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Abstract. We show that the entropy functional exhibits a quasi-factorization property with
respect to a pair of weakly dependentlgebras. As an application we give a simple proof
that the Dobrushin and Shlosman’s complete analyticity condition, for a Gibbs specification
with finite range summable interaction, implies uniform logarithmic Sobolev inequalities.
This result has been previously proven using several different techniques. The advantage of
our approach is that it relies almost entirely on a general property of the entropy, while very
little is assumed on the Dirichlet form. No topology is introduced on the single spin space,
thus discrete and continuous spins can be treated in the same way.

1. Introduction

Logarithmic Sobolev inequalities have been introduced in [Gr1] where it has been
shown that

/Rd F2)log| £ ()] ya(dx) < /Rd IV £ (012 ya(dx) + IIfIIiz(W) gl £l 2(,)-
(1.1)
wherey, is the Gaussian measure®@f. Inequality (1.1) can be written for an arbi-

trary symmetric Markov semigroup, := ¢~ on the probability space, 7, )
in the form

Ent(f%) < 2¢6(f) (1.2)

whereé is the Dirichlet form associated with the semigroup, and for gny 0,
Ent(g) stands for the entropy @f w.r.t. «, defined as

Ent(g) 1=/ g |Oggdu—/ gdp |09/ gdpu.
Q Q Q
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Unlike classical Sobolev inequalities, (1.1) is dimension independent and remain
both meaningful and valid in infinite dimensions. This fundamental feature is based
on the well known factorization (or tensorization) property, expressed in the Faris’
additivity theorem [Fa], which can be stated as follows: assume that (1.2) holds
for two semigroups’/i, i = 1, 2, acting respectively o(®;, Z;, u1;), then it also
holds,with the same constant ¢, for the semigroup’”, with L := L1 ® I +1 ® L3

acting on the product spa¢1 x ©22). The factorization property clearly makes
the logarithmic Sobolev inequalities (LSI) a suitable instrument for infinite dimen-
sional analysis. In particular, one field where the application of the LSI has been
remarkably successful is the theory of Gibbs measures. The main reason for this
interest is the equivalence [Grl1] between (1.2) and the Nelson’s hypercontractivity
bound [Ne]

IPllrarr <1 ife?/¢>(@q—-1/(p—1 (1.3)

which, in turns, is a natural tool for studying the speed of convergence of quantities
like P; f to their limit value (as goes taco) [, fdu. More precisely (1.3) allows
one to converi.? convergence into a stronger statement, which can be as good as
L convergence, provided that (1.3) is suppplemented by enough “ultracontraciv-
ity” (see, for instance, [HS2], [SZ2], [SZ4]).

One fundamental problem is to find conditions under which a LSl is satisfied,
for a given Gibbsian specificationniformly in the volume and the boundary con-
dition. In the trivial case of absence of interaction, the Gibbs measure is just a
product of simple factors, thus, thanks to the factorization property, a uniform LSI
is directly implied by the validity of a LSI for each of these factors. The prob-
lem becomes interesting when the interaction is non zero, and one is tempted to
conjecture that if the interaction is weak, so that the associated Gibbs measure is
“almost” a product, then the conclusion is the same as in the product case. A series
of remarkable papers (see [HS1], [HS2], [SZ1], [SZ2], [SZ3], [MO1], [MO2], [LY]
and reference therein) has shed conclusive light on the subject, for discrete/com-
pact single spin space, and the result is striking: a uniform L&usvalent to the
well known Dobrushin and Shlosmarcemplete analyticity condition [DoSh1],
[DoSh?2], [DoSh3] which “almost” characterizes the absence of phase transitions
(these results have been partially extended to unbounded spin systems [Ze], [Yo1],
[Yo2], [Yo3], [BH1], [BHZ], [Le2)).

In this paper we give a new proof of the fact that complete analyticity implies
a uniform LSI. The proof we present follows the general iterative strategy devised
in Theorem 4.6 of [Ma], but eliminate most of its technical complications, and it
is considerably easier than any existing proof. The argument relies almost com-
pletely on a general property (quasi-factorization) of the entropy, which holds in
an arbitrary probability space. The advantage of this approach is that very little is
assumed on the Dirichlet form and no topological hypotheses are to be made on
the spin space. The treatment is thus identical for discrete and continuous spins.

