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Abstract. A random rectangle is the product of two independent random intervals, each
being the interval between two random points drawn independently and uniformly from
[0, 1]. We prove that the number C, of itemsin a maximum cardinality digjoint subset of n
random rectangles satisfies

n?/K <EC, < Kn'?,

where K isan absolute constant. Although tight boundsfor the problem generalizedtod > 2
dimensionsremain an open problem, we are able to show that, for some absol ute constant K,

n*?/K < EC, < K(nlog™tn)Y/2.

Finally, for acertain distribution of random cubeswe show that for some absolute constant K,
the number Q,, of itemsin amaximum cardinality digoint subset of the cubes satisfies

nd/(d+1)/K <EQ, < Knd/(d+1).

1. Introduction

We estimate the expected number of itemsin amaximum cardinality disj oint subset
of n rectangles chosen at random in the unit square. We say that such asubset isa
packing of the n rectangles, and stress that a rectangle is specified by its position
aswell asitssides; it can not be freely moved to any position asin strip packing or
two-dimensional bin packing (see[2] and thereferencestherein for the probabilistic
analysis of algorithms for these problems). A random rectangle is the product of
two independent random intervals on the coordinate axes; each random interval
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in turn is the interval between two independent uniform random draws from the
interval [0, 1].

Thisproblemisanimmediate generalization of the one-dimensional problem of
packing random intervals [4]. It generalizes in an obvious way to packing random
rectangles (boxes) in d > 2 dimensions into the d-dimensional unit cube, where
each such box is determined by 2d independent random draws from [0, 1], two
for every dimension. A later section also studies the case of random cubes in
d > 2 dimensions. For this case, it is convenient to wrap around the dimensions
of the unit cube to form atoroid. A random cube is generated by drawing d + 1
random variables v1, va, .. ., vg, and w, independently and uniformly from [0, 1],
to produce the cube

[v1, v1 4+ w) X [v2, v2 4+ w) X - -+ X [vg, Vg + w).

We note that for the rectangle packing problem (but not for the cube packing
problem) we can replace the uniform distribution over [0, 1] by any continuous
distribution over [0, 1] without any change in the distribution of the maximum
cardinality of a packing, because the relevant intersection properties depend only
on therelative ordering of the pointsthat determinetheintervalsin each dimension.

Potential applications of our model appear in jointly scheduling resources,
where customers require specific “intervals’ of a resource for specific intervals
of time. Suppose that in a linear network, we have aset S of call requests, each
specifying apair of endpoints(calling parties) that defineaninterval of the network.
If we suppose also that each request gives afuture time interval to be reserved for
thecall, thenacall request isarectanglein thetwo dimensions of spaceandtime. In
an unnormalized and perhaps discretized form, we can pose our problem asfinding
the expected value of the number of requestsin S that can be accommodated.

We note that the combinatorial version of our problem is equivalent to finding
maximum independent sets in intersection graphs. For the case of arbitrary rectan-
glesthisisNP-complete[6]; henceitisalso NP-completefor rectanglesof arbitrary
dimension d > 2. It remains NP-complete even if we only allow the packing of
equal size squares, by an approach like that in [1, 6] (which was applied in [1] to
equal size circles; the approach is equally applicable to equal size squares); again,
this generalizes to any dimension d > 2. For the case of d = 1, our problem
is equivalent to finding maximum independent sets in interval graphs; this can be
solvedinlinear time[3, 7] evenfor alarger classof graphsknown aschordal graphs.
For the case of interval graphs, the fact that a simple greedy agorithm gives the
optimum was used in the precise analysis of [4].

For convenience, we use the notation of [5] for describing asymptotic bounds.
Let f(n) and g(n) bereal-valued functions, with g(n) positive for large n. We say
f(n) = O(g(n)) if there exist constants ¢ and ng such that

n>ng = [f(n)| <cgn).
Wesay f(n) = Q(g(n)) if there exist constants ¢ > 0 and ng such that

n>no = f(n) >cgh).
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Finaly, we say f(n) = ©(g(n)) if there exist positive constants c1, c2, and ng
such that

n>ng = c1g8(n) < f(n) < cog(n).

Notethatif f and g aredefined ontheintegers, and are positivefor positiveintegers,
then for each of these notations we can constrain the choice of ng to be 1 without
changing the meaning of the definition; thus the bounds are in fact hard bounds
rather than merely asymptotic bounds. This explains why we can claim the hard
bounds given in the abstract.

