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Abstract. Intheframework of denoisingafunctiondepending of amultidimensional variable
(for instance an image), we provide anonparametric procedure which constructs a pointwise
kernel estimation with alocal selection of the multidimensional bandwidth parameter. Our
methodisageneralizationof thel epski’ smethodof adaptati on,androughly consistsinchoosing
the “coarsest” bandwidth such that the estimated bias is negligible. However, this notion
becomes more delicatein amultidimensional setting. Wewill particularly focus on functions
with inhomogeneous smoothness properties and especialy providing a possible disparity of
theinhomogeneousaspect inthedifferent directions. We show, in particul ar that our methodis
able to exactly attain the minimax rate or to adapt to unknown degree of anisotropic
smoothness up to a logarithmic factor, for alarge scale of anisotropic Besov spaces.

1. Introduction

Nonlinear curve estimation methods have received considerabl e attention, particu-
larly because of their remarkable ability to adapt to unknown and inhomogeneous
regularities. Those properties are of special interest when dealing with functions of
multidimensional variables.

When dealing with functionswith isotropic regularity, classical wavelet thresh-
olding as well as local bandwidth selection give good results (see Lepskii, O.V.,
Mammen, E. and Spokoiny, V.G. (1994) [6], Tribouley (1995) [12],).

However when dealing with functions with anisotropic regularities, the prob-
lems become more delicate. Even the minimax rate of convergenceisnot knownin
every situation. Let us mention the results obtained by Nussbaum (1985) [9] giving
evaluations of the minimax rates in several situations of anisotropy, by Donoho
[1] on a classification tree algorithm using wavelet thresholding, giving excellent
results for functions having anisotropic regularity in Holder norm and Neumann
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[8] using thresholding with coefficients obtained from tensor product of wavelet of
different resolution levels, deeply associated with the [L»-loss function.

Our aim in this paper is to provide a procedure of nonparametric denoising
which constructs a pointwise kernel estimation with alocal selection of the multi-
dimensional bandwidth parameter.

More precisely our model is:

Xe(dt)y = f(H)dt +eW(dt), t=(t1,...,t3) € Z.

d = 2 isprecisaly the case of an image with an additional noise.
We consider akernel estimation of the form

1 X1—n Xqg — g
K ey Xc(dt 1
|k Xt M
K isakernel with good approximation properties in each direction and our aimis
to provide aselector of the muldimensional parameter i = (hy, ..., hy) depending
onthepoint x = (x1, ..., x4) and using the data X.

Ourapproachisageneralizationof theL epski’ smethod (see[4] [ 5]) of adaptation,
whichroughly consistsin choosingthe* coarsest” bandwidth suchthat the estimated
biasisnegligible. However, thisnotion becomesmoredelicateinamultidimensional
setting, mainly because of thefact that thereisno natural ordering: Tofind anoptimal
bandwidth, weneedto provideanindicator of an estimated amplitudeof thebias. For
this part of estimation, an ordering of the bandwidthsis essential. Thisis naturally
thecaseintheonedimensional setting. Thiscanalsooccur inspecia situationsinthe
multidimensional case for instance when one considers isotropic regularities, but
when facing to anisotropy there is a point to address.

Wewill particularly focus on functions with inhomogeneous smoothness prop-
erties and especialy providing a possible disparity of the inhomogeneous aspect
in the different directions. Specifically we will consider the anisotropic classes of
Nikolskii, consisting of functions f (x1, . . ., xg) withregularity s; inthedirection,
inl,, norm,fori =1, ..., d.wewill investigatethefollowing region of regularity:

1 _

d
1_2-_s->0’ Z(———)—>ov =1,

S
i llp[ Pi S

In this region the minimax rate of convergence associated to the L, norm is

¢Tiz, where § is defined by 1 =y4 1 5

We show that our approach provides procedureswhl chareableto exactly attain
the minimax rate or to adapt to unknown degree of anisotropic smoothness (in this
case we do not require the knowledge of the parameterss;, p;) up to alogarithmic
factor, depending on the way some tuning parameters are chosen.

These results are obtained by proving a concise bound of the local risk as well
asfor the integrated-L,, risk for each fixed target function.
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The obtained bound is, as in the one dimensional case the spatial mean (with
respect to Lebesgue measure) of the locally optimal stochastic term. The result is
very comparable to an oracle inequality. The bound is obtained in a very general
setting by defining an “optimal multi-index bandwidth” depending on the local
multidimensional moduli of continuity (in each direction, and depending on the
kernel K) of the function. This bound is evaluated in a second stage, for functions
belonging to Besov spaces.

To avoid additional technica difficultiestheresults are stated in the white noise
setting. We have given preferenceto thismodel rather than the morerealistic density
or regression (with fixed equispaced design) models, because in our model the
stochastic part is entirely gaussian (which would not be the case in the density
model for instance) and the bias (see b(h) in section 3.2) isan integral whilein the
regression model, it is a Riemann sum. Due to this difference, our model allow to
develop the theory of global nonlinear estimation entirely within the framework of
Besov spaces.

Let us now describe the organisation of the paper: First (section 2) we present
the model and the basic regularity assumptions.

For themain part of the paper, we shall follow the usual stepsin the construction
of non adaptive estimators, as for instancein [6].

Thefirst step consistsin finding alocal ideal bandwidth (% or j in section 3.1),
and an associated local ideal rate (“A(j, €)”). Thisideal bandwidthisfor instancein
[6] (onedimensional case) defined as the largest bandwidth such that the local bias
of the corresponding kernel estimator is less than a threshold roughly correspond-
ing to its local variability. We could still apply the same choice procedure if we
were looking for isotropic smoothness. However, most functions have anisotropic
regularities and assuming isotropic conditions leads to a loss of efficiency due to
curse of dimensionality. In the case where the local regularity is anisotropic (dif-
ferent moduli of smoothness in different directions), the choice of an ideal loca
bandwidth is more delicate. It is determined using a fixed point theorem (Proposi-
tion 1). Infact for practical purposes, all optimizationswill be made using adyadic
mesh leading to the definition of j in corollary 1 instead of /. Thisfirst step ends
up proving that the choice of thisideal bandwidth |eads to an oracle inequality for
alocal bound of the risk, as well as a bound for the global L, risk (Proposition 2,
section 3.2).

The second step consists in trying to mimic the oracle, provide a procedure
free of oracle. The algorithm is detailed in section 3.3.2. It is possible to skip the
detailed construction of thefirst part of the paper and directly jump to the procedure
in this section. The agorithm is achieved by determining the locally smoothest

kernel (with locally largest bandwidth 2~/) which is admissible in the sense of the
criterion defined in (15). It is worthwhile to notice that the admissibility criterion
(15) isamultidimensional extension of the criterion provided in [6].

We state a concise bound of the local risk (Theorem 1) as well as for the
integrated-L, risk (Theorem 2), for each fixed target function. Animportant stepin
proving that this procedure yields alocally adaptive estimator consists in showing

that except on an event of small probability, the adaptive bandwidth 2~/ , remainsin
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some sense larger than the“ oracle” bandwidth 2~/ , asitisdonein[6]. However the
proof, because of the multidimensional framework contains new specific technical
difficulties.

Section 4 isanillustration of the use of the inequalities obtained in Theorems
1 and 2 to prove that the procedure attains the minimax rate in a large scale of
anisotropic Besov spaces (Theorem 3), or is able to adapt, up to a logarithmic
factor (Theorem 4). The general result follows from 2 different steps. In the first
one, we give an evaluation of our concise bound when the unknown function is
approximable after smoothing with thekernel K in each directionwith aprescribed
rate (differing from one to the other) of convergencein aprescribed L, norm (also
differing from one direction to the other). In the second step, werecall that if K has
good approximation properties, then bel onging to anisotropic Besov spacesimplies
conditions as in theorem 5, in such a way that theorems 3 and 4 are obtained as
consequences. Thedifferenceintheorem 3 and 4 are obtained by different tuningsof
the procedure: the multidimensional quantities« or jg introduced at the beginning
of section 3 appear as parameters of the procedure that can be chosen for different
purposes: properly suited according to the space to exactly attain the minimax rate
of convergence or roughly settled to jo = 0 when adaptation is required.