At the completion of this work we learned from P. Dai Pra, A. M. Paganoni and
G. Posta that they had independently obtained an inequality like to (2.10) below,
in order to prove exponential decay of the entropy for a systeN-@lued spins
[DPP].
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2. Quasi-factorization of the entropy

Let (22, 7, u) be a probability space and lgt1, # » be two subs -algebras of7 .
We denote withu (f) and Var f) the expectation and the variancefoflf f is non
negative and such thatlog™ f € L (), Ent(f) stands for thentropy of f w.r.t.
W, given by
f
Ent(f) =pn [ og——
/ 9%
We also let, fori = 1,2, u;(f) = w(f|Z;). u; is a linear operator from
LYQ, 7, p) to LY, Z;, ) with norm equal to 1. The restriction of; to L?
is also a contraction from? (2, #, u) to LP (2, #;, u). Forp € [1, oo], we let
I £llp == 1l fllLr - We define the conditional variance and the conditional entropy
of f as

Var; (f) == wi(f?) — i (f)? feL2(w)
Ent(f) == wilflog f1 — i (f)logui(f) f =0, flog™f e L.
(2.1)

The quantities Vax f) and Ent(f) are both elements df!(u) sincex logx >
—1/e and, by Jensen’s inequality, (/) logu; (f) < u;(flog f), a.s. It is well
known (see for instance Proposition 2.2 in[Lel]) tha&if and# ; are independent
we have

Var(f) < u[Vari(f) + Vara(f)] (2.2)
Ent(f) < u[Enta(f) + Ent2(f)]. (2.3)

Apart from technicalities which prevent the occurrence of possible divergences,
and which will be dealt with in the next section, the proof, say for the entropy, is
very simple:

Ent(f)—u[flogL}Jru[fl g/ } [flog’“‘“f } (2.4)
f wop f f

i maf maplf
= | _— | I .
i [f °d le] hm2 [f °d MZ,U«lfi| [f °d wf ]
(2.5)

The first term of (2.5) is equal te(Enty(f)). The second termis less than or equal
to w(Enta(f)), since, in general one has (Proposition 2.2 in [Lel])

Ent(f) = supu(fg) : u(ef) < 1}.

Finally the last term is zero, becaugg, 7, are independent, and thusuy f =
wf a.s. Hence (2.3) follows.

It is natural to guess that inequalities (2.2), (2.3) are stable against appropriate
“perturbations” of the hypothesis of independence ofdkalgebras7 1, # 2. The
independence assumption can be stated by sayingtig is a.s. equal tac( /)
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wheneverf is measurable w.r.% 1. Hence one may look for a “weak dependence”
condition of the form

l2(f) — w(f)] is small in some sensev f € LY(Q, 74, nw.

In [BCC], Lemma 3.1, we have proven the following result

Proposition [BCC]. Assumethat for somee € [0, v/2— 1), p € [1, o], we have

luig —uglly <eligllp YgeLP(RQ,F2,u) 2.6)
luog —nglly <cellgll, VgeLP(Q Fi1,u1)

Then

Var(f) < (1 —2e — 2L uVari(f) + Vara(f)] ¥ f € L3(w).  (2.7)

In the following section we show that a stronger notion of “quasi-independence”
than (2.6), yields an analogous quasi-factorization property for the entropy.

Proposition 2.1. Thereexista < oo, 9 : [0, 1) — R, with
limsup._, (9 (g)/e) < «, such that the following holds: if for somee € [0, 1),

l2(g) — (@l < eliglls ¥Yg € LYNQ, F1. ) (2.8)

then, for all functions f such that f2log* /2 € L1(1), we have
Ent(f?) < ulEnty(f2) + Ento(f)] + 9 () Var(f) (2.9)
Ent(f2) < u[Enty(£2) + Ento(f2)] + 9 (e) Ent(f2). (2.10)

In particular one can take 9 (¢) := 84¢/(1 — ¢)2.

