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Abstract. In theframeworkofdenoisingafunctiondependingofamultidimensionalvariable
(for instance an image), we provide a nonparametric procedure which constructs a pointwise
kernel estimation with a local selection of the multidimensional bandwidth parameter. Our
methodisageneralizationoftheLepski’smethodofadaptation,androughlyconsistsinchoosing
the “coarsest” bandwidth such that the estimated bias is negligible. However, this notion
becomes more delicate in a multidimensional setting. We will particularly focus on functions
with inhomogeneous smoothness properties and especially providing a possible disparity of
the inhomogeneous aspect in the different directions. We show, in particular that our method is
able to exactly attain the minimax rate or to adapt to unknown degree of anisotropic
smoothness up to a logarithmic factor, for a large scale of anisotropic Besov spaces.

1. Introduction

Nonlinear curve estimation methods have received considerable attention, particu-
larly because of their remarkable ability to adapt to unknown and inhomogeneous
regularities. Those properties are of special interest when dealing with functions of
multidimensional variables.

When dealing with functions with isotropic regularity, classical wavelet thresh-
olding as well as local bandwidth selection give good results (see Lepskii, O.V.,
Mammen, E. and Spokoiny, V.G. (1994) [6], Tribouley (1995) [12],).

However when dealing with functions with anisotropic regularities, the prob-
lems become more delicate. Even the minimax rate of convergence is not known in
every situation. Let us mention the results obtained by Nussbaum (1985) [9] giving
evaluations of the minimax rates in several situations of anisotropy, by Donoho
[1] on a classification tree algorithm using wavelet thresholding, giving excellent
results for functions having anisotropic regularity in Hölder norm and Neumann
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[8] using thresholding with coefficients obtained from tensor product of wavelet of
different resolution levels, deeply associated with the L2-loss function.

Our aim in this paper is to provide a procedure of nonparametric denoising
which constructs a pointwise kernel estimation with a local selection of the multi-
dimensional bandwidth parameter.

More precisely our model is:

Xε(dt) = f (t)dt + εW(dt), t = (t1, . . . , td ) ∈ D.

d = 2 is precisely the case of an image with an additional noise.
We consider a kernel estimation of the form∫

D

1

h1 . . . hd
K(

x1 − t1

h1
, . . . ,

xd − td

hd
)Xε(dt) (1)

K is a kernel with good approximation properties in each direction and our aim is
to provide a selector of the muldimensional parameter h = (h1, . . . , hd) depending
on the point x = (x1, . . . , xd) and using the data Xε .

OurapproachisageneralizationoftheLepski’smethod(see[4],[5])ofadaptation,
which roughly consists in choosing the “coarsest” bandwidth such that the estimated
bias is negligible. However, this notion becomes more delicate in a multidimensional
setting, mainly because of the fact that there is no natural ordering: To find an optimal
bandwidth, we need to provide an indicator of an estimated amplitude of the bias. For
this part of estimation, an ordering of the bandwidths is essential. This is naturally
the case in the one dimensional setting. This can also occur in special situations in the
multidimensional case for instance when one considers isotropic regularities, but
when facing to anisotropy there is a point to address.

We will particularly focus on functions with inhomogeneous smoothness prop-
erties and especially providing a possible disparity of the inhomogeneous aspect
in the different directions. Specifically we will consider the anisotropic classes of
Nikolskii, consisting of functions f (x1, . . . , xd)with regularity si in the direction i,
in Lpi norm, for i = 1, . . . , d. we will investigate the following region of regularity:

1−
d∑
i=1

1

pisi
> 0, 1−

d∑
l=1

(
1

pl
− 1

pi
)

1

sl
> 0, ∀ i = 1, d,

d∑
i=1

[
1

si
(
p

pi
− 1)

]
+
< 2

In this region the minimax rate of convergence, associated to the Lp norm is

ε
2s̄

1+2s̄ , where s̄ is defined by 1
s̄
=∑d

i=1
1
si

.
We show that our approach provides procedures which are able to exactly attain

the minimax rate or to adapt to unknown degree of anisotropic smoothness (in this
case we do not require the knowledge of the parameters si, pi) up to a logarithmic
factor, depending on the way some tuning parameters are chosen.

These results are obtained by proving a concise bound of the local risk as well
as for the integrated-Lp risk for each fixed target function.
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The obtained bound is, as in the one dimensional case the spatial mean (with
respect to Lebesgue measure) of the locally optimal stochastic term. The result is
very comparable to an oracle inequality. The bound is obtained in a very general
setting by defining an “optimal multi-index bandwidth” depending on the local
multidimensional moduli of continuity (in each direction, and depending on the
kernel K) of the function. This bound is evaluated in a second stage, for functions
belonging to Besov spaces.

To avoid additional technical difficulties the results are stated in the white noise
setting. We have given preference to this model rather than the more realistic density
or regression (with fixed equispaced design) models, because in our model the
stochastic part is entirely gaussian (which would not be the case in the density
model for instance) and the bias (see b(h) in section 3.2) is an integral while in the
regression model, it is a Riemann sum. Due to this difference, our model allow to
develop the theory of global nonlinear estimation entirely within the framework of
Besov spaces.

Let us now describe the organisation of the paper: First (section 2) we present
the model and the basic regularity assumptions.

For the main part of the paper, we shall follow the usual steps in the construction
of non adaptive estimators, as for instance in [6].

The first step consists in finding a local ideal bandwidth (h̄ or j̄ in section 3.1),
and an associated local ideal rate (“λ(j̄ , ε)”). This ideal bandwidth is for instance in
[6] (one dimensional case) defined as the largest bandwidth such that the local bias
of the corresponding kernel estimator is less than a threshold roughly correspond-
ing to its local variability. We could still apply the same choice procedure if we
were looking for isotropic smoothness. However, most functions have anisotropic
regularities and assuming isotropic conditions leads to a loss of efficiency due to
curse of dimensionality. In the case where the local regularity is anisotropic (dif-
ferent moduli of smoothness in different directions), the choice of an ideal local
bandwidth is more delicate. It is determined using a fixed point theorem (Proposi-
tion 1). In fact for practical purposes, all optimizations will be made using a dyadic
mesh leading to the definition of j̄ in corollary 1 instead of h̄. This first step ends
up proving that the choice of this ideal bandwidth leads to an oracle inequality for
a local bound of the risk, as well as a bound for the global Lp risk (Proposition 2,
section 3.2).

The second step consists in trying to mimic the oracle, provide a procedure
free of oracle. The algorithm is detailed in section 3.3.2. It is possible to skip the
detailed construction of the first part of the paper and directly jump to the procedure
in this section. The algorithm is achieved by determining the locally smoothest

kernel (with locally largest bandwidth 2−ĵ ) which is admissible in the sense of the
criterion defined in (15). It is worthwhile to notice that the admissibility criterion
(15) is a multidimensional extension of the criterion provided in [6].

We state a concise bound of the local risk (Theorem 1) as well as for the
integrated-Lp risk (Theorem 2), for each fixed target function. An important step in
proving that this procedure yields a locally adaptive estimator consists in showing

that except on an event of small probability, the adaptive bandwidth 2−ĵ , remains in
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some sense larger than the “oracle” bandwidth 2−j̄ , as it is done in [6]. However the
proof, because of the multidimensional framework contains new specific technical
difficulties.

Section 4 is an illustration of the use of the inequalities obtained in Theorems
1 and 2 to prove that the procedure attains the minimax rate in a large scale of
anisotropic Besov spaces (Theorem 3), or is able to adapt, up to a logarithmic
factor (Theorem 4). The general result follows from 2 different steps. In the first
one, we give an evaluation of our concise bound when the unknown function is
approximable after smoothing with the kernelK in each direction with a prescribed
rate (differing from one to the other) of convergence in a prescribed Lpi norm (also
differing from one direction to the other). In the second step, we recall that if K has
good approximation properties, then belonging to anisotropic Besov spaces implies
conditions as in theorem 5, in such a way that theorems 3 and 4 are obtained as
consequences. The difference in theorem 3 and 4 are obtained by different tunings of
the procedure: the multidimensional quantities κ or j0 introduced at the beginning
of section 3 appear as parameters of the procedure that can be chosen for different
purposes: properly suited according to the space to exactly attain the minimax rate
of convergence or roughly settled to j0 = 0 when adaptation is required.

Section 5 is devoted to the proof of Theorems 1 and 2, Section 6 to the proof
of Theorem 5 (since theorems 3 and 4 are consequences of theorem 5). The proofs
of the technical lemmas are postponed to the last part of the paper.

We particularly thank a referee for his very detailed and helpful comments.

2. Model, basic regularity assumptions

Let us suppose that we observe the random field Xε(.). Xε(.) is a random measure
satisfying on some domain D which is an open cube of Rd containing [0, 1]d the
following relation

Xε(dt) = f (t)dt + εW(dt), t = (t1, . . . , td ) ∈ D (2)

where W(.) is a gaussian white noise (see [11] Skorohod 1974), ε > 0 is a small
parameter. For every f ∈ L2(D), the stochastic integral �(f ) = ∫D f (t)W(dt) is
well defined and�(f ) is a real normal random variable with E�(f ) = 0, E�(f )2

= ∫D f 2(t)dt (see [13] Walsh 1984). The model (2) is equivalent to the following
model : for any φ ∈ L2(D) a statistician can observe∫

D
φ(t)Xε(dt) =

∫
D
φ(t)f (t)dt + ε

∫
D
φ(t)W(dt) (3)

Our goal is to estimate the unknown function f (t) = f (t1, . . . , td ), (t1, . . . , td )

∈ D1, on some domain D1 ⊂ D, using the observation Xε. To avoid the consider-
ation of boundary effects, all along the paper, we will consider D1 = [0, 1]d . We
also assume that the function f belongs to some functional space F on real valued
functions vanishing outside D. On the space F, we introduce the maximal risk as
follows :

Rε(f̃ε,F, p) := sup
f∈F

E‖f̃ε − f ‖pp (4)
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where f̃ε is an arbitrary estimator, and for 1 ≤ p <∞, ‖g‖p :=
( ∫

[0,1]d |g(t1, . . . ,
td )|pdt1 . . . dtd

)1/p
.

