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Abstract. A random rectangle is the product of two independent random intervals, each
being the interval between two random points drawn independently and uniformly from
[0, 1]. We prove that the number Cn of items in a maximum cardinality disjoint subset of n
random rectangles satisfies

n1/2/K ≤ ECn ≤ Kn1/2,

whereK is an absolute constant. Although tight bounds for the problem generalized to d > 2
dimensions remain an open problem, we are able to show that, for some absolute constantK ,

n1/2/K ≤ ECn ≤ K(n logd−1 n)1/2.

Finally, for a certain distribution of random cubes we show that for some absolute constantK ,
the number Qn of items in a maximum cardinality disjoint subset of the cubes satisfies

nd/(d+1)/K ≤ EQn ≤ Knd/(d+1).

1. Introduction

We estimate the expected number of items in a maximum cardinality disjoint subset
of n rectangles chosen at random in the unit square. We say that such a subset is a
packing of the n rectangles, and stress that a rectangle is specified by its position
as well as its sides; it can not be freely moved to any position as in strip packing or
two-dimensional bin packing (see [2] and the references therein for the probabilistic
analysis of algorithms for these problems). A random rectangle is the product of
two independent random intervals on the coordinate axes; each random interval
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in turn is the interval between two independent uniform random draws from the
interval [0, 1].

This problem is an immediate generalization of the one-dimensional problem of
packing random intervals [4]. It generalizes in an obvious way to packing random
rectangles (boxes) in d > 2 dimensions into the d-dimensional unit cube, where
each such box is determined by 2d independent random draws from [0, 1], two
for every dimension. A later section also studies the case of random cubes in
d ≥ 2 dimensions. For this case, it is convenient to wrap around the dimensions
of the unit cube to form a toroid. A random cube is generated by drawing d + 1
random variables v1, v2, . . . , vd, and w, independently and uniformly from [0, 1],
to produce the cube

[v1, v1 + w) × [v2, v2 + w) × · · · × [vd, vd + w).

We note that for the rectangle packing problem (but not for the cube packing
problem) we can replace the uniform distribution over [0, 1] by any continuous
distribution over [0, 1] without any change in the distribution of the maximum
cardinality of a packing, because the relevant intersection properties depend only
on the relative ordering of the points that determine the intervals in each dimension.

Potential applications of our model appear in jointly scheduling resources,
where customers require specific “intervals” of a resource for specific intervals
of time. Suppose that in a linear network, we have a set S of call requests, each
specifying a pair of endpoints (calling parties) that define an interval of the network.
If we suppose also that each request gives a future time interval to be reserved for
the call, then a call request is a rectangle in the two dimensions of space and time. In
an unnormalized and perhaps discretized form, we can pose our problem as finding
the expected value of the number of requests in S that can be accommodated.

We note that the combinatorial version of our problem is equivalent to finding
maximum independent sets in intersection graphs. For the case of arbitrary rectan-
gles this is NP-complete [6]; hence it is also NP-complete for rectangles of arbitrary
dimension d ≥ 2. It remains NP-complete even if we only allow the packing of
equal size squares, by an approach like that in [1, 6] (which was applied in [1] to
equal size circles; the approach is equally applicable to equal size squares); again,
this generalizes to any dimension d ≥ 2. For the case of d = 1, our problem
is equivalent to finding maximum independent sets in interval graphs; this can be
solved in linear time [3, 7] even for a larger class of graphs known as chordal graphs.
For the case of interval graphs, the fact that a simple greedy algorithm gives the
optimum was used in the precise analysis of [4].

For convenience, we use the notation of [5] for describing asymptotic bounds.
Let f (n) and g(n) be real-valued functions, with g(n) positive for large n. We say
f (n) = O

(
g(n)

)
if there exist constants c and n0 such that

n ≥ n0 ⇒ |f (n)| ≤ cg(n).

We say f (n) = �
(
g(n)

)
if there exist constants c > 0 and n0 such that

n ≥ n0 ⇒ f (n) ≥ cg(n).
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Finally, we say f (n) = �
(
g(n)

)
if there exist positive constants c1, c2, and n0

such that
n ≥ n0 ⇒ c1g(n) ≤ f (n) ≤ c2g(n).