Remarks. (i) When% 1, # , are independent, assumptions (2.6) and (2.8) hold with

& = 0, thus previous results generalize the factorization properties (2.2), (2.3).
(i) Hypothesis (2.8) appears to be very strong but cannot be qualitatively im-

proved in general, at least for getting (2.9). Take, in fact= Q1 x Q2, where

Q1 = Q2 = N. Choose, j € Nand letf(k,[) := 1y—;, =;). A straightforward

calculation shows that (2.9) implies that

8_9(5) < (w1 = ilwp = j) < eﬁ(g)
n(fi} x €22)
which, being valid for alli, j € N, in turns implies that iff > 0 is measurable
W.r.t. 1, then

e " Oue) < pgloz=n) e’ Vulg) VneN.

A function g with no definite sign can be written gs—= g, — ¢, and one gets

ln(glwz = n) — u(g)l < (”® —Du(lgh VneN.

(i) In section 4 we show that the well knowasomplete analyticity condition for

a Gibbs specification implies (2.8) for a suitable choicegaf 2. On the other

side it is clear that (2.8), being formulated in terms df@ bound, cannot be ap-
plied to Gibbs measures describing unbounded spins with unbounded interactions,
which therefore require a different approach (see remark (i), after the definition of
complete analyticity, in Section 4).
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3. Proof of Proposition 2.1

Sep (1). Proof that (2.9) implies (2.10).
Inequality (2.9) can be applied tg| to get the (trivial) improvement

Ent(£2) < u[Ent1(f2) + Ent(£3)] + 9 (e) Var(| £]).

Since for a non negative functign Var(g) < Ent(g?) (this is a consequence, for
instance, of Lemma 1 in [LO]), (2.10) follows from (2.9).

Sep (2). Itissufficient to prove (2.9) for all functions f suchthat b1 < £2 < b for

someb > 1. Letin factf2log* /2 € L1(n) and letg, := (| fu| An) v n~L. Then

by repeatedly applying the dominated convergence theorem, one easily shows that
Var(g,), Ent(g?) andu[Ent; (¢2)] converge respectively to Vérf ), Ent( f2) and

u[Ent; (£2)].

Sep (3). If b1 < f2 < b for someb > 1, then (2.9) holds.
For such anf we can proceed as in (2.4), (2.5) and obtain

uzm(ﬂ)} 3.1)

w(f? |

Thus, in order to prove (2.9) with the explicit expressionfgiven in the statement,
it is sufficient to show that

Ent(f?) < u[Enti(f?) + Ento(fH)] + 1 [fz log

2 Mz,ul(fz)

w |:f log sz)} < 84e(1— )72 Var(f). (3.2)

By assumption (2.8)

lwoma f2 — wf?lloo = lmopaf? — wia f2lloo < ellpaf2l1 < ell 2l

(1— &) 1n(f? < poana(f? < A+e) u(f? p-as. 3.3)
If w(f) =0, from (3.3) we get

pama(f?)
w(f?)

and (3.2) holds with# (¢) = . In order to prove (3.2) when(f) # 0, we proceed

as in the proof of Rothaus inequality [Ro], given in [DeSt, p. 246]. Without loss
of generality we can assume(f) = 1, and we writef = 1 + 19g whereg is

a function with zero mean and unit variance, whﬁe:: Var(f). Fort > 0 we

let f; :=1+1g. Sincef,2 has no reason to satisfy a lower bouf;?j > b1 we
introduce a regularizing parameterwith y € (0, €] and define

m [fz log } < log(1+ &) n(f?) < e Var(f) (3.9

2 2
<py(t) ::M|:ft2|ogw:|zﬂl:ft2|ogw] teR.

1(f?) 1+12
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We claim that, for ally € (0, ]

9,0 <y (3.5)
9,0 =0 (3.6)
Q) <168 (1—e)? Vt>0 (3.7)

Given (3.5), (3.6), (3.7) the proof of (3.2) easily follows. In fagt(ro) < y +
84e(1 — £)~243. Moreover, since

nona(f2) +y
n(f?)
we have, by dominated convergence,

blog(h~2) < f2log < blog[b(b + y)]

p2m1(f?)

n(f?)
In the rest of this section we show that (3.5), (3.6), (3.7) hold, completing the proof
of the theorem. The first inequality (3.5) is trivial. Thanks to the parametge

can safely differentiate under the expectations, so, ysigy = 0 andu(g?) = 1,
we get

W [f Zlog } = lim_g1/n(10) < 84e(1— &)~2 Var(f).

poma(f3) +y > mopa(fig)
T} +2u [f

") =2 lo _PePAJis)
by =2u [f’g 9 " pama(fA +y

] —2t. (3.8)
Hence

¢}, (0) = 2 log(L + y) ju(g) + 21+ y) *ulpzn1(g)] = 0.