As is usual in the context of nonlinear methods, in order to be able to produce
algorithms, we will restrict to functions having a minimal regularity: For 0 <

ν ≤ 1, 0 < Lν < ∞, 0 < L < ∞, we say that the function g ∈ F0 =
F0(ν, Lν, L,D) if

• sup(t1,...,td )∈D |g(t1, . . . , td )| ≤ L

• ∀t = (t1, . . . , td ), t
′ = (t ′1, . . . , t

′
d) ∈ D,

|g(t)− g(t ′)| ≤ Lν

(
|t1 − t ′1|ν + . . .+ |td − t ′d |ν

)
This minimal regularity will be used in the sequel essentially to be able to define

the optimal multidimensional bandwidth (see Proposition 1) as well as the use of a
dyadic mesh in the construction of the algorithm. It is worthwhile to mention that
the values of the constants ν, Lν, L, are not assumed to be known a priori and they
will not appear as tuning constants of our procedures.

3. Nonlinear multidimensional procedure. Upper bounds

3.1. Preliminaries

In this section we introduce the type of marginal regularity which will be useful in
the sequel to construct our procedure and measure its efficiency as well. Then we
introduce an oracle multi- index bandwidth.

3.1.1. Kernel

Let g(t) be an integrable, bounded, compactly supported function such that
R,

∫
R g(u)du = 1. Following S.M. Nikolskii, we define :

gl(u) =
l∑

k=1

Ck
l (−1)k+1 1

k
g(
u

k
).

It is easy to verify :
∫

R gl(u)u
kdu = δ0,k, for k = 0, 1, ..., l − 1. Let us put:

K(t1...td ) = gl(t1) . . . gl(td).

For t = (t1, . . . , td ), K(t) is a compactly supported, bounded kernel (i.e. there
exists a > 0,K > 0 such that K(t) = 0, ∀t /∈ [−a,+a]d and sup |K(t)| ≤ K .
We denote

‖K‖ :=
(∫

Rd

K2(t)dt1, . . . , dtd

)1/2

.

And obviously for 0 ≤ ki < l,  
∫

Rd K(t)t
k1
1 ...t

kd
d dt = δ0,k1 ..δ0,kd .
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3.1.2. Test-set, multidimensional modulus of continuity

Let us fix 0 < κ1 ≤ 1, . . . , 0 < κd ≤ 1, define the vector κ = (κ1, . . . , κd) ∈
[0, 1]d . The κi’s will be tuning parameters of our procedure: They somehow are
related to the maximal smoothness that we need to consider in our investigations.
They will be later set to 1, in the adaptive case, or to specified quantities depending
on ε and the smoothness parameters when looking for minimax rates of conver-
gence.

For any λ > 0, i = 1, d, we define the directional domains:

Di(λ) = {(y1, . . . , yd), 0 ≤ yi ≤ λ, 0 ≤ yj ≤ κj ,∀ j �= i
}

The Di’s are the domains where we are going to let the multidimensional band-
widths vary. As we are considering the direction i, we limit our investigation to λ

in this direction, whereas the other ones are free up to each κj . We also define for
i = 1, d, y = (y1, . . . , yd), [y]i as the slight change of the vector y in which the
coordinate yi is replaced by 0 and the other ones remain unchanged. Finally, for
x, y ∈ Rd we define the vector x.y = (y1x1, . . . , ydxd)

gi(λ) : = gi(λ, t, f, (κ1, . . . , κd))

= sup
y∈Di(λ)

∣∣∣∣∫
Rd

K(x)
[
f (t + y.x)− f (t + [y.x]i )

]
dx1, . . . , dxd

∣∣∣∣ (5)

gi is to be interpreted as a modulus of continuity (or more precisely a quality
of approximation by the kernel K) in the direction i.

First, we state the following lemma describing the regularity of the g′i s. Its proof
will be given in appendix.

Lemma 1. Let t be fixed in [0, 1]d , f arbitrary fixed in F0,

1. For all 1 ≤ i ≤ d, gi ≥ 0, gi(0+) = 0
2. The functions gi(.) are non decreasing functions on [0,1].
3. There exists an absolute constant L̃ν = L̃ν (Lν, L, ν,K(.)) such that ∀f ∈

F ⊂F0, ∀ λ, λ′ ∈ [0, 1]

|gi(λ)− gi(λ
′)| ≤ L̃ν |λ− λ′|ν,∀ 1 ≤ i ≤ d (6)

3.1.3. Optimal multi-index bandwidth

Set G(x) := {x(1+ [log x]+)}1/2 , Cε := ε‖K‖
(
∏d

i=i κi)1/2
(7)

For any 1 ≤ s ≤ d , and any set of indices {i1, . . . , is} ⊂ {1, . . . , d}, we shall
investigate the solutions (hi1 , . . . , his ) ∈

∏s
l=1[0, κil ] of the following system :{

gi(hi) = CεG(
∏s

k=1
κik
hik

), i ∈ {i1, . . . , is}
gi(κi) ≤ CεG(

∏s
k=1

κik
hik

), i ∈ {1, . . . , d} \ {i1, . . . , is} (8)
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These solutions will play an essential role in the sequel, since they will appear

as the multi-index analogue of the oracle-bandwidth h = [log(1/ε)ε]
2

1+2α in a one
dimensional setting with regularity α. Indeed, when considering an estimator of the
form (1), gi(hi) is related to its local bias in the direction i, whereas G(

∏s
k=1

κik
hik

)

is related to its local variance.

Proposition 1. For any arbitrary f ∈F0, ε > 0, κ ∈ [0, 1]d ,

1. (a) either gi(κi) ≤ Cε i = 1, d. Let us then define h̄ = (h̄1, . . . , h̄d ), h̄i =
κi,∀ i ∈ 1, d

(b) or there exists 1 ≤ s ≤ d , and a set of indices {ii , . . . , is} ⊂ {1, . . . , d},
such that the solution of (8): (h̄i1 , . . . , h̄is ) is such that 0 < h̄il < κil , ∀l =
1, s. Let us then define h̄ in Rd by putting h̄i = κi for i �∈ {ii , . . . , is}.

2. Let (h̃j1 , . . . , h̃js′ ), and (h∗k1
, . . . , h∗ks"), be solutions of the system (8), asso-

ciated respectively to the subsets of indices {j1, . . . , js′ } and {k1, . . . , ks"}.
Then

s′∏
q=1

κjq

h̃jq
=

s"∏
q=1

κkq

h∗kq

This proposition uses as main argument the Brouwer fixed point Theorem. Its
proof is given in appendix.

3.1.4. Dyadic sets of h

Let us now discretize the set [0, 1]d into dyadics, as in a wavelet framework, and
denote hi(ji) = 2−ji , i = 1, . . . , d, ji ≥ j0

i .

Let j (ε), j0 in Nd be defined by: 2−(ji (ε)+1) ≤ ε2 ≤ 2−ji (ε), 2−(j
0
i +1) ≤ κi ≤

2−j
0
i .
j0 is linked with κ and will be our coarsest grid, j (ε) will be the finest one and

we will restrict to the following set of dyadics:

I := I (j0, ε) = {j = (j1, . . . , jd), j
0
i ≤ ji ≤ ji(ε), ∀i}

Let us define the dyadic analogues of the Di’s and gi’s :

D̃i(2−ji )

=
{
(δ12−j

′
1 , . . . , δd2−j

′
d ), δj ∈ {0, 1}, j0

l ≤ j ′l ≤ jl(ε),∀l �= i, ji ≤ j ′i ≤ ji(ε)
}

g̃i (2
−ji ) := sup

y∈D̃i (2−ji )

∣∣∣∣∫
Rd

K(x)
[
f (t + y.x)− f (t + [y.x]i )

]
dx1, . . . , dxd

∣∣∣∣
(9)

The δ’s (in {0, 1}) are specially useful when they are equal to 0. They are corre-
sponding to the choice yl = 0 in the previous Di(λ).

The following corollary of Proposition 1 describes the behaviour of the optimal
multiscale bandwidth if we restrict the choice to dyadics.
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Corollary 1. For any arbitrary f ∈F0, 0 < ε < (
‖K‖

Lν

∫ |K(x)||x|νdx )
1
ν , j0

1 , ..., j
0
d ,

such that 2−ji (ε)−1 ≤ ε2 ≤ 2−ji (ε), 2−j
0
i −1 ≤ κi ≤ 2−j

0
i , let

F(y) = CεG(
2−

∑d
i=1 j

0
i∏d

j=1 yj
)

1. There exists j̄ = (j̄1, ..., j̄d ) ∈ I (j0, ε) solution of the following problem :
(a) If j̄i = j0

i , then g̃i (2−j̄i ) ≤ F(2−j̄1 , ...2−j̄d ).
(b) If ji(ε) ≥ j̄i > j0

i , then g̃i (2−j̄i ) ≤ F(2−j̄1 , ...2−j̄d ), g̃i (2−(j̄i−1)) ≥
F(2−(j̄1−1), ..., 2−(j̄d−1)).

2. Let j̄ = (j̄1, ..., j̄d ) and j̄ ′ = (j̄ ′1, ..., j̄
′
d) in I (j0, ε) be two solutions of the

previous problem . Then :

either
d∑

k=1

j̄ ′k ≤
d∑

k=1

j̄k ≤
d∑

k=1

j̄ ′k + d, or
d∑

k=1

j̄k ≤
d∑

k=1

j̄ ′k ≤
d∑

k=1

j̄k + d.

The last sentence of the corollary, proves that if the solution j̄ is not unique, then
2 solutions will satisfy:

d∑
k=1

j̄ ′k − d ≤
d∑

k=1

j̄k ≤
d∑

k=1

j̄ ′k + d.

In the sequel, we will consider j̄ a particular solution of the previous corollary, no
matter which one it is since all our bounds will only depend on

∑d
k=1 jk . The proof

of the corollary uses the theorem K.K.M. (which is equivalent to Brouwer theorem)
and is given in appendix.

3.2. Upper bound of the risk (with an oracle)

For any function f ∈ F0, let us define j̄ as in Corollary 1. Let us recall that j̄ is
a local quantity (depending on t as gi is depending on t). It is also depending on
ε. We will omit to indicate the explicit dependence upon t and ε except when true
necessity.

Let us now define for any t ∈ [0, 1]d , any j = (j1, . . . , jd) ∈ Nd , the classical
linear estimator defined in (1), with dyadic multidimensional bandwidth

f̂j = 2
∑d

i=1 ji

∫
D
K(2j1(t1 − u1), . . . , 2jd (td − ud))Xε(du1, . . . , dud) (10)

and its bias,

b(h) := b(h, t, f ) = ∫Rd K(x) [f (t − h.x)− f (t)] dx1, . . . , dxd,

bj := b(2−j1 , . . . , 2−jd ), for j in Nd .
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Let us also introduce the following “local rate”:

λ(j, ε) := ε‖K‖2
∑d

i=1 ji/2{1+
d∑
i=1

(ji − j0
i ) log 2}1/2 (11)

where j in Nd is such that ji ≥ j0
i , for all i. Let us observe that λ(j, ε) corresponds

to CεG(
∏s

k=1
κik
hik

) for hi ∼ 2−ji , κi ∼ 2−j
0
i .