Section 5 is devoted to the proof of Theorems 1 and 2, Section 6 to the proof
of Theorem 5 (since theorems 3 and 4 are consequences of theorem 5). The proofs
of the technical lemmas are postponed to the last part of the paper.

We particularly thank areferee for his very detailed and helpful comments.

2. Model, basic regularity assumptions

L et us suppose that we observe the random field X, (.). X.(.) isarandom measure
satisfying on some domain 2 which is an open cube of R? containing [0, 1]¢ the
following relation

X:(dt) = f(t)dt +eW(dt), t=(t1,....t5) €Y ()]

where W (.) is a gaussian white noise (see [11] Skorohod 1974), ¢ > 0 isasmall
parameter. For every f € 12(2), the stochastic integral A(f) = fg f@OW(dr)is
well definedand A ( f) isareal normal randomvariablewithEA(f) =0, EA(f)?
= fg f2(1)dt (see[13] Walsh 1984). The model (2) is equivalent to the following
model : for any ¢ € 12(2) astatistician can observe

f ()X (d1) = / S f()di + ¢ f ¢ (OW(dt) 3

Our goal isto estimatetheunknownfunction f(¢) = f(t1, ..., tq), (t1, ..., 1)
€ 91,onsomedomain ;1 C 2, using the observation X .. To avoid the consider-
ation of boundary effects, all along the paper, we will consider 77 = [0, 1]¢. We
also assume that the function f belongsto some functional space # on rea valued
functions vanishing outside &. On the space #, we introduce the maximal risk as
follows:

Re(fe, 7, p) = sup E|l fe — [} 4

fe7
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where 7, isan arbitrary estimator, andfor 1 < p < oo, llglp = (/‘[0.1]d lg(t1, ...,

td)|pdt1...dtd !

Asisusua in the context of nonlinear methods, in order to be able to produce
algorithms, we will restrict to functions having a minimal regularity: For 0 <
v=<1l O0<L, <o 0<L < oo, wesaytha thefunctiong ¢ g9 =
Fol, Ly, L,2)if

,,,,, e 181, ... 1) < L
o Vi =(t1,....10),t' =(t1,..., 1) € D,

) = 8@l = L (I — 41" + .+ lta = 11")

Thisminimal regularity will beused in the sequel essentially to be ableto define
the optimal multidimensional bandwidth (see Proposition 1) aswell asthe use of a
dyadic mesh in the construction of the algorithm. It is worthwhile to mention that
the values of the constants v, L,, L, are not assumed to be known apriori and they
will not appear as tuning constants of our procedures.

3. Nonlinear multidimensional procedure. Upper bounds
3.1. Preliminaries

In this section we introduce the type of marginal regularity which will be useful in
the sequel to construct our procedure and measure its efficiency as well. Then we
introduce an oracle multi- index bandwidth.

3.1.1. Kerndl

Let g(¢) be an integrable, bounded, compactly supported function such that
R, [ g@w)du = 1. Following SM. Nikolskii, we define::

u

l
1
g =) CH=D e

k=1

).

Itiseasy to verify : fR gl(u)ukdu = 8ok, fork=0,1,...,] — 1. Let usput:
K(t1...ta) = gi(t1) . .. g1(ta)-

Fort = (t1,...,t3), K(t)isacompactly supported, bounded kernel (i.e. there
existsa > 0, K > Osuchthat K(t) =0, V¢ ¢ [—a, +a]? and sup |K (1)| < K.

We denote
1/2
K| = </ Kz(t)dtl,...,dtd> .
Rd

And obviously for 0 < k; <1, [ K(Ont..t5dt = 80 4,.-80.4,-
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3.1.2. Test-set, multidimensional modulus of continuity

Letusfix0 < «x1 <1,..., 0 <«y <1, definethevector k = (k1,...,kq) €
[0, 1]¢. The «;’s will be tuning parameters of our procedure: They somehow are
related to the maximal smoothness that we need to consider in our investigations.
They will belater set to 1, in the adaptive case, or to specified quantities depending
on ¢ and the smoothness parameters when looking for minimax rates of conver-
gence.

Forany A > 0,i = 1, d, we define the directional domains:

D' ={01,....90), 0=y <A 0<y; <k;,Vj#i}

The D'’s are the domains where we are going to let the multidimensional band-
widths vary. As we are considering the direction i, we limit our investigation to A
in this direction, whereas the other ones are free up to each « ;. We also define for
i=1d,y=01...,y2), [y]'asthedightchange of thevector y inwhichthe
coordinate y; is replaced by 0 and the other ones remain unchanged. Finally, for
x,y € R? we define the vector x.y = (y1x1, ..., yaXa)

gi() = gi(A,1, f, (K1, ..., Ka))

— sp A;dl((x)[f(t—i-y.x)—f(t+[y.x]i)]dx1,...,dxd

yeD (M)

©)

gi isto beinterpreted as a modulus of continuity (or more precisely a quality
of approximation by the kernel K) in the direction .

First, we state thefollowing lemmadescribing the regularity of the g’s. Its proof
will be given in appendix.

Lemmal. Lets befixedin [0, 1]¢, f arbitrary fixed in #,

1l Forall<i<d, g=>0g(0;)=0

2. Thefunctions g; (.) are non decreasing functionson [0,1].

3. There exists an absolute constant L, = L, (L, L, v, K(.)) such that Vf €
F CFo, VYA AMel0]]

lgi (M) — g < Lyla — A", V1<i<d (6)

3.1.3. Optima multi-index bandwidth

K|
Set G(x) = {x(1+[lo vz ¢ ::L 7
(x) = {x(1+ [logx]4)} P 1%, k)72 (7)
Forany 1 < s < d, and any set of indices {i1,...,is} C {1,...,d}, weshdl
investigate the solutions (h;,, .. ., hi;) € [])_41[0, «;,] of the following system :

{ gih) = CeG([Tea ) 1 € lin o)

ki . . : 8
gi(Ki) < CSG(I—[Akzl ﬁ): IS {1a 7d} \ {llv "'7lS} ( )
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These solutions will play an essential role in the sequel, since they will appear
as the multi-index analogue of the oracle-bandwidth 2 = [log(1/¢)¢] T inaone
dimensional setting with regularity o . Indeed, when considering an estimator of the
form (1), g (h;) isrelated to itslocal biasin the direction i, whereas G([ ];_; Z—’;)
isrelated to itslocal variance.

Proposition 1. For any arbitrary f € g, ¢ > 0, « € [0, 1]¢,
1. (a) either gi(k;) < C, i =1,d.Letusthendefineh = (hy,...,hq), h; =
ki, Vi G].,_d
(b) or thereexists1l < s < d, and aset of indices {i;, ...,is} C {1,...,d},
suchthat thesolution of (8): (f;,, . . ., h;,) issuchthat 0 < h;, < k;,, ¥l =
1, 5. Let usthen define 7 in R by putting 2; = «; for i & {i;. ..., is}.
2. Let (h,l,... J,) and (hk h* .), be solutions of the system (8) asso-
ciated respectively to the subsets of indices {j1, ..., jy¢} and {k1, ..., ks}.
Then

S/

.
I Mo _ 17 B
~ - *
g=1 hjq q=1 hkq
This proposition uses as main argument the Brouwer fixed point Theorem. Its
proof is given in appendix.
3.1.4. Dyadic setsof h

Let us now discretize the set [0, 1]¢ into dyadics, asin awavelet framework, and
denote h; (ji) =27, i=1,...,d, ji > j°.
Let j(e), jOin N? bedefined by: 2-Ui@+D < ¢2 < 2=ii®) 2=G+D < 4, <
-0
27 i,
Jjo islinked with x and will be our coarsest grid, j (¢) will be the finest one and
we will restrict to the following set of dyadics:
I=10%e) ={j = (... Ja). J<Jji <jile), Vi)
L et us define the dyadic analogues of the D’sand g;’s
DI (277
= {2, 8270, 85 € (0.1, P < < i) VU # i < 5 < i)

g7 = sup
yeDi (2 i)

[ K (x) [f(t Fyx) — f(+ [y.x]i)] dxq. ... dxg
Rd

©)

The §’s (in {0, 1}) are specially useful when they are equa to 0. They are corre-
sponding to the choice y; = 0 in the previous D; (1).