Differentiating again (3.8) we obtain

pama(f) +y 5 H2p1(g?)
S } +2u [f

' MZMl(ftz) +v
pan1(gfi) ]_ 4 [2 (h2r1(gf1)? ]_ it

2SS -2
wana(f) +y " (napa(f2) + )2 1+12
(3.9)

o)1) = 2u [gz log

+8u [gft

In order to conclude the proof we observe that if we replage; with . and take
y = 0, the RHS of (3.9) is identically zero. By consequence we can write

2 2 2
") =24 | e2lo M}rz [ 2( pana(g®  u(g ))}
@y() M|:g g 14172 128 fz Mzﬂl(ft2)+y V«(ftz)

m2m1(gfr) w(gfr) )}
+8u | 8f; -
a [gf (uzm(f,z) +y  u(fd

B 4/{ 2< (mopa(gf))® (u(gft»Z)]
"\ (ana(fA + )2 (w(f?)?
= 2u(g®A0) + 21 (fP A1) + 8Bu(gfi A2) + 4u(fPA3)

(3.10)
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whereAy, ..., Azare implicitly defined in the last equality. The estimate)bf/vill
follow from the fact that for all functions, uou1(h) is close touw(h) in L sense.
More precisely from assumption (2.8), using algdi1 < |igll2 = 1, it follows

(L—e) Q412 < popr(f2) < A+ (L+1%) p-as.

(3.11)
t—e(l+1) < popa(gfy) <t +e(l+1) p-as.

The remaining rather detailed and straightforward computations have the main pur-
pose of finding the explicit value for the functienstated in the theorem, which is
however not to be taken too seriously. From (3.10) we get

|0 (1)] < 2] A0lloo+2ll At lloo(14+£2) +8]| Azlloo (1+1)+4] Azlloo(14£%). (3.12)

We finally estimateg\o, ..., Az, usingy € (0, ¢] and (3.11)

| Aolloc < max{log(l+¢), —log(l—e)} <

1-¢
Next, we have thajz—a.s.
1+e¢ 1 2¢ 1
Ar = - =
A—e)(A+12) 1412 1—el1+41+2
1—c¢ 1 3¢

A1 > - > — )
L= A1+ +y 1+2° 1+12

As for Ay, u—a.s. we have

t+e(l+1) t e l1+2¢t
Az = - =
A1—e)A+12) 1412 1—g141¢2
t—e(l+1) t e 1+ 3

Ao > — > _ .
2_(1—|—e)(l+t2)+)/ 1412~ 142 1412

Finally, for Az, u—a.s. we have

m2m1(gfr) n(gft) < 1Ay 2 1+

|A3] < |Ag] < .
pora(fA +y  u(fd 1—e 1412

Thus, collecting all together,

oy < 8 18 o (1+3)? 8 Lo tE 168
) S e T e e I 2 T 1o 1—62 = (1—¢)2

and (3.7) follows O
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4. Log-Sobolev inequalitiesfor completely analytical Gibbsrandom fields

Gibbs measures. We briefly recall the concept of Gibbs measures and refer the
reader to [Ge] for a comprehensive introduction to the subject. We considér the
dimensional lattic&? with sitesx := (x1, . .., x4) and norm

x| :== max |x;|
ie{l

The associated distance function is denoted by-). The cardinality ofA c 7¢
is denoted by A|. F is the set of all nonempty finite subsetszsf. We define the
exteriorn-boundary asa,f A = {x € A°: d(x, A) < n}, whereA¢ stands for the
complement ofA in 74,

Given an arbitrary probability spac#, &, v) (thesingle spin space), we intro-
duce theconfiguration space (2, #) = (Szd, é”‘zd). Sometimes we consider finite
volume configuration spacég,, 7 ») = (S*, §%),for A € F. Giveno € Qand
A c 74 we denote byr, the natural projection oveR, and writeo, = 74 (o).