The following Proposition gives a final motivation to all the notions we introduced
previously. It gives an upper bound of the risk for the “oracle” estimator f̂j̄ .

Proposition 2. Let f be a function inF0(ν, Lν, L), let j0 = (j0
1 , . . . , j

0
d ) be fixed

in Nd , and j̄ (t) be defined as in corollary 1, then

1. For any ε > 0, t ∈ [0, 1]d , j ∈ Nd such that ji ≥ j̄i for all i ∈ 1, d ,

|bj | ≤ dλ(j̄ , ε) (12)

2. For all f ∈F, for all 1 ≤ p <∞,

Ef |f̂j̄ (t)(t)− f (t)|p ≤ C(p)λ(j̄ (t), ε)p (13)

3. Therefore, for f̂j̄ : f̂j̄ (t) = f̂j̄ (t)(t),

Ef ‖f̂j̄ − f ‖pp ≤ C(p)

∫
t∈[0,1]d

λ(j̄ (t), ε)pdt (14)

with : C(p) = 1√
2π

∫
R(d + |x|)p exp (−x

2

2 )dx

Remarks:

1. The proof of this proposition will be postponed to the appendix.
2. Of course (14) is a consequence of (13), using Fubini Theorem.
3. Obviously, f̂j̄ is not an estimator in the usual sense since it uses j̄ which depends

on the function f to be estimated. The result of the previous Proposition is to
be understood as usual: if an oracle was telling to the statistician how to choose
the nuisance parameter j̄ , then we would be able to attain the prescribed rate of
convergence. Our goal, now will precisely be to construct an estimator adapting
to this nuisance parameter. This is the aim of the following section. ✸

3.3. Construction of a locally adaptive estimator

Let us recall that j (ε) in Nd , is defined by: 2−(ji (ε)+1) ≤ ε2 ≤ 2−ji (ε), and we
restrict our attention to the following set of dyadics:

I := I (j0, ε) = {j = (j1, . . . , jd), j
0
i ≤ ji ≤ ji(ε), ∀i}

Let us define the following ordering in Nd :

j,m ∈ Nd , j << m⇐⇒
d∑
i=1

ji ≤
d∑
i=1

mi.
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3.3.1. Admissible j ’s

Let us put
M = 2d + (8+ 8dp)1/2, σ (j) := Mλ(j, ε).

For all j,m ∈ Nd , let us define j ∧m = (j1 ∧m1, . . . , jd ∧md).
For j ∈ I , we say that j belongs to the set A = A(t) of “admissible” j ’s if

either j = j (ε) or, for all m >> j, m ∈ I, |f̂j∧m(t)− f̂m(t)| ≤ σ(m) (15)

where f̂j is defined in (10).

3.3.2. Estimator

Now, let ĵ ∈ A such that
ĵ << j, ∀j ∈ A (16)

Notice that ĵ exists but is not necessarily uniquely defined. If it is not unique, let
us make an arbitrary choice. If we consider A as the set of admissible j ’s in the
sense that their bias is within acceptable limits, ĵ is corresponding to the coarsest
scale (largest multi-bandwidth) among admissible. Finally, let us put:

f ∗ε (t) := f̂
ĵ
(t)

We observe then that f ∗ε (t) is a classical kernel estimator taken with the multi-

bandwidth 2−ĵ (t) which depends on the data Xε(.) and on the time t . We call it
“locally adaptive estimator”.

3.4. Main result

Theorem 1. Let j0 = (j0
1 , . . . , j

0
d )be fixed in Nd ,Fbe included intoF0(ν, Lν, L),

then for all f ∈F, for any ε > 0, t ∈ [0, 1]d ,

Ef |f ∗ε (t)− f (t)|p ≤ C2(p)λ(j̄ (t), ε)
p (17)

The constant C2(p) is explicitly given in §5, where the proof of theorem 1 is
given. As a consequence of theorem 1, we have the following result,

Theorem 2. Under the conditions of Theorem 1, the following inequality holds :

Rε(f
∗
ε ,F, p) ≤ C2(p) sup

f∈F

∫
[0,1]d

λ(j̄ (t), ε)pdt (18)

Remarks:

1. As can be seen the bound in the right hand side only depends on the product∑d
i=1 j̄i (t)which is uniquely defined due to corollary 1 even though j̄ (t) itself

is not uniquely defined.
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2. Comparing the bounds obtained in Proposition 2 and in Theorems 1 and 2, we
see that they differ only by absolute constants. Therefore the estimator f ∗ε is
really adaptive in order in the sense that it has the same performances as the
pseudo estimator defined above with the help of the oracle.

3. The following section will illustrate these results to special classes of func-
tions with anisotropic regularity. It will be observed for these classes that the
rate obtained by the oracle-pseudo-estimator and the adaptive one as well is
minimax for an approriate choice of the tuning constants j0

i ’s. As will be seen
in the sequel their choice will be important but not crucial, since in the worse
case they will produce an additional logarithmic factor, but no change in the
rate of convergence. In the next section, they will in fact be used for 2 different
purposes : either we fix them to their smallest value (j0

i = 0, ∀ i) and obtain
a completely adaptive estimator which loses a logarithmic factor (see Theo-
rem 4), or we fix them to a specific order (see j0(s), j0(β) below), we lose
adaptivity but we gain the logarithmic factor and this unables us to attain the
minimax rate of convergence (see Theorem 3).

✸

4. Anisotropic functional spaces

In this section, we apply the results described above to finding the minimax rates
of convergence for some classes of anisotropic functional spaces. We will essen-
tially be interested in functional classes described with the help of approximation
properties.

4.1. Anisotropic Besov balls

Let us start with the definition of the Besov spaceB(s1,...,sd )
(p1,...,pd ),∞, following Nikolsky

(1975).
Let f be a measurable function defined on Rd . For y ∈ Rd , we define :

∀x ∈ Rd , 4yf (x) = f (x + y)− f (x).

If l ∈ N then 4l
y is the l−iterated of the operator 4y. (Of course 40

y = Id .)
We have the following properties :

1. Let l ∈ N :

4l
yf (x) =

l∑
j=0

C
j
l (−1)j+lf (x + jy) Especially :

(−1)l+14l
yf (x) =

l∑
j=0

C
j
l (−1)j+1f (x+jy) =

l∑
j=1

C
j
l (−1)j+1f (x+jy)−f (x)

2. If k ∈ N,m ∈ N∗, 1 ≤ p ≤ ∞; f ∈ Lp(Rd), we obviously have :

‖4k+m
y f ‖p ≤ 2m‖4k

yf ‖p.
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3. Less obviously, one can prove Marchaud inequality : Let k ∈ N,m ∈ N∗. 1 ≤
p ≤ ∞; f ∈ Lp(Rd) :

‖4k
yf ‖p ≤ a(k,m)

∞∑
j=0

(j + 1)m−12−kj‖4k+m
2j y

f ‖p.

Definition 1 (Inhomogeneous Besov spaces). Let e1, ....ed the canonical basis of
Rd ,. For (s1, . . . , sd), (p1, . . . , pd) ∈ Rd+, 0 < si < ∞; 1 ≤ pi ≤ ∞, for all i,

if f ∈ Lpi (R
d , dx), for all i, we say that f belongs to B

(s1,...,sd )
(p1,...,pd ),∞ if and only if

for all i, there exists l ∈ N, si < l ( resp. ∀l ∈ N, si < l), and C(si, l) <∞,

such that :
∀h ∈ R, ‖4l

hei
f ‖Lpi (Rd ,dx) ≤ C(si, l)|h|si .

Remarks:

1. Thus, we are considering functions having regularity si in the direction i quan-
tified in Lpi in the sense mentioned above. The proposition below proves that
the functions having this regularity can be approximated using appropriated
kernels with the rate of convergence hsi in Lpi norm.

2. The condition ∃l ∈ N, si < l can be replaced by ∀l ∈ N, si < l in such a
way that one can choose indifferently an integer l, as soon as l > si . ✸

Proposition 3. Let f ∈ B
(s1,...,sd )
(p1,...,pd ),∞

1. Let g(t) be an integrable function defined on R,
∫

R g(t)dt = 1. Let gl(t) =∑l
k=1 C

k
l (−1)k+1 1

k
g( t

k
). For h ∈ R, let for arbitrary i,:

Gi
h(f )(x1, ..xd) =

∫
R

1

h
gl(

u− xi

h
)f (x1...xi−1, u, xi+1, ..xd)du

=
∫

R

gl(t)f (x1...xi−1, xi + th, xi+1, ..xd)dt

=
l∑

k=1

Ck
l (−1)k+1

∫
R

g(t)f (x + tkhei)dt

Then :

‖Gi
h(f )− f ‖Lpi (R

d ,dx) ≤ C(

∫
R

|g(t)||t |si dt)|h|si . (19)

2. Let K(x1...xd) = gl(x1) . . . gl(xd).

Let h and y ∈ Rd ,

[y.h] = (y1h1, ...ydhd) ; [y.h]i = (y1h1, ., yi−1hi−1, 0, yi+1hi+1, ..ydhd).

‖
∫

Rd

K(y)[f (x + [y.h])− f (x + [y.h]i )]dy‖Lpi (R
d ,dx) ≤ L|hi |si

Remark: It is easy to verify :
∫

R gl(t)t
kdt = δ0,k, for k = 0, 1, ..., l − 1. ✸

The proof in the appendix. Let us finally define the following Besov ball
B
(s1,...,sd )
(p1,...,pd ),∞(M) as the set of functions supported on D, and such that all the

constants C(si, l) appearing in the definition above are less than M .
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4.2. Minimax rates over anisotropic Besov balls

We have the following theorem :

Theorem 3. LetB(s1,...,sd )
(p1,...,pd ),∞(M), be as defined above, with (s1, . . . , sd), (p1, . . . ,

pd) ∈ Rd+ and such that:

1 < pi <∞, 1−∑d
l=1(

1
pl
− 1

pi
) 1
sl
> 0, ∀ i = 1, d,

1−∑d
i=1

1
pisi

> 0,
∑d

i=1

[
1
si
(
p
pi
− 1]

]
+
< 2

We assume that K is chosen as in Proposition 3. We set j0 = j0(s) such that

2−j
0
i (s) ≤ ε

2s̄
si (2s̄+1) ≤ 2−j

0
i (s)+1, ∀ i = 1, d for s̄ defined as

1

s̄
=

d∑
i=1

1

si
,

then,

sup
B
(s1,...,sd )
(p1,...,pd ),∞(M)

Ef

∫
[0,1]d

|f ∗ε (t)− f (t)|p ≤ C4(p)ε
2s̄p

(2s̄+1)

Where C4(p) is an absolute constant.