Note that if f and g are defined on the integers, and are positive for positive integers,
then for each of these notations we can constrain the choice of n0 to be 1 without
changing the meaning of the definition; thus the bounds are in fact hard bounds
rather than merely asymptotic bounds. This explains why we can claim the hard
bounds given in the abstract.

Let Sn be a given set of random boxes, and let Cn be the maximum cardinality
of any set of mutually disjoint boxes taken from Sn. After preliminaries in the next
section, Section 3 proves that, in the case of cubes in d ≥ 2 dimensions, E[Cn] =
�(nd/(d+1)), and Section 4 proves that, in the case of boxes in d dimensions,
E[Cn] = �

(
n1/2

)
and E[Cn] = O

(
(n logd−1 n)1/2

)
. In Section 5, the final section,

we first prove an O(n1/2) bound for a reduced, discretized version of the two
dimensional problem, and then prove that the reduced version has the same upper
bound as the original version, thus showing that for the case of boxes in d = 2
dimensions, E[Cn] = �

(
n1/2

)
; this is the most difficult result in the paper.

2. Preliminaries

We can Poissonize the problem without affecting our results. In this version, the
number of rectangles is a Poisson distributed random variable Tλ with mean λ.
Equivalently, we could generate the rectangles from a Poisson process with uniform
intensity on

{(x, x′, y, y′) | 0 ≤ x ≤ x′ ≤ 1 and 0 ≤ y ≤ y′ ≤ 1}
by letting each point (x, x′, y, y′) yield the rectangle [x, x′] × [y, y′]. Let C(λ)
denote the number of rectangles packed in a maximum cardinality disjoint subset.

The fact that upper bounds on the EC(n) are also upper bounds on ECn (modulo
constant factors) is easily argued as follows. Since ECn is nondecreasing in n, we
can write EC(n) ≥ Pr[Tn > n/2]ECn/2. Thus, an upper bound for EC(n) yields
an upper bound for ECn/2 and hence for ECn, up to a constant multiplicative factor.
(In fact standard arguments easily show that

ECn ∼ EC(n); (1)

see Appendix A.) We will continue to parenthesize arguments in the notation of the
Poissonized model to distinguish quantities like Cn in the model where the number
of rectangles to pack is fixed at n.

Let X1, . . . , Xn be i.i.d. with a distribution F concentrated on [0, 1], and let
(sn ∈ (0, 1]; n ≥ 1) be a given sequence. Let Nn(F, sn), which we shorten to
Nn when the arguments are clear from context, be the random variable giving the
maximum number of the Xi that can be chosen such that their sum is at most nsn;
equivalently, Nn is such that the sum of the smallest Nn of the Xi is at most nsn,
but the sum of the smallest Nn + 1 of the Xi exceeds nsn. (If

∑n
i=1 Xi ≤ nsn, let
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Nn be n.) The remainder of this section derives an estimate of the expected value
of Nn(F, sn).

The following notion will be useful.

Definition 1. Say a function F is admissible if, for some ξ > 0 and K < 1, F is
continuous on [0, ξ ] and for all x ∈ [0, ξ ] we have F(x/2) ≤ KF(x).

Let Xi , i = 1, 2, . . . , n, be independent random variables with mean 0 and
variance σ 2, and suppose that |Xi | ≤ M . Then for x ≥ 0 Bernstein’s inequality
tells us that

Pr

{ n∑
i=1

Xi ≥ x
√
n

}
≤ exp


− x2/2

σ 2 + Mx
3
√
n


 .

The following easily proved corollary will be useful.

Lemma 1. Let Y be a random variable concentrated on [0, b], and let n be a
positive integer. Define Yn as the sum of n independent samples distributed as Y .
Then for any y ≥ 0, we have

Pr{|Yn − EYn| ≥ y} ≤ 2 exp

(
− min

(
y2

4bEYn
,

3y

4b

))
.

While the following technical lemma is easily proved by standard techniques,
for completeness we record it here in a form convenient to us.