Let S, beagiven set of random boxes, and let C,, be the maximum cardinality
of any set of mutually disjoint boxestaken from S,,. After preliminariesin the next
section, Section 3 proves that, in the case of cubesind > 2 dimensions, E[C,] =
O (n?/@+D) and Section 4 proves that, in the case of boxes in d dimensions,
E[Ca] = (nY2) and E[C,] = O((nlog?~1n)Y/2). In Section 5, thefinal section,
we first prove an O (n'/?) bound for a reduced, discretized version of the two
dimensional problem, and then prove that the reduced version has the same upper
bound as the original version, thus showing that for the case of boxesind = 2
dimensions, E[C,] = ©(n'/?); thisis the most difficult result in the paper.

2. Preliminaries

We can Poissonize the problem without affecting our results. In this version, the
number of rectangles is a Poisson distributed random variable 7, with mean A.
Equivalently, we could generate the rectangl es from a Poi sson process with uniform
intensity on

(e, x',y,Y)]|0<x<x'<land 0<y<y <1}

by letting each point (x, x, v, y") yield the rectangle [x, x'] x [y, y]. Let C(})
denote the number of rectangles packed in a maximum cardinality disjoint subset.

Thefact that upper boundsonthe EC (n) arealso upper boundson EC,, (modulo
constant factors) is easily argued as follows. Since EC,, is nondecreasing in n, we
can write EC(n) > Pr[T,, > n/2]EC,>. Thus, an upper bound for EC(n) yields
an upper bound for EC;, /> and hencefor EC,,, up to aconstant multiplicative factor.
(In fact standard arguments easily show that

EC, ~ EC(n); 1

see Appendix A.) Wewill continue to parenthesize argumentsin the notation of the
Poi ssonized model to distinguish quantitieslike C,, in the model where the number
of rectanglesto pack isfixed at n.

Let X3,..., X, bei.i.d. with adistribution F' concentrated on [0, 1], and let
(s, € (0,1];n > 1) be a given sequence. Let N, (F, s,), which we shorten to
N, when the arguments are clear from context, be the random variable giving the
maximum number of the X; that can be chosen such that their sum is at most ns,;;
equivalently, N,, is such that the sum of the smallest N,, of the X; is at most ns,,,
but the sum of the smallest N, + 1 of the X; exceeds ns,. (If Y_7_; X; < nsy, let
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N, ben.) The remainder of this section derives an estimate of the expected value
of N, (F, sp).
The following notion will be useful.

Definition 1. Say a function F is admissible if, for some&é > 0and K < 1, F is
continuouson [0, £] and for all x € [0, §] wehave F(x/2) < K F(x).

Let X;,i = 1,2,...,n, beindependent random variables with mean 0 and
variance o2, and suppose that | X;| < M. Then for x > 0 Bernstein’s inequality

tells us that
n 2
Pf{ZXi zxﬁ} < e (——x /2 ) -
: 02+ Mx
i=1 3/n
The following easily proved corollary will be useful.

Lemmal. Let Y be a random variable concentrated on [0, »], and let n be a
positive integer. Define Y,, as the sum of n independent samples distributed as Y.
Then for any y > 0, we have

2
Pr{|Y, — EY,| > y} < 2exp <_ min( y 3y>>.

4bEY,’ 4b

While the following technical lemmais easily proved by standard techniques,
for completeness we record it herein aform convenient to us.

Lemma 2. Let F beanadmissibledistributionfunctionon [0, 1]. For each element
of a given positive sequence (s,,, n > 1), let x,, be a solution to

Sy = /Xn xdF(x), )
0

and assumethat lim s, = lim x, = 0. ThenifnF(x,) = Q(Iogzsn 1), we have
n—0o0 n—0o0

E[Nn(Fa Sn)] ~nF(xp). (3)

Proof. By (2), we have s, < x,c,, where ¢, := F(x,) isintroduced to simplify
notation. Also, letting K be as given in Definition 1, we have

" o 1— K)xne
Sn 2[ xdF(x) > x_nf dF(x) > x_n(l_ K)F(x,) = ( )XnCn ’
/2 2 J,2 2 2

where the penultimate step followsfrom lim x, = 0 and thefact that F isadmis-

n— o0
sible. (Statementsin this proof should all be interpreted as holding for sufficiently
largen.) Thus, s, = O(x,cy).