Remarks:

1. As we mentioned previously, because of our choice of j0 = j0(s), this esti-
mator is not adaptive. The aim of Theorem 3 is to precise the minimax rate of
convergence in as large a variety of situations as possible.

2. The first conditions 1−∑d
i=1

1
pisi

> 0, 1−∑d
l=1(

1
pl
− 1

pi
) 1
sl
> 0, ∀ i = 1, d

are needed (see Nikolskii) to ensure that our class of functions is included in a
space F0(ν, Lν, L).

3. As for the main condition,
∑d

i=1

[
1
si
(
p
pi
− 1]

]
+
< 2, our results are almost

complete.

• On the set
∑d

i=1

[
1
si
(
p
pi
− 1]

]
+
< 2, the rate ε

2s̄p
(2s̄+1) is minimax: Theorem

3 proves the upper bound. The lower bound follows from the embedding
B
(s1,...,sd )
(p1,...,pd ),∞ ⊃ B

(s1,...,sd )
(∞,...,∞),∞, and the known result of Nussbaum [10] about

anisotropic Hölder spaces.

• In a forthcoming paper, we prove that the condition
∑d

i=1

[
1
si
(
p
pi
− 1]

]
< 2

is necessary to get ε
2s̄p

(2s̄+1) as minimax rate. Hence, if pi ≤ p, ∀ i, then our
condition is necessary and sufficient.

4. The following theorem proves that if we accept to lose a logarithmic factor and
set j0 = (0, . . . , 0), we can produce an adaptive estimator: ✸
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Theorem 4. LetB(s1,...,sd )
(p1,...,pd ),∞(M)as defined above, with (s1, . . . , sd), (p1,. . . ,pd)

∈ Rd+, with the same conditions as in Theorem 3. We set now j0 = (0, . . . , 0)

sup
B
(s1,...,sd )
(p1,...,pd ),∞(M)

Ef

∫
[0,1]d

|f ∗ε (t)− f (t)|p

≤ C5(p)
{

[log ε−1]1/2ε
} 2s̄p

(2s̄+1)
[log ε−1]d−1 (20)

where C5(p) is an absolute constant s̄ and j0
i (s) are defined as in Theorem 3.

Theorems 3 and 4 are a consequence of the following theorem concerning
the properties of our estimator for functions classes verifying some approximation
properties:

4.3. Functional classes and kernel approximation properties

Fix β = (β1, . . . , βd), π = (p1, . . . , pd) ∈ Rd+, pi > 1,∀i, L ∈ (0,∞).
We say that a function f ∈F0 belongs to the space F(β, π, L), if

∀i ∈ 1, d, ∀y = (y1, . . . , yd) ∈ Rd ,∫
Rd

∣∣∣∣ ∫
Rd

K(x)[f (t + y.x)− f (t + [y.x]i )]dx

∣∣∣∣pi dt ≤ L|yi |βipi (21)

We also denote by F(β, π, L,D) the set of functions satisfying (21) on some
domain D ⊂ Rd .

Theorem 5. For β, π ∈ Rd+, pi > 1 L ∈ (0,∞) fixed, we consider the space
F(β, π, L, [0, 1]d).

If β̄ and j0(β) are defined as in Theorem 3, and

d∑
i=1

1

βi

[(
p

pi
− 1

)]
+
< 2

Then, if the estimator f ∗ε (t) is defined with an arbitrary set of tuning constants
j0 = (j0

1 , . . . , j
0
d ) such that j0

i ≤ 0i (β), i = 1, d , we have

sup
f∈F(β,p,L,[0,1]d )

Ef |f ∗ε (t)− f (t)|p

≤ C6(p)[1+
d∑
i=1

(j0(β)− j0)]d−1

{
[1+

d∑
i=1

(j0(β)− j0)]1/2ε

} 2β̄p
(2β̄+1)

(22)

Where C6(p) is an absolute constant.

The theorems in the preceding subsection are obviously a consequence of this
one using Proposition 3.
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5. Proofs of Theorems 1 and 2

Theorem 2 obviously is a consequence of Theorem 1. Hence, we will only prove
Theorem 1. First, let us formulate the following auxiliary lemmas. We postpone
their proofs to the appendix.

Lemma 2. For all j ∈ I, t ∈ [0, 1]d , let

ξj = ξj (t) = 2
∑d

i=1 ji

∫
Rd

K(2j1(t1 − u1), . . . , 2jd (td − ud))W(du1, . . . , dud)

and let j̃ ∈ I be an arbitrary measurable (w.r.t. Xε(.)) random vector, then, for
any f ∈ L2([0.1]d), ∀B ⊂ I, ∀ε > 0, r > 0,

Ef |ξj̃ |r I
{
j̃ ∈ B

}
≤ mr‖K‖r2

∑d
i=1 j

0
i r/2 + sup

j∈B
(2r + 4)r/2[λ(j, ε)/ε]r (23)

If I {A} denotes the characteristic function of the set A and

mr = 2d+1/2{ 1√
2π

∫
R

(|x|)2r exp
−x2

2
dx}1/2.

The following lemma proves that for the j ’s larger in each direction than j̄ , the
difference operator applied on the bias always remains below an optimal threshold.
This lemma will be essential to investigating the behavior of ĵ . It will be proved
that except on a set of small probability, necessarily ĵ will, in some sense remain
smaller than j̄ (see R−(f )).

Lemma 3. Let t arbitrary in [0, 1]d , f arbitrary inF0. Let j andm ∈ I , satisfying
the following conditions:

• ∀i ∈ 1, d, ji ≥ j̄i + 1
• ∃i ∈ 1, d, mi ≥ ji + 1,

then, for any ε > 0,

|bj∧m − bm| ≤ 2dλ(j̄ , ε).

5.1. Proof of Theorem (1)

Let us first introduce some absolute constants. Denote for r > 0,

C(r) = 1√
2π

∫
R(d + |x|)r exp (−x

2

2 )dx;

µ1(r) = 22r
(
C(r)+Mr + 23rdr + 22r+1[(2r + 4)r/2 +mr ]

) ;
µ2 =

∑∞
q=1 2−qz/2[1+ (q+1)d

2 log 2]p/2; z = (M−2d)2

8M2 ;

µ3 = 2dp/2d1/2(1− 2−z)−d/2;

C2(p) = µ1(p)[2d(1+ d log 2)]p/2 + (µ1(2p))1/2µ2µ3

Notice that for ε < [2ν‖K‖/L̃ν]1/ν , we always have j̄i ≤ ji(ε)+ 1, ∀i:
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Suppose that the converse is true : There exists i∗, with j̄i∗ ≥ ji∗(ε) + 2. To
simplify the notations let us suppose that i∗ = 1.
On the one hand, we have,

g̃1(2−j̄1) ≤ g1(2−j̄1) ≤ L̃ν2−j̄1ν , using lemma 1.
On the other hand,

λ(j̄ , ε) = cεG(
∏d

i=1 2(j̄i−j
0
i )) = ε‖K‖{2

∑d
i=1 j̄i [1+∑d

i=1(j̄i − j0
i ) log 2]}1/2

≥ ‖K‖ε2j̄1 ≥ ‖K‖

Hence we get a contradiction using the definition of j̄ .
Let us fix some integer q ≥ 0 and set :

j̄ + q = (j̄1 + q, . . . , j̄d + q)

B
(q)

1 (j̄ ) = {j ∈ I : j << j̄ + q},

B
(q)

2 (j̄ ) = {j ∈ I :
∑d

i=1(j̄i + q) <
∑d

i=1 ji}

B2(j̄ ) = ∪q≥1{B(q)

1 (j̄ ) ∩ B
(q)

2 (j̄ )}

Let us divideEf |f ∗ε (t)−f (t)|p into 2 parts corresponding to ĵ << j̄ or not. They
will be treated separately :

R+(f ) = Ef |f ∗ε (t)− f (t)|pI {ĵ ∈ B
(0)
1 (j̄ )}

R−(f ) = Ef |f ∗ε (t)− f (t)|pI {ĵ ∈ B2(j̄ )}.

5.2. Bound for R+(f )

First, let us show the following lemma:

Lemma 4. For all 0 ≤ q ≤ inf{(ji(ε)− j̄i − 1)), i = 1, d}, r > 0,

R+q (f, r) = Ef |f ∗ε (t)− f (t)|r I {ĵ ∈ B
(q)

1 (j̄ )} ≤ µ1(r)λ(j̄ + q + 1, ε)r (24)

As a consequence of (24), we obtain by putting q = 0, r = p, the required
bound for R+(f ):

R+(f ) ≤ µ1(p)
(

2d(1+ d log 2)
)p/2

λ(j̄ , ε)p (25)

Proof of Lemma 4. Let us introduce j̃ (q) = ĵ ∧ (j̄ + q + 1), and remark that

|f̂
ĵ
− f | ≤ |f̂

ĵ
− f̂

j̃ (q)
| + |f̂

j̃ (q)
− f̂j̄+q+1| + |f̂j̄+q+1 − f | (26)
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• Since ĵ belongs to the set A(t) of admissible j ’s, and as ĵ << j̄ + q + 1 and
j̄ + q + 1 ∈ I , we get that, on the event {ĵ ∈ B

(q)

1 (j̄ )}

|f̂
j̃ (q)

− f̂j̄+q+1| ≤ σ(j̄ + q + 1) = Mλ(j̄ + q + 1, ε)

Therefore, Ef |f̂j̃ (q)− f̂j̄+q+1|r I {ĵ ∈ B
(q)

1 (j̄ )} ≤ Mrλ(j̄ +q+1, ε)r (27)

• The following decomposition is always true :

f̂j − f = bj + εξj (28)

where the quantities bj , ξj where introduced above, sections 3.2 and 5.1. Using
Proposition 2(1), we get, |bj̄+q+1| ≤ dλ(j̄ , ε), and then,

Ef |f̂j̄+q+1 − f |r ≤ C(r)λ(j̄ + q + 1, ε)r (29)

• It remains to bound |f̂
ĵ
− f̂

j̃ (q)
|. Let us first observe that in the case where

ĵ = j̃ (q), this quantity is zero, so, let us investigate the case where

ĵ �= j̃ (q). (30)