Lemma 2. LetF be an admissible distribution function on [0, 1]. For each element
of a given positive sequence (sn, n ≥ 1), let xn be a solution to

sn =
∫ xn

0
x dF(x), (2)

and assume that lim
n→∞ sn = lim

n→∞ xn = 0. Then if nF(xn) = �(log2 s−1
n ), we have

E[Nn(F, sn)] ∼ nF(xn) . (3)

Proof. By (2), we have sn ≤ xncn, where cn := F(xn) is introduced to simplify
notation. Also, letting K be as given in Definition 1, we have

sn ≥
∫ xn

xn/2
x dF(x) ≥ xn

2

∫ xn

xn/2
dF(x) ≥ xn

2
(1 − K)F(xn) = (1 − K)xncn

2
,

where the penultimate step follows from lim
n→∞ xn = 0 and the fact that F is admis-

sible. (Statements in this proof should all be interpreted as holding for sufficiently
large n.) Thus, sn = �(xncn).

Now let (εn, n ≥ 1) be a positive sequence to be chosen later with the property
that εn → 0. Let x′

n be a solution to F(x′
n) = cn(1 − εn/2). For large enough n, we

will have 1 − εn/2 > K , so from the fact that F is admissible, we have x′
n > xn/2.

Then for some βn ∈ [1/2, 1],∫ xn

x′
n

x dF (x) = βnxn

∫ xn

x′
n

dF (x) = βnxnεncn/2. (4)
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By the fact that sn = �(xncn), we see that this is o(sn), and hence

∫ x′
n

0
x dF(x) ∼ sn . (5)

Now if Nn ≤ ncn(1 − εn), we must have

|{i : Xi ≤ x′
n}| ≤ ncn(1 − εn) (6)

or ∑
i: Xi≤x′

n

Xi ≥ nsn . (7)

To apply Lemma 1 to (6), let Y be distributed as the indicator 1Xi≤x′
n

so that

E[Yn] = nF(x′
n) = ncn(1 − εn/2) ∼ ncn ,

by the definition of x′
n. Next, set

b = 1,

y = E[Yn] − ncn(1 − εn) = nεncn/2 ,

so by Lemma 1 the probability of the event in (6) is bounded by

exp
(
−�

(
nεncn min(1, εn)

)) = exp
(−�

(
nε2

ncn)
)
. (8)

Similarly, we apply Lemma 1 to (7) with Y distributed as 1Xi≤x′
n
Xi and the

remaining parameters

E[Yn] = n

∫ x′
n

0
x dF(x) ∼ nsn, by (5),

b = x′
n = �(xn) since x′

n > xn/2, and
y = nsn − E[Yn] = �(nxnεncn) by (4)

to bound the probability of the event in (7) by

exp

(
−�

(
nεncn min

(
1,

xnεncn

sn

)))
= exp

(
−�

(
nε2

ncn
))

(9)

where the last step follows from sn = �(xncn). Thus (9) bounds the probability
that (6) or (7) holds, and thus bounds the probability that Nn ≤ ncn(1 − εn). By
letting εn = (ncn)

−1/5, we can make this probability be o(sn) by the assumption
nF(xn) = �(log2 s−1

n ) of the lemma. Hence

ENn ≥ ncn(1 − εn)
(
1 − o(sn)

) ∼ ncn.

A similar lower bound can be shown; combining these two bounds proves (3). �
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3. Random cubes

The optimum packing of random cubes is readily analyzed. We work with a d-
dimensional unit cube, and allow (toroidal) wrapping in all axes. The n cubes are
generated independently as follows: First a vertex (v1, v2, . . . , vd) is generated
by drawing each vi independently from the uniform distribution on [0, 1]. Then
one more value w is drawn independently, again uniformly from [0, 1]. The cube
generated is

[v1, v1 + w) × [v2, v2 + w) × · · · × [vd, vd + w),

where each coordinate is taken modulo 1. In this set-up, we have the following
result.

Theorem 1. The expected cardinality of a maximum packing of n random cubes
is �(nd/(d+1)).

Proof. We begin by considering the following simple heuristic. Subdivide the cube
into c−d cells with sides

c = αn−1/(d+1),

where α is a parameter that may be chosen to optimize performance. For each cell
C, if there are any generated cubes contained in C, include one of these in the
packing. Clearly, all of the cubes packed are nonoverlapping.