Thefollowing corollary of Proposition 1 describes the behaviour of the optimal
multiscale bandwidth if we restrict the choice to dyadics.
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-0

IKIL___yE 0 o

Ly [1K(x)|lx|"dx
such that 2/i©=1 < (2 < 2=Ji(e) 2—]‘,.0_1 <k < 2—1}0, let

Corollary 1. Foranyarbitrary f € g, 0 <€ < (

F(y)=CG(—7—)

1. Thereexists j = (ja, ..., ja) € 1(j°, &) solution of the following problem:
(@) If ji = j°, then g (27/i) < F(27/1,..27/a).
(b) 1f jie) = ji > jO. thengi@ i) < F(2 7, ..2700), g2~ Ui=D) >
F@ =D . 2-Ua=Dy,
2. Let j = (ji, .oy ja) @nd j' = (j], ..., j7) in 1(j, &) be two solutions of the
previous problem . Then:

d d d d d d
either > i <> k<Y Jitd. o Y <> ji< jitd.
k=1 k=1 k=1 k=1 k=1 k=1

The last sentence of the corollary, proves that if the solution ; is not unique, then
2 solutions will satisfy:

In the sequel, we will consider j a particular solution of the previous corollary, no
matter which oneitissinceall our boundswill only depend on ZZZl Jjx. The proof
of the corollary usesthe theorem K.K.M. (which isequivalent to Brouwer theorem)
and is given in appendix.

3.2. Upper bound of the risk (with an oracle)

For any function f € o, let us define j asin Corollary 1. Let us recall that j is
alocal quantity (depending on r as g; is depending on ¢). It is also depending on
¢. We will omit to indicate the explicit dependence upon ¢ and ¢ except when true
necessity.

Let usnow defineforany r € [0, 1]¢ ,any j = (j1. ..., ja) € N¢, theclassical
linear estimator defined in (1), with dyadic multidimensional bandwidth

fi= oY i1 / K21 (t1 — u1), ..., 29 (15 — ug))Xe(dus, ..., dug)  (10)

and its bias,

b(h) = b(h.1, f) = [oa KO [f(t = hx) = f(O]dx1, ... dx.
b; =b@2,...,270), forjinN.
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Let us aso introduce the following “local rate’:

d
d e . .
(. ) = e K 2510214+ (i — jP) log 2}/ (11)
i=1
where j in N? issuchthat j; > jio,forall i.Letusobservethat A(j, ) corresponds
t0 CoG([Tiy ) for hy ~ 27, k; ~ 27,
'k

The following Proposition gives afinal motivation to all the notions we introduced
previously. It gives an upper bound of the risk for the “oracle” estimator f;.

Proposition 2. Let f beafunctionin #o(v, L,, L), let jO = (j2, ..., j9) befixed
inN?, and j(t) be defined asin corollary 1, then
1. Foranye >0, r €[0,1]¢, j € N? suchthat j; > j; for all i € 1, d,

bl < dAr(j,€) (12)
2. Foral f e 7, forall<p < oo,
[Eflfj(,)(t) — fO1P < C(PA(@), &) (13)
3. Therefore, for f5: f5(1) = f,, ().
[Ef||fj —fl5 < C(P)/ A (1), e)Pdt (14)
te[0,1]¢
with: C(p) = = fi,(d + Ix)? exp (55-)dx
Remarks:

1. The proof of this proposition will be postponed to the appendix.

2. Of course (14) is a consequence of (13), using Fubini Theorem.

3. Obvioudly, f] isnot an estimator intheusual sensesinceit uses j whichdepends
on the function f to be estimated. The result of the previous Proposition is to
be understood asusual: if an oraclewastelling to the statistician how to choose
the nuisance parameter j, then wewould be ableto attain the prescribed rate of
convergence. Our goal, now will precisely beto construct an estimator adapting
to this nuisance parameter. Thisis the aim of the following section. &

3.3. Construction of a locally adaptive estimator

Let us recall that j(e) in N9, is defined by: 2= Ui+ < £2 < 2-1i(®) and we
restrict our attention to the following set of dyadics:

=10%e) ={j = (1. Ja), JP < Ji < Jie), Vi)
Let us define the following ordering in N¢:

d d
j,me€ Nd,j <<m <:>Zji < Zmi.
i=1 i=1
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3.3.1. Admissible j's
Let us put
M =2d + 8+ 8dp)Y/?, o (j) := MA(j, e).

Foral j,m € N?, letusdefine j Am = (ju Ama, ..., ja Amg).
For j € I, wesay that j belongstotheset A = A(r) of “admissible” j'sif

gither j = j(e) or,foral m >> j, me I, |fiam(t) — fu(®)| < o(m) (15)
where f; is defined in (10).
3.3.2. Estimator
Now, let j € A suchthat )
Jj<<Jj, VjeA (16)

Notice that f exists but is not necessarily uniquely defined. If it is not unique, let
us make an arbitrary choice. If we consider A as the set of admissible j’sin the
sense that their bias is within acceptable limits, ; is corresponding to the coarsest
scale (largest multi-bandwidth) among admissible. Finaly, let us put:

A

JE@) = f;0)

We observe then thet f,*(¢) isaclassical kernel estimator taken with the multi-

bandwidth 2/ which depends on the data X, (.) and on the time 7. We call it
“locally adaptive estimator”.

3.4. Main result

Theorem 1. Letj% = (j9, ..., j? befixedinN“, 7 beincludedinto #o(v, L, L),
thenfor all f € #,foranye > 0, € [0, 1],
Ef£5(t) — F(DIP < CapIA(j (1), €)P (17)

The constant C»(p) is explicitly given in 85, where the proof of theorem 1 is
given. As a consequence of theorem 1, we have the following result,

Theorem 2. Under the conditions of Theorem 1, the following inequality holds :
Re(fS, 7. p) < Ca(p) sup A(j(@), e)Pdr (18)
fe7 J[0,1¢
Remarks:

1. As can be seen the bound in the right hand side only depends on the product
Zle Ji (t) whichisuniquely defined dueto corollary 1 eventhough j(¢) itself
is not uniquely defined.
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2. Comparing the bounds obtained in Proposition 2 and in Theorems 1 and 2, we
see that they differ only by absolute constants. Therefore the estimator f* is
really adaptive in order in the sense that it has the same performances as the
pseudo estimator defined above with the help of the oracle.

3. The following section will illustrate these results to special classes of func-
tions with anisotropic regularity. It will be observed for these classes that the
rate obtained by the oracle-pseudo-estimator and the adaptive one as well is
minimax for an approriate choice of the tuning constants j,.o's. Aswill be seen
in the sequel their choice will be important but not crucial, since in the worse
case they will produce an additional logarithmic factor, but no change in the
rate of convergence. In the next section, they will in fact be used for 2 different
purposes : either we fix them to their smallest value (jl.0 =0, Vi) and obtain
a completely adaptive estimator which loses a logarithmic factor (see Theo-
rem 4), or we fix them to a specific order (see j%(s), j%(8) below), we lose
adaptivity but we gain the logarithmic factor and this unables us to attain the
minimax rate of convergence (see Theorem 3).

&

4. Anisotropic functional spaces

In this section, we apply the results described above to finding the minimax rates
of convergence for some classes of anisotropic functional spaces. We will essen-
tially be interested in functional classes described with the help of approximation
properties.