Due to (28), we have

|f̂
ĵ
− f̂

j̃ (q)
| ≤ |b

ĵ
− b

j̃(q)
| + ε|ξ

ĵ
| + ε|ξ

j̃(q)
| (31)

If (30) holds, then we can apply lemma 3 with m = j̄ + q + 1, j = ĵ and get:

|b
ĵ
− b

j̃(q)
| ≤ 2dλ(j̄ , ε) ≤ 2dλ(j̄ + q + 1, ε) (32)

We have, from lemma 2,

Ef |εξĵ |r I {ĵ ∈ B
(q)

1 (j̄ )} ≤ [(2r + 4)r/2 +mr ] sup
j∈B(q)

1 (j̄ )

λ(j, ε)r ≤ [(2r + 4)r/2 +mr ]λ(j̄ + q + 1, ε)r (33)

Now, if we denote by B̃(q) = {j ∈ I, ji ≤ j̄i + q + 1, ∀i}, we obviously have
ĵ ∈ B

(q)

1 (j̄ ) !⇒ j̃ (q) ∈ B̃(q), hence if we apply lemma 2, we get,

Ef |εξj̃(q)|r I {ĵ ∈ B
(q)

1 (j̄ )} ≤ Ef |εξj̃(q)|r I {j̃ (q) ∈ B̃(q)}

≤ [(2r + 4)r/2 +mr ] sup
j∈B̃(q)

λ(j, ε)r

≤ [(2r + 4)r/2 +mr ]λ(j̄ + q + 1, ε)r (34)

Finally, from (26), (27), (29), (32), (33), (34), we get the result of lemma 4.
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5.3. Bound for R−(f )

Since we have,

R−(f ) = Ef |f ∗ε (t)− f (t)|pI {ĵ ∈ B2(j̄ )}

=∑q≥1 Ef |f ∗ε (t)− f (t)|pI {ĵ ∈ B
(q)

1 (j̄ )}I {ĵ ∈ B
(q)

2 (j̄ )}
Using the Cauchy-Schwartz inequality and (24) with r = 2p, we get

R−(f ) ≤
∑
q≥1

(
R+q (f, 2p)

)1/2 (
Pf {ĵ ∈ B

(q)

2 (j̄ )}
)1/2

≤
√
µ1(2p)

∑
q≥1

λ(j̄ + q + 1, ε)p
(
Pf {ĵ ∈ B

(q)

2 (j̄ )}
)1/2

(35)

It remains to estimate Pf {ĵ ∈ B
(q)

2 (j̄ )}. Note that because of the definition of ĵ ,
we have:

{ĵ ∈ B
(q)

2 (j̄ )} = {ĵ >> j̄ + q} ⊂ {j̄ + q �∈ A(t)} (36)

Using the definition of A(t), we have the following representation:

{j̄ + q �∈ A(t)} = ∪m>>(j̄+q),m∈I {|f̂(j̄+q)∧m − f̂m| > σ(m)} (37)

Set for i = 1, d, Ii(q) = {m ∈ I : mi ≥ j̄i + q}. Obviously,

{m ∈ I, m >> (j̄ + q)} ⊂ ∪di=1Ii(q) (38)

From (37), (38), we get,

Pf {ĵ ∈ B
(q)

2 (j̄ )} ≤
d∑
i=1

∑
m∈Ii (q)

Pf {|f̂(j̄+q)∧m − f̂m| > σ(m)} (39)

Using (28), we have,

|f̂(j̄+q)∧m − f̂m| ≤ |b(j̄+q)∧m − bm| + ε|ξ(j̄+q)∧m| + ε|ξm| (40)

Since m ∈ Ii(q), we can apply lemma 3:

|b(j̄+q)∧m − bm| ≤ 2dλ(j̄ , ε) ≤ 2dλ(m, ε) = 2d

M
σ(m) (41)

Now, if we denote

Vl =
(
Eξ2

l

)1/2 = ‖K‖2
∑d

i=1 li /2, ξ̃l = V −1
l ξl

we obviously have Vl∧m ≤ Vm, and can deduce from (40) and (41) that

|f̂(j̄+q)∧m − f̂m| ≤ 2d

M
σ(m)+ εVm(|ξ̃(j̄+q)∧m| + |ξ̃m|),
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therefore:

Pf {|f̂(j̄+q)∧m − f̂m| > σ(m)}

≤ Pf {|ξ̃(j̄+q)∧m| + |ξ̃m| ≥ (1− 2d
M
)
σ(m)
εVm

}

≤ 2P {|N(0, 1)| ≥ 1
2 (1− 2d

M
)
σ(m)
εVm

}

≤ 2P {|N(0, 1)| ≥ 1
2 (1− 2d

M
){1+∑d

i=1(mi − j0
i ) log 2}1/2}

≤ 2
−∑d

i=1(mi−j0
i )

(M−2d)2

8M2 +2

We have used that, for all t > 0, P {|N(0, 1)| ≥ t} ≤ 2e−t2/2. Putting z = (M−2d)2

8 ,
we deduce from (39),

Pf {ĵ ∈ B
(q)

2 (j̄ )} ≤∑d
i=1
∑

m∈Ii (q) 2−
∑d

i=1(mi−j0
i )z+2

≤ 4
∑d

i=1

{∏d
s=1,s �=i

(∑∞
ms=0 2−msz

)∑∞
mi=j̄i+q 2−(mi−j0

i )z
}

≤ 4
∏d

s=1

{
1

1−2−z
}∑d

i=1 2−qz

Hence Pf {ĵ ∈ B
(q)

2 (j̄ )} ≤ 4d2−qz
1

(1− 2−z)d
(42)

Note also that

λ(j̄ + q + 1, ε) ≤ λ(j̄ , ε)2
(q+1)d

2 {1+ (q + 1)

2
d log 2}1/2 (43)

From (35), (42) and (43), we have:

R−(f )≤
√
dµ1(2p)2

dp
2

1

(1− 2−ρsz)d/2

∞∑
q=1

2−qz/2{1+ (q + 1)d

2
log 2}p/2λ(j̄ , ε)p

(44)
Taking together (25), (44), we obtain the statement of the theorem.

6. Proof of Theorem 5

This theorem is an important part of this paper, since it is essentially in this part
that the genuine aspect of the multidimension and especially the anisotropy shows
up.
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6.0.1. Step 1

Using Theorem 2, we need to bound the following integral:

I =
∫

[0,1]d
λ(j̄ (t), ε)pdt

First, let us observe that we may always replace pi with pi∗ < inf{pi, p}. This

does not affect the condition
∑d

i=1
1
βi

[(
p
pi
− 1
)]
+
< 2, since the condition is

open. Moreover, we can use the following inequality :

pi∗ ≤ pi !⇒
∫

[0,1]d
∣∣∫

Rd K(x)[f (t + y.x)− f (t + [y.x]i )]dx
∣∣pi∗ dt

≤
(∫

[0,1]d
∣∣∫

Rd K(x)[f (t + y.x)− f (t + [y.x]i )]dx
∣∣pi dt)pi∗/pi

≤ L|yi |βipi∗
Hence, in the sequel, we will assume pi < p for all i.
Now, let us introduce

c(j0, ε) = {1+
d∑
i=1

(j0
i (β)− j0

i ) log 2}1/2

κ∗i = (εc(j0, ε))
2β̄

βi (1+2β̄) ,

2−((j
∗
i +1)) ≤ κ∗i ≤ 2−(j

∗
i )

j∗ = (j∗1 , . . . , j
∗
d )

It will be useful in the sequel to observe that:

2−(d+1)/2‖K‖(εc(j0, ε))
2β̄

1+2β̄ ≤ λ(j∗, ε) ≤ ‖K‖(εc(j0, ε))
2β̄

1+2β̄ (45)

since ∑
j∗i =

∑
ji(β)− (1+ 2β̄)−1 log c(j0, ε). (46)

The equivalence (45) will be denoted :

λ(j∗, ε) ∼ (εc(j0, ε))
2β̄

1+2β̄ ∼ 2−(j
∗
i βi ) (47)

Now, divide the integral into dyadic sets :

I ≤ λ(j∗, ε)pµ{t; j̄ << j∗} +
∑
j∈B

λ(j, ε)pµ{t; j̄i (t) = ji, ∀i}

≤ ‖K‖(εc(j0, ε))
2pβ̄

1+2β̄ +
∑
j∈B

λ(j, ε)pµ{t; j̄i (t) = ji, ∀i}

:= I1 + I2

where µ is the Lebesgue measure on [0, 1]d , and B = {(j1. . . . , jd), j
0
i ≤ ji, ∀i,∑d

i=1 ji >
∑d

i=1 j
∗
i }. The last inequality is obtained by bounding the measure by

1 and using (47).
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6.0.2. Step 2

Let us now decompose I2 and observe that if j ∈ B, then there exists l with jl ≥ j∗l .
If we denote by A the set of such l, we obtain, using the definition of λ(j, ε) :

I2 ≤ µ{t; j̄i (t) = ji, ∀i}∑
A⊂1,d;A�=∅

∑
{j∗k≥jk≥j0

k , ∀k �∈A, jl≥j∗l , ∀l∈A}

(
ε2‖K‖22

∑d
i=1 ji (1+

d∑
i=1

(ji−j0
i ) log 2)

) p
2

≤
(
ε2‖K‖22

∑d
i=1 j

∗
i (1+

d∑
i=1

(j∗i − j0
i ) log 2)

) p
2

×
∑

A⊂1,d;A�=∅

∑
{j∗k≥jk≥j0

k , ∀k �∈A, jl≥j∗l , ∀l∈A}(
2
∑d

i=1 ji−j∗i
[

1+∑d
i=1(ji − j0

i ) log 2

1+∑d
i=1(j

∗
i − j0

i ) log 2

]) p
2

µ{t; j̄i (t) = ji, ∀i}

≤ µ{t; j̄i (t) = ji, ∀i} ‖K‖(εc(j0, ε))
2pβ̄

1+2β̄

∑
A⊂1,d;A�=∅

∑
{j∗k≥jk≥j0

k , ∀k �∈A, jl≥j∗l , ∀l∈A}

(
2
∑d

i=1 ji−j∗i
[

1+∑d
i=1(ji−j0

i ) log 2

1+∑d
i=1(j

∗
i − j0

i ) log 2

]) p
2

6.0.3. Step 3

Now, let us formulate the following lemma :

Lemma 5. For every multiindex j = (j1, ...jd) let A(j) ⊂ 1, d defined by i ∈
A(j)⇔ ji ≥ j∗i . If A(j) is not void, there exists a constant c such that,

µ{t; j̄i (t) = ji, ∀i}

≤ c inf
l∈A(j)

(
2−[2(jl−j∗l )βl+

∑d
i=1(ji−j∗i )]

[
1+∑d

i=1(j
∗
i − j0

i ) log 2

1+∑d
i=1(ji − j0

i ) log 2

]) pl
2

×
[1+

∑
(ji(β)− j0

i )][1+
∑

l∈A(j)
(jl − j∗l )]

d−1

≤ 2−γA
∑

l∈A(jl−j∗l )
(

2−
∑d

i=1(ji−j∗i ) 1+∑d
i=1(j

∗
i − j0

i ) log 2

1+∑d
i=1(ji − j0

i ) log 2

) γA
2βA

×
[1+

∑
(ji(β)− j0

i )][1+
∑

l∈A(j)
(jl − j∗l )]

d−1
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where
1

βA
=
∑
l∈A

1

βl
and

1

γA
=
∑
l∈A

1

plβl
.

