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Abstract. Hydrodynamic large scale limit for the Ginzburg-Landau ∇φ interface model
was established in [6]. As its next stage this paper studies the corresponding large deviation
problem. The dynamic rate functional is given by

I (h) = 1

4

∫ T

0
dt

∫
Td

{∂h/∂t − div(∇σ(∇h))}2 dθ

for h = h(t, θ), t ∈ [0, T ], θ ∈ T
d , where σ = σ(u) is the surface tension for mean tilt

u ∈ R
d . Our main tool is H−1-method exploited by Landim and Yau [9]. The relationship to

the rate functional obtained under the static situation by Deuschel et al. [3] is also discussed.

1. Introduction

The Ginzburg-Landau ∇φ interface model determines a stochastic dynamics for a
discretized hypersurface embedded in the d + 1 dimensional space. Such hyper-
surface is interpreted as an interface separating two distinct phases. The position
of hypersurface is described by height variables φ = {φ(x), x ∈ �N } measured
from a fixed hyperplane �N . We shall always work on a periodic cubic lattice so
that �N = (Z/NZ)d = {1, 2, . . . , N}d . Its side length N is large and eventually
goes to infinity.

The dynamics of the interface φ is governed by the stochastic differential equa-
tions (SDEs)

dφt (x) = −
∑

y∈�N :|x−y|=1

V ′(φt (x)− φt (y))dt +
√

2 dwt (x), x ∈ �N,

(1.1)
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where {wt(x), x ∈ �N } is a family of independent one dimensional standard
Brownian motions. The potential V satisfies the following conditions:

(i) V ∈ C2(R),

(ii) (symmetry) V (−η) = V (η), η ∈ R,

(iii) (strict convexity) c− ≤ V ′′(η) ≤ c+, η ∈ R, for some c−, c+ > 0.
(1.2)

In [6], the macroscopic behavior of the microscopically defined interface dy-
namics φt = {φt (x), x ∈ �N } is investigated. It is shown that, after taking the limit
N → ∞, the interface dynamics viewed at the macroscopic level is governed by
the motion by mean curvature except for some anisotropy effects. To formulate
more precisely, let us define macroscopic height variables for the interface as a step
function on the torus T

d = (R/Z)d = [0, 1)d :

hN(t, θ) := N−1φN2t (x), θ ∈ B(x/N, 1/N), (1.3)

where B(θ, a) = ∏d
i=1[θi − a/2, θi + a/2) denotes a box in T

d with center
θ = (θi)

d
i=1 and side length a > 0. Note that (1.3) introduces a diffusive scaling

for φt and both x- and φ-axes are rescaled by a factor 1/N . This is because the φ-
field represents a hypersurface embedded in d+1 dimensional space. The function
hN(t, θ) is sometimes simply denoted by hN(t).

One of the main results of [6] can now be stated. Assume that initial random
configuration φ0 of the SDEs (1.1) converges to some non-random h0 ∈ L2(Td)

in the sense that

lim
N→∞

E[||hN(0)− h0||2] = 0, (1.4)

where || · || denotes the usual L2-norm of the space L2(Td). Then, for every t > 0

lim
N→∞

E[||hN(t)− h(t)||2] = 0 (1.5)

holds and h(t) = h(t, θ) is a unique solution of the partial differential equation
(PDE)

∂

∂t
h(t, θ) =

d∑
i=1

∂

∂θi

{
∂σ

∂ui
(∇h(t, θ))

}
, θ ∈ T

d , (1.6)

having initial data h0, where ∇h = (∂h/∂θi)
d
i=1. The function σ = σ(u) is the

so-called surface tension determined by the statistical property of random inter-
faces with mean tilt u = (ui)

d
i=1 ∈ R

d , see [6]. Since the limit h(t, θ) of random
field hN(t, θ) is non-random, this result can be thought as a kind of law of large
numbers. The equation (1.6) describes the motion by mean curvature, except for
some anisotropy due to the underlying lattice structure. Further physical motivation
can be found in [12].

The aim of this paper is to study the corresponding large deviation problem
as a natural next stage. An extension of the H−1-method first used by Chang and
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Yau [2] effectively works to show the hydrodynamic limit, see [6]. This is again the
case for the large deviation problem. We shall in fact apply the method employed
by Landim and Yau [9], and also the approach used by [4], [8].

We remark that the stochastic dynamics defined by (1.1) is reversible under the
finite-volume Gibbs measures associated with an energy of the interface φ

HN(φ) =
∑
b∈�∗

N

V (∇φ(b)). (1.7)

Here�∗
N stands for the family of all directed bonds b = (x, y), x, y ∈ �N, |x−y| =

1 in �N , and ∇φ(b) := φ(x) − φ(y) for b = (x, y). Each bond b = (x, y) is di-
rected from y to x. We write xb = x and yb = y for b = (x, y). Reversely directed
bond−b of b is defined by−b := (yb, xb). Note that each undirected bond appears
twice in �∗

N . The family of all directed bonds in Z
d is similarly denoted by (Zd)∗.

The main result is stated in Section 2, see Theorem 2.1. Superexponential esti-
mate which is essential for the proof of the main result is also formulated there, see
Theorem 2.2. To prove such estimate, superexponential one-block and two-blocks
estimates are required. These estimates are given in Sections 4 and 5, respectively.
Section 3 prepares several a priori exponential estimates. Large deviation lower
and upper bounds are proved in Sections 6 and 7, respectively. Finally Section
8 discusses the relationship between our dynamic approach and the static result
obtained by [3].

2. Main result

Before stating the main theorem, we prepare several notation. For a microscop-
ic height variable φ ≡ φN = {φ(x), x ∈ �N } ∈ R

�N , hN ≡ hN(θ) :=
N−1∑

x∈�N
φ(x)1B(x/N,1/N)(θ) denotes a macroscopic height variable. Similar-

ly, for a microscopic height process φt ≡ {φt (x), x ∈ �N }, we denote by φN
t ≡

{φN
t (x) := φN2t (x), x ∈ �N } a height process which is macroscopic in time

and microscopic in space and by hN(t, θ) := N−1∑
x∈�N

φN
t (x)1B(x/N,1/N)(θ)

a macroscopic height process, respectively; hN(t, θ) is the same as that defined in
(1.3). For each directed bond b = (x, y), we set ηt (b) ≡ ∇φt (b) := φt (x)−φt (y)

and ηNt (b) ≡ ∇φN
t (b) := φN

t (x)− φN
t (y). Note that, from the SDEs (1.1) for φt ,

the process φN
t satisfies the SDEs

dφN
t (x) = −N2

∑
b∈�∗

N :xb=x

V ′(∇φN
t (b))dt +

√
2Ndwt(x), x ∈ �N, (2.1)

in law sense. Namely, (2.1) holds with N−1wN2t (x) in place of wt(x) but the laws
are certainly the same. The generator of the process φN

t is given by

LN = N2
∑
x∈�N


 ∂2

∂φ(x)2
−

∑
b:xb=x

V ′(∇φ(b))
∂

∂φ(x)


 . (2.2)
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Throughout the paper, we assume the initial configurations φN = φN
0 of the

SDEs (2.1) are deterministic and satisfy

sup
N


|φN(0)| +N−d

∑
b∈�∗

N

(∇φN(b))2


 < ∞. (2.3)

Note that this condition implies supN ||hN || < ∞ for the corresponding macroscop-
ic height variables. We also assume the condition (1.4) without taking expectations
for the corresponding hN(0) and some h0 ∈ L2(Td). The distribution of the process
φN
t , t ∈ [0, T ] with initial configuration φN is denoted by PφN ; T > 0 is fixed.

We denote the space L2(Td) equipped with the weak topology by L2
w(T

d) and the
class of all continuous functions h : [0, T ] → L2

w(T
d) by C([0, T ], L2

w(T
d)). The

space H 1(Td) stands for the Sobolev space on T
d so that L2([0, T ], H 1(Td)) is

the family of all h = h(t, θ) ∈ L2([0, T ] × T
d) satisfying that h(t) ∈ H 1(Td) for

a.e.t ∈ [0, T ] and
∫ T

0 dt
∫
Td |∇h(t, θ)|2 dθ < ∞.