4.1. Anisotropic Besov balls

Let usstart with the definition of the Besov space B(s:**) _ following Nikolsky
(1975).
Let f be ameasurable function defined on R¢. For y € R¢, we define::

Ve e R, Ay f() = fx+y) = f(0).

If ] € N then A’y isthe /—iterated of the operator A,. (Of course A‘y’ =1;.)
We have the following properties :

1 Let/eN:

l
A F) =3¢/ (=17 fx + jy) Especialy:
Jj=0

1 I
DAL ) =) DI ety = Y DI f (et ) — f ()
j=0 j=1
2. IfkeN,meN* 1<p<oo; fel?(R?),weobviousy have:
IAS™ 1, < 27 1AL £
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3. Lessobviously, onecan prove Marchaud inequality : Letk € N, m € N*. 1 <
p<oo; fell(RY):

A £llp < atk, m>Z<J + "2 AL f .
j=0

Definition 1 (Inhomogeneous Besov spaces). Let e, ....e; the canonical basis of
.For (s1,...,8q), (p1,...,pa) € RE,0<s; <o00;1l< pi < oo, for all i,

|ff e L, (R, dx), for all i, we say that f belongsto B(;} ''''''''' S[”j’ ) ifand only if
for all i, theree><|stsl eN, si <l (rep.vVieN, s; <), and C(si, 1) < o0,
such that :

Vh € R, [ Ahe fllri i axy < Clsiz DIRIY.

Remarks:

1. Thus, we are considering functions having regularity s; inthedirectioni quan-
tifiedin L, in the sense mentioned above. The proposition below proves that
the functions having this regularity can be approximated using appropriated
kernels with the rate of convergence 1% in L, norm.

2. Thecondition3dl € N, s; < [ canbereplaced by VI € N, s; < linsucha
way that one can choose indifferently an integer [, assoon as! > ;. O

Proposition 3. Let f e B((le"'.'."’f;;))oo
1. Let g(¢) be an integrable function defined on R, fR gt)ydt =1 Let g;(t) =

S CR(=D oLy For h € R, letfor arbitraryi,:

Xi
)f(X1...Xi—1, U, Xi41, .. Xq)du

; _ 1 u-—
n () (xa, ~-xd)—[R}—lg1( A

= / &) f(x1..xi—1, x; + th, xi41, .xq)dt
R

1
= Zc,k(—l)k“/ g(t) f(x + tkhe;)dt
R

k=1
Then:
194, = flln,, @) < CC /R FOIGREDIUIRS (19)

2. Let K(x1..x5) = g1(x1) ... g1(xq).
Lethandy € RY,

[v.h] = (y1h1, ...yaha) 5 [y-h) = 1ha, - yie1hio1, O, yiv1hivi, --yaha)-
I [ KOG+ DD = £ 65+ DAy v = LI

Remark: Itiseasy toverify : [, g/(1)t*dt = S, fork =0,1,...,1 — 1. O

The proof in the appendix. Let us finaly define the following Besov ball

B((;l Sl‘j) (M) as the set of functions supported on 2, and such that al the
constants C(s, , 1) appearing in the definition above are less than M.
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4.2. Minimax rates over anisotropic Besov balls
We have the following theorem :

Theorem 3. LetB((;ll ..... Y};’;)OO(M) beasdefined above, with (s1, . .. , sq), (p1, - ..,

pa) € RY and such that:

l<pi<oco, 1-Yli(G-pt>0Vvi=14d
d d
1-Yl k>0 o[ -] <2

We assume that K is chosen asin Proposition 3. We set j% = j9(s) such that

) d
. 25 . — . 1 1

27300 < BT < 2=iPWHL i =T dfor 5 defined as = = Z =,
N Si

then,

sup Ef/ | fE@) — f))P < C4(19)8<2%>
[0,1}¢

Where C4(p) isan absolute constant.

Remarks:

1. Aswe mentioned previously, because of our choice of jO = jO(s), this esti-
mator is not adaptive. The aim of Theorem 3 is to precise the minimax rate of
convergencein aslarge avariety of situations as po&si bIe

2. Thefirstconditions1-y"/_; -L- >0, 1-Y/ (-5l >0vi=14d
are needed (see Nikolskii) to ensure that our class ofp unct|ons isincludedina
space #o(v, Ly, L).

3. As for the main condition, ¢, [%(ﬁ — 1]] < 2, our results are almost

1 1 +
complete.
25
e Ontheset 7 ; [S—l_(ﬁ - 1]] < 2, therate s @+3 is minimax: Theorem
1 1 +
3 proves the upper bound. The lower bound follows from the embedding
((;1 .... w)) oD B((; ,,,,, Z‘Q) ~» @d the known result of Nussbaum [10] about
anisotropic Holder spaces.
o Inaforthcoming paper, we prove that the condition Z;’zl [%(pﬂ — 1]] <2

is necessary to get 8(22%) as minimax rate. Hence, if p; < p, Vi, then our
condition is necessary and sufficient.

4. Thefollowingtheorem provesthat if we accept to lose alogarithmic factor and

set jO = (0, ..., 0), we can produce an adaptive estimator: O
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Theorem 4. Let B(M) (M) asdefinedabove, with (s1. ..., sa), (p1.....pa)

€ Ri, with the same conditions asin Theorem 3. We set now j% = (0, ..., 0)

sup Ef/ RO - FOIP
[0,1]4

B(sl,.“,sd) ‘ (M)

= Cs(p) {lloge™112e} ¥ [loge 1L (20)

where Cs(p) is an absolute constant s and jl.O (s) are defined as in Theorem 3.

Theorems 3 and 4 are a consequence of the following theorem concerning
the properties of our estimator for functions classes verifying some approximation
properties:

4.3. Functional classes and kernel approximation properties

FiXB=(1,..., Ba), ® = (p1,..., pa) € RL, pi > L, Vi, L e (0, 00).
We say that afunction f € % belongsto the space # (8, =, L), if

Vield, Yy = (y1,...,yq4) € RY,

. Di
[I%d /[Rd K@)[ft+yx)— ft+ [y-x]l)]dx dt < L|yi|/3ipi 21)

We also denote by 7 (8, nr, L, D) the set of functions satisfying (21) on some
domain D c R?.

Theorem 5. For 8, = € RY, p; > 1 L € (0, co) fixed, we consider the space
F (B, 7, L.[0,1]%).
If B and jO(B) are defined asin Theorem 3, and

> 2[(2-)] -2

Then, if the estimator f*(¢) is defined with an arbitrary set of tuning constants
0=, ..., j9 suchthat j° < 3°(B), i =1,d, wehave

sp EflfF@ - f@1P
fe7B,p,L,[0,1]4)
28p
d d (26+1)
< Ce(p1+ ) (%B) —jO1* {[1 + Y GB) — 0% (22)

i=1 i=1

Where Cg(p) is an absolute constant.

The theorems in the preceding subsection are obviously a consequence of this
one using Proposition 3.
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5. Proofsof Theorems1and 2

Theorem 2 obviously is a consequence of Theorem 1. Hence, we will only prove
Theorem 1. First, let us formulate the following auxiliary lemmas. We postpone
their proofs to the appendix.

Lemma?2. Forall j eI, r [0, 1]¢, let
£ = &;(1) = 2Zi-i / K21ty — u1), ..., 29 (tg — ug))W(dua, ..., dug)
Rd

and let j € I be an arbitrary measurable (w.r.t. X,(.)) random vector, then, for
any f € 1»([0.1]9), VB C I, Ve >0, r > 0,

~ d .0
Erlg 1 {] € B] < moK P22 4 sup(r 4+ 4P o)/l (23)
je

If 7{A} denotes the characteristic function of the set A and

1 —x?
m, = 2411/2 —/(x Y2 exp ——dx )2,

The following lemma proves that for the j’slarger in each direction than j, the
difference operator applied on the bias always remains below an optimal threshold.
This lemma will be essential to investigating the behavior of ;. It will be proved
that except on a set of small probability, necessarily j will, in some sense remain
smaller than j (see R (f)).