If U,V c z¢ are disjointoyny is the configuration o/ U V which is equal to
o onU andn onV. The action of the translations is defined@ras

9:(0)(y) i=0(y—x) x,yeZ

If f is a function or&2, A s denotes the smallest subsetZsf such thatf (o) de-
pends only orvy . f is calledlocal if A is finite. The supremum norm of is
denoted by £, = SUR,eq | f (@)].

In the following we consider a translation invariant, summableraction J,
of finite ranger, i.e. a collection of functiong = (Ja) acF, suchthat/s : Q — R
is measurable w.r.&Z 4, and

(H1) Jayc o0, = Jsforall A e F,x € 74
(H2) J4 = 0if the diameter ofA is greater tham
(H3) I/l == ZAGF:ABO lJall, < o0

The Hamiltonian(H ) o <r associated witly is defined as

Hpy: Q30 — Z Ja(o) € R.
AcF: ANA#£(

Clearly [|[Hall. < IAllIJ]. Foro, T € Q we also letH (o) := Hp(oytyc) andr

is called theboundary condition. For eachA € IF, T € Q2 the (finite volume) Gibbs
measure o2, &), are given by

uh(do) = (Zf\)_lexp[—Hf\(a)] vA(don) x Spc(dopc) (4.1)

whereZ? is the proper normalization factor called partition function, apd. is
the probability measure qif2¢, # 5¢) which gives unit mass to the configuration
TAcC.

Given a measurable functiohon 2, %, f denotes expectation gfw.r.t. 15,
while, when the superscript is omitted, f stands for the function — ug (f).
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ua fismeasurable w.r.# xc. Analogously, ifX € 7, uy(X) := uy(1x), where
1y is the characteristic function axi. The set of measures (4.1) satisfies the DLR
compatibility conditions

pa(uy (X)) =pua(X) VXeF VVCAEeF. (4.2)

Sincewy f is measurable w.r.&Z yc and since, trivially, for alg measurable w.r.t.
Fye we haveus, (fg) = glo)u$, (f), we get that (4.2) is equivalent to saying
that uy f is a version of the conditional expectatipr, (f|# v<). A probability
measurew on (2, %) is called aGibbs measure for J if

wpy (X)) =u(X) vXe%F VVelF. 4.3)

Complete analyticity. In [DoSh1], [DoSh2], [DoSh3], Dobrushin and Shlosman
introduced the powerful concept of complete analyticity of an interactionmith-
in the framework of finite single spin spade They have shown how complete
analytical interactions can be characterized by 12 equivalent conditions, and the
associated Gibbs fields exhibit all regularity properties of the high-temperature re-
gime. In particular complete analyticity implies that there is a unique Gibbs measure
for J. Our basic assumption on the interactidnis condition (Illd) in [DoSh3].
While its equivalence to the other 11 formulations of complete analyticity depends
on the finiteness af, and does not apply at our level of generality, this condition
is nevertheless sufficient to prove our result for an arbitrary single spin space (see,
however, remark (i) below).

In order to state this assumption we need a few definitionsVFar A € F,
we defineuf\’v as the restriction o}, to .# . A version of the Radon—Nikodym

density ofu}, |, w.r.t.v" is given by

PAy(0) = (22)71/ exp[—HE (navvon) ] v\ dn) o e Qy.
Qa\v

Our basic hypothesis ahis then the following:

Assumption (CA). (Complete analyticity). There exist K > 0, m > 0 such that
forall Ve F,x € 3tV,A c V,andfor all o, w € Qwitho (y) = w(y),ify # x,
we have

PV A —md(x.A)

: <Ke ’ (4.4)

u

PY.A
Remarks. (i) Because of the sup norm in (4.4), this assumption is bound to fail for
unbounded interactions, so the result we present in this section can, in practice, be
mainly applied to discrete/compact spins. On the other side, logarithmic Sobolev
inequalities for unbounded spins (with unbounded interaction) have been recently
studied by several authors ([Ze], [Yo1], [Yo2], [Yo3], [BH1], [BH2], [Le2]), when