To analyze this heuristic, we first fix a cell C with side c and estimate the
probability that a generated cube will lie completely within C. Using the cube
generation process described above, the probability that the vertex (v1, v2, . . . , vd)

lies in C is cd . For the generated cube to lie in C we must of course also have that
the generated size w is in [0, c), which happens with probability c. It is not hard
to see that if both of these conditions are met, then the probability that the cube
will fit is just the probability that the last of d + 1 uniform draws from [0, c] is
the smallest, i.e., 1/(d + 1). Hence the probability that a generated cube fits into a
particular cell C is cd+1/(d + 1), and the probability that C remains empty after
generating all n cubes is(

1 − cd+1

d + 1

)n

=
(

1 − αd+1

n(d + 1)

)n

∼ exp

(
− αd+1

d + 1

)
.

Since the number of cells is
1

cd
= nd/(d+1)

αd

the expectation of the total number of cubes packed is asymptotic to

α−d

(
1 − exp

(
− αd+1

d + 1

))
nd/(d+1) ,

which gives the desired lower bound.
The upper bound is based on the simple observation that the sum of the volumes

of the packed cubes is at most 1. First we consider the probability distribution of
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the volume of a single generated cube. The side of this cube is a uniform random
variable U over [0, 1]. Thus the probability that its volume is bounded by x is

F(x) = Pr
{
Ud ≤ x

}
= Pr

{
U ≤ x1/d

}
= x1/d .

Then applying Lemma 2 with

sn = 1

n
, xn =

(
d + 1

n

)d/(d+1)

, cn =
(
d + 1

n

)1/(d+1)

,

we conclude that the expected number of cubes selected before their total volume
exceeds 1 is asymptotic to

(d + 1)1/(d+1)nd/(d+1) ,

which gives the desired matching upper bound. �

4. Bounds for d ≥ 2 dimensional boxes

In the remainder of the paper, let Hd denote the unit hypercube in d ≥ 1 dimen-
sions. This section is confined to the following result.

Theorem 2. Fix d and draw n boxes uniformly at random fromHd . The maximum
number that can be packed without overlap is asymptotically bounded from below

by �(
√
n) and from above by O(

√
n lnd−1 n).

Proof. We start by calculating the distribution function Fd for the volume of a
d-dimensional box, recalling that each dimension is distributed as the absolute
difference between two independent random draws, and thus has the density 2(1 −
z). Fd is the distribution of the product of d independent such variables. For d = 1
we readily obtain

F1(x) = 2x − x2 .

For higher dimensions we may use the recurrence

Fd+1(x) =
∫ x

0
2(1 − z) dz +

∫ 1

x

2(1 − z) Fd

(
x

z

)
dz

= 2x − x2 + 2
∫ 1

x

(1 − z) Fd

(
x

z

)
dz . (10)

In particular, one computes

F2(x) = 4x ln x−1 + 2x2 ln x−1 − 4x + 5x2 . (11)

The exact form of Fd becomes complicated as d increases, so we will settle for
an asymptotic estimate. Some notation will be useful. Let Lk(z) denote the set of
all functions which can be formed by taking linear combinations (with absolute-
constant coefficients) of terms of the form lnm z, where m ∈ {0, 1, . . . , k}. Thus, in
particular, L0(z) just represents the set of all constants. An expression containing
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one or more instances of this notation is to be interpreted as the set of all possible
functions that can be obtained by replacing each instance by any element of the set
it represents.

The following is proved in Appendix B.

Lemma 3. For d ≥ 2, we have

Fd(x) ∈ 2d

(d − 1)!
x lnd−1 x−1 + xLd−2(x

−1) + x2Ld−1(x
−1) .

To apply Lemma 2 we solve

1

n
= sn =

∫ xn

0
x dFd(x)∼

∫ xn

0

2d

(d − 1)!
x lnd−1 x−1dx ∼ 2d−1

(d − 1)!
x2
n lnd−1 x−1

n

to obtain

xn ∼
√

(d − 1)!

n lnd−1 n
,

and then

Fd(xn) ∼ 2

√
lnd−1 n

(d − 1)! n
.

Together with Lemma 2, this yields the desired upper bound; more precisely, this
gives the asymptotic upper bound

2

√
n lnd−1 n

(d − 1)!
.