For each h = h(t, θ) which is differentiable in (t, θ), let

I (h) ≡ IT (h) := 1

4

∫ T

0
dt

∫
Td

{
∂h

∂t
(t, θ)− div(∇σ(∇h(t, θ)))

}2

dθ, (2.4)

if h(0) = h0 and I (h) = +∞ if h(0) �= h0; see Proposition 6.3 below. More pre-
cisely saying, I (h) = +∞ unless h ∈ C([0, T ], L2

w(T
d)) satisfies h ∈ L2([0, T ],

H 1(Td)), and for such h

I (h) = sup
J=J (t,θ)∈C1([0,T ]×Td )

I (h; J ), (2.5)

where

I (h; J ) =
∫

Td

J (T , θ)h(T , θ) dθ −
∫

Td

J (0, θ)h0(θ) dθ

−
∫ T

0
dt

∫
Td

∂J

∂t
(t, θ)h(t, θ) dθ

+
∫ T

0
dt

∫
Td

∇J (t, θ) · ∇σ(∇h(t, θ)) dθ −
∫ T

0
dt

∫
Td

J 2(t, θ) dθ.

(2.6)

Recall that the function σ enjoys the bound |∇σ(u)| ≤ C(1 + |u|), see Theorem
3.4 (v) of [6]. Our main result asserts that the large deviation principle holds for
hN = hN(t, θ) with the rate functional I (h):

Theorem 2.1. For every closed subset C and open subset O of C([0, T ], L2
w(T

d)),
we have

lim sup
N→∞

N−d logPφN (h
N ∈ C) ≤ − inf

h∈C
I (h), (2.7)

lim inf
N→∞

N−d logPφN (h
N ∈ O) ≥ − inf

h∈O
I (h). (2.8)
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Remark 2.1. (i) Deuschel et al. [3] recently studied the large deviations under the
static situation. They proved that the large deviation principle holds for a sequence
of finite volume Gibbs measures {µN } and the rate functional is given by the total
surface tension F(h) for h = h(θ). The details will be discussed in Section 8.
(ii) For d = 1, the ∇φ interface model is identical to the Ginzburg-Landau model
treated by Donsker and Varadhan [4]. In fact, [4] established the large deviation
principle for the process ηNt in our setting.

The proof of Theorem 2.1 relies on a superexponential estimate, see Theo-
rem 2.2 below. To formulate it, we recall some notation from [6] and introduce
further notation. The space X stands for the set of all η ∈ R

(Zd )∗ satisfying the
plaquette condition and µu denotes the unique shift invariant, ergodic tempered
Gibbs measure on X with mean u ∈ R

d , see [6] for details. For % ⊂ Z
d , we

define %∗ by %∗ = {b ∈ (Zd)∗; xb, yb ∈ %}. Let Cloc,b(X) be the family of

all functions F on X of the forms F(η) = F̄

(
{η(b)}

b∈
(
%̌
)∗
)

for some finite

%̌ ⊂ Z
d and F̄ ∈ Cb

(
R

(
%̌
)∗)

. The class of all F ∈ Cloc,b(X) defined with

F̄ ∈ C0

(
R

(
%̌
)∗)

is denoted by Cloc,0(X). The (minimal) set %̌ is called the sup-

port of F for F ∈ Cloc,b(X). We denote the expectation of F ∈ Cloc,b(X) with
respect to µu by F̃ (u):

F̃ (u) = Eµu [F ], u ∈ R
d . (2.9)

For a positive integer l and x ∈ Z
d , denote the empirical mean of the configuration

η on a box %l + x with side length 2l + 1 centered at x by η̄lx :

η̄lx = (2l + 1)−d
∑

y∈%l+x

d∑
i=1

η(ei + y)ei ∈ R
d ,

where %l = {y ∈ Z
d;max1≤i≤d |yi | ≤ l} is a box centered at 0 and ei ∈ Z

d

is the i-th unit vector given by (ei)j = δij ; note that ei + y sometimes repre-
sents the directed bond (ei + y, y). Finally, for a positive integer l and a function
F ∈ Cloc,b(X), set

Av%l+x F (η) = (2l + 1)−d
∑

y∈%l+x

τyF (η),

and

WF
l (η) = Av%l

F (η)− F̃ (η̄l0),

where τy denotes the shift by y. Then, the superexponential estimate for the replace-
ment of sample mean by its average under equilibrium measures is formulated as
follows:
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Theorem 2.2. For every F ∈ Cloc,b(X) and α > 0, we have

lim sup
ε↓0

lim sup
N→∞

N−d logEφN


exp


α

∫ T

0

∑
x∈�N

∣∣∣τxWF
Nε(∇φN

t )

∣∣∣ dt



 ≤ 0.

(2.10)

In particular, for every δ > 0

lim sup
ε↓0

lim sup
N→∞

N−d logPφN


N−d

∫ T

0

∑
x∈�N

∣∣∣τxWF
Nε(∇φN

t )

∣∣∣ dt > δ


 = −∞.

(2.11)

3. A priori exponential estimates

In this section, we prove several exponential estimates for hN(t) and ∇φN
t . Propo-

sition 3.1 and its Corollary 3.2 will play key roles in the subsequent sections, while
Propositions 3.3 and 3.4 will be used in Section 7 to show the superexponential
tightness of hN(t).

Proposition 3.1. For every T > 0, 0 < β ≤ 1, N ≥ 1 and for every initial
configuration φN with finite L2 norm for the corresponding hN (i.e. ‖hN‖ < ∞)

EφN


exp


βe−5T

∫ T

0


∑

b∈�∗
N

V ′(∇φN
t (b))∇φN

t (b)+Nd‖hN(t)‖2


 dt






≤ exp{βNd‖hN‖2 + 2βNd/5}. (3.1)

The following corollary is readily shown by applying this proposition and
recalling that V ′(η)η ≥ c−η2.

Corollary 3.2. Let (φN)N≥1 be a sequence satisfying supN ‖hN‖ < ∞. Then,

lim sup
β↓0

lim sup
N→∞

N−d

× logEφN


exp


β

∫ T

0


∑

b∈�∗
N

(
∇φN

t (b)
)2 +Nd‖hN(t)‖2


 dt




 ≤ 0.

Proof of Proposition 3.1. For every κ ≥ 0, we introduce a martingale

Mκ
t = ‖hN(t)‖2e−κt − ‖hN(0)‖2

−
∫ t

0
e−κs

(
LN

∥∥∥hN(s)∥∥∥2 − κ‖hN(s)‖2
)

ds, t ≥ 0.
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From ‖hN‖2 = N−d−2 ∑
x∈�N

φ(x)2, we have

LN
∥∥∥hN∥∥∥2 = N−d

∑
x∈�N


2 − 2

∑
b:xb=x

V ′(∇φ(b))φ(x)




= N−d
∑
x∈�N


2−

∑
b:xb=x

V ′(∇φ(b))φ(xb)+
∑

b:yb=x

V ′(∇φ(b))φ(yb)




= 2 −N−d
∑
b∈�∗

N

V ′(∇φ(b))∇φ(b). (3.2)

The second equality uses the symmetry of V which implies V ′(∇φ(b)) =
−V ′(∇φ(−b)). From the representation

Mκ
t = 2

√
2N−d−1

∑
x∈�N

∫ t

0
e−κsφN

s (x) dws(x),

we see that its quadratic variation is given by

〈Mκ 〉t = 8N−d

∫ t

0
e−2κs‖hN(s)‖2 ds. (3.3)

Since Mκ
t is a continuous martingale vanishing at time 0, for every initial configu-

ration φN with finite L2 norm for the corresponding hN ,

exp

{
βNdMκ

t −
β2N2d

2
〈Mκ 〉t

}

is a positive local martingale and therefore a supermartingale. Since it is equal to 1
at t = 0,

EφN

[
exp

{
βNdMκ

T − β2N2d

2
〈Mκ 〉T

}]
≤ 1.