Lemma 3. Letrarbitraryin[0, 1]¢, f arbitraryin # . Let j andm € I, satisfying
the following conditions:
eVield jizji+1
e dicld, miZji-i-l,
then, for any ¢ > 0,

|bjm — bm| < 2di(j, €).
5.1. Proof of Theorem (1)

Let usfirst introduce some absol ute constants. Denote for » > 0,

Cr) = (d + |x])" exp (=)dx;

1
N f[R{
pa(r) =27 (C(r) + M" +2%d" + 227 (2r + 42+ my]) ;

_ 1d —2d)2
U2 = 230212 qz/2[1+ (fﬁ‘z) |0g2]p/2; 7= (MgMZ) :

uz = 2dp/2dl/2(l _ 2—z)—d/2;

Ca(p) = pa(p)[2(1+ d 109 2)]7/? + (u1(2p) 2 paus
Notice that for ¢ < [2"||K||/L,]Y", weawayshave j; < ji(¢) + 1, Vi:



152 G. Kerkyacharian et al.

Suppose that the converse is true : There exists i*, with jj« > ji«(e) + 2. To
simplify the notations let us suppose that i* = 1.
On the one hand, we have, .

§1(271) < g1(271) < L,27/1Y, using lemma 1.
On the other hand,

- 540 d = < .
A(j.8) = ceG([TLy 2V 790y = || K |{2Xi=1 i {1 + 3¢ (ji — j©) log 2]}%/2
> |Klle21 > K|

Hence we get a contradiction using the definition of ;.
Let usfix someinteger ¢ > 0 and set :

jta=G1+q ... ja+q
@, 3\ _ g L. n
BV(j)={jel:j<<j+q}
B ={jel Y +q) <Y )i}
Ba(J) = Uy=1{B\ (j) N BY (j))

Letusdivide E¢| f(t) — f(t)|? into 2 parts corresponding to j << jornot. They
will be treated separately :

RY(f) = Ef|f2@) — f0I1P1{] € BO ()
R™(f) = Ef|fX () — fF(OIPI{] € B2()}.
5.2. Bound for R (f)

First, let us show the following lemma:

Lemmad4. Forall 0 < g <inf{(ji(e) — ji — 1)), i =1,d}, r > 0,

RI(fr) = EfIf@0) = FOUI{] € B (D} < jaMA( +q + L e)  (24)

As a consequence of (24), we obtain by putting g = 0, r = p, the required
bound for R (£):

/2 _
RO = ma(p) (2/A+ d10g2)"" 2 o) (25)

Proof of Lemma 4. Let usintroduce j(¢) = j A (j + ¢ + 1), and remark that

;= F1=1f5 = Fil + 1) = Frogal 1 fipgua =1 (29)
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° Sincef belongs to the set A(¢) of admissible j’s, and asf << j+g+1land
j+q+1el, wegetthat, ontheevent {j e B (j)}

Fry = Frageal <0G +a+D =MAG +4+1Le)

A

Therefore,  Ef|f5,) — fiyqal 1] € BP () < M'a(j+q+1e) (27)
e Thefollowing decomposition is alwaystrue:
fj—fzbj—i-é‘fj (28)

wherethe quantitiesb;, &; whereintroduced above, sections 3.2 and 5.1. Using

Proposition 2(1), we get, |bj, 4| < dA(j, ¢), and then,

Eflfigpa— fI SCOMG+q+18) (29)

e It remains to bound |f} — [ Let us first observe that in the case where
7 = j(g), this quantity is zero, so, let us investigate the case where

J#i@. (30)
Dueto (28), we have
1f5 = Fiiqp! = 16 = bjig) | + 61851 + el (31)
If (30) holds, then we can apply lemma3withm = j +¢ + 1, j = j and get:
b = b < 2d1(j,e) <2dr(j+q+1,¢) (32)
We have, from lemma 2,

Eple&; " 1{j € By ()} < [@r + 4% +m,]  sup
jeB ()

A &) <[+ +mr+qg+1e)" (3

Now, if we denoteby B4 = {j € I, j; < ji +q + 1, Vi}, we obviously have
j € B (j) = j(g) € B, henceif we apply lemma2, we get,

Eyle&; " T1] € By ()} < Eflegs, ' 1{j(q) € B

<[@ +H"?+m,] sup r(j, &)
jeB@

<@+ +mr+qg+18)" (34)

Finally, from (26), (27), (29), (32), (33), (34), we get the result of lemma 4.
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5.3. Bound for R~ (f)

Since we have,

R™(f) = Ef|f2(t) — fOIPI{] € Ba())

=Y 1 EfIf2@0) = FOIPI € BP (DM € By ()
Using the Cauchy-Schwartz inequality and (24) with » = 2p, we get
1/2

R < Y (Rfh2m) " (Prti e B G)

q>1

_ N _\12
< V@ Y G +a+107 (Prije BPGY) T (39)

g=1

It remains to estimate P/ {j € BS”(j)}. Note that because of the definition of j,
we have:

JeBl (M =1{>>j+q)Cli+qgAmn) (36)
Using the definition of A(¢), we have the following representation:
UtagAOY=UpeGrgymerllfGrgam — fml > o)} (37)
Setfori =1,d, Ii(g)={mel: m;> j+q}. Obvioudly,
mel, m>>(+q)}cC Ufizlli(q) (38)
From (37), (38), we get,
A - d A A
P e BRGN =D Y PrllfGigam — fnl > om} (39

i=1mel;i(q)

Using (28), we have,

| fGraynm = fml < 1bGagyam = bl + €181 gyam| + €1€n] (40)

Sincem € I;(g), we can apply lemma 3:
- 2d
1G+gynm = bl < 2dA(j, &) < 2dA(m, &) = — 0 (m) (41)
Now, if we denote
1/2 d - _
vi=(Eg?) = IKI2Z=I2 = v
we obvioudly have V., < V,,, and can deduce from (40) and (41) that

A A 2d = P
|f(f+q)/\m - fml = ﬁa(m) + 8Vm(|$(i+q)Am| + |§m|)7
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therefore:
Pell fGigyam — Jml > o(m)
< PHIE G gaml + 1Enl = (1— 2201}

<2P{IN© 1| = 3(1 - 32y

<2P{IN©0,1)| > 31— 21+ Y9 (m; — jO)log2}¥/?)

< 2_21 1(’”1 jl)(M 2d) +2

Wehaveusedthat,foralr > 0, P{{N(0,1)| >t} < Ze—’z/z.Puttingz = w,
we deduce from (39),

2 T d _yd .0
Pr(j € BY" (D} < X0y Yesyiq 2 ZimrmimiDat2
.0
< 4 T (Em027™) o g 207

<4[ln { == } Y2

o - 1
? @) 3 —qz
Hence Ps{;j € By (j)} < 4d27%* (1—2-2)d (42)
Note also that
AGitq+Le <l e2 Py Y ;L D 410g2)12 (43)

From (35), (42) and (43), we have:

o0
1d .
Zz—qz/2{1+—(q+2 M\ 0g2)/23(f, ey
=1

R™(f)=vdui1(2p) 2%

(1 2— pZ)d/Z

(44)
Taking together (25), (44), we obtain the statement of the theorem.

6. Proof of Theorem 5

This theorem is an important part of this paper, since it is essentialy in this part
that the genuine aspect of the multidimension and especially the anisotropy shows
up.