S = R, under the fundamental assumption of strict convexity at infinity of the
Hamiltonian, which permits curvature-type arguments, like the> RI" Bak-
ry—Emery criterion [BaEm]. More precisely, one of the crucial ingredients in this
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approach, is that (now the spins are real valuedaisdhe Lebesgue measure on
R) Wy 5 = —logpy , can be written asvy \ = Xy , + Yy o, where

||X$A||u < (C1]A] and HessY“}’A > Co1

andC1, Cz are both positive and independentafA, w. This implies, by the Bak-
ry—Emery criterion, that the logarithmic Sobolev constant of the measgirg is
bounded by a quantity which depends (in principle) am, but is independent of

w. This factis, in turn, a key element for proving an upper bound to the log-Sobolev
constant ofu{ uniformin bothV andw, following the basic strategy of [LY]. For

a clear analysis and review of most of these results we refer the reader to [Le2]. We
just point out here that the picture for unbounded spins is still far from complete.
Results about thequivalence between uniform LSI and mixing conditions ([Yo3],
[BHZ2]) are limited, in fact, to the special case of

Hr(@) =Y o)+ Y. JuyViox—oy)

xXeA {x,yINA#D

whereJ is finite rangey is the sum of a bounded function and a strictly convex
function with a faster than quadratic increase to infinity, &hdhas a bounded
second derivative. It would be clearly interesting to investigate more general situ-
ations, expecially those where convexity plays no role, which are likely to require
new techniques.

(ii) In [MO1] it was realized that complete analyticity is too strong a condition,
and that it should be replaced by a milder assumption (called “strong mixing” in
[MO1]) in which only regular volumesi . volumes which are unions of transla-
tions of a sufficiently large given cube) are considered. Our Theorem 4.1 below can
be stated using “strong mixing” rather than complete analyticity.

Logarithmic Sobolev inequalities. Given A € F, t € € and a non negative func-

tion £, such thatf log™ f e Ll(uj\) we define En (f) as the entropy of w.r.t.

wy. When we write Ent (f) without the superscript, we mean the function

T — Ent} (f), in analogy withu 4 (f). We consider then a “generalized” Dirichlet
form &7 . Again we definef's (f) : Q — Ry as the functiomr — &7 (f). Typi-

cally [Gr2] &7 is the Dirichlet form associated to the generdi§rof a symmetric,
positive preserving, contraction semigroelpa. We will proceed, however, in a
more abstract framework, since all we need are the following general properties of
8.

(E1) There exists a se¥ of measurable functions which is a domain for{dF, :
A e F, T € Q}, andg’}, maps< into [0, co).

(E2) ForallV c A eF,t e, f € o, the functions'y (f) is in L1(u?).

(E3) If A = V1 U Va, thenu} [6v,(f) + Ev, ()] = 65 (F) + 1l (Evinva ().

We do not discuss density properties of the domainand our statement will be
given for functionsf belonging ta<Z. In the specific study of a particular case, one
can investigate the possibility of choosingin such a way that all statements can
be extended, by density, to the whole domai§f
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For all A € F, we define thdogarithmic Sobolev constant ¢(A) € [0, oco] as the
infimum of all positive real numberssuch that

Enfi (f2) <2c6%(f) VreQ, Vfed.

At this level of abstraction it is clear that we have to avoid situations where a LSI
fails, for instance, already for a single spin. We need one last assumption

(E4) The quantity:(A) is finite for all A € F.

As it will be apparent from the proof below, assumption (E4) can be replaced by the
somehow milder statement thatA) is finite for all A € F whose diameter does
not exceedlp, wheredp depends on the complete analyticity constaatandm.
Having stated the hypotheses 6f, we mention two classical examples where
they hold

(1) Thefirstis the Glauber dynamics wher= {—1, 1} (or any finite set). The Di-
richletformis given by (f) = u} (3 ca co(Dx £)?), wheree, : Q > R,
are measurable, usually bounded, functions, called the transition rates, and
D, is the discrete gradient defined as follows: fore Q, x e 749, let
o € Q be the configuration obtained from, by flipping the spin atx.
Then D, f(o) := f(o¥) — f(o). o/ can be taken as the set of all local
functions.