Hence, by the definition of Mκ
t and (3.2), (3.3),

EφN


exp


− βNd‖hN(0)‖2

−βNd

∫ T

0
e−κt


2 −N−d

∑
b∈�∗

N

V ′(∇φN
t (b))∇φN

t (b)− κ‖hN(t)‖2


 dt

− 4β2Nd

∫ T

0
e−2κt‖hN(t)‖2 dt




 ≤ 1.
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Note that we have dropped the non-negative term βNd‖hN(T )‖2e−κT appearing
in the exponential of the left hand side. Therefore, if κ − 4βe−κs ≥ 1 holds for
s ∈ [0, T ],

EφN

[
exp

{
β

∫ T

0
e−κt

∑
b∈�∗

N

V ′(∇φN
t (b))∇φN

t (b) dt

+ βNd

∫ T

0
e−κt‖hN(t)‖2 dt

}]

≤ exp

{
βNd‖hN(0)‖2 + 2βNd

∫ T

0
e−κt dt

}
.

Choose now κ = 5. Then κ − 4βe−κs ≥ 1 holds for every 0 < β ≤ 1 and
s ∈ [0, T ], and thus we obtain the desired estimate (3.1). �

The next proposition improves the exponential estimate for the integral∫ T

0 ‖hN(t)‖2 dt given in Corollary 3.2 into that for sup0≤t≤T ‖hN(t)‖2.

Proposition 3.3. Let (φN)N≥1 be a sequence satisfying (2.3). Then,

lim sup
β↓0

lim sup
N→∞

N−d logEφN

[
exp

{
βNd sup

0≤t≤T
‖hN(t)‖2

}]
≤ 0. (3.4)

Proof. Set

At = ‖hN(0)‖2 +
∫ t

0
LN

∥∥∥hN(s)∥∥∥2
ds.

Then ‖hN(t)‖2 = Mt +At holds with the martingale Mt ≡ M0
t (i.e. κ = 0) given

in the proof of Proposition 3.1. Therefore, by Schwarz’s inequality

EφN

[
exp

{
βNd sup

0≤t≤T
‖hN(t)‖2

}]
≤
(
IN1,β

)1/2 ·
(
IN2,β

)1/2
, (3.5)

where

IN1,β = EφN

[
exp

{
2 sup

0≤t≤T

(
βNdMt − β2N2d

2
〈M〉t

)}]
,

IN2,β = EφN

[
exp

{
2 sup

0≤t≤T

(
βNdAt + β2N2d

2
〈M〉t

)}]
.

Let us estimate the term IN1,β . Since

M1,t := exp

{
βNdMt − β2N2d

2
〈M〉t

}

is a local martingale, there exists an increasing sequence of stopping times {tn} such
that {M1,t∧tn} are martingales for all n. Thus, by Doob’s inequality, the term I

N,n
1,β
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which is defined by replacing Mt and 〈M〉t with Mt∧tn and 〈M〉t∧tn respectively in
IN1,β can be estimated as

I
N,n
1,β = EφN

[
sup

0≤t≤T

(
M1,t∧tn

)2]

≤ 4EφN

[
exp

{
2βNdMT∧tn − β2N2d〈M〉T∧tn

}]
≤ 4EφN

[
exp

{
6β2N2d〈M〉T∧tn

}]1/2
.

The last inequality follows by Schwarz’s inequality, since exp
{
4βNdMt∧tn

−8β2N2d〈M〉t∧tn
}

is a supermartingale which is equal to 1 at t = 0. Letting
n →∞, from Fatou’s lemma and monotone convergence theorem, we get

IN1,β ≤ 4EφN

[
exp

{
6β2N2d〈M〉T

}]1/2
.

By Corollary 3.2 and noting 〈M〉T = 8N−d
∫ T

0 ‖hN(s)‖2 ds, we have

lim sup
β↓0

lim sup
N→∞

N−d log
(
IN1,β

)1/2 ≤ 0.

Next, we estimate the term IN2,β in (3.5). Since LN‖hN‖2 ≤ 2, we have

IN2,β ≤ exp
(

2βNd‖hN(0)‖2 + 4βNdT
)
EφN

[
exp

{
8β2Nd

∫ T

0
‖hN(t)‖2 dt

}]
,

and therefore, from Corollary 3.2 we have

lim sup
β↓0

lim sup
N→∞

N−d log
(
IN2,β

)1/2 ≤ 0.

This completes the proof. �

Finally, we show superexponential weak equicontinuity estimate for hN(t). For
J = J (θ) ∈ C(Td), we introduce the process hNt (J ) as

hNt (J ) :=
∫

Td

J (θ)hN(t, θ) dθ = N−(d+1)
∑
x∈�N

φN
t (x)JN(x),

where JN(x) is the function defined by

JN(x) = Nd

∫
B(x/N,1/N)

J (θ) dθ, x ∈ �N.
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Proposition 3.4. Let (φN)N≥1 be a sequence satisfying (2.3). For all ε > 0 and
J ∈ C1(Td),

lim sup
δ↓0

lim sup
N→∞

N−d logPφN


 sup

0≤t1<t2≤T ,
t2−t1<δ

∣∣∣hNt1 (J )− hNt2 (J )

∣∣∣ > ε


 = −∞.

(3.6)

Proof. Using Itô’s formula, we get

hNt (J ) = hN0 (J )− ξNt (J )+ wN
t (J ),

where

ξNt (J ) = 1

2
N−d+1

∫ t

0

∑
b∈�∗

N

∇JN(b)V ′(∇φN
s (b)) ds,

wN
t (J ) =

√
2N−d

∑
x∈�N

JN(x)wt (x).

Therefore, for completing the proof, it is sufficient to show the superexponential
estimate (3.6) for ξNt (J ) and wN

t (J ) in place of hNt (J ), respectively. First we
consider for ξNt ≡ ξNt (J ). Since we see

PφN


 sup

0≤t1<t2≤T ,
t2−t1<δ

∣∣∣ξNt1 − ξNt2

∣∣∣ > ε


 ≤

[T/δ]∑
k=0

PφN

(
sup

kδ≤t<(k+1)δ

∣∣∣ξNt − ξNkδ

∣∣∣ > ε

4

)

and ∣∣∣ξNt1 − ξNt2

∣∣∣ ≤ 1

2
c+N−d‖∇J‖∞

∫ t2

t1

∑
b∈�∗

N

∣∣∣∇φN
s (b)

∣∣∣ ds
for 0 ≤ t1 < t2 ≤ T , we get

PφN


 sup

0≤t1<t2≤T ,
t2−t1<δ

∣∣∣ξNt1 − ξNt2

∣∣∣ > ε




≤
[T/δ]∑
k=0

PφN


N−d

∫ (k+1)δ∧T

kδ

∑
b∈�∗

N

|∇φN
s (b)| ds > ε

c


 , (3.7)

where c = 2c+‖∇J‖∞; we may assume J is not a constant function. However,
for every β > 0, dividing the integral into the region of s ∈ [kδ, (k + 1)δ ∧ T ]
satisfying |∇φN

s (b)| ≤ β−1 and its complement, we have∫ (k+1)δ∧T

kδ

∑
b∈�∗

N

∣∣∣∇φN
s (b)

∣∣∣ ds ≤ 2dNdβ−1δ + β

∫ T

0

∑
b∈�∗

N

∣∣∣∇φN
s (b)

∣∣∣2 ds.
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Thus, by Chebyshev’s inequality, for every α > 0

PφN


N−d

∫ (k+1)δ∧T

kδ

∑
b∈�∗

N

|∇φN
s (b)| ds > ε

c




≤ exp
{
α
(

2dβ−1δ − ε

c

)
Nd
}
EφN


exp


αβ

∫ T

0

∑
b∈�∗

N

∣∣∣∇φN
t (b)

∣∣∣2 dt




 .