Now let (e,, n > 1) be apositive sequence to be chosen later with the property
that e, — 0. Let x; beasolutionto F(x]) = ¢,(1—¢€,/2). For large enough n, we
will havel—¢,/2 > K, sofromthefact that F isadmissible, we havex;, > x,/2.
Then for some 8, € [1/2, 1],

/xn xdF(x) = Bpxy /xn dF(x) = Bypxnencn/2. (4)

’
n
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By thefact that s, = ©(x,c;,), we see that thisiso(s,), and hence

/

fx’lxdF(x)Nsn. 5)
0

Now if N, < nc, (1 — €,), we must have

i+ Xi < x} < nca(l—€,) (6)
or
Z Xi > nsy . (7)
ir X;<x/

n

To apply Lemma1to (6), let ¥ be distributed asthe indicator 1y, <,/ so that
E[Y,] =nF(x])) = ncy(1 —€,/2) ~ ncy ,
by the definition of x; . Next, set

b =1,
y = E[Yn] —nep(l—¢,) = nencn/z»

so by Lemma 1 the probability of the event in (6) is bounded by

exp(—Q(nenc,, min(1, en))) = exp(—Q(nefc,,)) . (8

Similarly, we apply Lemma 1 to (7) with ¥ distributed as 1x, <, X; and the
remaining parameters

E[Y,]=n [xn xdF(x) ~ nsy, by (5),

0
b = x), = ©(x,) sincex;, > x,/2,and
y = nsy — E[Yy] = O(nxpency) by (4)

to bound the probability of the event in (7) by

exp <—Q<n€ncn min(l, x”:c" ))) = exp (—Q(nefcn)) (9)

where the last step follows from s, = ® (x,¢,). Thus (9) bounds the probability
that (6) or (7) holds, and thus bounds the probability that N, < nc,(1 — €,). By
letting €, = (nc,) Y, we can make this probability be o(s,) by the assumption
nF(x,) = Q(log?s; 1) of thelemma. Hence

EN, > nc,(1— en)(l — o(s,,)) ~necy.

A similar lower bound can be shown; combining these two boundsproves(3). [
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3. Random cubes

The optimum packing of random cubes is readily analyzed. We work with a d-
dimensional unit cube, and allow (toroidal) wrapping in all axes. The n cubes are
generated independently as follows: First a vertex (v, va, ..., vg) IS generated
by drawing each v; independently from the uniform distribution on [0, 1]. Then
one more value w is drawn independently, again uniformly from [0, 1]. The cube
generated is

[v1, v1 4+ w) x [v2, v2 4+ w) X -+ X [vg, Vg + W),

where each coordinate is taken modulo 1. In this set-up, we have the following
result.

Theorem 1. The expected cardinality of a maximum packing of » random cubes
is @ (nd/@+D)y,

Proof. We begin by considering the following simple heuristic. Subdivide the cube
into ¢~ cells with sides

¢ = qn~ Y@+

where « isaparameter that may be chosen to optimize performance. For each cell
%, if there are any generated cubes contained in %, include one of these in the
packing. Clearly, al of the cubes packed are nonoverlapping.

To analyze this heuristic, we first fix a cell ¥ with side ¢ and estimate the
probability that a generated cube will lie completely within €. Using the cube
generation process described above, the probability that the vertex (vq, vo, . . ., vg)
liesin % is ¢?. For the generated cube to liein % we must of course also have that
the generated size w isin [0, ¢), which happens with probability c. It is not hard
to see that if both of these conditions are met, then the probability that the cube
will fit is just the probability that the last of d + 1 uniform draws from [0, ¢] is
thesmallest, i.e., 1/(d + 1). Hence the probability that a generated cubefitsinto a
particular cell % isc?+1/(d + 1), and the probability that % remains empty after
generating all n cubesis

Cd+1 n O[d+1 n ad+1
1— = (1-———) ~exp(- .
d+1 n(d+1) d+1

Since the number of cellsis

1 nd/d+1)
d

o
the expectation of the total number of cubes packed is asymptotic to

d adtt d/d+1)
1 -exp| —— ,
o (1))

which gives the desired lower bound.
The upper bound i s based on the simple observation that the sum of the volumes
of the packed cubesis at most 1. First we consider the probability distribution of
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the volume of a single generated cube. The side of this cube is a uniform random
variable U over [0, 1]. Thus the probahility that its volume is bounded by x is

Fx) :Pr{Ud gx} :Pr{U gxl/d} =V

Then applying Lemma 2 with

1 d 4 1\4/@+D) d 4+ 1\ Y@+
Sp = —, Xn = ( ) ) Cn = ( ) )
n

n n

we conclude that the expected number of cubes selected before their total volume
exceeds 1 is asymptotic to

d+ 1)1/(d+1)nd/(d+l) ,
which gives the desired matching upper bound. O
4. Boundsfor d > 2 dimensional boxes

In the remainder of the paper, let #; denote the unit hypercubeind > 1 dimen-
sions. This section is confined to the following result.