The lower bound argument is the same as that for cubes, except that Hd is
partitioned into cells with sides on the order of n−1/(2d). It is easy to verify that, on
average, there is a constant fraction of the �(n1/2) cells in which each cell wholly
contains at least one of the given rectangles. The details are left to the reader. �

5. Tight bound for d=2

Closing the gaps left by the bounds on E[Cn] for d ≥ 3 remains an interesting
open problem. However, we can show that the lower bound for d = 2 is tight, i.e.,
E[Cn] = �(n1/2). To prove the O(n1/2) bound, we analyze the following reduced,
discretized version. A canonical interval is an interval that, for some i ≥ 0, has
length 2−i and has a left endpoint at some multiple of 2−i . A canonical rectangle
is the product of two canonical intervals. We consider a Poissonized model of
canonical rectangles in which the number of instances of each possible canonical
rectangle of area a is independently Poisson distributed with mean λa2. We refer
to this version as the reduced problem with parameter λ, and let C∗(λ) denote the
cardinality of a maximum packing.

Note that there are i+1 shapes possible for a rectangle of area 2−i , and that for
each of these shapes there are 2i canonical rectangles. The mean number of each
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of these is λ/22i . Thus, the total number T (λ) of rectangles in the reduced problem
with parameter λ is Poisson distributed with mean

∞∑
i=0

(i + 1)2i
(
λ2−2i) = λ

∞∑
i=0

(i + 1)2−i = 4λ . (12)

Theorem 3. We have the asymptotic upper bound

E[C∗(λ)] = O
(
λ1/2) .

Proof. Let Z1 be the maximum number of rectangles that can be packed if we
disallow packings that use rectangles spanning the height of the square. Define
Z2 similarly when packings that use rectangles spanning the width of the square
are disallowed. By symmetry, Z1 and Z2 have the same distribution, although
they may not be independent. To investigate this distribution, we begin with two
observations, the second relying on the properties of canonical rectangles: (i) a
rectangle spanning the width of H2 and a rectangle spanning the height of H2
must intersect and hence can not coexist in a packing; (ii) rectangles spanning the
height of H2 are the only rectangles crossing the horizontal line separating the top
and bottom halves of H2 and rectangles spanning the width of H2 are the only
ones crossing the vertical line separating the left and right halves of H2. It follows
that, if a maximum cardinality packing is not just a single 1 × 1 square, then it
consists of a pair of disjoint maximum cardinality packings, one in the bottom half
and one in the top half of H2, or a similar pair of subpackings, one in the left
half and one in the right half of H2. After rescaling, these subpackings become
solutions to our original problem on H2 with the new parameter λ times the square
of half the area of H2, i.e., λ/4. We conclude that Z1 and Z2 are both distributed
as the sum of two independent samples of C∗(λ/4), and that

C∗(λ) ≤ Z0 + max(Z1, Z2) , (13)

where Z0 is the indicator function of the event that the entire square H2 is one of
the given rectangles. Note that Z0 is independent of Z1 and Z2.

At this point it is convenient to consider the transform

S(λ) := E
[
eαC

∗(λ)].
Since C∗(λ) ≤ T (λ) and T (λ) is Poisson distributed with parameter 4λ, we have

S(λ) ≤ E
[
eαT (λ)

] = exp
(
4λ(eα − 1)

)
. (14)

Using (13) we have

S(λ) = E
[
eαC

∗(λ)] ≤ E
[
eαZ0

]
E

[
eα max(Z1,Z2)

]
≤ eα E

[
max

(
eαZ1 , eαZ2

)] ≤ eα
(
E[eαZ1 ] + E[eαZ2 ]

)
. (15)

Recalling that Z1, Z2 are equal in distribution to sums of two independent samples
of C∗(λ/4), we have E[eαZ1 ] = E[eαZ2 ] = (

S(λ/4)
)2, and so

S(λ) ≤ 2eα
(
S(λ/4)

)2
. (16)
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Elementary bounds and calculations are all that remain. We readily compute
from (16) that

S(λ) ≤ (2eα)2M−1(S(1))2M
,

where M := �log4 λ�. By (14), we have S(1) ≤ exp
(
4(eα − 1)

)
, and so

S(λ) ≤ (2eα)2M−1 exp
(

2M+2(eα − 1
))

. (17)

Then, using the bound E[C∗(λ)] ≤ α−1 ln E
[
eαC

∗(λ)], we obtain

E[C∗(λ)] ≤ α−1
((

2M − 1
)
(α + ln 2) + 2M+2(eα − 1

))
.