Therefore, we get

lim sup
δ↓0

lim sup
N→∞

N−d logPφN


 sup

0≤t1<t2≤T ,
t2−t1<δ

∣∣∣ξNt1 − ξNt2

∣∣∣ > ε




≤ lim sup
N→∞

N−d logEφN


exp


αβ

∫ T

0

∑
b∈�∗

N

∣∣∣∇φN
t (b)

∣∣∣2 dt




− αε

c
.

Take the limit β ↓ 0 in the right hand side. Then, by Corollary 3.2, the first term
vanishes. Since α > 0 is arbitrary, the estimate (3.6) is shown for ξNt = ξNt (J )

instead of hNt (J ). The estimate (3.6) for wN
t (J ) is easy, since

2N−2d
∑
x∈�N

(JN(x))2



−1/2

wN
t (J )

are Brownian motions under PφN . The proof of Proposition 3.4 is concluded. �

4. One-block estimate

The goal of the present section is to show the following theorem from which the su-
perexponential one-block estimate follows immediately. This theorem will be used
to prove Theorem 2.2 combining with the superexponential two-blocks estimate
which will be shown in the next section.

Theorem 4.1. Let (φN)N≥1 be a sequence of initial configurations satisfying
supN ‖hN‖ < ∞ for the associated (hN)N≥1. Then, for every F ∈ Cloc,b(X)

and α > 0,

lim sup
l→∞

lim sup
N→∞

N−d logEφN


exp


α

∫ T

0

∑
x∈�N

∣∣∣τxWF
l (∇φN

t )

∣∣∣ dt



 ≤ 0.

To conclude the proof of the theorem we have to show that for every α > 0,

lim sup
l→∞

lim sup
N→∞

N−d logEφN

[
exp

{
αNd

∫ T

0
UF
N,l(∇φN

t ) dt

}]
≤ 0, (4.1)
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where

UF
N,l(η) = N−d

∑
x∈�N

∣∣∣Av%l+x F (η)− F̃ (η̄lx)

∣∣∣ .
The proof of the superexponential one-block estimate (4.1) will be reduced to the
usual one-block estimate (see (4.3) below) by means of Portenko’s argument, [11,
p. 117]. Such idea was already taken by [9]; however, since they treated one dimen-
sional model, it was sufficient to divide the time interval [0,T] into small pieces
for the integral appearing in the exponential in (4.1). To study higher dimensional
model, it turns out to be necessary for the lattice space simultaneously divided into
suitably small domains, namely, we divide�N into boxes with side lengthN1/d (we
assume N1/d is an integer for simplicity); see Remark 4.1 below. In other words,
we have

�N =
⋃
a∈�̃N

(%(N) + a),

with �̃N := N1/d(Z/N(1−1/d)
Z)d = {N1/d , 2N1/d , . . . , N}d and%(N) := %N1/d/2

(as we have remarked, such partition in space is unnecessary in one dimension).
Then, for A > 0, set

U
A,F
N,l (η) := N−d

∑
a∈�̃N

U
A,F
a,N,l(η),

U
A,F
a,N,l(η) := 1{Av

(%(N)+a)∗ η
2≤A}

∑
x∈%̃(N)+a

|Av%l+x F − F̃ (η̄lx)|,

where

Av(%(N)+a)∗ η
2 :=

∣∣∣(%(N) + a)∗
∣∣∣−1 ∑

b∈(%(N)+a)∗
η(b)2,

%̃(N) := %(N1/d−N1/2d )/2.

Lemma 4.2. To prove Theorem 4.1, it is enough to show (4.1) for every α,A > 0
with U

A,F
N,l replacing UF

N,l:

lim sup
l→∞

lim sup
N→∞

N−d logEφN

[
exp

{
αNd

∫ T

0
U

A,F
N,l (∇φN

t ) dt

}]
≤ 0. (4.2)

Proof. For A > 0,

∣∣∣UF
N,l(η)− U

A,F
N,l (η)

∣∣∣
≤ 2‖F‖∞N−d



∑
a∈�̃N

1{Av
(%(N)+a)∗ η

2>A}|%̃(N)| + |�̃N | |%(N)
� %̃(N)|



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≤ 2‖F‖∞


N−d+1A−1

∑
a∈�̃N

Av(%(N)+a)∗ η
2 +N−1/2d




= 2‖F‖∞


N−d(4dA)−1

∑
b∈�∗

N

η(b)2 +N−1/2d


 .

Using Corollary 3.2, (4.1) follows from (4.2) by taking A sufficiently large. �

We now reduce the proof of (4.2) to the usual one-block estimate:

Lemma 4.3. The inequality (4.2) follows from

lim
l→∞

lim sup
N→∞

sup
φ,φt

Eφ,φt

[∫ T0/N

0
U

A,F
0,N,l(∇φN

s ) ds

]
= 0, (4.3)

where T0 = T/c1, c1 = [2α‖F‖∞T ] + 1 and the supremum is taken over all
initial configurations φ = {φ(x), x ∈ %(N)} ∈ R

%(N)
and all moving boundary

conditions φt = {φt (x), x ∈ ∂%(N)} ∈ C
(

[0, T0/N ],R∂%(N)
)

, where ∂%(N) =
{x ∈ %(N); dist(x, (%(N))c) = 1}. The dynamics φN

t = {φN
t (x), x ∈ %(N)} is de-

fined by the SDEs (2.1) for x ∈ %(N) having initial data φ on %(N) and boundary
condition φt at ∂%(N).

Proof. The expectation in the left hand side of (4.2) is rewritten and then bounded
as follows:

EφN


c1N∏
k=1

∏
a∈�̃N

exp

{
α

∫ kT0/N

(k−1)T0/N

U
A,F
a,N,l(∇φN

s ) ds

}

≤
{

sup
φ,φt

Eφ,φt

[
exp

{
α

∫ T0/N

0
U

A,F
0,N,l(∇φN

s ) ds

}]}c1N
d

. (4.4)

The second line is obtained by noting the (space-time) Markov property and the
shift invariance of the dynamics. Therefore, (4.2) is shown once we can prove

lim sup
l→∞

lim sup
N→∞

sup
φ,φt

Eφ,φt

[
exp

{
α

∫ T0/N

0
U

A,F
0,N,l(∇φN

s ) ds

}]
≤ 1. (4.5)

Now, expanding the exponential as a sum of powers, using identity

Eφ,φt

[(∫ t

0
W(∇φN

s ) ds

)k
]

= k!Eφ,φt


∫ · · ·

∫
0≤s1≤···≤sk≤t

k∏
j=1

W(∇φN
sj
) ds1 . . . dsk



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and repeating the same trick in time on Markov process presented above, we obtain
that the expected value appearing in (4.5) is bounded from above by

∞∑
k=0

(
sup
φ,φt

Eφ,φt

[∫ T0/N

0
αU

A,F
0,N,l(∇φN

s ) ds

])k

=
(

1 − sup
φ,φt

Eφ,φt

[∫ T0/N

0
αU

A,F
0,N,l(∇φN

s ) ds

])−1

.

Note that T0 is chosen in such a manner that the expected value in the last for-
mula is strictly less than 1. Therefore, the proof of (4.2) can be reduced to that
of (4.3). �

Remark 4.1. Note that |�̃N | = Nd−1 so that, once we divide the time interval
[0, T ] into c1N pieces, the whole space-time region �N × [0, T ] is divided into
Nd−1 × c1N = c1N

d pieces. This compensates with the factor Nd appearing in
the exponential of (4.1). If we try to introduce the division only in time, we need
to divide it into Nd pieces. Then, the time length TN−d of each piece, which cor-
responds to TN2−d in microscopic time scale, is too short for the system to reach
the equilibrium states if d ≥ 2.