Theorem 2. Fixd and draw n boxes uniformly at randomfrom # ;. The maximum
number that can be packed without overlap is asymptotically bounded from below

by €2(/n) and from above by O (vn In¢~1n).

Proof. We start by calculating the distribution function F; for the volume of a
d-dimensional box, recalling that each dimension is distributed as the absolute
difference between two independent random draws, and thus has the density 2(1 —
7). Fy isthedistribution of the product of d independent such variables. Ford = 1
we readily obtain

Fi(x) = 2x — x2.

For higher dimensions we may use the recurrence

x 1 X
/02(1—z)dz+/ 2(1—Z)Fd<z>dz

1
2x—x2+2/ (1—z)Fd(§)dz. (10)

Fgp1(x)

In particular, one computes
Fa(x) = 4xInx™1 4 2x2Inx1 — 4x + 5x2. (11)

The exact form of F; becomes complicated as d increases, so we will settle for
an asymptotic estimate. Some notation will be useful. Let Ly (z) denote the set of
al functions which can be formed by taking linear combinations (with absolute-
constant coefficients) of terms of theform In™ z, wherem < {0, 1, ..., k}. Thus,in
particular, Lo(z) just represents the set of all constants. An expression containing
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one or more instances of this notation is to be interpreted as the set of all possible
functionsthat can be obtained by replacing each instance by any element of the set
it represents.

Thefollowing is proved in Appendix B.
Lemma 3. For d > 2, we have

d
da-2n!

Fy(x) € xInd XLy o) + x2La 1 (x7 Y.

2d71

To apply Lemma 2 we solve
2Ind-1,-1

1 o w2 d-1 -1
;:sn:/() xdFd(x)'v/O (d—l)!xm x de(d_l)! . x,

d—1)!
xn ~ Y 7 1
nind=1p
Fu(o) ~ 2 Ini—1p
Xp) ~ _—
d d—Dln

Together with Lemma 2, this yields the desired upper bound; more precisely, this
gives the asymptatic upper bound

2 nind=1p .
V@1

The lower bound argument is the same as that for cubes, except that 7, is
partitioned into cells with sides on the order of n~1/(4) |t iseasy to verify that, on
average, thereis a constant fraction of the ® (n1/2) cellsin which each cell wholly
contains at least one of the given rectangles. The details are left to thereader. [

to obtain

and then

5. Tight bound for d=2

Closing the gaps left by the bounds on E[C,,] for d > 3 remains an interesting
open problem. However, we can show that the lower bound for d = 2 istight, i.e,,
E[C,] = ©(n'/?). To provethe O (n*/?) bound, we analyze the following reduced,
discretized version. A canonical interval is an interval that, for somei > 0, has
length 2% and has a left endpoint at some multiple of 27%. A canonical rectangle
is the product of two canonical intervals. We consider a Poissonized model of
canonical rectangles in which the number of instances of each possible canonical
rectangle of area a isindependently Poisson distributed with mean ra?. We refer
to this version as the reduced problem with parameter A, and let C*(2) denote the
cardinality of a maximum packing.

Notethat there are i 4 1 shapes possible for arectangle of area2~, and that for
each of these shapes there are 2 canonical rectangles. The mean number of each
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of theseis 1 /2% . Thus, the total number T'(1) of rectanglesin the reduced problem
with parameter A is Poisson distributed with mean

D +D2(2%) =2 (+D27 =4 (12)
i=0 i=0

Theorem 3. We have the asymptotic upper bound
E[C*(W)] = O(AY?).