156 G. Kerkyacharian et al.

6.0.1. Step 1
Using Theorem 2, we need to bound the following integral:
1= / 2J (@), e)Pd1
[0.1¢

First, let us observe that we may always replace p; with p;x < inf{p;, p}. This

. d 1 P . - .
does not affect the condition ) ;_; 7 [(E 1)]+ < 2, since the condition is
open. Moreover, we can use the following inequality :

pix < pi = fio.qga | Jpa KO @+ y.x) = £+ [yx]D]dx|"" di

(o i KCOLFG@ 4320 = £+ Lyl x| di

)pf*/pi
Llyi|Piri

IATA

Hence, in the sequel, we will assume p; < p for al i.
Now, let usintroduce

d
c(j% &) = {1+ (B — i log2}H/?
i=1

_ 2
i) = (ec(j°, ) H@+2

(D) < ¥ < 2=GP)
<k =
P =Gt Ja)
It will be useful in the sequel to observe that:

2 57
27D (ec(j0 ) TF < A% e) < [KI|(ec(j% £)TF  (45)

since .
S =B — @+ 28 Moge(0, e). (46)
The equivalence (45) will be denoted :
2 e
MG* ) ~ (ec(jO, &) 128 ~ 27 Ui A (47)
Now, divide theintegral into dyadic sets:

I < AG* e ult; << j*Y+ Y20, )P ults ji@) = ji, Vi)
JjEB
< IKlI(ec(j% )32 + Y " a(j, &)’ ults Ji(t) = ji, Vi}

JjEB
=h+1D
where u isthe Lebesgue measure on [0, 1]¢, and B = {(j1. . .., ji), J}O < Ji, Vi,

Y4 ji > Y%, j*). Thelast inequality is obtained by bounding the measure by
1 and using (47).
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6.0.2. Step 2

L et usnow decompose I and observethat if j € B, thenthereexists! with j; > j.
If we denote by A the set of such /, we obtain, using the definition of A(j, ¢) :

I < pit; ji(t) = ji, Vi}

P

d 5
d i . .
3 3 (52”K”222i=1/r A+ Gi—id) log 2))
ACLd; A0 {ji=jx=jQ. YheA, ji=j}. VIeA} =l

)4

d 2
< <82||K||2227115‘ A+ G = )I092)>

i=1

<) 2

ACTd:A#D (ji=jezj0. VkeA, jizji, VIeA}

P

. 4 Gi— Ol i

(zzfﬂﬁ—n[ +Z;=1(’ i) 10y D s Ji) = ji, Vi)
1+ Z,’:]_(], - ]l )lOQZ

- 20
< wt; Ji@0) = ji, Vi} K [[(ec(j0, €)%

P
Z Z (22?11}'—./’1‘* |: 1+Z —1Ui— .0) log2 j|) 2
VieA)

ACT&AAD i =iz, YkEA, ji= 4+, G7 = i) log2

6.0.3. Step 3

Now, let us formulate the following lemma :
Lemma5. For every multiindex j = (j1,...jq) let A(j) Cc 1,d defined by i €
A(j) & ji = j. 1f A(j) isnot void, there exists a constant ¢ such that,

ples i) = ji, Vi)

d
“cinf (27 RU—iDA S Gi-i) 1+Zid=1(ft ~ i) log2
1€A()) 1+ Y0 1Gi — j)log2
d-1

< [ 1L+ DG — iDL+ Y Gi— i)

[eA(j)

-0
SZ_VAZ[EA(jZ 11 2 Zz 1(!1 /)1+Z 1(Jl _J )IOgZ)
14+ Y16 — i) log2

d-1

< [[L4+ DG = iDL+ Y Gi—id]

1eA(j)
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where
1 1 1 1

5= ==Yy _—

— and .
Bi VA piB

leA leA

The lemmawill be proved in step 5. As we already observed, akey point will
bethat A(j) # ¥ for j € B. Here we only note that the second inequality in the
lemmacan be simply obtained from thefollowing estimateVr > 1, Vr; > 0, Vp; >
0,vg >0,l=1,...,n0nehas

n n
P 1
su = > 1+ —
[=1Pn (Plﬂm t5 Zn) zy ( + 2/3) > o,
v =1 =1
where

21

= pibi

1
= — and
= B

=
R |k

6.0.4. Step 4

Returning to theexpansionin step 2, weneedtoboundthat forall A ¢ 1, d; A # @,
the following quantity :

d ;. .0 p/2
Ra= Y 3 (22,-21(/,-—/',-*) [ 1+ 2= — Ji)10g2 D

d % -0
Jizik=jQ, VgA  izis VieA L+ iU = Ji) 1092

pits ji(t) = ji, Vi)

If we admit the result of lemma 5, we get :

Ry < Z Z (22’41(/[__].7) |: 1+ Zii:l(j.i — j{’g log2 :|>P/2
Sz VkgA iz VieA L+ (iU — J1og2
YA
27 Siealii=i) (2— Sl [1 + X = i) log ZD "
1+ Y010 — i) log2
x ([L+ X0 (B) = JONL+ Xyeatii — i) "
_ Z o524 Liga i) Z 25— oy v LieaGi=ii)

JizikzjQ. VkgA Ji=jf¥ieA
YA

e >4 1Gi — j9)log2 e
1+ 39 G = j%log2
x ([14 X Gi(B) = IONL+ Y yeai — j)]

=1,

)dfl
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Let us now observe that :

d
— P YA 11 p
VAcld, ——=——-y4<0 & —[(——1)] < 2.
2 2Ba ;,31‘ Pi n

and on theother sidesinceusingstep1Vi, p > p;thenVA c 1,4, 5 — 2% > 0.
Sowehave (asfor Vk ¢ A, ji < ji):

d d
D _ YA
A+ i —jD10g2)2 % < (14> (jF - jP)log2
i=1 i=1

p_ YA
+(Q (i — ji)log2)? %
leA

d

p_ YA

<@+ ) GF =9 log2)? %
i=1

@+ (O G - jilog2)t 7

leA
So we have:
p_A o
In < [14 ) Gip — i1t 3 o530 Cega k=)
JEziz . VkgA

p Y, . Y,
S 2E AR 1 Y it (3 jnlog2)Fw

0<ji, VieA leA leA

_(P_YA i
<[14+YGiB) =iV ICA poya. fand) Y 27 eI Tk
0<jk, Vk¢A

=[1+ ) _Gi(B) = D IC/(A, p,ya, Ba, )

6.05. Step 5

In this section we will prove lemmas:
First, we observe that the second inequality is aconsequence of the first one using:

d .0
= La — - SiiGi—ip | iz —i)le2 | o
1=3ca oifi andE =2 |:1+Zf=1(iifz0)'°92
B pIva
i —20i=ir | 2 —2(ji—j*) B | 2PiP
infreacn....ia) [EZ =i )51] = HleA(jL..-jd) [EZ v )ﬂl] .

YA . .
— E 2427 va Xieali=Jf)

Let us now prove thefirst inequality:
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1. First, let us observe that, because of the definition of j, for j = (j1, ..., ja):
plts Ji@) = ji, ¥iy < inf e ji@) = ji)
i€A())

< iei/rgl(‘j) {u{t; gi (277 = A, s)}} (48)

By symmetry, we will restrict our attention to the case j1 > j; and bound for
arbitrary A:

plt; 8127 @) = 1)
Recall that, for h = (ha, ..., hq), weput K, f (1) = [pa K (xX) [ f(t — h.x)] dx1,
- dxg, ZX(h) (1) = Ky f (1) — Kpqu f (1), where [h]* is obtained from & by

replacing i1 by zero. Letusnow define, forr € 1, d, {i1,...,i,} C {1,...,d)},
the following iteration

[h]{ils---ﬁi)'} — [[h]{ils---air—l}]ir

In such away that the coordinates of thisvector the same as the coordinates of
h for thosewhicharenotin {is, ..., i,}, and O for the others. Let us define for
lieN, 8 €{0,1}, § =(61,..-,8q):

W= W 27y spl = (5270, 27 W)

