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Abstract. Inthispaper, we study stochastic functional differential equations (sfde's) whose
solutions are constrained to live on a smooth compact Riemannian manifold. We prove the
existence and uniqueness of solutions to such sfde’s. We consider examples of geometrical
sfde’sand establish the smooth dependence of the solution on finite-dimensional parameters.

1. Introduction

Thetheory of stochastic functional differential equations(sfde’s) in Euclidean space
was developed by 1td and Nisio ([I1.N]), Kushner ([Ku]), Mizel and Trutzer ([M.T]),
Mohammed ([Mog], [Mog]) and Mohammed and Scheutzow ([M0.S4], [M0.$;]).
The purpose of thiswork isto constrain solutions of such sfde'sto stay on asmooth
compact submanifold of Euclidean space, or more generally, to construct solutions
of sfde’'s which live on any smooth compact Riemannian manifold M. Indeed, we
wish to define and study sfde’s on M of the form

dx; = F(t,x)odw,;, >0,

and driven by Brownian motion w; € R¥, on aprobability space (2, 7, P).
Themain difficulty inthisstudy isthat the tangent space along asolution pathis
random, unlikeintheflat case. To elaborate on thisquestion, we shal | designate enti-
tiespertaining to the* curved” manifold M by the subscript ¢ and the corresponding
onesin “flat” space by the subscript f. We shall use this notation throughout the
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article. Let C([—3$, 0], M) bethe space of all continuouspathsy, . : [-§,0] - M.
Denoteby ¢, : C([—6,0], M) - M, s € [—3, O], the family of evaluation maps

es(yc,.) =VYes>» Ye,. € C([—(S, O]s M).

Let T (M) be the tangent bundle of M and denote by e* ;7 (M) and egT (M) the
pullback vector bundles of T (M) over C([—3$, 0], M) by the evaluation maps e_;
and ep, respectively. A deterministic functional differential equation (fde) is an
(everywhere defined) section of the bundle e 7 (M) — C([—4, 0], M). Given the
Riemannian structure on M, deterministic parallel transport iswell defined every-
where on the space of differentiable paths on M. Therefore, if the evaluations e;
are restricted to differentiable paths on M, then we can identify the pull-backs
e*sT(M) and ejT (M) by using deterministic parallel transport 7o, —s(y.,.) from
Ye.—s 10y, o dlong each differentiable path .. : [—§, 0] — M.

However, the above setting is inadequate in the stochastic case. In this case,
one may wish to “randomize” the path y., by giving C([-$, 0], M) asemimartin-
gale measure. Under such a measure the set of differentiable pathsis negligible. If
the noise w is one-dimensional, one may define a stochastic functiona differential
equation (sfde) as an almost everywhere defined section of the pull-back bun-
dle egT (M) over C([—3, 0], M). An identification of the bundles ¢* ;7 (M) and
eqT (M) is effected by stochastic parallel transport along semimartingale paths,
which isamost surely defined with respect to the underlying semimartingale mea-
sure. These considerations show that it is necessary to change the function space
of initial paths in order to study sfde’s on manifolds. We will therefore work in
a space of semimartingales from [—§, 0] into M, with a convenient topology and
with afiltration depending on time.

Deterministic functional differential equations on Hilbert manifolds and the
existence of their semiflows were studied by Mohammed in [Mo4]. The present
work is motivated in part by a conjecturein [Mo;] (Chapter 5, p. 143).

Now let us recall some aspects of the theory of sfde’s on flat space. The state
space is the set of continuous paths C ([—§, 0], RY) or some other Banach space
of paths on R?, and the trajectory of the sfde constitutes an infinite dimensional
Feller process on the state space. The problem of existence of a stochastic semi-
flow was studied by Mohammed [Mo3], and Mohammed and Scheutzow ([M0.5],
[M0.S;]). See [Moz] and the references therein. In this paper, we will not address
thisissue for sfde’s on manifolds.

A theory of differential equationsin a space of semimartingales on amanifold
was developed by B. Driver ([Dr], [Cr], [E.S], [HS], [No], [Le1], [Ci.Cx], [Li]). It
is useful to compare our theory with that of Driver:

e Driver's theory yields a deterministic flow on the space of semimartingales on
the manifold. Some of the techniques which we use in this paper are similar to
those used in the study of Driver’s flow. For instance, we use stochastic parallel
transport to “pull back” the calculus on the manifold onto the tangent space at
the starting point of theinitial semimartingale. Thisgivesasfdein alinear space
of semimartingal es with valuesin the tangent space T, (M) at agiven fixed point
x € M. Inthe delay case when the coeffcient of the equation does not depend
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on the present state of the solution, the structure of our equation is simpler in
some sense than Driver’s. In this case, our formulas are less involved than their
counterparts in Driver's theory, because it is not necessary to differentiate the
stochastic parallel transport with respect to the semimartingal e path.

e Throughout its evolution, Driver's flow maintains the same filtration as that of
the initial semimartingale process. In our sfde, the state of the trajectory at any
timeis adapted to a different filtration than that of the initial process.

o InDriver'stheory, thereisonly one source of randomness, which arisesfrom sto-
chastic parallel transport along Brownian paths. Our theory involvestwo sources
of randomness: One which arises from theinitial semimartingale (via stochastic
parallel transport), and the other from the driving Brownian motion.

e Wiener measure on the manifold is quasi-invariant under Driver’s flow; that is,
the law of the solution of Driver's ode at any subsequent time is absolutely con-
tinuouswith respect to that of theinitial Brownian motion on themanifold ([Dr]).
Thisisnot the casein our context. For asfde on amanifold, one does not expect
the law of the solution at any given timeto be absolutely continuous with respect
to the law of theinitial semimartingale.