Proof. Let Z1 be the maximum number of rectangles that can be packed if we
disallow packings that use rectangles spanning the height of the sgquare. Define
Z, similarly when packings that use rectangles spanning the width of the square
are disalowed. By symmetry, Z1 and Z, have the same distribution, although
they may not be independent. To investigate this distribution, we begin with two
observations, the second relying on the properties of canonical rectangles: (i) a
rectangle spanning the width of #» and a rectangle spanning the height of >
must intersect and hence can not coexist in a packing; (ii) rectangles spanning the
height of 2#, are the only rectangles crossing the horizontal line separating the top
and bottom halves of 2 and rectangles spanning the width of 2, are the only
ones crossing the vertical line separating the left and right halves of 5. It follows
that, if a maximum cardinality packing is not just asingle 1 x 1 square, then it
consists of apair of digoint maximum cardinality packings, onein the bottom half
and one in the top half of # 5, or a similar pair of subpackings, one in the left
half and one in the right half of #,. After rescaling, these subpackings become
solutionsto our original problem on # 2 with the new parameter A timesthe square
of half the area of #5, i.e., /4. We conclude that Z, and Z» are both distributed
as the sum of two independent samples of C*(1/4), and that

C*(A) < Zo+ max(Z1, Z2), (13)

where Zg isthe indicator function of the event that the entire square 2 is one of
the given rectangles. Note that Zg is independent of Z1 and Z».
At thispoint it is convenient to consider the transform

S := E[e*CW].
Since C*(1) < T (i) and T (1) is Poisson distributed with parameter 41, we have

SO < E[e*TV] = exp(4r(e” — 1)). (14)
Using (13) we have
S = E[e“c*()‘)] < E[e“zo] E[eo‘ max(Zl,Zz)]
< ¢“E [max(e‘)‘zl, e“zz):l <e* (E[eazl] + E[e“zz]> . (15)

Recalling that Z1, Z, are equal in distribution to sums of two independent samples
of C*(1/4), we have E[e?%1] = E[e*%2] = (5(1/4))2, and so

S() < 2¢%(S(0/8)°. (16)
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Elementary bounds and calculations are al that remain. We readily compute
from (16) that
M
S@) < (2e)2" 1 (s(n)?

where M := [log, A]. By (14), we have S(1) < exp(4(e* — 1)), and so

’

SO < 292" Lexp (2M+2(e°‘ - 1)) . (17)
Then, using the bound E[C* ()] < e 2 INE[e*C” )], we obtain
E[C* W] = @t (2" = 1)@ +1n2) + 2+3(e” — 1)) .

Since 2M = ©(11/2), we can put o = 1 and conclude that E[C*(1)] = 0(11/?),
as desired. O

Before continuing we recall some basic facts about the Poisson distribution.
Let IT, denote the Poisson distribution with mean A.

Fact 1. Let X and Y be independent random variables with distributions IT, and
IT,,, respectively. Then X + Y hasdistribution IT; ;.

Fact 2. Let X be a positive integer-valued random variable, and interpret each
valueasacolor; let p. = Pr{X = c}. Alsolet N have distribution IT, . Suppose we
take N ballsand color each one independently distributed as X. Then the number
of balls of color ¢ isindependent of the numbers of balls of the other colors and
has distribution IT;,,. .

(Note that Fact 2 follows from the readily verified equalities

[e.¢]

Ak k ad X ple A)re
i )T —e [T - [ 22
P\xx2,.0 ) 0 o Xe! xc!

c=1

wherek = 3221 x..)

Theorem 3, together with the following Lemma, implies our main result. Inthe
proof we say that a random variable X is stochastically dominated by a random
variable Y if for al real z we have

PriX <z} > Pr{Y <z}.
Lemma 4. The following bound holds for d = 2 dimensions.
EC(L) <EC*(91/4).

Proof. We define a randomized mapping .# which maps random instances of the
original problem to instances of the reduced problem in such a way that a) the
solution to the reduced problem is an upper bound on the solution to the origina
problem, and b) the distribution of the solution to the reduced problem is simply
C*(90/4).
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Any interval in 21 contains either one or two canonical intervals of maximal
length. For example, [0.2, 0.7) contains only [3, 2) while[0.3, 0.7) contains both
[3.4)and[4, 3). (Notethat the latter pair of canonical intervals combine into an
interval with length 1/4 but this interval is not canonical since its left endpoint
is not at a multiple of 1/4. Note also that no interval can contain three distinct
maximal canonical intervals, since two of them could be joined to form a larger
canonical interval.) Let the canonical subinterval I’ of aninterval I bethe maximal
canonical interval in I, if only one exists, and one such interval chosen uniformly
and randomly if two exist. If R = I x I isany rectangle, we define the canonical
subrectangle of R to be I x I, where I, is the canonical subinterval of I;, j =
1, 2. The mapping .# simply replaces each origina rectangle by its canonical
subrectangle. Notethat shrinking therectanglescan never producenew intersections
between rectangles, so the solution to the new problem is at least as large as the
solution to the original problem.

