AY0,00, .. .)

coincide. Consequently, thesets X (m + 1, r) and A~ X (m, A1/?r) havethe same
distribution, and

P{X(m+1,r) Cb(O,s,)} = P{AYIX (m, 2Yr) € b(O, s)}
= P{X (m, 2Y?r) € b0, 14s,,)}
< P{X(m,r) € b0, 1Ys,)},

asX(m,r) C X(m, AY4r). Also

P{b(0, ;) € C™(x™(0)} = P{b(0,1Ys,,) < c" 1 (x™~1(0))}

sothat f(r,m — 1, AY4s,,) < f(r,m, sy). Alternatively, f(r,m, su) < f(r,m +
1,2 Yes,) < f(r,n, A~=™m/dg ) by induction. Thus, taking s, = A*—™/d
in (25), by (24) we obtain (23).

Next, we find abound for f(r, n, s). We have

1- P{X(n, r) C b(0, s)}
=1-P{X(0,1"?r) € b(0,1"/"s)}
<P{ax? : xP ¢ b0, 2""5) and CF (x) N b0, 1"/r) # B}
<E > 2(lIx2ll > A4 and CF (x) N b(0, A"9r) # ¥).  (26)
xVellg
Recall the definition of R (z) from Section 2.2. By the Campbell theorem, the last
expectation in (26) equals

f PY{CE(0) Nb(—z, A"r) # 0} dz
[EESEER
=/ P% R (0) > I|z]| — A"4r} dz
Izl >Amn/ds

= A"/ PR (0) > 2" (]l — )} dz. (27)
lzll>s
Choose s = 2r. Then by (7), the right-hand side of (27) does not exceed

n d © n d
cﬂ”/ , e~ (1= g7 = clk"/z dbgpi=te=2" (0= 4y
lzll>2r

'

o
= Cl}‘n/ dby(2p — 2r)* e~ 2" 00" 4
2

-

— _ d
= (2" terfep)e P
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Denotea = (1/c2)log(2?c1/co) and choose n = |d log, (a/r)] + 1, where | - |
is the integer part of a number. With such n, inequality a < A"r¢ < ia holds and
(2911 /cp)e2*" ! < 1/2. Therefore,

P{X(n, r) C b(0, s)} >1/2. (28)
Since there is only one Voronoi cell that may contain aball, we may write

P{b(0,5) € C""*(x"71(0)} = P{b(0, A" D5y  c0(x%(0))}
=E Y 1{b0. 2" P/s) c O}

xlpel'[o

Using the lower bound from (20), for s and n chosen as above we obtain

P{b(0,s) € C"*(x"71(0))} > bar"ts? exp{—bya""(35)"}
> (2%aby/») exp{—6Tab,}. (29)

Putting together (28) and (29) we get from (23)

log, (a/r
P{bO, 1 N TE #0) < [1— @ taba/) exp{—6dabd}]w ogy (a/r))+1

< Kr4,
where
g = —log, [1 — 2 Yabg /) exp{—6dabd}] and K=a"%. (30

Since A > 1, wehave 0 < g < 1. Thetheorem is proved.

4.10. Theorem7

Proof. Consider the collection of mesh cubes of size M in R? and let {0, } be the
family of shifts tranglating the cube at the origin [0, M)¢ by the vector M«, where
o= (a1, ...,0) € Z%. Introduce aso

I'(M)=Tgn[0, M)?, 0, T (M) = T N 6,[0, M),
Since 6, I'(M) < I'g®, with probability 1 for al « € 74, we have
dimy 'y’ > dimy 6, (M).
Denote Ay ={o : |oj| < N, i =1,...,d}. Obvioudly,

dimy I'y" > sup dimy 6, (M).

aedAy
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Now by the ergodic theorem,

dimy I'y® > I|m sup dimg 6,I'(M)

%OOOKGAN

1\’I|—>moo (2N)d QEXA: dimy 6,T(M) = Edimy I'(M).
Letting M — oo in this inequality and using the property of monatonicity of
the Hausdorff dimension, we get dimy I's° > Edimg I, which implies the first
equality of the theorem.

To prove the second inequality, we make use of the estimate of the Hausdorff
dimension of a set by its upper box dimension (see, e. g.,[5, p. 24]). Let N.(B) be
the smallest number of closed balls of radius ¢ that cover B. Then

N : log Ne (I'§(M)
dimg I'e®(M) < “rsn—?éjpT

Take expectations at both sides of this inequality. It can be easily verified that
[0, M)4, andhence I'§ (M), canbecovered by afamily {b; } of lessthan (Mﬁ/Zs)d
ballsof radius . Thusthe function in the right-hand side under the limit is bounded
by aconstant not depending on ¢, and therefore, we can exchange the limit and the
expectation. Moreover, the function log(-) is concave, hence Elog(-) < logE(-).
Therefore,

Edimy I'g?(M) < Iimwpw
e—0 loge

Recalling the definition of the contact distribution H (r) from the previous section,
we get

EN.(F(M) <EY (b NTF (M) # 0) < (MNd/2)" H e).

i

From Theorem 6 it follows that

Edimy I'$ (M)
log(M~/d/2) — d| log K |
EHmsgpd og(M+/d/2) d_cngge;r og K + dgloge —dd—q).
e—

and it remainsto let M — oo to obtain the second statement of the theorem.
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