The present article fallsinto two parts.

In the first part, we define a large class of sfde’s on the manifold. Using par-
allel transport, we “pull back” the sfde onto the tangent space at the starting point
of the initial semimartingale. This procedure yields a non geometric sfde defined
on flat path space, which can then be solved via Picard's iteration method. In this
part, we study a geometrical example of a stochastic delay equation on the mani-
fold, and show that it possesses a Markov property in a suitably defined space of
semimartingales.

Inthe second part, we examinetheregularity in theinitial semimartingale of the
solution of the geometric stochastic delay equation introduced in the first part. The
analysis uses the stochastic Chen-Souriau calculus developed by Léandrein [Ley]
and[Lez]. It turnsout that the function space of semimartingal esusedinthefirst part
does not appear to give smoothness of the sol ution of the geometric stochastic delay
equation in the initial semimartingale. We therefore use a Fréchet space of semi-
martingal es generated by acountable family of semimartingale normsrather than a
single norm. The techniques used in this part are similar to those of Léandre [Le;].

Il. A general existence theorem

In this section, we shall define a large class of sfde's on a compact Riemannian
manifold. We then state and prove an existence theorem for this class of sfde’s.

We begin by fixing notation. Let M be a smooth compact d-dimensional
Riemannian manifold, § > 0 and T > 0. Suppose (Q, %, (¥ )i>—s, P) isa
complete filtered probability space satisfying the usual conditions.

Letw,, t > —38, beak-dimensional Brownianmotionon (2, &, (¥ )t>—s, P)
adapted to thefiltration (% ;),>_s. Suppose that w_s = 0.

For any (finite-dimensional) manifold N, wewill denoteby L%($2, N) the space
of al N-vaued (#-measurable) random variables @ — N, given the topology of
convergence in probability.
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If N isany smooth finite-dimensional Riemannian manifold and x € N, denote
by #([—$, T], N; =38, x) the space of all N-valued (Z;);>_s-adapted continuous
semimartingalesy : [—8, T] x Q — N withy_s = x.

Fix x € M. Define the 1td map by the association

S (=6, T, M; =8,x) > ye,. = vy, € L[4, T], T (M); =6, 0)
where
-1
dyfe =71 _5(ve,)odyer, —d<t<T, 2.1
Y-8 = 0.

The differential in the above equation is in the Stratonovich sense, and ©; _s(y...)
denotes stochastic parallel transport from x = y,. _s to y. . aong the semimartin-
gaey... ([E.E], [Em]). Observe that the [td map is abijection.

Denote by yg’f the Hilbert space of all semimartingales vy € (-6, T1],
T.(M); —8, 0) such that

t !
Vi =/ A dwg +/ Byds, —-6<t<T, (2.2)
B -5

and , ;
Iy 115 = E[f6 1Al ds] + E[/a |Bs|? ds] < oo, 2.3

where A : [-8,T] x @ — L(RK, Ty (M)) and B : [-5,T] x Q@ — T (M) are
adapted, previsible processes. In the sequel, we shall refer to the pair (A, B) asthe
characteristics of yy, (or y.,.). Notethat the Hilbert norm || - || 2 induces atopol ogy
on sz’ 7 dightly different from the traditional semimartingale topologies that are
often used in stochastic analysis (cf. [D.M]).

Denoteby &5 . theimageof &7  under the|td map with theinduced topol ogy.

Lety.. € ¥} andfixany s €[5, T]. Sety/, = Vesnr, s €[5, T]. Then
vl eI and v )y = (v

Consider the evaluation map e : [0, T] x &5 . — L%(Q, M) defined by

e(t, VC,.) = Yeus (, .)€ [0’ T] X gjgc

Thetangent bundle T(M) — M induces the k-frame vector bundle L(R*, T (M))
— M whose fiber at each z € M isgiven by L(R*, T(M)). := L(RF, T.(M)).
Furthermore, the frame bundle L(R¥, T(M)) — M induces a vector bundie
Lo, L(RF, T(M))) — LO(2, M) whosefiber LO(Q, L(R¥, T(M)))z overeach
Z € L%, M) isgiven by

L%Q, LRE T(M))z :={Y : Y(») € LRY, Tz()(M)) aa » € Q}.
Denote by e*LO(2, L(R¥, T(M))) the pull-back bundle of LO(2, L(R¥, T (M)))
— L%, M) by e over [0, T] x .. A section of the bundle e*LO(%2, L(R,
T(M)) — [0.T] x ] .isamap F. : [0, T] x ¥} — L%Q. L(RX, T(M)))
suchthat F.(z, y! ) € L(R¥, T, , (M)) foreach (t, y...) € [0, T] x 7 , as.. Each
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such section hasaflat version F : [0, T] x ygf — L%Q, L(R¥, T, (M))) given
by
Fr(t vs) =1, 2s(e )Fe(t. ve.)

for al (r,yr) € [0, T] x SﬂTf In the above relation, T, é(yc .) denotes sto-
chastic parallel transport of k-linear frames over 7, (M) to k-linear frames over
Vc,—b (M)
A stochastic functional differential equation (sfde) on M is a section F,
[0,T] x % . — LYK, L(RE, T(M))) of e*LO(Q, L(RX, T(M))) — [0, T] x
5”5 . satisfying the following properties:

(i) Fcis“non-anticipating”: F.(t,y.,.) = Fc(t, v, ) foral (¢, y..) € [0, T] x
gpgc’
(ii) For each Vr. € sz,f, the process [0, T] > 1 = Fy(t, v} ) € L(R%, T, (M))

isan ()o</<r-Semimartingale.
Consider the Stratonovich sfde

{dxc,t =F.(t,x. Yodw,, O0<t<T,
o o (I.0)
xc,. zyc,.