Next, we investigate the distribution of the solution to the new problem. To
begin, we determine the distribution of the canonical subinterval of an interval 1
between two points chosen independently and uniformly at random from [0, 1].
Consider the canonical interval I’ = [k277, (k 4+ 1)27), and assume that

kisoddand0 < (k — 127" < (k+3)27" <1 (18)
or
kisewvenand0 < (k—2)27 < (k+2)27¢ < 1. (19)

Assume first that & is odd. (See Figure 1(a), where the thick black interval
represents I’.) For I’ to bethe canonical subinterval of 7, wemust clearly have I’ C
I. Moreover, the left endpoint of 7 cannot be at or to the left of (k — 1)2~/, since
then the larger interval [(k — 1)2~7, (k + 1)2~*] would be canonical, contradicting
the maximality of /”. Hence the left endpoint must bein ((k — )27, k27"]. (This
is shown as a shaded interval in the figure.) Given that the left endpoint lies in
thisinterval, if the right endpoint liesin [(k + 1)27%, (k + 2)27%), I’ will be the
canonical interval. (Again, thisinterval isshaded inthefigure.) If theright endpoint
liesin[(k+2)27", (k+3)27"), then thereis a50% chance that 1’ isthe canonical
subinterval. (This is indicated by a thinner shaded region in the figure.) Finally,
if the right endpoint of 7 is at or to the right of (k + 3)277, then the interval

-

0 (k—1)27¢ k2 (k+1)27" (k+2)27" (k+3)27" 1
0 (k—-2)27" (k—1)27° k2~ (k+1)27F (k+2)27¢ 1

Fig. 1. The vertica lines represent endpoints of canonical intervals of length 2, and the
tall vertical lines represent endpoints of canonical intervals of length 271,
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[(k + 127", (k + 3)27"] is canonical, contradicting the maximality of 7’. Thus
the probability that 7’ is the canonical subinterval of 7 is2~" - 3277 = 3272 |f
condition (18) isnot satisfied, some of the shaded regionsshowninthefigurewill lie
outsidetheinterval [0, 1], but %2—2" isstill an upper bound on the probability that 7/
isthe canonical interval. A similar argument holds for even k, and isillustrated in
Figure 1(b); we omit the details.

Extend the interval calculation to rectangles and note that the probability of
obtaining a given canonical rectangle of width w, height 4, and areaa = wh from

arandom rectangle is bounded by

3232 9,
Zw?.Zh? = 242 2
> 2h 2° (20
Sublemma 1. For each possible canonical subrectangle, the number of copies
produced by this mapping is Poisson-distributed, and independent of the numbers
of the other canonical subrectangles produced.

Proof. To view the process more formally, let G be a function which maps an
arbitrary rectangle into the list of maximum-size canonical rectangles it contains,
and let Z¢ be the range of G. Thus each element I € Z¢ isalistof 1,2, or 4
canonical rectangles. When |/| is 2 or 4, coin flips are used to select one of the
elements of /. Let # bethe set {1, 2, 3, 4}, representing the outcome of two coin
flips. Let H be the mapping whose domainis 25 x %, with the image defined as

the element of / ifll]=1
thefirst element of [ if Il =2andc € {1, 2}
thesecond element of I if |/| =2and ¢ € {3, 4}
the c-th element of / if /] = 4.

H(I,C) =

Informally, H isthe function which selectswhich of the canonical rectanglesto use
when there is more than one possibility. Then the process of mapping a rectangle
R toits canonical subrectangle can be viewed as follows: select arandom element
¢ € Z and then compute H(G(R), c).

We now use Fact 2 to establish that, after mapping all of the initial rectangles
by G, and flipping al of the coins, the number of copies of each element (/, ¢) of
thedomain Z¢ x & of H isindependent and has a Poisson distribution. To do so,
werecall that the total number of rectanglesin theinput has a Poisson distribution.
(Assume that we first determine the number of rectangles without looking at which
rectangles are actually generated.) These rectangles correspond to the “balls” The
“color” of arectangle R isthe specification of both thelist! = G(R) and thevalue
cinZ giving the coin flips. So the probability of color (I, ¢) isthe probability that
the rectangle contains precisely the list I of canonical rectangles, times 1/4 since
the two coin flips are fair. Thus Fact 2 tells us that the total number of instances of
(,c),foreachl € Z; and c € & , is Poisson distributed and independent.