(2) Inthe second exampkeis a connected, compact Riemannian manifold, and
is the normalized Riemannian measure. Consider the diffusiast‘ominder
boundary condition, with generatod _ _, (A — V H}), whereV, andA,
are respectively the gradient and the Laplacian omxthecopy of S. In this
case we have’ (f) = uj QO ca |V, 1% and.« can be chosen as the set
of all functions f which can be written ag = g o 7y for someV < F,
g€ C®(sY).

The only nontrivial property we have to check in these casés4s: whenJ = 0,

we haveu’ = v2, so it is sufficient to show that a LSI holds forwith some
log-Sobolev constarit This fact is trivial in the discrete case, where the optimal
constantis known (see [Lel], Ch.5), and true in case (2) (see [Wa] for upper bounds
on¢). In order to deal with a non zero interaction, we observe ffjahas density
exp(—HJ)/Z% w.rt. vA. It is well known (see Lemma 3.5 in [SZ1]) that since
IHf . < |AlllJ], we can controk(A) in terms ofcé. More precisely we have
c(A) < &AM

The main result in this section is

Theorem 4.1. Let J be a trandation invariant, summable interaction of finite
range r such that assumptions (CA) holds, and let {7} : A € F, t € Q} satisfy
conditions (E1), ..., (E4). Then

Supc(A) < +oo.
AelF

Proof. We start with the following result
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Lemmad4.2. Let A € F,andlet V1, Vo betwo subsetsof A, suchthat A = VU V.
Let] := d(A\V1, A\ V7). Assume that

OF Vo) NAIKe™ < 1. (4.5)

Then there exists g = Ip(K, m) such that for all [ > [p, forall T € @

Ent, (/%) =2 (14 K'e™) [e(Vo) v e(V)] [ €505 + i} Evannz (1) ]
(4.6)
where K/ = 2ea K and o isgiven in Proposition 2.1.

Proof of Lemma 4.2. Lett € Q and letFy ; '= {0 € Q : oac = 1)c}. By (4.2)
MR’AM is a convex combination qmzy,\\vl 10 € Fa ¢}, thus

oS, oy
w_l < sup M—l Vw € Faz. 4.7)
PA, AV, w  ONEFAT | Pyya\vy u

Moreover, thanks to the finite range assumption (H2), we can assume that the
configurationss, n in the RHS of (4.7) also agree ;" V2)°. Thus there exists

a finite sequence of configurations which interpolate betweamd, i.e. a se-
quence(®;)}j_;, With w; € Fp -, w1 = 0, w, = n,n < [(8,7 V2) N A|, and such
thatw;, w; 41 differ at exactly one site afd," V2) N A. Thanks to assumption (CA)

we obtain

(e
(l— Ke—md(A\Vg,A\V1)>n < '0V2>A\V1(%-)
:032,1\\\/1(5)
n wij—1
Y &) n
=[] e < (14 ka2 (4.8)
i—2 Py, )

Butif [x| < 1/n, we have/(1+ x)" — 1| < enx, hence if (4.5) holds, from (4.7),
(4.8) we get

w
Pvoa\vy 1 < KemdA\VaADHL _ g ooty e Fy

T
PA,A\VL "

By consequence

lievs (@) = ma @y < K e llglnge, Ve e LN, Faw, 0.
(4.9)

From what we said after (4.2) we can identjfy, (g) with u} (g]# a\1,). Thus,
by Proposition 2.1, there ig = [p(K, m) such that, for all > [y

Ent (/%) < (1+ K'e™) uj [Enty (/) +Enti, (/2| (4.10)
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Finally from the definition ofc(V) and from assumptiof&3), it follows

e [Entvl( £2) + Enty,(£?) ]