Weputl; = 0ifi # 1, I1 = ji, 1 ={l = (1, ..., L), ji(e) = 1; = i, Vi}
Observe that because of the definition of D1(2-/1), we obtain by recursively
introducing the zero coordinates, and denoting | A| for the cardinality of the set
A,

p{t; §1(2771) (1) = A}
= uft; A e, 5 (0,17, |22 @S.n) )| = A}
< u{t; sup|zZt () (1)] = 2}

lelp
Fults supl2t(h@)] < A, 3A 2. d), sup E (R ()] = A)
lely lely
< wit; suplzt(hh ()] = A}
lelp
+ufr; sup|Zt(H@) <A, A C{2,....d}, |A|=1,
lelh
sup 122 ([N ()] = 1/2)
lely
+ulr; suplzt(h ()] < x, sup sup|E([A]N) ()] < A/2,
lelh M‘:llell

sup sup |ZL ([ ]4) (1) = A/4)
|A|=2lel
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We obtain the following bound, by repeating the argument above,

o d
p{t; 8127 (1) = A} < 3 hc1 Do ac(in, i)l d) 1A Zz,-lzi,-l,...,z,- i

© Zlig

it 12X O] = P NSy a, 1ea SUP 1220 < i)
(49)
2. Let us now remark that because of our assumption:

/[0, 14

and using Markov inequality, we get:

' pi
/R KL+ 30 = @+ Iyadldx| de < LiyiPP (50

it IO 0] = 2y < o B
21A1° ™ Az—lf‘il

3. ForAc{l,....,d}, 1e A, A =A\{i}, i #1, letusremark that if

|z1<[hl]A < b

) (51)

then |2 (A1) = 2 = 12H(ATY — 22N = s
But
Y - 2
- / K@U+ = f 4+ Y00 — 4+ )00
R
+ £+ [AAYEY0 )] ax
= fd KWLFE+ 0120 — £+ R x) — £ + RV )
R
+ £ (4 [P]AVEYD p)]dx

Hence, we deduce:

1074 1014
{lZ([h])—z([h] )|2W}

c {| f K@U G0 = f o+ Y]] 2
Rl

A
2lA|+2

17AU{1} . 1AU{1}U{i} A

o1 [ K@Lre+ 0 = p 4 A =

(52)
Now from (51), (52), we deduce, foral i € A, i # 1,

A

1A OI = =0 sup sup R @) <

214 ' A'CA, 1eA’ 1 21471

2—liBi

<2C( )P (53)

A2-1A1-2
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4. We obtain from (49), (51), (53):

A ESIGES!
d —1; Bi

< Z Z Z inf{2C(#)”", i € i1, ..., i)}

k=1 {i1,...,ix}=AC{],...,d},1€A Iilzfil ’’’’’ I;

d lﬁi):. o ) ]
< Z Z Z |nf{2C(—)”’, i €{ig,...,i}}

—|A|-2
k=1 {i1,....ix}=AC{1,....d},1eA 1;;>0,...1;, >0

Weintroduced i.; = A(j*, &)2@i—i"Bi (Werecall that using (47), »(j*, £) 287
~ 1). Theresultisnow aconsequence of theinequality (54) of thefollowinglemma,
if weputa; = (%)Pi, y; = Bipi: We just need to remark that we easily obtain,
using (46) the following inequalities which give the result:

1’1

infla) < ar < ¢ (27 RU—DB+EL G | HXiaUi 01002
- - 48 (i—j9 log2

sup; ; [log gt < X G = O+ X Gi - iH/2
< JXGiB) — jO + X Gi — jH/2).

Lemma6. Let n be some strictly positive integer, leta; > 0, y; >0, i =1, n.
Then 3A(y1, ..y,) such that :

Z me{az vili i =1 n)

=0
. a;
= Ay (0t i) E(l 100, (=)
pl<z<n ai n—1
< A(y1, - )/n)( |nf al)(1+|092(ﬁ) ) (54)
The proof of thislemmais given in appendix.
This concludes the proof of Lemma 5. |

7. Appendix A
7.1. Proof of Lemma 1

1) and 2) are very easy, we will only prove 3). Fix somei € 1, d, denote by

i—1
= [ J10.x,1 ]‘[ [0, /1,
j=1 Jj=i+1

a0 =sp| [ K[ £+ = [0 +[yx]) | dn,.. dxg
pi |JRd
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and remark that their exists L, = L, (L,, v, K), such that
vy vl € Ry, 1z =z < Loy = y/I" (55)
Thisfollows from the assumption f € # C % . Note also that

&)= sup z;(yi)
O<yi<i

Fix some0 < A < A" < oo. We have, using (55),

g(W) <80y =gV sup |z < &)V [z + Ly —1"]"]

N<yi<
(56)
andsincez; (A) < g; (1)), we have from (56),
gW) < g <gW)+ Ly = A" O

7.2. Proof of Proposition 1

Proposition 1 is a consequence of the following lemma

Lemma?7. Let G be a positive continuous strictly increasing function defined
on R, such that G(oco_) = oo. Let g;, i € {1, 2, ...d} be positive, continuous,
increasing functions, defined on [0, «;], such that g; (0) = 0.

1. Thenthereisalwaysa solution of thefollowing problem: Findx e 1‘[,”.’:1[0, ki)
such that

d
o
Vio € (1,2, ..}, gio(xio) = G([ ] ) A giolii),
i=1""
and xi, < kip = 8io(xig) = G([ Ty ).
2. 1fx € [1%400,,] and y € []%_,[0, ;] are two solution of the previous
problem,then :

Proof of Lemma 7.

1. Let ussuppose first that al the functions g; are strictly increasing continuous
function. Let us define

d d
F(x) = (fix), f20), .. fa)) : [ 10, il —. [ ][0, x.

i=1 i=1

in the following way :

d
Vio € (L2, ). fiy = g [G ) A gilio)]-
i=1""
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Obvioudly, F iscontinuous, and, by the Brouwer fixed point theorem,
Ix € ]_[?Zl[O, k], F(x) = x. Sowe have, for suchx = (x1, x2, ..., x4) :

Vig € {1,2, ...d}, gip(xig) = G(H —) A io (i)
i=1 Xi
Of courseVip € {1, 2, ...d}, 0 < xjy < kj,.
Moreover, if x;, < ki, asthe functions g; are strictly increasing, g;,(x;,) <
8io (Kkig). Soin this case, gi, (xiy) = G([T{_y ).
Now if the g; are not strictly increasing functions, wereplacethem by g () =
gi(h) + 1h. Letx" = (x}..x") verifying :

1 1
Vip € {1, 2, ...d}, glo(xto) + x = G(l_[ ) A (8io(Kig) + Klo)
i=1 Xi

And Ifx < ki, then g,o(x ) +1 n ,O G(]_[i:l }'C(—i. .
By compactness of 1‘[i=1[o, k;Jwe can extract a subsegquence from x”" (for

simplicity of notation, we call it again x™) which convergeto x € r[?zl[o, Ki].
Clearly

Vio € (1,2, ...d}, gig(xip) = G(]"[ —) A (i (Kig)-
i= 1
If now x;, < «;, then certainly xi'g < ki, for n large enough. So

gio(¥l) + x G(H )

i=1 Yi
and thisimplies

8io(Xig) = G(H
i= 1
. Let x € 1"[1 1[0, ;] and y € H 1[0, Kl] two solutions of the previous

problem. Let us suppose ]_[ < H —1 5 This implies of course that
dip € {1, 2, ...d} suchthat 0 < y,0 < Xig < Kig Sowehave.

G(H —) < G(H —) as G isstrictly increasing.
i= 1 i=1

G(H —) < G(H y—) = 8io(Yip) < io(Xig): 8 Yig < Xig < Kig
=1 i=1""
But this contradicts :

8io(Xig) = G(H —) A i (Kig)

i= 1
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7.3. Proof of the Corallary 1

Existence. LetVi € {1, ..d}, g; betheincreasing real function defined on [0, 2*11’0]
piecewiselinear, such that g; (0) = 0, and linearly interpolating between the values
gi@ iy for j2 < ji < jite).