These “colors’ do not correspond 1-1 to the canonical subrectangles, but for
any two distinct canonical rectangles R and R, the sets H~1(R) and H~1(R’) are
digioint, so when we have completed the construction of all the canonical subrect-
anglesthe number of copies of the various possihilitiesfor canonical subrectangles



Packing random rectangles 597

are sums of digjoint sets of independent Poisson-distributed variables, and hence
using Fact 1 are themselves Poi sson-distributed and independent. O

Completion of Proof of Lemma 4. From (20) and the sublemma we now know that
the number of copies of each canonical rectangle R isindependent and of the form
I1,/, where ' < (9/4)a?x and a isthe areaof R. Now add a number of additional
copies of R with distribution Ig,2; /4, (independently for each R). Of course
this can only increase the number of rectangles in the packing, since any packing
which wasfeasible before these additionswill remain feasible after these additions.
By Fact 1 the total number of instances of R will now have the exact distribution
I1(g/4)342- Thusthe distribution of rectanglesis now identical to that of C*(91/4).

We conclude that C (1) is stochastically dominated by C*(94/4), from which
the lemma s an immediate consequence. O

Theorem 4. For d = 2, EC, = ©(n'/?).

Proof. Thelower bound EC,, = 2 (n1/2) was proved in the previous section. Now
combining (1), Lemma4, and Theorem 3, we have

EC, ~ EC(n) < EC*(9n/4) = 0((n*?). O
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Richard Weber, whichwegratefully acknowledge. Weal so very much appreciatethereferee’s
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Appendix A: Proof of (1)

Let p € (0, 1). Suppose that after solving an instance of rectangle packing with
n rectangles, we randomly select [pn] of the original rectangles to form a new
problem. Then the selected rectangles that were used in the original packing must
be avalid packing for the new problem. It follows that

and hence
ECitoy) = (14 0(D)EC,.

Similarly,
EC(n(1+0(1)) = (1+ o(1))EC ).

Now let IT,, denote arandom variable with a Poisson distribution and mean . It is
well-known that, for any k£ > 1,

Pr{|M, —n| > Vulogn} = o(n™)
and

Pr{M, > n+ /nlogn} E[T, |TI, = n+ /nlogn] = o(n™").
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Hence

EC(n) = Pr{Ml, > [n — /nlogn]} C|,_ jriogn) ~ Cn>
and
EC(n) < Pr{nn <[n+ \/Zlogn—|}c|'n+\/ﬁlogn'|

+Pr{M, > [n+ nlognl} E[T, | T, > [n + +/nlogn]]
~ EC,. 0

Appendix B: Proof of Lemma 3

We need the following integrals, assume k > 1. An integration by parts with
u = Inf(z/x) and v = z shows that

1 1 1 k 1 1
/mkidz:zlnki —/ z—lnk’lidzzlnk——k/ 124z, (20)
X X X lx x X X X X X

By substitution,

1 1

1 1 1 1

/-lnki 1= —— I o T gkl T (22)
v 2 X k+1 X k+1 X

X

Finally, by integration by parts with u = In®(z/x) and v = —1/z, we have
11 -1 ootk
/ —2Ink£dz = Cinkk —/ Tt g,
X Z X Z X X X
11

Z Z X

1

— —In"—+k/ St 2az, (23)
X y 2 X

Using these three integral s and some simple inductions one can verify that, for
k>0,

1
/ Ly (5) dz € Li(x~Y) 4+ xLo(x™ Y, (24)
. X

1
/ }Lk (E) dz C Lys1(x7Y), (25)
x < X

and

1
/ S (2)ds € L™ +x Mo (26)
x 2 X
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We can now prove Lemma 3 by induction on d. The basis follows from (11).
For the induction step, we calculate

1 X
/ 1-2)Fy <E) dz
[a-o(Ggim (3 + raa(B) + L (2)) e
2 2

< [(Zaim )t () (v 5w 2 raa (5) ) e

2d
Sxlndxt p xLgoa7YH + %L,

m

C

—d!
where we have used (22), (24), (25), and (26). Substituting into (10) completes the
induction. O
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