The goal is now to prove (4.3). Let us define probability measures µN
φ,φt

on

X(%(N))∗ , the configuration space on
(
%(N)

)∗
, by the space-time average of the

distribution of ∇φN
t , i.e.,

E
µN
φ,φt [F(η)] := 1

T0

∑
x∈%(N)

Eφ,φt

[∫ T0/N

0
F(τ (N)

x ∇φN
s ) ds

]
, (4.6)

for every F ∈ Cloc,b(X) with support inside %(N), where τ (N)
x is the shift operator

on %(N); we regard %(N) as a periodic lattice by putting bonds to connect corre-
sponding boundary points of opposite side and define η(b) := 0 for such bonds.
Extending the configurations periodically, µN

φ,φt
can be regarded as probability

measures on X. Define the function Av η2 on X by

Av η2 := lim sup
K→∞

Av(%K)∗ η
2 ∈ [0,∞].

The operator L = ∑
x∈Zd Lx denotes the generator of the process ηt = {ηt (b) ≡

∇φt (b), b ∈ (Zd)∗}, where φt = {φt (x), x ∈ Z
d} is the solution of the SDEs (1.1)

defined for x ∈ Z
d . See [6], Sect. 4.2 for Lx .

Lemma 4.4. Every vague limit µ of {µN
φ,φt

}N,φ,φt as N →∞ is L-stationary and
shift invariant. Here, vague convergence means those for all finite dimensional
marginal distributions as well as for the distributions of Av η2.
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Proof. We recall that arbitrary family of probability measures on R
%∗

for finite
% ⊂ Z

d is vaguely tight. Assume that µ is a vague limit of µN ′
:= µN ′

φN ′
,φN ′

t

along

a subsequence {N ′ ↗ ∞} of {N} and set LN =∑
x∈%(N) Lx . Then, since∣∣∣EµN ′

[LF ]
∣∣∣ = ∣∣∣EµN ′

[LN ′F ]
∣∣∣ ≤ {

2(N ′)−2 + |%| · |∂%(N ′)|/|%(N ′)|
}
‖F‖∞

holds for every F ∈ Cloc,0(X) if its support % satisfies % ⊂ %(N ′), we have
Eµ[LF ] = 0 by letting N ′ → ∞. Accordingly, µ is L-stationary. Shift invariance
of µ follows by definition. �

The next lemma establishes the uniform law of large numbers for the Gibbs
measures {µu, |u| ≤ A} for every A > 0, where µu is the unique shift invariant
ergodic tempered Gibbs measure on X with mean u ∈ R

d . A probability measure
µ on X is called tempered if Eµ[η(b)2] < ∞ for each b ∈ (Zd)∗, see [6].

Lemma 4.5. For every F ∈ Cloc,b(X) and A > 0,

lim
l→∞

sup
|u|≤A

Eµu

[∣∣∣Av%l
F (η)− F̃ (η̄l0)

∣∣∣] = 0. (4.7)

Proof. For every u, v ∈ R
d , Proposition 2.1 in [6] gives a shift invariant coupled

probability measure P on X×X with µu and µv as its first and second marginals,
respectively, in such a way that P satisfies

EP [||η1 − η2||2e] ≤ C1|u− v|2 (4.8)

forC1 > 0, where (η1, η2) ∈ X×X and ||η||2e =
∑d

i=1 |η(ei)|2 forη = {η(b)} ∈ X.
Set the expectation in (4.7) gl(u) and estimate the difference

|gl(u)− gl(v)| ≤ EP
[∣∣∣Av%l

F (η1)− Av%l
F (η2)

∣∣∣]
+EP

[∣∣∣∣F̃
(
(η1)

l

0

)
− F̃

(
(η2)

l

0

)∣∣∣∣
]
. (4.9)

We first assume that the function F ∈ Cloc,b(X) is Lipschitz; namely, F has a
form F(η) = F̄ ({η(b)}

b∈(%̌)∗) for some finite %̌ ⊂ Z
d and Lipschitz continuous

function F̄ on R
(%̌)∗ . Then, since∣∣∣Av%l
F (η1)− Av%l

F (η2)

∣∣∣ ≤ C2|%l |−1
∑
x∈%l

||τxη1 − τxη
2||

%̌

where ||η||2
%̌
= ∑

b∈(%̌)∗ |η(b)|2, using (4.8) and recalling the shift invariance of
P , the first term in the right hand side of (4.9) can be bounded by C3|u− v|. The
second term also has a similar bound, since we see

|F̃ (a)− F̃ (b)| ≤ EP [|F(η1)− F(η2)|] ≤ C4|a − b|, a, b ∈ R
d .

Accordingly, the uniform Lipschitz continuity of gl(u) in l is shown. However,
liml→∞ gl(u) = 0 is easy for each u ∈ R

d , and therefore the uniform convergence
(4.7) is established at least for Lipschitz continuous F . Since functions in Cloc,b(X)

can be uniformly approximated by Lipschitz continuous bounded local functions,
the lemma is proved. �
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Let us continue the proof of (4.3). We first assume F ∈ Cloc,0(X) with sup-
port %̌. Take a function ϕK ∈ C0(R),K > 0 for cut-off in such a way that
0 ≤ ϕK ≤ 1, ϕK(z) = 1 for |z| ≤ K and ϕK(z) = 0 for |z| ≥ K + 1. Then,
the expectation in (4.3) divided by T0 can be estimated by the sum

E
µN
φ,φt

[
1{Av η2≤A}

∣∣∣Av%l
F (η)− F̃ (η̄l0)ϕK(η̄

l
0)

∣∣∣]
+E

µN
φ,φt

[∣∣∣F̃ (η̄l0)(ϕK(η̄
l
0)− 1)

∣∣∣] . (4.10)

Note that Av η2 = Av(%(N))∗ η
2 under µN

φ,φt
. Since F has a bound |F(η)| ≤

||F ||∞1{||η||
%̌
≤R}(η) for some R > 0, for every ε > 0 one can find K > 0 such

that

|F̃ (u)| = |Eµu [F ]| ≤ ||F ||∞µu(||η||%̌ ≤ R) ≤ ε

if |u| ≥ K . The last inequality follows from supu∈Rd ,1≤i≤d Eµu [|η(ei) − ui |2] <
∞, see (3.6) in [6]. In particular, the second term of (4.10) is uniformly bounded
by ε. On the other hand for the first term of (4.10), since F(η) and F̃ · ϕK

(
η̄l0

) ∈
Cloc,0(X), from Lemma 4.4

lim sup
N→∞

sup
φ,φt

E
µN
φ,φt

[
1{Av η2≤A}

∣∣∣Av%l
F (η)− F̃ (η̄l0)ϕK(η̄

l
0)

∣∣∣]

≤ sup
µ∈S

Eµ
[
1{Av η2≤A}

∣∣∣Av%l
F (η)− F̃ (η̄l0)ϕK(η̄

l
0)

∣∣∣] ,
where S is the class of allL-stationary and shift invariant subprobability measuresµ
on X. However, each µ ∈ S can be represented as a mixture of extremal probability
measures µ̄ for which Av η2 = Eµ̄[||η||2e] hold. Therefore the above supremum is
unchanged when it is restricted over all µ ∈ S being tempered. Such µ is a mixture
of {µu, u ∈ R

d} (see [6]) and accordingly the right hand side is bounded by

sup
u∈Rd :Eµu [||η||2e ]≤A

Eµu

[∣∣∣Av%l
F (η)− F̃ (η̄l0)

∣∣∣]+ ε,

if K is taken as above. This proves (4.3) for F ∈ Cloc,0(X) from Lemma 4.5.
Next we consider for F ∈ Cloc,b(X) with support %̌. Take another cut-off func-

tion ψ = ψK(η%̌) ∈ Cloc,0(X),K > 0 such that 0 ≤ ψ ≤ 1, ψ(η) = 1 for
||η||

%̌
≤ K and ψ(η) = 0 for ||η||

%̌
≥ K + 1, and decompose F into the sum

F = F ·ψ +F(1−ψ). Since F ·ψ ∈ Cloc,0(X), one can apply the result obtained
above. On the other hand, for the term F(1 − ψ)

1

N
U

A,F(1−ψ)

0,N,l (η) ≤ ||F ||∞
N

1{Av
(%(N))∗ η

2≤A}
∑

x∈%̃(N)

{
Av%l+x @K(η)+ @̃K(η̄

l
x)
}
,
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where @K(η) := 1{||η||
%̌
≥K}. Under the condition Av(%(N))∗ η

2 ≤ A for η ∈ X, if
N is larger enough than l (l is indeed fixed here),

1

N

∑
x∈%̃(N)

Av%l+x @K(η) ≤ 1

N

∑
x∈%

(N1/d−N1/2d )/2+l

τx@K(η)

≤ 1

NK

∑
x∈%

(N1/d−N1/2d )/2+l

||η||
%̌+x

≤ |%̌|
K

√
A.