The lemma will be proved in step 5. As we already observed, a key point will
be that A(j) �= ∅ for j ∈ B. Here we only note that the second inequality in the
lemma can be simply obtained from the following estimate ∀n > 1,∀rl ≥ 0,∀pl >
0,∀βl > 0, l = 1, . . . , n one has

sup
l=1,...,n

(
plβlrl + pl

2

n∑
l=1

rl

)
≥ γ

(
1+ 1

2β

) n∑
l=1

rl,

where

1

β
=

n∑
l=1

1

βl
and

1

γ
=

n∑
l=1

1

plβl
.

6.0.4. Step 4

Returning to the expansion in step 2, we need to bound that for allA ⊂ 1, d;A �= ∅,
the following quantity :

RA=
∑

j∗k≥jk≥j0
k , ∀k �∈A

∑
jl≥j∗l , ∀l∈A

(
2
∑d

i=1(ji−j∗i )
[

1+∑d
i=1(ji − j0

i ) log 2

1+ (
∑d

i=1(j
∗
i − j0

i ) log 2

])p/2

µ{t; j̄i (t) = ji, ∀i}

If we admit the result of lemma 5, we get :

RA ≤
∑

j∗k≥jk≥j0
k , ∀k �∈A

∑
jl≥j∗l , ∀l∈A

(
2
∑d

i=1(ji−j∗i )
[

1+∑d
i=1(ji − j0

i ) log 2

1+ (
∑d

i=1(j
∗
i − j0

i ) log 2

])p/2

×2−γA
∑

l∈A(jl−j∗l )
(

2−
∑d

i=1(ji−j∗i )
[

1+∑d
i=1(j

∗
i − j0

i ) log 2

1+∑d
i=1(ji − j0

i ) log 2

]) γA
2βA

× ([1+∑(ji(β)− j0
i )][1+

∑
l∈A(jl − j∗l )]

)d−1

=
∑

j∗k≥jk≥j0
k , ∀k �∈A

2
(
p
2 −

γA
2βA

)
∑

k �∈A(jk−j∗k ) ∑
jl≥j∗l ,∀l∈A

2
(
p
2 −

γA
2βA

−γA)
∑

l∈A(jl−j∗l )

×
{

1+∑d
i=1(ji − j0

i ) log 2

1+∑d
i=1(j

∗
i − j0

i ) log 2

} p
2 −

γA
2βA

× ([1+∑(ji(β)− j0
i )][1+

∑
l∈A(jl − j∗l )]

)d−1

= IA
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Let us now observe that :

∀A ⊂ 1, d,
p

2
− γA

2βA
− γA < 0 ⇔

d∑
i=1

1

βi

[
(
p

pi
− 1)

]
+
< 2.

and on the other side since using step 1 ∀i, p > pi then ∀A ⊂ 1, d, p
2 − γA

2βA
> 0.

So we have (as for ∀k �∈ A, jk ≤ j∗k ):

(1+
d∑
i=1

(ji − j0
i ) log 2)

p
2 −

γA
2βA ≤ (1+

d∑
i=1

(j∗i − j0
i ) log 2

+(
∑
l∈A

(jl − j∗l )) log 2)
p
2 −

γA
2βA

≤ (1+
d∑
i=1

(j∗i − j0
i ) log 2)

p
2 −

γA
2βA

(1+ (
∑
l∈A

(jl − j∗l )) log 2)
p
2 −

γA
2βA

So we have :

IA ≤ [1+
∑

(ji(β)− j0
i )]

d−1
∑

j∗k≥jk≥j0
k , ∀k �∈A

2
(
p
2 −

γA
2βA

)
∑

k �∈A(jk−j∗k )

∑
0≤jl , ∀l∈A

2
(
p
2 −

γA
2βA

−γA)
∑

l∈A jl (1+
∑
l∈A

jl)
d−1(1+ (

∑
l∈A

jl) log 2)
p
2 −

γA
2βA

≤ [1+
∑

(ji(β)− j0
i )]

d−1C(A, p, γA, βA, d)
∑

0≤jk, ∀k �∈A
2
−( p2 −

γA
2βA

)
∑

k �∈A jk

= [1+
∑

(ji(β)− j0
i )]

d−1C′(A, p, γA, βA, d)

6.0.5. Step 5

In this section we will prove lemma 5:
First, we observe that the second inequality is a consequence of the first one using:

1 =∑l∈A
γA
plβl

and E = 2−
∑d

i=1(ji−j∗i )
[

1+∑d
i=1(j

∗
i −j0

i ) log 2

1+∑d
i=1(ji−j0

i ) log 2

]
So :

inf l∈A(j1,...jd )

[
E2−2(jl−j∗l )βl

] pl
2 ≤∏l∈A(j1,...jd )

[
E2−2(jl−j∗l )βl

] plγA
2plβl

= E
γA

2βA 2−γA
∑

l∈A(jl−j∗l )

Let us now prove the first inequality:
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1. First, let us observe that, because of the definition of j̄ , for j = (j1, . . . , jd):

µ{t; j̄i (t) = ji, ∀i} ≤ inf
i∈A(j)

µ{t; j̄i (t) = ji}

≤ inf
i∈A(j)

{
µ{t; g̃i (2−ji ) ≥ λ(j, ε)}

}
(48)

By symmetry, we will restrict our attention to the case j1 ≥ j∗1 and bound for
arbitrary λ:

µ{t; g̃1(2
−j1)(t) ≥ λ}

Recall that, forh=(h1, . . . , hd),we putKhf (t)=
∫

Rd K(x) [f (t − h.x)] dx1,

. . . , dxd , z1(h)(t) = Khf (t) − K[h]1f (t), where [h]1 is obtained from h by
replacingh1 by zero. Let us now define, for r ∈ 1, d, {i1, . . . , ir} ⊂ {1, . . . , d},
the following iteration

[h]{i1,...,ir } = [[h]{i1,...,ir−1}]ir

In such a way that the coordinates of this vector the same as the coordinates of
h for those which are not in {i1, . . . , ir}, and 0 for the others. Let us define for
li ∈ N, δi ∈ {0, 1}, δ = (δ1, . . . , δd):

hl = (2−(l1), . . . , 2−(ld )), δ.hl = (δ12−(l1), . . . , δd2−(ld ))

We put l̃i = l0i if i �= 1, l̃1 = j1, I1 = {l = (l1, . . . , ld ), ji(ε) ≥ li ≥ l̃i , ∀i}
Observe that because of the definition of D̃1(2−j1), we obtain by recursively
introducing the zero coordinates, and denoting |A| for the cardinality of the set
A,

µ{t; g̃1(2
−j1)(t) ≥ λ}

= µ{t; ∃l ∈ I1, δ ∈ {0, 1}d , |z1(δ.hl)(t)| ≥ λ}
≤ µ{t; sup

l∈I1

|z1(hl)(t)| ≥ λ}

+µ{t; sup
l∈I1

|z1(hl)(t)| ≤ λ, ∃Ā ⊂ {2, . . . , d}, sup
l∈I1

|z1([hl]Ā)(t)| ≥ λ}

≤ µ{t; sup
l∈I1

|z1(hl)(t)| ≥ λ}

+µ{t; sup
l∈I1

|z1(hl)(t)| ≤ λ, ∃Ā ⊂ {2, . . . , d}, |Ā| = 1,

sup
l∈I1

|z1([hl]Ā)(t)| ≥ λ/2}

+µ{t; sup
l∈I1

|z1(hl)(t)| ≤ λ, sup
|Ā|=1

sup
l∈I1

|z1([hl]Ā)(t)| ≤ λ/2,

sup
|Ā|≥2

sup
l∈I1

|z1([hl]Ā)(t)| ≥ λ/4}
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We obtain the following bound, by repeating the argument above,

µ{t; g̃1(2−j1)(t) ≥ λ} ≤∑d
k=1
∑

A={i1,...,ik}⊂{1,...,d},1∈A
∑

li1≥l̃i1 ,...,lik≥l̃ik

µ{t; |z1([hl]Ā)(t)| ≥ λ

2|Ā|
∩ supA′⊂A, 1∈A′ supl |z1([hl]Ā

′
)(t)} ≤ λ

2|Ā′|
}

(49)
2. Let us now remark that because of our assumption:∫

[0,1]d

∣∣∣∣∫
Rd

K(x)[f (t + y.x)− f (t + [y.x]i )]dx

∣∣∣∣pi dt ≤ L|yi |βipi (50)

and using Markov inequality, we get:

µ{t; |z1([hl]Ā)(t)| ≥ λ

2|Ā|
} ≤ C(

2−l1β1

λ2−|Ā|
)p1 (51)

3. For A ⊂ {1, . . . , d}, 1 ∈ A, A′ = A \ {i}, i �= 1, let us remark that if

|z1([hl]Ā
′
)| ≤ λ

2|Ā|+1

then |z1([hl]Ā)| ≥ λ

2|Ā|
!⇒ |z1([hl]Ā)− z1([hl]Ā

′
)| ≥ λ

2|Ā|+1

But

z1([hl]Ā)− z1([hl]Ā
′
)

=
∫

Rd

K(x)[f (t + [hl]Ā.x)− f (t + [hl]Ā∪{1}.x)− f (t + [hl]Ā∪{i}.x)

+ f (t + [hl]Ā∪{1}∪{i}.x)]dx

=
∫

Rd

K(x)[f (t + [hl]Ā.x)− f (t + [hl]Ā∪{i}.x)− f (t + [hl]Ā∪{1}.x)