<2[c(V) V(] [EX() + 1l v (f) ] (4.11)
O

Proof of Theorem 4.1. Previous lemma suggests an iterative procedure to esti-
mate the logarithmic Sobolev constar{A), that is divide A roughly into two
“halves” V1, V>, in such a way thah = V4 U V» and V; and V> have an in-
tersection “thick” enough so that (4.5) holds. Then, by (4.6) we “almost” have
c(A) < (L4 K'e™™) (¢(V1) V ¢(V2)). The “almost” comes of course from the
extra termu’, (6v,nv, (f)). A trivial upper bound for this term ig”, , but this is
fatal to the argument since it yield$A) < 2(1+ K’e="!) (c(V1) V ¢(V2)). How-

ever it was observed in [Ma] that one can write many, sagifferent replicas of
inequality (4.6), each corresponding to a different choic&QfV, such that the
setsVy N V, are disjoint for different replicas. At this point we can add together
all the inequalities obtained and tham of all ther extra terms is still bounded by
&% (f). Inthis way we get

c(A) < (A4 K'e ™)y (14 1/r) (c(V1) V c(V2)) . (4.12)

and, ifr is a function of the size oA which goes to 0 fast enough, a chance to
obtain a convergent iteration from (4.12) becomes apparent.
The actual proof requires a simple geometric construction which was already used
in [BCC] for obtaining a uniform lower bound for the spectral gap of a continuous
gas. We include the details below for completeness./Let (3/2)*/¢, and let
Fr be the set of alld € F which, modulo translations and permutations of the
coordinates, are contained in

([0, I 4] X [0, Lkq2] x -+ x [0, lya]) N Z¢

LetalsoGy := supy ¢, c(V). The idea behind this construction is that each volume
in Fx\F¢—1 can be obtained as a “slightly overlapping union” of two volumes in
Fx—1. More precisely we have:

Pro_positi’on 4.3. Forall k € 7z, ,forall A € Fx\Fr_1 thereexistsafinite sequence
(v, V;‘)}szl, where s = Ll,f/3j, such that, letting 8 1= /7 — 2,

@ A=v2uvand v v eFpog forali=1,..., 5

@ dA\V,", AV = s, foralli=1,..., 5

@ v nvyinvnvy =g, ifi #j

Proof. SinceA e F; we can assume that c ([0, b1] x - - - x [0, bg]) N Z¢ with
by, < lxyn,forn=1,...,d. Define

: by 2i
v = ([O,bl] x -+ x [0, bg_1] x [o, 7“+§’\/5D0A

: by 2i—1
v2<'>::([o,bl]x.-.x[o,bd_l]x[7‘1+ ’8 ﬁ,bd])m\
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It is straightforward to check thall(i) and Vz(i) belong tolF;_1. In fact we know
thatby < lx1q, thus, foralli =1, ..., s

bg 2 by 2s lkva  lse 3l lsge
A S <2 TR <R oS8 TR 256 (413
2+8k_2+8ﬂ_2+4k 2 Tk sk (413)
which, together with the inequalities

by <liy1,...,bg-1 < k144
implies thatVl(i) € Fr_1. SinceVZ(i) is smaller tharvl(i), it also belongs tdr;_1.
Vl(’) and Vz(’) are nonempty, since, using (4.13), it easy to see that, otherwise,
A itself would belong taoF;_1 which is excluded by hypothesis. We have then

ANV, AV = L/l -2 =& O

We can conclude the proof of Theorem 4.1. Choose a positive inkgger
ko(K, m) large enough such that

(i) 8x = lo(K,m) (Ip was defined in Lemma 4.2)
(i) Urora + DIKe™™k <1

Let thenk > ko, A € Fy, and let{V.", VZ(")}f.k:l be the sequence given in Prop-
osition 4.3. Properties (i) and (ii) allow us to apply Lemma 4.2 and obtain, for
i=1...,8

ENt, (£2) = 2(1+ K'e ™) [eVf) v e(Vg) | [ 680 + 1A @G oy ()]
(4.14)

Thanks to (3) of Proposition 4.:2:?:1 BA(E Lo nyo () < & (f), so when we
1 2
sum (4.14) fori = 1, ..., sx, and divide bys; we get
1
Ent) (f%) < 2Gk-1 (14 K'e™™%) [1 + —] &5(f) (4.15)
Sk

which yields

1
Gr <Gp-1 (l—l— K/e_mSk) |:1+ —i| Vk > ko. (4.16)
Sk

From the iteration of (4.16) we obta@;, < M Gy,, for all k > kg, where

o0

M:=1T] {(1+ K'e %) [1+£“ <00

k=ko

thanks to the explicit expressions&fands; . Finally assumption (E4) guarantees
thatGy, is finite, and the theorem follows. [l
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