Since 2M = �(λ1/2), we can put α = 1 and conclude that E[C∗(λ)] = O(λ1/2),
as desired. �

Before continuing we recall some basic facts about the Poisson distribution.
Let 0λ denote the Poisson distribution with mean λ.

Fact 1. Let X and Y be independent random variables with distributions 0λ and
0λ′ , respectively. Then X + Y has distribution 0λ+λ′ .

Fact 2. Let X be a positive integer-valued random variable, and interpret each
value as a color; let pc = Pr{X = c}. Also let N have distribution 0λ. Suppose we
take N balls and color each one independently distributed as X. Then the number
of balls of color c is independent of the numbers of balls of the other colors and
has distribution 0λpc .

(Note that Fact 2 follows from the readily verified equalities

e−λ λ
k

k!

(
k

x1, x2, . . .

) ∞∏
c=1

pxc
c = e−λλk

∞∏
c=1

p
xc
c

xc!
=

∞∏
c=1

e−pcλ
(pcλ)

xc

xc!
,

where k = ∑∞
c=1 xc.)

Theorem 3, together with the following Lemma, implies our main result. In the
proof we say that a random variable X is stochastically dominated by a random
variable Y if for all real z we have

Pr{X ≤ z} ≥ Pr{Y ≤ z}.
Lemma 4. The following bound holds for d = 2 dimensions.

EC(λ) ≤ EC∗(9λ/4) .

Proof. We define a randomized mapping M which maps random instances of the
original problem to instances of the reduced problem in such a way that a) the
solution to the reduced problem is an upper bound on the solution to the original
problem, and b) the distribution of the solution to the reduced problem is simply
C∗(9λ/4).
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Any interval in H1 contains either one or two canonical intervals of maximal
length. For example, [0.2, 0.7) contains only

[ 1
4 ,

2
4

)
while [0.3, 0.7) contains both[ 3

8 ,
4
8

)
and

[ 4
8 ,

5
8

)
. (Note that the latter pair of canonical intervals combine into an

interval with length 1/4 but this interval is not canonical since its left endpoint
is not at a multiple of 1/4. Note also that no interval can contain three distinct
maximal canonical intervals, since two of them could be joined to form a larger
canonical interval.) Let the canonical subinterval I ′ of an interval I be the maximal
canonical interval in I , if only one exists, and one such interval chosen uniformly
and randomly if two exist. If R = I1 × I2 is any rectangle, we define the canonical
subrectangle of R to be I ′

1 × I ′
2, where I ′

j is the canonical subinterval of Ij , j =
1, 2. The mapping M simply replaces each original rectangle by its canonical
subrectangle. Note that shrinking the rectangles can never produce new intersections
between rectangles, so the solution to the new problem is at least as large as the
solution to the original problem.

Next, we investigate the distribution of the solution to the new problem. To
begin, we determine the distribution of the canonical subinterval of an interval I
between two points chosen independently and uniformly at random from [0, 1].
Consider the canonical interval I ′ = [k2−i , (k + 1)2−i ), and assume that

k is odd and 0 ≤ (k − 1)2−i ≤ (k + 3)2−i ≤ 1 (18)

or

k is even and 0 ≤ (k − 2)2−i ≤ (k + 2)2−i ≤ 1. (19)

Assume first that k is odd. (See Figure 1(a), where the thick black interval
represents I ′.) For I ′ to be the canonical subinterval of I , we must clearly have I ′ ⊆
I . Moreover, the left endpoint of I cannot be at or to the left of (k − 1)2−i , since
then the larger interval [(k − 1)2−i , (k + 1)2−i] would be canonical, contradicting
the maximality of I ′. Hence the left endpoint must be in