We similarly have under the same condition for η ∈ X

1

N

∑
x∈%̃(N)

@̃K(η̄
l
x) ≤

C1|%̌|
K


1 + 1

N

∑
x∈%̃(N)

|η̄lx |

 ≤ C1|%̌|

K
(1 +

√
A),

since

@̃K(u) ≤ 1

K
Eµu [||η||

%̌
] ≤ C1|%̌|

K
(1 + |u|),

use the estimateEµu [|η(b)|2] ≤ C2(1+|u|2)which follows from Theorem 3.4-(iv),
(v) of [6]. We have therefore shown

1

N
U

A,F(1−ψ)

0,N,l (η) ≤ C3|%̌|
K

(1 +
√
A)

which can be made small enough for large K > 0. Thus the proof of (4.3) and
therefore that of Theorem 4.1 is concluded.

5. Two-Blocks Estimate

For f ∈ C(Rd), set

W̄
f,N
l,ε (η) := Av%Nε

{
f
(
η̄l0

)}
− f (η̄Nε

0 ).

In this section, we shall prove the following theorem. Theorem 2.2 is readily shown
from this theorem and Theorem 4.1; see the end of this section.

Theorem 5.1. Let (φN)N≥1 be a sequence satisfying the condition (2.3). Then,
for every bounded and globally Lipschitz continuous function f on R

d and every
α > 0,

lim sup
l→∞

lim sup
ε↓0

lim sup
N→∞

N−d

× logEφN


exp


α

∫ T

0

∑
x∈�N

∣∣∣τxW̄ f,N
l,ε (∇φN

t )

∣∣∣ dt



 ≤ 0. (5.1)

The proof of Theorem 5.1 is given based on the next theorem.
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Theorem 5.2. Under the condition (2.3) on (φN)N≥1, for every α > 0,

lim sup
ε↓0

lim sup
N→∞

N−d logEφN


exp


α(2Nε + 1)−d

×
∑

y∈%Nε

∫ T

0


∑

b∈�∗
N

@y(b; ∇φN
t )− 4Nd


 dt




 ≤ 0,

where

@y(b; η) := {V ′(η(b + y))− V ′(η(b))}{η(b + y)− η(b)}
and the bond b + y is defined by b + y := (xb + y, yb + y).

Proof of Theorem 5.1. We assume Theorem 5.2 is already shown. For a fixed pos-
itive integer l and x, y ∈ Z

d such that (x +%l) ∩ (y +%l) = ∅, define Ux,y and
Wl

x,y as

Ux,y(η) = 2
d∑

i=1

{
V ′(η(ei + x))− V ′(η(ei + y))

} {η(ei + x)− η(ei + y)} − 4,

(5.2)

Wl
x,y(η) = (2l + 1)−2d

∑
z1∈%l+x
z2∈%l+y

Uz1,z2(η). (5.3)

From Proposition 3.1 and Theorem 5.2, we get the following estimate for every l

and α > 0:

lim sup
ε↓0

lim sup
N→∞

N−d logEφN


exp


α

∫ T

0
(2Nε + 1)−d

×
∑

y∈%Nε�%2l

∑
x∈�N

Wl
x,x+y(∇φN

t ) dt




 ≤ 0. (5.4)

We now introduce cut-off. For K > 0, define functions V ′
K and IK on R by

V ′
K(η) =

(
V ′(η) ∨ V ′(−K)

) ∧ V ′(K),

IK(η) = (η ∨ (−K)) ∧K,

for η ∈ R and UK
x,y and W

l,K
x,y on X by

UK
x,y(η) = 2

d∑
i=1

{
V ′
K(η(ei + x))− V ′

K(η(ei + y))
}

× {IK(η(ei + x))− IK(η(ei + y))} − 4,

W l,K
x,y (η) = (2l + 1)−2d

∑
z1∈%l+x
z2∈%l+y

UK
z1,z2

(η),
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for η ∈ X, respectively. Since V is strictly convex, Wl
x,y ≥ −4 and Wl

x,y ≥ W
l,K
x,y

hold, and therefore we get

Wl
x,x+y(η) ≥ W

l,K
x,x+y(η)1|η̄lx |∨|η̄lx+y |≤A − 4 · 1|η̄lx |∨|η̄lx+y |>A (5.5)

for every A,K > 0 and η ∈ X. However, Wl,K
x,y has the representation

Wl,K
x,y = 2

{
Av%l+x gK + Av%l+y gK

−
d∑

i=1

(
Av%l+x V

′
K,i · Av%l+y IK,i + Av%l+y V

′
K,i · Av%l+x IK,i

)}− 4,

(5.6)

where gK, V
′
K,i and IK,i, 1 ≤ i ≤ d , are functions on X defined respectively by

gK(η) =
d∑

i=1

V ′
K(η(ei))IK(η(ei)),

V ′
K,i(η) = V ′

K(η(ei)),

IK,i(η) = IK(η(ei)).

For every α > 0, using one-block estimate (Theorem 4.1), we get from (5.4), (5.5)
and (5.6)

lim sup
l→∞

lim sup
ε↓0

lim sup
N→∞

N−d logEφN

[
exp

{
α

∫ T

0
(2Nε + 1)−d

×
∑

y∈%Nε�%2l

∑
x∈�N

{
2

(
g̃K

(
η̄lx(t)

)
+ g̃K

(
η̄lx+y(t)

)

−
d∑

i=1

Ṽ ′
K,i

(
η̄lx(t)

)
ĨK,i

(
η̄lx+y(t)

)

−
d∑

i=1

Ṽ ′
K,i

(
η̄lx+y(t)

)
ĨK,i

(
η̄lx(t)

)
− 2

)
1|η̄lx (t)|∨|η̄lx+y(t)|≤A

− 4 × 1|η̄lx (t)|∨|η̄lx+y(t)|>A

}
dt

}]
≤ 0, (5.7)

where the functions g̃K(u), Ṽ ′
K,i(u) and ĨK,i(u) on R

d are defined by the expected
values under µu of gK, V ′

K,i and IK,i , respectively; recall the formula (2.9). We

have simply denoted ηNt ≡ ∇φN
t by η(t). From Theorem 3.4-(iv) of [6] and Bras-

camp-Lieb uniform exponential bound on µu (see (3.6) in [6]), the sequence g̃K
converges as K →∞ to
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g̃(u) :=
d∑

i=1

Eµu [η(ei)V
′(η(ei))] = u · ∇σ(u)+ 1

uniformly on every compact set of R
d . In the same manner, Ṽ ′

K,i and ĨK,i converge
uniformly on every compact set to ∂σ/∂ui and ui , respectively. Therefore,

lim sup
l→∞

lim sup
ε↓0

lim sup
N→∞

N−d logEφN


exp


α

∫ T

0
2(2Nε + 1)−d

×
∑

y∈%Nε�%2l

∑
x∈�N

{
Ũ

l,A
x,x+y(η(t))− 2 × 1|η̄lx (t)|∨|η̄lx+y(t)|>A

}
dt




 ≤ 0,

(5.8)

where Ũ
l,A
x,y is defined by

Ũ l,A
x,y (η) = (∇σ(η̄lx)− ∇σ(η̄ly)) · (η̄lx − η̄ly)1|η̄lx |∨|η̄ly |≤A.