+ f (t + [hl]Ā∪{1}∪{i}.x)]dx

Hence, we deduce:{
|z1([hl]Ā)− z1([hl]Ā

′
)| ≥ λ

2|Ā|+1

}
⊂
{
|
∫

Rd

K(x)[f (t + [hl]Ā.x)− f (t + [hl]Ā∪{i}.x)]dx| ≥ λ

2|Ā|+2

}
∪
{
|
∫

Rd

K(x)[f (t + [hl]Ā∪{1}.x)− f (t + [hl]Ā∪{1}∪{i}.x)]dx| ≥ λ

2|Ā|+2

}
(52)

Now from (51), (52), we deduce, for all i ∈ A, i �= 1,

µ

{
t; |z1([hl]Ā)(t)| ≥ λ

2|Ā|
∩ sup

A′⊂A, 1∈A′
sup
l

|z1([hl]Ā
′
)(t)} ≤ λ

2|Ā′|

}

≤ 2C(
2−liβi

λ2−|Ā|−2
)pi (53)
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4. We obtain from (49), (51), (53):

µ{t; g̃1(2
−j1)(t) ≥ λ}

≤
d∑

k=1

∑
{i1,...,ik}=A⊂{1,...,d},1∈A

∑
li1≥l̃i1 ,...,lik≥l̃ik

inf{2C( 2−liβi

λ2−|Ā|−2
)pi , i ∈ {i1, . . . , ik}}

≤
d∑

k=1

∑
{i1,...,ik}=A⊂{1,...,d},1∈A

∑
li1≥0,...,lik≥0

inf{2C( 2−liβi λ̃i
λ2−|Ā|−2

)pi , i ∈ {i1, . . . , ik}}

We introduced λ̃i = λ(j∗, ε)2(l̃i−j
∗
i )βi . (We recall that using (47), λ(j∗, ε)2βij

∗
i

∼ 1). The result is now a consequence of the inequality (54) of the following lemma,

if we put ai = (
λ̃i
λ
)pi , γi = βipi : We just need to remark that we easily obtain,

using (46) the following inequalities which give the result:

inf{ai} ≤ a1 ≤ c

(
2−[2(j1−j∗1 )β1+

∑d
i=1(ji−j∗i )]

[
1+∑d

i=1(j
∗
i −j0

i ) log 2

1+∑d
i=1(ji−j0

i ) log 2

]) p1
2

supi,j | log ai
aj
| ≤ c[

∑d
i=1(j

∗
i − j0

i )+
∑d

i=1(ji − j∗i )/2]

≤ c[
∑
(ji(β)− j0

i )+
∑
(ji − j∗i )/2].

Lemma 6. Let n be some strictly positive integer, let ai > 0, γi > 0, i = 1, n.
Then ∃A(γ1, ..γn) such that :

∞∑
l1=0

. . .

∞∑
ln=0

inf{ai2−γi li , i = 1, n}

≤ A(γ1, ..γn)( inf
1≤i≤n

ai)

n∏
i=1

(1+ log2(
ai

inf1≤i≤n ai
))

≤ A(γ1, ..γn)( inf
1≤i≤n

ai)(1+ log2(
sup1≤i≤n ai
inf1≤i≤n ai

)n−1) (54)

The proof of this lemma is given in appendix.
This concludes the proof of Lemma 5. %&

7. Appendix A

7.1. Proof of Lemma 1

1) and 2) are very easy, we will only prove 3). Fix some i ∈ 1, d , denote by

Di =
i−1∏
j=1

[0, κj ]
d∏

j=i+1

[0, κj ],

zi(yi) = sup
Di

∣∣∣∣∫
Rd

K(x)
[
f (t + y.x)− f (t + [y.x]i )

]
dx1, . . . , dxd

∣∣∣∣
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and remark that their exists L̄ν = L̄ν(Lν, ν,K), such that

∀y′i , y′′i ∈ R+, |zi(y′i )− zi(y
′′
i )| ≤ L̄ν |y′i − y′′i |ν (55)

This follows from the assumption f ∈F ⊂F0. Note also that

gi(λ) = sup
0≤yi≤λ

zi(yi)

Fix some 0 < λ′ < λ′′ <∞. We have, using (55),

gi(λ
′) ≤ gi(λ

′′) = gi(λ
′) ∨ sup

λ′≤yi≤λ′′
|zi(yi)| ≤ gi(λ

′) ∨ [zi(λ′)+ L̄ν |λ′ − λ′′|ν]
(56)

and since zi(λ′) ≤ gi(λ
′), we have from (56),

gi(λ
′) ≤ gi(λ

′′) ≤ gi(λ
′)+ L̄ν |λ′ − λ′′|ν %&

7.2. Proof of Proposition 1

Proposition 1 is a consequence of the following lemma

Lemma 7. Let G be a positive continuous strictly increasing function defined
on R+ such that G(∞−) = ∞. Let gi, i ∈ {1, 2, ...d} be positive, continuous,
increasing functions, defined on [0, κi], such that gi(0) = 0.

1. Then there is always a solution of the following problem : Find x ∈∏d
i=1[0, κi]

such that

∀i0 ∈ {1, 2, ...d}, gi0(xi0) = G(

d∏
i=1

κi

xi
) ∧ gi0(κi0),

and xi0 < κi0 ⇒ gi0(xi0) = G(
∏d

i=1
κi
xi
).

2. If x ∈ ∏d
i=1[0, κi] and y ∈ ∏d

i=1[0, κi] are two solution of the previous
problem,then :

d∏
i=1

κi

xi
=

d∏
i=1

κi

yi
.

Proof of Lemma 7.

1. Let us suppose first that all the functions gi are strictly increasing continuous
function. Let us define

F(x) = (f1(x), f2(x), ..fd(x)) :
d∏
i=1

[0, κi] −→,

d∏
i=1

[0, κi],

in the following way :

∀i0 ∈ {1, 2, ...d}, fi0(x) = g−1
i0

[
G(

d∏
i=1

κi

xi
) ∧ gi0(κi0)

]
.
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Obviously, F is continuous, and, by the Brouwer fixed point theorem,
∃x ∈∏d

i=1[0, κi], F (x) = x. So we have, for such x = (x1, x2, . . . , xd) :

∀i0 ∈ {1, 2, ...d}, gi0(xi0) = G(

d∏
i=1

κi

xi
) ∧ gi0(κi0).

Of course ∀i0 ∈ {1, 2, ...d}, 0 < xi0 ≤ κi0 .

Moreover, if xi0 < κi0 as the functions gi are strictly increasing, gi0(xi0) <
gi0(κi0). So in this case, gi0(xi0) = G(

∏d
i=1

κi
xi
).

Now if the gi are not strictly increasing functions, we replace them by gni (h) =
gi(h)+ 1

n
h. Let xn = (xn1 ...x

n
d ) verifying :

∀i0 ∈ {1, 2, ...d}, gi0(xni0)+
1

n
xni0 = G(

d∏
i=1

κi

xni
) ∧ (gi0(κi0)+

1

n
κi0).

And if xni0 < κi0 then gi0(x
n
i0
)+ 1

n
xni0

= G(
∏d

i=1
κi
xni
).

By compactness of
∏d

i=1[0, κi]we can extract a subsequence from xn (for
simplicity of notation, we call it again xn) which converge to x ∈∏d

i=1[0, κi].
Clearly

∀i0 ∈ {1, 2, ...d}, gi0(xi0) = G(

d∏
i=1

κi

xi
) ∧ (gi0(κi0).

If now xi0 < κi0 then certainly xni0 < κi0 for n large enough. So

gi0(x
n
i0
)+ 1

n
xni0 = G(

d∏
i=1

κi

xni
),

and this implies

gi0(xi0) = G(

d∏
i=1

κi

xi
).

2. Let x ∈ ∏d
i=1[0, κi] and y ∈ ∏d

i=1[0, κi] two solutions of the previous
problem. Let us suppose

∏d
i=1

κi
xi

<
∏d

i=1
κi
yi
. This implies of course that

∃i0 ∈ {1, 2, ...d} such that 0 < yi0 < xi0 ≤ κi0 So we have :

G(

d∏
i=1

κi

xi
) < G(

d∏
i=1

κi

yi
); as G is strictly increasing.

G(

d∏
i=1

κi

xi
) < G(

d∏
i=1

κi

yi
) = gi0(yi0) ≤ gi0(xi0); as yi0 < xi0 ≤ κi0

But this contradicts :

gi0(xi0) = G(

d∏
i=1

κi

xi
) ∧ gi0(κi0)
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7.3. Proof of the Corollary 1

Existence. Let ∀i ∈ {1, ..d}, g̃i be the increasing real function defined on [0, 2−j
0
i ]

piecewise linear, such that g̃i (0) = 0, and linearly interpolating between the values
g̃i (2−ji ) for j0

i ≤ ji ≤ ji(ε).
Let Q be the following compact convex set of Rd :

Q =
d∏
i=1

[0, 2−j
0
i ].

The function F defined in corollary 1 is continuous onQwith values in [0,∞],

and it is a strictly decreasing function of
∏d

j=1 yj . Let M ≥ 2 supi g̃i (2
−j0

i ). Let

us now define on Q the following continuous function γ with values in Rd :

∀y = (y1, ..yd) ∈ Q; γ (y) = (g̃1(y1)− F(y) ∧M, ..., g̃d (yd)− F(y) ∧M)

By an obvious consequence of the K-K-M theorem (cf Granas, 1990 Th 1.11 ) there
exists

ȳ = (ȳ1, ..ȳd ) ∈ Q such that :
∀x ∈ Q :

∑d
i=1(g̃i(ȳi )− F(ȳ) ∧M)(ȳi − xi) ≤ 0.

By taking particular values for the xi’s, we easily prove:

• ȳi = 0 ⇒ g̃i (ȳi ) − F(ȳ) ∧M ≥ 0. This case is obviously excluded . So let

j̄ = (j̄1, ..., j̄d ) ∈ Nd , such that ∀i ∈ {1, ..d} , 2−j̄i ≤ ȳi ≤ 2−j̄i+1 ≤ 2−j
0
i .

• ȳi = 2−j
0
i ⇒ g̃i (ȳi )− F(ȳ) ∧M ≤ 0. So g̃i (ȳi ) ≤ F(ȳ) ≤ F(2−j̄1 , ...2−j̄d ).