(
(k − 1)2−i , k2−i

]
. (This

is shown as a shaded interval in the figure.) Given that the left endpoint lies in
this interval, if the right endpoint lies in

[
(k + 1)2−i , (k + 2)2−i

)
, I ′ will be the

canonical interval. (Again, this interval is shaded in the figure.) If the right endpoint
lies in

[
(k+ 2)2−i , (k+ 3)2−i

)
, then there is a 50% chance that I ′ is the canonical

subinterval. (This is indicated by a thinner shaded region in the figure.) Finally,
if the right endpoint of I is at or to the right of (k + 3)2−i , then the interval

Fig. 1. The vertical lines represent endpoints of canonical intervals of length 2−i , and the
tall vertical lines represent endpoints of canonical intervals of length 2−i+1.
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[
(k + 1)2−i , (k + 3)2−i

]
is canonical, contradicting the maximality of I ′. Thus

the probability that I ′ is the canonical subinterval of I is 2−i · 3
2 2−i = 3

2 2−2i . If
condition (18) is not satisfied, some of the shaded regions shown in the figure will lie
outside the interval [0, 1], but 3

2 2−2i is still an upper bound on the probability that I ′
is the canonical interval. A similar argument holds for even k, and is illustrated in
Figure 1(b); we omit the details.

Extend the interval calculation to rectangles and note that the probability of
obtaining a given canonical rectangle of width w, height h, and area a = wh from
a random rectangle is bounded by

3

2
w2 · 3

2
h2 = 9

4
a2. (20)

Sublemma 1. For each possible canonical subrectangle, the number of copies
produced by this mapping is Poisson-distributed, and independent of the numbers
of the other canonical subrectangles produced.

Proof. To view the process more formally, let G be a function which maps an
arbitrary rectangle into the list of maximum-size canonical rectangles it contains,
and let RG be the range of G. Thus each element l ∈ RG is a list of 1, 2, or 4
canonical rectangles. When |l| is 2 or 4, coin flips are used to select one of the
elements of l. Let F be the set {1, 2, 3, 4}, representing the outcome of two coin
flips. Let H be the mapping whose domain is RG × F, with the image defined as

H(l, c) =




the element of l if |l| = 1
the first element of l if |l| = 2 and c ∈ {1, 2}
the second element of l if |l| = 2 and c ∈ {3, 4}
the c-th element of l if |l| = 4.

Informally,H is the function which selects which of the canonical rectangles to use
when there is more than one possibility. Then the process of mapping a rectangle
R to its canonical subrectangle can be viewed as follows: select a random element
c ∈ F and then compute H

(
G(R), c

)
.

We now use Fact 2 to establish that, after mapping all of the initial rectangles
by G, and flipping all of the coins, the number of copies of each element (l, c) of
the domain RG ×F of H is independent and has a Poisson distribution. To do so,
we recall that the total number of rectangles in the input has a Poisson distribution.
(Assume that we first determine the number of rectangles without looking at which
rectangles are actually generated.) These rectangles correspond to the “balls.” The
“color” of a rectangle R is the specification of both the list l = G(R) and the value
c in F giving the coin flips. So the probability of color (l, c) is the probability that
the rectangle contains precisely the list l of canonical rectangles, times 1/4 since
the two coin flips are fair. Thus Fact 2 tells us that the total number of instances of
(l, c), for each l ∈ RG and c ∈ F , is Poisson distributed and independent.

These “colors” do not correspond 1-1 to the canonical subrectangles, but for
any two distinct canonical rectangles R and R′, the sets H−1(R) and H−1(R′) are
disjoint, so when we have completed the construction of all the canonical subrect-
angles the number of copies of the various possibilities for canonical subrectangles



Packing random rectangles 597

are sums of disjoint sets of independent Poisson-distributed variables, and hence
using Fact 1 are themselves Poisson-distributed and independent. �

Completion of Proof of Lemma 4. From (20) and the sublemma we now know that
the number of copies of each canonical rectangle R is independent and of the form
0λ′ , where λ′ ≤ (9/4)a2λ and a is the area of R. Now add a number of additional
copies of R with distribution 09a2λ/4−λ′ (independently for each R). Of course
this can only increase the number of rectangles in the packing, since any packing
which was feasible before these additions will remain feasible after these additions.
By Fact 1 the total number of instances of R will now have the exact distribution
0(9/4)λa2 . Thus the distribution of rectangles is now identical to that of C∗(9λ/4).