Using Schwarz’s inequality and Proposition 3.1, for every α > 0,

lim sup
A→∞

lim sup
l→∞

lim sup
ε↓0

lim sup
N→∞

N−d logEφN


exp


α

∫ T

0
(2Nε + 1)−d

×
∑

y∈%Nε�%2l

∑
x∈�N

Ũ
l,A
x,x+y(∇φN

t ) dt




 ≤ 0. (5.9)

From the convexity of σ , the expected value in (5.9) is increasing in A. Therefore,
for every A > 0,

lim sup
l→∞

lim sup
ε↓0

lim sup
N→∞

N−d logEφN


exp


α

∫ T

0
(2Nε + 1)−d

×
∑

y∈%Nε�%2l

∑
x∈�N

Ũ
l,A
x,x+y(∇φN

t ) dt




 ≤ 0. (5.10)

Since f is globally Lipschitz and σ is strictly convex (see [3] or [7]), the proof of
Theorem 5.1 is concluded. �

We turn to the proof of Theorem 5.2, which requires some notation. For θ ′ ∈ T
d ,

τ̄θ ′ represents the macroscopic space shift by θ ′. In this way, for a function f on
T
d ,

(τ̄θ ′f )(θ) = f (θ ′ + θ), θ ∈ T
d .

The proof of Theorem 5.2 relies on three lemmas. We simply denote φN by φ.
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Lemma 5.3. For every y ∈ %Nε ,∥∥∥τ̄y/NhN − hN
∥∥∥2 ≤ ε2N−d

∑
b∈�∗

N

(∇φ(b))2. (5.11)

Proof. By the definition of hN ,∥∥∥τ̄y/NhN − hN
∥∥∥2 = N−d−2

∑
x∈�N

|φ(x + y)− φ(x)|2

= N−d−2
∑
x∈�N

∣∣∣∣∣∣
∑

b∈C0,y

∇φ(b + x)

∣∣∣∣∣∣
2

.

Here C0,y denotes a sequence of bonds b connecting two sites 0 and y. One can
take in such a manner that |C0,y | = |y|. Noting that the right hand side is an average
over all x ∈ �N , we get the conclusion by Schwarz’s inequality. �

The next lemma corresponds to Lemma 4.4 of [9] and its proof is based on the
symmetry of V and similar to that of Lemma 2.3 of [6].

Lemma 5.4.

LN
∥∥∥τ̄y/NhN − hN

∥∥∥2 = 4 −N−d
∑
b∈�∗

N

@y(b; ∇φ). (5.12)

Proof. We may assume y �= 0. Since
∥∥τ̄y/NhN − hN

∥∥2
has a representation given

in the proof of Lemma 5.3,

LN
∥∥∥τ̄y/NhN − hN

∥∥∥2 = N−d
∑
x∈�N


4 − 2

∑
b:xb=x

By(b)(φ(x + y)− φ(x))


 ,

where we set

By(b) := V ′(∇φ(b + y))− V ′(∇φ(b)).

However,
∑

b:xb=x By(b) = −∑b:yb=x By(b) by symmetry of V and therefore

LN
∥∥∥τ̄y/NhN − hN

∥∥∥2 = N−d
∑
x∈�N


4 −

∑
b:xb=x

By(b)(φ(xb + y)− φ(xb))

+
∑

b:yb=x

By(b)(φ(yb + y)− φ(yb))




= 4 −N−d
∑
b∈�∗

N

By(b)(∇φ(b + y)− ∇φ(b)),

which shows (5.12). �
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For a fixed y ∈ �N , we consider the martingale MN
t (y) defined by

MN
t (y) := Nd

∥∥∥τ̄y/NhN(t)− hN(t)

∥∥∥2 −Nd
∥∥∥τ̄y/NhN(0)− hN(0)

∥∥∥2

−Nd

∫ t

0
LN

∥∥∥τ̄y/NhN(s)− hN(s)

∥∥∥2
ds.

DefineMN,ε
t , ε > 0 as a martingale which is the average of the martingalesMN

t (y)

in y ∈ %Nε :

M
N,ε
t = (2Nε + 1)−d

∑
y∈%Nε

MN
t (y).

To keep notation simple, we denote the martingale M
N,ε
t by MN

t .

Lemma 5.5. The quadratic variation of MN
t has a bound

〈MN 〉t ≤ 32ε2
∫ t

0

∑
b∈�∗

N

(∇φN
s (b))2 ds.

Proof. Since φN
t is a solution of the SDEs (2.1), the martingale MN

t (y) has the
following representation:

MN
t (y) = 2

√
2N−1

∫ t

0

∑
x∈�N

(2φN
s (x)− φN

s (x − y)− φN
s (x + y)) dws(x).

Therefore, for any y, z ∈ %Nε , computing cross-variation of MN
t (y) and MN

t (z),

〈MN(y),MN(z)〉t
= 8N−2

∫ t

0

∑
x∈�N

(2φN
s (x)− φN

s (x − y)− φN
s (x + y))

× (2φN
s (x)− φN

s (x − z)− φN
s (x + z)) ds

≤ 16N−2
∫ t

0

∑
x∈�N

{(φN
s (x)− φN

s (x − y))2 + (φN
s (x)− φN

s (x − z))2} ds

≤ 32ε2
∫ t

0

∑
b∈�∗

N

(∇φN
s (b))2 ds.

The last inequality is shown similarly to that in the proof of Lemma 5.3. The
conclusion follows by recalling the definition of MN

t . �
Proof of Theorem 5.2. Since we have

EφN [exp{2αMN
T − 2α2〈MN 〉T }] ≤ 1,
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for every α > 0, recalling the definition of MN
t and using Lemmas 5.3-5.5,

EφN


exp


−2αε2

∑
b∈�∗

N

(∇φN
0 (b))2 − 2α(2Nε + 1)−d

×
∑

y∈%Nε

∫ T

0


4Nd −

∑
b∈�∗

N

@y(b; ∇φN
t )


 dt

− 64α2ε2
∫ T

0

∑
b∈�∗

N

(∇φN
t (b))2 dt




 ≤ 1.

An application of Schwarz’s inequality implies

EφN


exp


α(2Nε + 1)−d

∑
y∈%Nε

∫ T

0


∑

b∈�∗
N

@y(b; ∇φN
t )− 4Nd


 dt






≤ EφN


exp


2αε2

∑
b∈�∗

N

(∇φN
0 (b))2 + 64α2ε2

∫ T

0

∑
b∈�∗

N

(∇φN
t (b))2 dt






1/2

.

Thus the proof of Theorem 5.2 is concluded by applying Corollary 3.2. �

Proof of Theorem 2.2. For every l ≥ 1, we estimate∑
x∈�N

∣∣∣τxWF
Nε(η)

∣∣∣ ≤ ∑
x∈�N

∣∣Av%Nε+x F (η)− Av%Nε+x Av%l
F (η)

∣∣
+
∑
x∈�N

∣∣∣Av%Nε+x Av%l
F (η)− Av%Nε+x

{
F̃
(
η̄l0

)}∣∣∣
+
∑
x∈�N

∣∣∣Av%Nε+x

{
F̃
(
η̄l0

)}
− F̃ (η̄Nε

x )

∣∣∣
=: IN,l,ε

1 (η)+ I
N,l,ε
2 (η)+ I

N,l,ε
3 (η).