In general, the above sfde does not have a solution. In order to establish the exis-
tence of a unique solution, we will impose a Lipschitz-type condition on F,. For
this purpose, we will use the 1td6 map to pullback the sfde (1.c) to an sfde on the flat
space T, (M). Thisinduces the following Stratonovich sfde on T, (M):

dxg; =Fp(t,x"s yodw,, O0<t<T,
[ ! (.1

o _.0
Xf. =Vr.

where Fy : [0, T] x ny — LO%Q, L(R¥, T, (M))) istheflat version of F.,.
order to establish existence and uniqueness of the solution to (I.c), we will i |mpose
“boundedness’ and “ Lipschitz conditions’ on F, that will be expressed in terms of
itsflat version F. First, we convert (1.f) into the equivalent Itd form

{dxﬁ, :Ff(t,x} Ydw; + AFf(t,xtf )ydt, O<t<T,
” ” (1.if)

o _.0
Xf. =Yr.

In the above sfde, AF (., x; ) : [0, T] x yT — LO%Q, L(R¥, T, (M))) isthe
Stratonovich correction term defined below.

In order to compute the Stratonovich correction termsfor our examples, we will
usethefollowing notation. For any y . € ?2 f,definethejoint quadratic variation
(Fr(., Vi ), w) of thesemimartingale [0, T] > ¢ = Fy(z, yf ) € L(RK, To (M)
and Browman motion w by setting

k

(Fr(ovp)sw)ei= Y (Frlyp e, w') € Te(M), 0<t<T,
i=1
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where {e;}¥_, is the canonical orthonormal basis for R¥, w, = Zw;'e,-, t >0,

andw', 1 < i < k,arek independent one-dimensional standard Brownian motions.
We now set

1
AFf(t,x;c“) = §<Ff("xf")’ w), t>0

where x ¢ isthe solution of (1.f).
Hypotheses (H).

(i) Boundedeness. There exists a deterministic constant C4 such that
|Fy(, 7/},_)| +AFy(t, V},,)I <Ci1<o0, as (2.4
foral (z,ys.) €0, T] x ng.

(i) Lipschitz condition. Assume that for each positive real number R there is a
positive deterministic constant L := L(R) such that

E[Fy(t,vh) = Fpt, ), )P+ IAFf(t vh ) — AFp(t, ()5 )1

<Ly} — .15 (2.5)
forall ¢ € [0, T], and whenever y; _, y; € ygf have characteristics (A, B)
and (A’, B’) (resp.) a.s. bounded by R.

Remark. Assume that the sfde F. satisfies the delay condition

Fr(t,yp) = Fpt, vy, ») (2:6)
foral (¢, ys.) € [0, T] x yg . Note that (2.6) is equivaent to
Fe(t, vl ) = tra-s(vl YFe(t, i) (2.6)

for dl (¢,y..) € [0,T] x VZ . It is easy to see that (2.6) implies that
(Fr(., Vi ), w)(t) = Oforalt e [0, T]. Therefore, under the delay condition
(2.6), theSratonowch equation (1. f) now coincides with the 1t6 equation:

dxs; =Fp(t,x"")dw,;, 0<it<T,
[ e @)
Y=Y
with no correction term! (cf. [Mog], p. 5). Thus for equation (2.7) one may drop
the Stratonovich correction termin (2.4) and (2.5) of Hypotheses (H).
We now give some geometrical examples of sfde'sthat satisfy Hypotheses (H)
above.

Examples. Let X1, X» be smooth sections of the k-frame bundle L(R*, T'(M)) —
M. Consider the geometrical sfde’'s

t
dxc,t = {/ Tt,s(xc,.)Xl(xc,s)dS + XZ(xc,t)} odw;, O<t<T, (1.g1)
t—38
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dxe; = t1-5(xc, ) X1(xe1—5) odwy,, O0<t <T, (1.g2)
with corresponding functionals
1 t
FC (t, VC,.) = / Tt,s(yc,.)Xl(Vc,s) ds + XZ(yc,t)s
-8
F2(t, ve.) = Tri—s Ve, ) X1(Ve.r—9),

l 2.8)
Fhe = | R Xa ) s+ T ) X
.

FF(t,v5) = Ts0-s(e )X1(Veu—s),

fort € [0, T], ye,. € % .. vy € y»gf_ In the above relations, 7 ;(x...) denotes
stochastic parallel transport along x.,. of k-linear frames over T, (M) to k-linear
framesover Ty . (M).

Xeyt

We will verify that the functionals F!,i = 1, 2, are sfde's satisfying hypoth-
eses (H). Since these hypotheses are intrinsic, we may embed M (isometrically)
in RY (whered’ > d) and extend the Riemannian structure to the whole of R?'
in such away that the extended Riemannian metric has bounded derivatives of all
orders and is uniformly non-degenerate. Extend the L evi-Civita connection on M
to a connection on R?" which preserves the metric on R, and with Christoffel
symbols having bounded derivatives of all orders. The pair (yc.r, 7, —s(yc..)) then
corresponds to a pathwise continuous process £, € R?" x R4 *4" which solves the
following Stratonovitch sde:

di, = Z(X) o Ay dw; + Z(R) B, dt, —8<t<T,

) (2.9)
X_s = (x, ldga)(= (x, Idr,(Mm)))
onRY x R4 *d" \where (A, B) arethecharacteristicsof y._, with A, € L(R¥, RY),
B, € RY. The coefficient Z : RY x R*d - [(R?,RY x RY*d") s C> (and
hence locally Lipschitz with derivatives of al orders bounded on bounded sets,
uniformly in the characteristics (A, B) of y.,.).
We next convert (2.9) into 1td form. To do this, let {e; }§’:1 be the standard basis
for R?. Define

Al 1 - A
YhI() = 5[D2(~) o(Z(N(eisej), i,j=1,---.d.