Let O bethe following compact convex set of R? :

d
0 =[Two.2771.
i=1

Thefunction F definedin corollary 1iscontinuouson Q withvaluesin [0, o],
and it is a strictly decreasing function of H?zl yj. Let M > 2sup; 57,-(2*1':'0). Let
us now define on Q the following continuous function y with valuesin R? :

Vy =1, .50 € Q; y(») =@Q1(1) —FO)AM, .., ga(ya) — F(y) A M)

By an obvious consequence of the K-K-M theorem (cf Granas, 1990 Th 1.11) there
exists

$ = (y1,..y4) € QO suchthat :

Ve Q 1Y (&G — FG)AM)G: —x;) <0.
By taking particular values for the x;’s, we easily prove:

ey =0= gi(y;) — F(3) A M > 0. This case is obviously excluded . So let
J = (o ) € N4, suchthat Vi e (1,.d}, 279 <y < 271 < 2707,

¢ =27 S GG - FG)AM <0.S0& () < F(5) < F(2, ..27i1),

e 0<ji <2 =GN —FG AM=0.%

G <G =FG) < FQ 1, .., 270,
and ) ) )
@7 > g = F(5) = F ittt L 27dath),

Let us now prove that if € issmall enough certainly j; () > ji (> jio) : Otherwise
0< ¥y <27@andif f e Zo(v, Ly, ..):

i) <&@y <L, 27vi© / |K (x)|x|"dx = L, €” / |K (x)||x|"dx.

But
F(3) = el K27 9) "2 (1 + log@ ©=i"))z = |K].
Uniqueness. Let j = (ja, ..., ja) and j' = (j;, ..., j;) such that j° < j;, j!
ji(e); both solutions of the following problem:
If ji = j°, &) < F@ .. 270,
It jite) = i > jO &@F) = F@ R .27, and (2 Ui~D)
F =D 2-Ua=Dy,

v
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Let us suppose for instance that
d d
DIV ED I
k=1 k=1
Certainly Jig € {1, ..d} such that:
B <l < dio — 1 < Jig < Jig(e).
So: as j — gi,(27/) isadecreasing function:

F@ A, .. 270 = @ o) = gr@ Vo) = p2-i=D,  2-Ui=Dy,

Obviously j = (j1, ..., ja) — F (2771, ...27J4) isastrictly increasing function
of >°¢_; ji. So:

d_ d_
ij < ZJ/Q +d.
k=1 k=1
7.4. Proof of Proposition 2
e Let usfirst provel:
b(h) <| Jpa K@) ft +hu)— f(r1+hiug, ... 141
dhg_1ug-1,ty)]dul + ...+
| fpa K[ f (t1+ hiua, t2, ... 1q)) — f()]du]
d h d s (o—Ji
< Dim1&i(hi) <) 827
if h; < 2Ji for all i, using the monotonicity of the functions g;. Using now the

definition of j, we obtain

d -
b(h) <Y &) <dxr(j,e)
i=1

o Denote

&= oY /Rk K (t1 — u1), ..., 2H (1g — ug))d W (u)

and remark that & i isnormally distributed with variance equal to | K ||222?=1 i

As, |f]v(t) = fOI = |b;] + 16§51, we have using the first statement of this
proposition: R .
Eflf;(0) = fOIF = C(PIAG, &)F

This concludes the proof of the Proposition. ]
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7.5. Proof of Proposition 3

Proof.

1. Using the preceding proposition and the generalized Minkowski inequality, we
have:

|| fR SO (DAL, FIdt g 0
< /R 18ONAL, Fllu o godt
< Clhf" / gl dr.
R

On the other hand (as [, g(r)dt = 1):

1
/R g (=D)AL, f(Ddr = fR g Y C/ (=) f(xthjte)ydi—f(x)

j=1

But:

1
f g0 > ¢l (1T f(x + jhtenyds
R

Jj=1

l
= Zc{(—l)f“/ g(t) f(x+hjte;)dt
j=1 :

i
=/ Zczj(—l)jﬂlg(z.)f(x + hte;)dt
R j=1 J J
=/gz(t)f(x4rhte,»)dt.
R

gi(t) = Yy O (-1 g(L).
2. letusobservethat: [ g/(1dt = Y, €] (171 =1, aszlj=~0 cf (=1t
= 0. We apply the preceding result with #; € R tothefunction f((x1...x4)) =

/d 1Ko(ﬁ')f(X1+h1v1, X 1H— Vi1, Xi, X1 H 4 1Vi41, - - - XgHhava)d D'
i

where: o' = (v1...vi_1, Vitl, .- v4) anddit = dvy .. .dvifldv,url ...dvg.

Remark: One can also provethat: f € B((;ll '''''''' S;;)m < 3AeN, keN, k<s; <
k + 1, such that

Vh € R, ([ Al Df fllun ey < Clois DI, !
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7.6. Proof of Lemma 2

Set, for j € I,
;=2 +HY2(, e) /e
Then
Efl§;I"1{j € B) < Egtt1{j € BY + El§;I"I{j € B. |&;1) > 17} < supss + R
A SeB
(57)
where R = ZjeB E\E;I"T{ &1} > t;}.
Hence, it remains to show that R < m, {|| K ||2X2i=1 /12"
By the definition of &;, we have, for any j,
P& = 1))
d
= P(IN©.D)| = @ +HM*(1+ > (ji — jO) log2}*/?)
i=1

<2” Y Gi—iDr+2+1

We have used that for all r > 0, P{IN(0, 1)| > 1} < 2¢~"*/2.
1/2
If we denote by 7, = (\/% Jr(xD¥ exp _szdx) / , we get, by using the
Cauchy Schwarz inequality,

> EI g = 1)

jel
< Z{||K||227=1j;/2}rfrp(|§j| > 1,)1/207 12
jel
< (IK 1255072y g, 37 2%~ Gimid) < 27 K 22 i 2y,
jel
This ends the proof of Lemma 2. 0

7.7. Proof of Lemma 3

Let us denote by J; = {i1, ..., i} the subset of indices of {1, ..., d} such that
Jiy = jiy Ami, =1 r,andput J = {1,...,d}\ J1. Notethat if J, = ¢, then
the statement of the lemma follows from Proposition 2(1). Hence, let us suppose
Jo # . Notice that we have aso J1 # @, due to the second assumption of the
lemma. Then, for 0 < r’ < r, let us define the vector m" as

o (ifie i i)
m) — (58)
m; ifi e {ip 41, ..., i U J2

Itisclear that
m®=m, m"”=jrm (59)
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We have

,
1Djnm — bm| = 1b00 — bpo| < Z 1D,,¢y — b1 |-
r'=1

Notice that for »’ = 1, r, the coordinates of the vectors m " and m' =1 coincide
except the one number i,.. Moreover, by definition:

-1
]t/_]l/—ml( )<mir/=m§; ) (60)

Here we used the first assumption of the lemma as well. Then we have from (60),
and the definition of the vector j,

16,0 — b, | <28, @YD) < 25,29y < 21(f, e) (61)
(|
7.8. Proof of Lemma 6

Let for convenience a; = inf1<j<, a;. then, , V0 < I1 < oo, fixed, let us define
V2<i<n:If by a2 =a277"1. Sowehave:

Z me{az vili =1, n)

11=0 l,,

o o
< Z{alz—yllll_[l;‘+ oY infg2 i i=20
11=0 i=2

L=[13]  L=lI]

Il

3
=
=

< Z{alz Wl]‘[—(logz(—) + 1)

121

+ Z...Z inf{a 2 vl =2 1y

zzz[zg] In=117]

< Z a2y H —(|092(—)

i=2 Vi
+ y1lp) + 2PV Z me{z vli i =2 ny )
1,=0 I,=
= Abs -y (inf i) 1"[(1+ |092(m))
SUP1<;<; Gi ne
< Al -y inf az)(1+|092(f1—n) D)
1<i<n 4i
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