We conclude that C(λ) is stochastically dominated by C∗(9λ/4), from which
the lemma is an immediate consequence. �

Theorem 4. For d = 2, ECn = �(n1/2).

Proof. The lower bound ECn = �(n1/2) was proved in the previous section. Now
combining (1), Lemma 4, and Theorem 3, we have

ECn ∼ EC(n) ≤ EC∗(9n/4) = O(n1/2). �
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Appendix A: Proof of (1)

Let p ∈ (0, 1). Suppose that after solving an instance of rectangle packing with
n rectangles, we randomly select �pn� of the original rectangles to form a new
problem. Then the selected rectangles that were used in the original packing must
be a valid packing for the new problem. It follows that

ECn ≥ EC�np� ≥ pECn,

and hence
ECn(1+o(1)) = (

1 + o(1)
)
ECn.

Similarly,
EC

(
n(1 + o(1))

) = (
1 + o(1)

)
EC(n).

Now let 0n denote a random variable with a Poisson distribution and mean n. It is
well-known that, for any k ≥ 1,

Pr
{|0n − n| ≥ √

n log n
} = o(n−k)

and

Pr
{
0n ≥ n + √

n log n
}

E
[
0n

∣∣0n ≥ n + √
n log n

] = o(n−k).
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Hence

EC(n) ≥ Pr
{
0n ≥ �n − √

n log n�}C�n−√
n log n� ∼ Cn,

and

EC(n) ≤ Pr
{
0n ≤ �n + √

n log n�}C�n+√
n log n�

+ Pr
{
0n > �n + √

n log n�} E
[
0n

∣∣0n > �n + √
n log n�]

∼ ECn. �

Appendix B: Proof of Lemma 3

We need the following integrals; assume k ≥ 1. An integration by parts with
u = lnk(z/x) and v = z shows that

∫ 1

x

lnk
z

x
dz = z lnk

z

x

∣∣∣1

x
−

∫ 1

x

z
k

z
lnk−1 z

x
dz = lnk

1

x
−k

∫ 1

x

lnk−1 z

x
dz . (21)

By substitution,

∫ 1

x

1

z
lnk

z

x
dz = 1

k + 1
lnk+1 z

x

∣∣∣∣
1

x

= 1

k + 1
lnk+1 1

x
. (22)

Finally, by integration by parts with u = lnk(z/x) and v = −1/z, we have

∫ 1

x

1

z2
lnk

z

x
dz = −1

z
lnk

z

x

∣∣∣∣
1

x

−
∫ 1

x

−1

z

k

z
lnk−1 z

x
dz

= − lnk
1

x
+ k

∫ 1

x

1

z2
lnk−1 z

x
dz . (23)

Using these three integrals and some simple inductions one can verify that, for
k ≥ 0, ∫ 1

x

Lk

( z
x

)
dz ⊆ Lk(x

−1) + xL0(x
−1) , (24)

∫ 1

x

1

z
Lk

( z
x

)
dz ⊆ Lk+1(x

−1) , (25)

and ∫ 1

x

1

z2
Lk

( z
x

)
dz ⊆ Lk(x

−1) + x−1L0(x
−1) . (26)
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We can now prove Lemma 3 by induction on d. The basis follows from (11).
For the induction step, we calculate∫ 1

x

(1 − z)Fd

(
x

z

)
dz

∈
∫ 1

x

(1 − z)

(
2d

(d − 1)!

x

z
lnd−1

( z
x

)
+ x

z
Ld−2

( z
x

)
+ x2

z2
Ld−1

( z
x

))
dz

⊆
∫ 1

x

(
2d

(d − 1)!

x

z
lnd−1

( z
x

)
+ x

z
Ld−2

( z
x

)
+

(
x + x2

z
+ x2

z2

)
Ld−1

( z
x

))
dz

⊆ 2d

d!
x lnd x−1 + xLd−1(x

−1) + x2Ld(x
−1) ,

where we have used (22), (24), (25), and (26). Substituting into (10) completes the
induction. �
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