Then, for each t € [—6, T], ()A’i’f(il))f{jzl may be viewed as a (d x d)-matrix

with entriesin R?" x RY*4"_ This matrix will also be denoted by ¥ (£;). With this
notation, (2.9) takes the Itd form

i d%, = Z(G) A, dw, + trace(V (£) A, A¥)dt + Z(3) B, dt, —8 <t <T,

)2_3 = (X, Ide).
(2.10)
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Observethat, by its definition, Y isC®. Thevector fields X;, i = 1, 2, may be ex-
tended to smooth vector fields on R?’ with all derivatives globally bounded. These
extensions will be denoted by the same symbols.

Note first that

(FFC vy s wh = (tos (Ve ) X2(ve ), wh,  (FFC,y7) w) =0,
for all + € [0, T]. Denote by p, : RY x R¥*d" _ R4'*d’ the projection of
R?" x R?*4" onto the second factor. If x ; isthe solution of the sfde

dxp, =F}(t,x% Yodw,, 0<t<T,
{ F s (I.£.2)

o _.0
YTV Ee

then an application of 1t0’'s formula yields the following expression for the Stra-
tonovich correction term:

k

1 A
AFj(xp ) =3 Z{ (P20 2) (e T-5.0 (e DV FF(t, XY ) (ei) Xa(xe.) (er)
i=1

+ 750 (e, ) DX (e, ) Tr —5 (e, ) F (2, 3% ) (er) }
(2.11)

The above relation together with (2.8) immediately implies that F} i =12,
satisfy Hypothesis (H)(i). Thisisbecausethevector fields X;, i = 1, 2, aresmooth,
M is compact and stochastic parallel transport is arotation on frames.

It remains to check that Fji,i =1, 2, in (2.8) satisfy H(ii). For this we need
to examine the Lipschitz dependence of the solution of (2.9) on the characteristics
(A, B) of the path y., In (2.9), wewill indicate by x (A, B) the dependence of the
solution on the characteristics (A, B) of y,... In the proof of the next lemma and
the rest of the paper, we will denoteby C;,i = 1,2, 3, -- -, generic deterministic
positive constants.

Lemma Il.1. In the sde (2.9), suppose (A, B), (A’, B') are such that there is a
positive deterministic constant R where || A;|| + |B:| + 1A} |l + |B;| < R almost
surely for all ¢+ € [—6, T]. Then there exists a positive constant K := K (R) such
that

E[ sup |%(A, B) — %,(A’, B))?]

—8<s<t

t
< KE[ f (1A = A1+ 1B, — By ds] 2.12)

forall t e [-8, T].

Proof . Let the characteristics (A, B), (A’, B) of y..., y.. satisfy the hypotheses
of the lemma. Then by (2.10) we have
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d % (A, B) —dx;(A’, B))
= Z()?,(A, B))(A; — ADdw; + (Z()?,(A, B))
—Z(%(A', BY)A,dw, + trace]Y (3, (A, B)){A, A — Al (A))*)]dt
+trace[{Y (£ (A, B)) — Y (&;(A’, B")}A/(A))*]dt
+2(£,(A, B))(B; — B))dr + (2()2[(A, B)) — 2(£,(A’, BH)B;dt (2.13)
for all t € [—6§, T]. Now by compactness of M and the orthogonality of sto-
chastic parallel transport, it follows that there is a positive deterministic constant

C1 := C1(R) (independent of (A, B)) such that whenever || A;|| + |B:| < R as.
fordlt e [-6, T], then

1% (A, B)| + | Z(G( (A, B)| + Y (%:(A, B)| < C1

foral ¢ € [—3, T]. Since | A;|| + ||A}|| isas. uniformly bounded in¢ € [0, T] by
R, then ||[A,AF — AJ(A)*|| < R||A, — A}| as. foral ¢t € [0, T]. Using (2.12),
Burkholder’sinequality, the uniform boundedness of ||A |, ||A]l, | B/| and the fact
that ¥, Z are Lipschitz on bounded sets, it is not hard to see that

E[ sup |&(A, B) — &s(A’, B)|?]

—8<s<t

t
< CoE] / A= A+ 1B = B Py

t
+C3/ E[ sup |%(A,B) — (A", B)’]du

—5 —8<s<u

for al + € [-§, T]. The conclusion of the lemma now follows from the above
inequality and Gronwall’s lemma. O

We now complete the proof of the local Lipschitz property (H)(ii) for Fi., i =
1, 2. We give the proof only for F1; the corresponding argument for F}% issimilar
and iseft to the reader. Let yy, . v} € Ssz have characteristics (A, B), (A’, B)

a.s. bounded by a deterministic constant R. Then AF}(t )/f ) is given by an ex-
pression similar to the right-hand-side of (2.11) with x., xy replaced by y., yy.
Now by the Lipschitz property of X and Lemmall.l, one gets

t
E|X2(yes) — X2(v. )I? < C4E] / s - AL+ | By — B.|%)ds]

= Cally}. — ) 15 (2.14)
and
/N2 t AN TY4
Elt_s:(ve,) = T-5,: (Ve )" = Csllyy, — () I3 (2.15)
foral+ e [-§, T]. Using the boundednessof X;,i =1, 2, t_s(yc..), (2.14) and
(2.15), it follows from (2.8) that

E|Ff(t,v}) — Fit, (Y )7 < Cellyh, — (7)Y 115 (2.16)



126 R. Léandre, S.-E.A. Mohammed

foralt e [—8, T]. Finaly, usetherepresentation (2.11) coupled with the Lipschitz
properties (2.14), (2.15) and (2.16) in order to obtain

E|AFF(t. v} ) — AFFe (V) )12 < Crllyh — 0 15 (2.17)

for all r € [0, T]. Thelast inequality and (2.16) imply that F} satisfies H(ii). This
shows that our geometrical examples (1.g1), (1.g2) satisfy Hypotheses (H).
We now state the main theorem of this section.