• 0 < ȳi < 2−j
0
i ⇒ g̃i (ȳi )− F(ȳ) ∧M = 0. So

g̃i (2
−j̄i ) ≤ g̃i (ȳi ) = F(ȳ) ≤ F(2−j̄1 , ..., 2−j̄d ),

and
g̃i (2

−j̄i+1) ≥ g̃i (ȳi ) = F(ȳ) ≥ F(2−j̄1+1, ..., 2−j̄d+1),

Let us now prove that if ε is small enough certainly ji(ε) ≥ j̄i (> j0
i ) : Otherwise

0 < ȳi ≤ 2−ji (ε) and if f ∈F0(ν, Lν, ..):

g̃i (ȳi ) ≤ g̃i (2
−ji (ε)) ≤ Lν 2−νji (ε)

∫
|K(x)||x|νdx = Lν ε

ν

∫
|K(x)||x|νdx.

But
F(ȳ) ≥ ε‖K‖(2−j̄i (ε))− 1

2 (1+ log(2ji (ε)−j
0
i ))

1
2 ≥ ‖K‖.

Uniqueness. Let j̄ = (j̄1, ..., j̄d ) and j̄ ′ = (j̄ ′1, ..., j̄
′
d) such that j0

i ≤ j̄i , j̄
′
i ≤

ji(ε); both solutions of the following problem:
If j̄i = j0

i , g̃i (2−j̄i ) ≤ F(2−j̄1 , ..., 2−j̄d ).
If ji(ε) ≥ j̄i > j0

i , g̃i (2−j̄i ) ≤ F(2−j̄1 , ..., 2−j̄d ), and g̃i (2−(j̄i−1)) ≥
F(2−(j̄1−1), ...2−(j̄d−1)).
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Let us suppose for instance that

d∑
k=1

j̄k >

d∑
k=1

j̄ ′k.

Certainly ∃i0 ∈ {1, ..d} such that:

j0
i0
≤ j̄ ′i0 ≤ j̄i0 − 1 < j̄i0 ≤ ji0(ε).

So: as j −→ g̃i0(2
−j ) is a decreasing function:

F(2−j̄
′
1 , ..., 2−j̄

′
d ) ≥ g̃i0(2

−j̄ ′i0 ) ≥ g̃i0(2
−(j̄i0−1)) ≥ F(2−(j̄1−1), ...2−(j̄d−1)).

Obviously j = (j1, ..., jd) −→ F(2−j1 , ...2−jd ) is a strictly increasing function
of
∑d

k=1 jk. So:
d∑

k=1

j̄k ≤
d∑

k=1

j̄ ′k + d.

7.4. Proof of Proposition 2

• Let us first prove I:

b(h) ≤ | ∫Rd K(u)[f (t + h.u)− f (t1 + h1u1, . . . , td−1

+hd−1ud−1, td)]du| + . . .+

| ∫Rd K(u)[f (t1 + h1u1, t2, . . . , td ))− f (t)]du|

≤∑d
i=1 gi(hi) ≤

∑d
i=1 g̃i (2

−j̄i )

if hi ≤ 2−j̄i for all i, using the monotonicity of the functions gi . Using now the
definition of j̄ , we obtain

b(h) ≤
d∑
i=1

g̃i (2
−j̄i ) ≤ dλ(j̄ , ε)

• Denote

ξj̄ = 2
∑d

i=1 j̄i

∫
Rk

K(2j̄1(t1 − u1), . . . , 2j̄d (td − ud))dW(u)

and remark that ξj̄ is normally distributed with variance equal to ‖K‖22
∑d

i=1 j̄i .

As, |f̂j̄ (t) − f (t)| ≤ |bj̄ | + |εξj̄ |, we have using the first statement of this
proposition:

Ef |f̂j̄ (t)− f (t)|p ≤ C(p)λ(j̄ , ε)p

This concludes the proof of the Proposition. %&
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7.5. Proof of Proposition 3

Proof.

1. Using the preceding proposition and the generalized Minkowski inequality, we
have:

‖
∫

R

g(t)(−1)l+14l
htei

f (x)dt‖Lpi (Rd ,dx)

≤
∫

R

|g(t)|‖4l
htei

f ‖Lpi (Rd ,dx)dt

≤ C|h|si
∫

R

|g(t)||t |si dt.

On the other hand (as
∫

R g(t)dt = 1 ):

∫
R

g(t)(−1)l+14l
htei

f (x)dt =
∫

R

g(t)

l∑
j=1

C
j
l (−1)j+1f (x+hjtei)dt−f (x)

But: ∫
R

g(t)

l∑
j=1

C
j
l (−1)j+1f (x + jhtei)dt

=
l∑

j=1

C
j
l (−1)j+1

∫
R

g(t)f (x+hjtei)dt

=
∫

R

l∑
j=1

C
j
l (−1)j+1 1

j
g(

t

j
)f (x + htei)dt

=
∫

R

gl(t)f (x + htei)dt.

gl(t) =
∑l

j=1 C
j
l (−1)j+1 1

j
g( t

j
).

2. let us observe that:
∫

R gl(t)dt =
∑l

j=1 C
j
l (−1)j+1 = 1, as

∑l
j=0 C

j
l (−1)j+1

= 0. We apply the preceding result with hi ∈ R to the function f̃ ((x1...xd)) =∫
Rd−1

K0(v̂
i)f (x1+h1v1, ..xi−1+hi−1vi−1, xi, xi+1+hi+1vi+1, . . . xd+hdvd)dv̂i

where: v̂i = (v1 . . . vi−1, vi+1, . . . vd) and dv̂i = dv1 . . . dvi−1dvi+1 . . . dvd .

Remark: One can also prove that: f ∈ B
(s1,...,sd )
(p1,...,pd ),∞ ⇔ ∃l ∈ N, k ∈ N , k < si <

k + l, such that

∀h ∈ R, ‖4l
hei
Dk
i f ‖Lpi (Rd ,dx) ≤ C(si, l)|h|si−k. %&



168 G. Kerkyacharian et al.

7.6. Proof of Lemma 2

Set, for j ∈ I ,
tj = (2r + 4)1/2λ(j, ε)/ε.

Then

Ef |ξj̃ |r I {j̃ ∈ B} ≤ Ef t
r

j̃
I {j̃ ∈ B} + Ef |ξj̃ |r I {j̃ ∈ B, |ξ

j̃
|} > t

j̃
} ≤ sup

j̃∈B
tr
j̃
+ R

(57)
where R =∑j∈B E|ξj |r I { |ξj |} > tj }.
Hence, it remains to show that R ≤ mr{‖K‖2

∑d
i=1 j

0
i /2}r .

By the definition of ξj , we have, for any j ,

P(|ξj | ≥ tj )

= P(|N(0, 1)| ≥ (2r + 4)1/2{1+
d∑
i=1

(ji − j0
i ) log 2}1/2)

≤ 2−
∑d

i=1(ji−j0
i )(r+2)+1

We have used that for all t > 0, P {|N(0, 1)| ≥ t} ≤ 2e−t2/2.

If we denote by τr =
(

2√
2π

∫
R(|x|)2r exp −x2

2 dx
)1/2

, we get, by using the

Cauchy Schwarz inequality,∑
j∈I

E|ξj |r I {|ξj | ≥ tj }

≤
∑
j∈I

{‖K‖2
∑d

i=1 ji/2}r τrP (|ξj | ≥ tj )
1/22−1/2

≤ {‖K‖2
∑d

i=1 j
0
i /2}r τr

∑
j∈I

2
∑d

i=1 −(ji−j0
i ) ≤ 2d{‖K‖2

∑d
i=1 j

0
i /2}r τr

This ends the proof of Lemma 2. %&

7.7. Proof of Lemma 3

Let us denote by J1 = {i1, . . . , ir} the subset of indices of {1, . . . , d} such that
jil = jil ∧ mil , l = 1, r , and put J2 = {1, . . . , d} \ J1. Note that if J2 = ∅, then
the statement of the lemma follows from Proposition 2(1). Hence, let us suppose
J2 �= ∅. Notice that we have also J1 �= ∅, due to the second assumption of the
lemma. Then, for 0 ≤ r ′ ≤ r , let us define the vector m(r ′) as

m(r ′) =

ji if i ∈ {i1, . . . , ir ′ }

mi if i ∈ {ir ′+1, . . . , ir} ∪ J2

(58)

It is clear that
m(0) = m, m(r) = j ∧m (59)
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We have

|bj∧m − bm| = |bm(r) − bm(0) | ≤
r∑

r ′=1

|b
m(r′) − b

m(r′−1) |.

Notice that for r ′ = 1, r , the coordinates of the vectors m(r ′) and m(r ′−1) coincide
except the one number ir ′ . Moreover, by definition:

j̄ir′ ≤ jir′ = m
(r ′)
ir′

< mir′ = m
(r ′−1)
ir′

(60)

Here we used the first assumption of the lemma as well. Then we have from (60),
and the definition of the vector j̄ ,

|b
m(r′) − b

m(r′−1) | ≤ 2g̃ir′ (2
(j̄i

r′ +1)
) ≤ 2g̃ir′ (2

(j̄i
r′ )) ≤ 2λ(j̄ , ε) (61)

%&

7.8. Proof of Lemma 6

Let for convenience a1 = inf1≤i≤n ai . then, , ∀0 ≤ l1 < ∞, fixed, let us define
∀2 ≤ i ≤ n : l∗i by: ai2−γi l

∗
i = a12−γ1l1 . So we have:

∞∑
l1=0

. . .

∞∑
ln=0

inf{ai2−γi li , i = 1, n}

≤
∞∑
l1=0

{a12−γ1l1

n∏
i=2

l∗i +
∞∑

l2=[l∗2 ]

. . .

∞∑
ln=[l∗n]

inf{ai2−γi li , i = 2, n}}

≤
∞∑
l1=0

{a12−γ1l1

n∏
i=2

1

γi
(log2(

ai

a1
)+ γ1l1)

+
∞∑

l2=[l∗2 ]

. . .

∞∑
ln=[l∗n]

inf{a12−γ1l1 2−γi (li−l
∗
i , i=2, n}}

≤
∞∑
l1=0

a12−γ1l1{
n∏

i=2

1

γi
(log2(

ai

a1
)

+ γ1l1)+ 2sup γi
∞∑
l2=0

. . .

∞∑
ln=0

inf{2−γi li , i = 2, n} }

≤ A(γ1, ..γn)( inf
1≤i≤n

ai)

n∏
i=1

(1+ log2(
ai

inf1≤i≤n ai
))

≤ A(γ1, ..γn)( inf
1≤i≤n

ai)(1+ log2(
sup1≤i≤n ai
inf1≤i≤n ai

)n−1)

%&
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