Theorem [1.2 Assume that the sfde (1.c) satisfies Hypotheses (H). Suppose that
yC € VO has characteristics (A;, B;), t € [—38, O], which are adapted and al-
most surely bounded by a deterministic constant C > 0. Then the sfde (1.c) hasa
unique global solution x. . such that x. |[—6, T] € /T’C for every T > O.

Proof. It issufficient to prove existence and uniqueness of the solution to the flat
It0 sfde (1.if). To do this, we use successive approxi mations. Define the sequence
(¥} In2y ©€ 93 ; inductively by setting x} 1=y} , and

0.n+1 (218

{dx”“ =Fp(t, x{")dw, + AFp(t,x}")dt, 0<i<T,
Xy, —Vf

forall n > 2. By Hypothesis (H)(i), the characteristics of each x;". area.s. bounded
by a deterministic constant independent of r € [—§, T] and n. From (2.18) and
Hypothesis (H)(ii), it is easy to see that

t
Il — 3 < CS/O " = x5 H3ds, 1 €[0.T], n>1. (219

Therefore, by induction on n, we obtain
C8 t"

Il — x5 < (2.20)

foraln > 1andalr € [0, T]. This shows that {x o4 isaCauchy sequencein
?{ 7 which covergestoasolution x ¢, of (2.5). By the 1td map, thisgivesasolution
of (1.c)in y)gc

It remains to show uniqueness. Suppose that there are two solutions x}“ and

_of (I.f). By Hypothesis (H)(i), the characteristics of these two solutions are

2
X
alf most surely bounded. Therefore the relations

dx}, =F(t, x}.;f)dwt +AFp(txphdt, 0<t<T,
dx%, =Fp(t. x3"dw, + AFy(t. x3")dt, 0<t<T, (2.21)
1 2 0
Yro=*ro="Yp
together with (H)(ii) imply that

t
ey — x5 < CQ/ Iy —xj%fngds, O<t<T. (2.22)

This shows that ||x}’ —xf ||2 =O0foralt €[0, T], and uniquenessfollows. 0O
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Remark. For a sfde F, satisfying the delay condition (2.6), one can prove exis-
tence of a solution to (I.c) by using forward steps of length . In particular, given
yQ € ST ., wewrite

Xpo=yp,. —8<1=0,

t
xpe=yPo+ | Fia,y}'"ydw, 0<t<s,
0

'
Xfi =Xfs +/ F}(u,x';_‘s) dw,, 6<t<28,
8

and similarly for the delay periods[28, 35], [38, 44], - - - . Note that this procedure
automatically guarantees uniqueness of the solution to the sfde (I.c) without the
Lipschitz condition (H)(ii).

The following result shows that the solution of (I.c) (or (I.f)) dependsin a
Lipschitz manner on sets of initial paths whose characteristics are amost surely
bounded by a deterministic constant.

Theorem 11.3. Assume Hypotheses (H). Let 7/2., (J/)(f)“ € 9} ; have character-
istics (A, B), (A’, B') that are a.s. uniformly bounded on [—§, O] by a positive
deterministic constant R. Denote by xf,,(yg.), xf,,((y’)?(’.) the solutions of the
sfde (1. f) with initial states y% and (V/)CJ)‘,. respectively. Then there is a positive
constant C := C(R) such that

ey () = x5 (5DI5 = Cllyy. — N5 15 (2.23)

Proof. Using (1.if), Burkholder’s inequality and property (H)(ii), we easily see
that

I () = x% (D5 < M) — )15

t
+C10 /0 ey () = x5 () )l5ds (2.24)

for al t+ € [0, T]. The conclusion of the theorem now follows from the above
inequality and Gronwall’s lemma. O

We will conclude this section by a discussion of atype of Markov property for
solutions of the geometrical example (1.g1). To do this, we will first parametrize
the flat sfde (1. f) with the initial point z € M; that is, consider a family of flat
sfde’'s Fy(-, -, z) : [0, T] x ygf(z) — L9Q, T.(M)), z € M, where ygf(z)
denotes the set of all semimartingales y, (z) in T,(M) satisfying yz _s(z) = 0
(or ye.—s(z) = z) and (2.3). Now “randomize” z by introducing arandom variable
Z € LO%(2, M) independent of w,, r > —§. Then consider the equation

dxf(Z) =Ff(t,x‘tf“(Z), Z)odw,, t=>0

(2.25)
9.2 =%.(2) € 9% (D).
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Notethestarting conditionx., _s(Z) = Z. Assumethat F(, -, z) satisfies Hypoth-
eses (H)(i)(ii) uniformly inz € M. If wefixz € M, weget auniquesolution x s, (z)
of the sfde (2.25) when Z isreplaced by z. Since Z isindependent of w;, > —§,
one may obtain aunigue solution x ¢ (Z) of (2.25) starting from 0 in Tz (M). This
folllows from a Picard iteration argument on 7z (M), which is alinear space. By
the It map, the corresponding solution x., (Z) on M starts from Z instead of the
deterministic point x.
Let us now turn to the geometrical sfde

t
dxc :{/ Trs(Xe, ) X1(xc5) ds + Xz(xc,[)} odw;, O<t<T,
=8 (I.g1)

0

_.,0
xc,. _VC,.'

If yo. : [-8,T] x @ — M isasemimartingale, we will denote by y. (¢) its
restriction to the timeinterval [r — 8, ¢] for eachr € [0, T].
Fix ro > 0. Then, for ¢ € (t0, T'), x; iSthe unique solution of the sfde

t
dxé,[ :{/ Tt,s(xé,,)Xl(xé,s)ds + XZ(xé,t)} odwy;, th<t<T,
=8
x,. (t0) =xc,.(10). (2.26)

Now x. ,,—s isindependent of dw,, r > to—4§, and (I.g1) hasaunique solution.
Therefore,

XL, =Xeq, =10, (2.27)

becausethe parallel transport in (1.g1) depends only on the path between ¢ — § and
t. The above identity constitutes atype of Markov property. Indeed, let x. (Vg_)(u)_)

denote the solution of the geometrical sfde (1.g1) with initial condition yg_. Then
the following equality holds aimost surely

()W) = x (e (V@ Nwpy), 1>, (2.28)
where wy 4 isthe Brownian shift wy s > wyys — wy.
Remark. Relation (2.28) also holdsfor the geometrical delay equation (1.g2). This
follows by asimilar argument to the above.

[1I. Differentiability in the Chen—Souriau sense

Inthispart, we consider thefollowing parametrized version of the geometrical sdde
(1.g2):
dxci(u) =t ,—s(xc, () X1(xc(—s(u)) odw,, 0<t<T,

3.1
X0 (w) =y ), G

with u € U, a bounded open subset of R", X1 a smooth section of the k-frame
bundle L(R¥, T (M)) — M, and initial conditions 2 (u).
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We would like to study the sample-path differentiability of x..(u) in the
parameter u. It is sufficient to examine the flat version of the sdde (3.1):

[dxf:z(u) =T_g1—5(xc, W) X1(xc—sW)) odw,, 0<t<T,

3.2
x(},,(u) =J/2,(u). )

The fact that the parameter u is finite-dimensional will alow us to use traditional
tools such asKolmogorov’slemma, Sobolev’ sembedding theorem, etc... In order to
facilitatethis, wewill first examinethea.s. dependence onu of thestochastic parallel
transporttermt_s ;s (x., (1)) in (3.2). Introduce thefollowing notation. L et ygo’
denote the Fréchet space of all semimartingalesy ;. € (=6, T], Tx(M); =38, 0)
such that

t t
J/f,z=/ Asdws+/ B; ds, O0<t<T,
8 -8

and ; ,
IIJ/f,,Ilﬁ = /a EIIASII”dSJr/ E|Bg|? ds < oo, (3.3

for al integers p > 1. Asbefore, A : [-8,T] x Q@ — L(RF, T, (M)) and B :
[-6,T] x @ — T.(M) are adapted, previsible processes. We will denote by
y;,c the image of VgQ / under the Itd map with the induced topology. (See
section Il). Let || - ||, denote the corresponding norms when T is replaced by

tin (3.3). Suppose « = (ay,---@p) is amulti-index of order |«| := Z“i'
i=1
The partial derivatives of order |«| with respect to u = (uy, u2,--- ,u,) ae
Jor]
denoted by D* := 8—“” Consider the following differentiability hy-

8u‘i1 ...0Uy,
potheses on the characteristics (A (u), B.(u)) of a parametrized family y; (1) €
L (-8, T], Tx(M); =6, 0).

Hypotheses (D).

(i) There exists a deterministic constant R (independent of u € U) such that
|A; ()| + | B:(u)| < R dmost surely foral ¢t e [-5, T]anddl u € U.

(i) (A.(u), B.(1)) have modificationswhich are a.s. smooth in u, with derivatives
(D*A_(u), D*B.(u)), and the mappings

U>sur DA (u) € LP([-8, T] x Q, L(R*, T (M)))
U5sur D¥B.(u) € LP([=8, T] x , Tx(M))

are continuous (in the underlying L”-norms (3.3)) for every positiveinteger p.

Lemma Ill.1. Let the manifold M be embedded (isometrically) in R¥’ for some
d' > d, and denote all embedded entities by the same symbols. Assume that the
family y., (v) € (-8, T], M; =8, x), u € U, satisfies Hypotheses (D). Then the
pair

£e() = (Vea ), 7, (e, )))
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has a modification with almost all sample functions smooth in u. Furthermore,
for any multi-index « and any positive integer p, there exist positive deterministic
constants K; := K;(p,a),i = 1,2, independentof u € U, t € [—6, T], such that

SUPE sup [|DY%w)|? < K1eX? (3.4)
uelU  se[—6,1]

forall r € [—38, T].
Proof . Using (2.10), the couple (v, (), 7, 25 (ve..())) = % (u) satisfies the Itd
stochastic differential equation

A& (1) = Z(Fe () A () dw; + trace(¥ (2 (u)) A, (u) A} (u)) dt

+ 7R w)B,w)dt, —-8<t<T, (35

X_s(w) = (x, Idga),
where Z, ¥ areasin (2.9). Sincethe characteristics (A («), B.(u)) havea.s. smooth
modificationsin u, it follows from ([Kun], Theorem 4.6.5, p. 173) that x;(«) hasa
modification whichisa.s. smoothinu. In order to prove (3.4), we pick such amod-
ification of x; («) and show first that (3.4) holdsfor |a| = 1. Thederivative Dx; («)

of x;(u) with respect to u satisfies the following stochastic differential equation
which is obtained by formally differentiating (3.5) with respect to u:

dD% () =DZ (% (u)) D% () A (u) dw,

+ Z(& ) DA; ) dw, + trace{D?(;e,(u))D)et(u)A,(u)Aj(u)

+ Y (& ) DA ) A} (u) + f’(fr(u))Az(u)DA}k(u)} dt

+ DZ (% (u)) DX, (u) B, (u) dt 4+ Z(%(u)) DB, (u) dt,
—6<t<T,
Di_gs(u) =(0, 0). (3.6)

Note that in the above sde, the process X;(u) livesin a compact (non-random) set
on which Y and Z are bounded together with all their derivatives. Therefore we
can take p-th momentsin (3.6), use Burkholder’s inequality and Hypotheses (D)

to obtain .

o E C7 + CB/ U dsv _8 S t S T7 (3'7)
-5

wherea; ;= supE sup ||Dxs(u)|” for =8 < < T, and the constants C7, Cs
uelU  se[—8,1]
areindependent of u € U. Applying Gronwall’s lemmato (3.7) gives

SUPE sup [|DE(w)||? < C7e“
uelU  se[—45,1]

foral t € [—8, T]. Thisshowsthat (3.4) holds for « = 1. We complete the proof
by induction on |«|. Suppose the estimate (3.4) holds for all multi-indicesa = ag
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with |ag| < |a| + 1. Let o’ be amulti-index such that |o’| = |«| + 1. By repeated
differentiation of (3.5) with respect u, itisnot hard to seethat there are polynomials
Q;,i = 1,2, suchthat
dDY % (u) = DZ (%)) D % () A, (u) dw,

+ DZ (& (u)) D % (u) B, (u) dt

+ trace(DY (& () DY &, (u) A; (u) A¥(u)} dt

+ Y QuDT ZG W), DR (). DA (),

ol :Z?:l et | <|a|
DY A*(u), D% B, (u)) dw;
A 2 A .
+ Y QDG W), PP ZG ),

B0y 1B <l
DP% (), DP* A, w), D AF ), DP° By () i,
—8<t<T,
D*%_s(u) = (0,0).
(3.8)

Note that in the above equation, the term DY %, (u) appears linearly, while, by the
inductive hypothesis, the lower order derivatives D“0x, (1) satisfy the inequality
(3.4) for |ag| < |&’|. Using this fact, Hypotheses (D) and Burkholder’s inequality,
it followsfrom (3.8) that there are positive constants C;, i = 9, 10, independent of
u such that

t
Br < Co+ Cmf Bsds, —86<t<T, (3.9
-8

where 8; ;= sUp E  sup ||D“’£t(u)||P for =8 <t < T. The conclusion of the
uelU  te[-4,T]
lemma now follows from (3.9) by Gronwall’s lemmaand induction on |«|. O

In the sequel, the abbreviation “/.0.” will denote lower order terms (e.g. the last
two terms on the right hand side of (3.8)) whose moments are readily computed
and estimated by induction on «.

Theorem I11.2 Assume that the characteristics (A%(u), B%(u)) of y2 (u) in (3.1)
satisfy Hypotheses (D). Then the solution x. ;(«) of (3.1) has a modification a.s.
smooth in u. Furthermore, the solution x ¢, (1) of the flat equation (3.2) satisfies
the inequality
SUPE sup [[D%xp;@)l|” < Kaek¥ (3.10)
uelU  se[—8,1]
for all + € [, T], and for some positive constants K3 = Kz(p,«a), K4 =
Ka(p, a), independent of u € U.

Proof. To prove the first assertion of the theorem it is sufficient to show that for
each multindex «, x 7, (1) admits a version with continuous partial derivatives of
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order |a| in u. Embed M (isometrically) in R? for somed > d.We proceed
by induction on «. Let g(v, z) := zX(y), where z represents stochastic parallel
transport and is therefore an orthogonal matrix, and y belongs to M. Then g is
bounded and has bounded derivatives of all orders. Now rewrite (3.2) in the form

:dxm(u) =g(&e—s))dw,, t>0,

311
x%(u) =V]9,‘(M)- (10

Where}ec,t = (xc15 Tt,_jhg(xc,.))-

In (3.12), the initial condition 32 (u) is given by yﬁt(u) = ["5 A%u) dw, +
[t BOu)ds for —8 < t < 0, where A%u) and B%(u) satisfy Hypotheses (D).
Theseimply that 9, (u) has amodification whichis as. smooth in u (and H'older
continuousin ¢ € [—4§, O] with exponent < %) ([Kun], Theorem 3.3.3, pp. 94-95).

We will prove the differentiability of x ¢, (u),t € [0, T], in u using forward
steps of length §. On [0, §], the identity

t
x4 (u) =y o) + /0 g 5. 15 (2 ) dw,, 1 €]0,6]
X9 W =y) W), wueU, (3.12)

and ([Kun], Theorem 3.3.3, pp. 94-95) imply that x 7, (1) has an a.s. smooth modi-
ficationinu. Indeed, D*x r,; satisfiesthe equation obtained by taking partial deriva-
tives of order |«| under the stochastic integral signin (3.12), viz.

t
D%xy(u) =Dy Po(u) + /0 Dg(y2_s ), 775 _s (v ) (D*y2 5w,

Dt (v ) dws +1o., te[0,0],
D*x9 () =Dy} (u). (3.13)

Using Burkholder’'s inequality, Hypotheses (D) and Lemma l11.1, it follows from
(3.13) that the estimate (3.10) holdsfor all ¢ € [—3, 3].

A similar argument totheaboveworksfor theforwardintervals[§, 28], [25, 3§],
-+ -, and hence by induction for all # € [—§, T']. This completes the proof of the
lemma. O

Remark. Consider the following generalization of (3.1):

{ dxe,i(u) = T1,1-5 (X, () X1(xc,1—5) (0 A (w)dw; + B, (u)dt), ¢ >0,

XX w)=y>w), ued,

(3.14)
where X1 is a smooth section of the k-frame bundle L(R*, T(M)) — M, and
A;(u) € L(RY, B;(u) € R¥fort > 0,u € U. Suppose that the characteristics
(A%(u), BO(w)) of 2 (u) and (A.(u), B.(u)) all satisfy Hypotheses (D). By asim-
ilar argument to the one used in the proof of Lemma lll.2, the solution x., (u) of
(3.14) admits a smooth version in u.
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We conclude this section by expressing the result in the above remark in terms
of the stochastic calculus of Chen-Souriau ([Le2], [Les]).

Definitions I11.3. A stochastic plot on the space Soo ([—6, 0], M; =8, x) X Seo
([0, T, R*; 0, 0) isatriplet (U, ¢, R™) consisting of an open subset U of some Eu-
clideanspaceR"” andamappingU > u — ¢ (u) := (y.(u), z.(u)) € Seo.([—3, O],
M; —8,x) X Sso([0, T], R¥; 0, 0) such that the characteristics of y. (1) and z.(u)
satisfy Hypotheses (D).

Let (U, ¢, R") beastochasticploton Seo ([—8, O], M; =8, x) x Seo ([0, T].R¥;
0,0), and let j : U1 — U be a smooth deterministic map where U, is an open
subset of R"1. Define ¢ (u1) := ¢ (j oug) for al u; € Uy. Itiseasy to check that
(U1, ¢*, R") isastochastic plot, called the composite plot.

Next we consider the effect of a measure-space isomorphism on a stochas-
tic plot. More specifically, let (U, ¢, R") be a stochastic plot on S ([—6, O],
M; —8,x) x Sso([0, T],R¥;0,0). Suppose ¥ : (Q, %) — (Q,7) isa P-
preserving measurable bijection. Assume that the spaces S ([—§, 0], M; =3, x)
and S ([0, T, R¥; 0, 0) consist of semimartingales based on a Brownian motion
w;, —8 <t < T on afiltered probability space (22, #, (¥ ):e[-s,T], P). For any
Y. € Seo.c([<8,0], M; =8, x) and z. € Sx ([0, T], R¥; 0, 0) define the processes

YY) = y.WW) ) =z(¥w)

for al w € Q. Then y¥ and z¥ are semimartingales on the filtered probability
space (2, 7, (\y‘l(?t)m[_(;,r], P) based on the Brownian motion w,“’(w) =
w, (¥ (w)), € Q. 1f y_has characteristics (A, B.) (with respect w), then y ¥ has
characteristics(AY, BY) (withrespectw¥)where AY (w) := A (¥ (w)), BY (0) =
B (¥(w)) foral w € Q. Let SY .([-5, 0], M; -3, x) denote the set of all "
whose characteristics satisfy a relation analogous to (3.3) for all integers p > 1.
Define g (u)(w) := ¢ (u)(¥(w)) fordlu € U andw € Q. Then (U, ¥, R") isa
stochastic plot on S5, .([—8, 0], M; =8, x) x SY.([0, T], R; 0, 0). It is clear that
W induces an isometry between Ss ¢ ([—8, O], T (M); —3, 0) and S;"o’f([—é, 0,
T.(M); —68,0). A similar relationship holds for S ([0, 7], R¥;0,0) and
s;’g([o, T1,R¥;0,0). In what follows we shall identify these spaces and sfde’s
defined on them. In particular, we will drop the superscript ¥ from all entities and
processes induced by .

We next introduce the following definition of a smooth functional
Seo.c([—8, 0], M; =8, x) x Sso([0, T], R¥; 0,0) — LO(Q, M)

in the Chen-Souriau sense:

DefinitionIll.4. Afunctional A : Sec.c([—38, 0], M; =8, x) X Sac ([0, TT, Rk 0,0
— L%, M) is said to be smooth in the Chen-Souriau sense if it satisfies the
following requirements:

(i) Toeachstochasticplot (U, ¢, R™), the composite process A (¢. (1)) hasan a.s.
smooth versioninu € U.
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(if) Let j : Uy — Uz be a smooth deterministic map from an open subset Uz
of R™ into an open subset Us of R"2. Let (U, ¢2, R"2) be a stochastic plot,
and denote by (Uz, ¢*, R"1) the composite plot ¢1(u1) = ¢(j o u1) for all
uy € Uy. Thenthereisasure event Qg, 4, < 2 such that

A@Hu) (@) = A@?(j o u1))(®) (315

forall w € Qg¢, 4, and all uy € Uy.

(i) Let (U, $%, R"™) be a stochastic plot. Let ¥ : (Q, %) — (Q, F) bea P-
preserving measurable transformation. Define the stochastic plot (U, ¢?, R"2)
by ¢ (1) (®) = ¢p?(u)(¥(w)) for dmost al w € Q. Then

AP W) (@) = AP%w) (¥ (o)) (3.16)

foramost all w € Q.

Remark. Using Kolmogorov’s lemma, we may, in part (iii) of Definition 111.4,
assume that our plot qﬁ,l(u)(a)) has a smooth version in u for the L? topology (and
not the semimartingal e topology).

We now state the main result of this part of the article.

Theorem III.5. Consider the solution xc,,(yg, z.) of the geometrical sdde (7.g2)
starting from Vco,, inSeo.c([—$, 0], M; —4, x) and driven by a semimartingale path
z.in S5 ([0, T1, R¥; 0, 0). Thenthemap (2, z.) > xc.(¥2., z.) issmooth in the
Chen-Souriau sense.

Proof. Therequirements(i)- (iii) in Definition I11.4 follows from the fact that they
are easily satisfied on [—4, 8] by the Itd integral in (3.12), and hence on the whole
interval [—3§, T] by using forward steps of length 5. O

Remark. Using a (lengthy) Peano approximation argument, it can be shown that
the solution of the geometrical sfde (1.g1) is smooth in the Chen-Souriau sense.
Note that the method of forward steps does not apply for the sfde (1.g1).
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