(5.13)

The first term has a trivial bound: IN,l,ε
1 (η) ≤ Cl(Nε)d−1‖F‖∞. We therefore ob-

tain (2.10) by applying Theorem 4.1 for I
N,l,ε
2 noting that I

N,l,ε
2 (η) ≤∑

x∈�N
|τxWF

l (η)| and Theorem 5.1 for IN,l,ε
3 taking f (u) = F̃ (u), respectively.

The equality (2.11) is an immediate consequence of (2.10).

6. Lower bound

Before starting the proof of the large deviation principle, we show the following
proposition which guarantees that the rate functional I (h) of the large deviation
principle is defined as +∞ unless h ∈ L2([0, T ], H 1(Td)).
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Proposition 6.1. Let h ∈ C([0, T ], L2
w(T

d)) be given. If there exists ρ > 0 such
that

lim sup
N→∞

N−d logPφN (h
N ∈ O) > −ρ (6.1)

holds for every open set O in C([0, T ], L2
w(T

d)) which contains h, then h ∈
L2([0, T ], H 1(Td)).

Proof. We define the operator Aε = (Aε
i

)
1≤i≤d , ε > 0 by

(Aε
i h
)
(t, θ) = (2ε)−d−1

∫
B(θ,ε)

(h(t, θ ′ + εei)− h(t, θ ′ − εei)) dθ
′,

(t, θ) ∈ [0, T ] × T
d ,

for h ∈ L2([0, T ] × T
d). Then, by Lemma 5.3,

‖Aε
i h

N(t, ·)‖2
L2(Td )

≤ N−d
∑
b∈�∗

N

(∇φN
t (b))2.

Combining with Corollary 3.2, we get

lim sup
β↓0

lim sup
N→∞

sup
ε

N−d logEφN

[
exp

(
βNd

∥∥∥Aε
i h

N
∥∥∥2

L2([0,T ]×Td )

)]
≤ 0

for every 1 ≤ i ≤ d . On the other hand, using Chebyshev’s inequality,

N−d logPφN (h
N ∈ O)+ β sup

ε
inf
h∈O

‖Aε
i h‖2

L2([0,T ]×Td )

≤ sup
ε

N−d logEφN

[
exp

(
βNd

∥∥∥Aε
i h

N
∥∥∥2

L2([0,T ]×Td )

)]
.

Therefore, letting N →∞ and taking β sufficiently small, we get

β sup
ε

inf
h∈O

‖Aε
i h‖2

L2([0,T ]×Td )
< ρ.

Now, we note that for every ε > 0, Aε
i hn converges to Aε

i h pointwise on [0, T ]×T
d

if hn converges to h in C([0, T ], L2
w(T

d)). Therefore we can conclude

sup
ε
‖Aε

i h‖2
L2([0,T ]×Td )

<
ρ

β
,

that is, the family {Aε
i h; ε > 0} is precompact in L2([0, T ] × T

d) under the
weak topology. Thus, one can find a limit point ȟi ∈ L2([0, T ] × T

d) of this
sequence as ε ↓ 0, and can easily see ȟi = ∂h/∂θi, 1 ≤ i ≤ d. This shows
h ∈ L2([0, T ], H 1(Td)). �
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We proceed to the proof of the lower bound (2.8) of the large deviation principle.
To this end, let us consider the following weakly perturbed SDEs:

dφ
N,G
t (x) = −N2

∑
b∈�∗

N :xb=x

V ′(∇φ
N,G
t (b)) dt +NG(t,N−1x) dt

+
√

2Ndwt(x), x ∈ �N, (6.2)

where G(t, θ) is an arbitrarily given smooth function in t and θ . The generator of
φ
N,G
t is denoted by LN,G:

LN,G = N2
∑
x∈�N


 ∂2

∂φ(x)2
−

∑
b:xb=x

V ′(∇φ(b))
∂

∂φ(x)

+N−1G(t,N−1x)
∂

∂φ(x)


 .

The distributions on the space C([0, T ],R�N ) of weakly perturbed process φN,G
t

and original unperturbed process φN
t are denoted by PN,G and PN , respective-

ly. We assume the initial configurations are common: φN,G
0 = φN

0 . The mac-

roscopic height process corresponding to φ
N,G
t is denoted by hN,G(t); namely,

hN,G(t, θ) = N−1∑
x∈�N

φ
N,G
t (x)1B(x/N,1/N)(θ) for θ ∈ T

d .

Theorem 6.2. We assume that there exists a function h0 ∈ L2(Td) such that the
initial configurations hN,G(0) ≡ hN(0) satisfy

lim
N→∞

‖hN,G(0)− h0‖ = 0.

Then, for all J ∈ C∞([0, T ] × T
d),

lim
N→∞

∫ T

0
dt

∫
Td

J (t, θ)hN,G(t, θ) dθ =
∫ T

0
dt

∫
Td

J (t, θ)hG(t, θ) dθ

in probability on PN,G, where hG(t) is the unique weak solution of

∂hG

∂t
= div

(
∇σ(∇hG)

)
+G (6.3)

with the initial data h0.

Proof. Since we have

PN,G(A) ≤ PN(A)1/2EPN

[(
dPN,G

dPN

)2
]1/2
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for all events A, once we can prove

lim sup
N→∞

N−d logEPN

[(
dPN,G

dPN

)2
]
< ∞, (6.4)

the superexponential estimate (2.11) holds for PN,G in place of PN ≡ PφN . Then,
it is standard in the theory of hydrodynamic limit to show the conclusion. To prove
(6.4) we use Girsanov’s formula and Itô’s formula, and obtain

(
dPN,G

dPN

)2

= exp


√2

∑
x∈�N

∫ T

0
G(t,N−1x) dwt (x)

−1

2

∑
x∈�N

∫ T

0
G2(t, N−1x) dt




= exp


N−1

∑
x∈�N

G(T ,N−1x)φN
T (x)

−N−1
∑
x∈�N

G(0, N−1x)φN
0 (x)

−N−1
∑
x∈�N

∫ T

0

∂G

∂t
(t, N−1x)φN

t (x) dt

−N
∑
x∈�N

∫ T

0
G(t,N−1x)

∑
b:xb=x

V ′(∇φN
t (b)) dt

−1

2

∑
x∈�N

∫ T

0
G2(t, N−1x) dt


 . (6.5)

Therefore, there exists a constant C > 0 which depends on ‖G‖∞, ‖∂G/∂t‖∞
and ‖∇G‖∞ such that

(
dPN,G

dPN

)2

≤ exp


Cβ−1Nd + CβNd sup

0≤t≤T
‖hN(t)‖2

+Cβ
∑
b∈�∗

N

∫ T

0
|∇φN

t (b)|2 dt

 (6.6)

for every β > 0. From Corollary 3.2 and Proposition 3.3, we get (6.4) taking β

sufficiently small. �

The next proposition is routine so that the proof is omitted, see Lemma 2.4
in [4].
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Proposition 6.3. If the rate functional of h is finite (i.e. I (h) < ∞), then Gh :=
∂h/∂t − div(∇σ(∇h)) ∈ L2([0, T ] × T

d). Moreover, in this case, I (h) has the
following representation:

I (h) = 1

4

∫ T

0
dt

∫
Td

Gh(t, θ)
2 dθ. (6.7)

An energy estimate gives the continuity of the solution hG of the PDE (6.3)
in G:

Proposition 6.4. There exists a constant K > 0 such that for every G, Ḡ ∈
L2([0, T ],V∗)

sup
0≤t≤T

‖hG(t)− hḠ(t)‖2 +
∫ T

0
‖hG(t)− hḠ(t)‖2

V
dt

≤ K

∫ T

0
‖G(t)− Ḡ(t)‖2

V∗ dt (6.8)

holds if we assume hG(0) = hḠ(0), where V = H 1(Td) and V
∗ = H−1(Td) is

the dual space of V.

Proof. From the PDE (6.3), we get

∂

∂t

∥∥∥hG(t)− hḠ(t)

∥∥∥2 = 2
V

〈
hG(t)− hḠ(t),

{
A(hG(t))− A(hḠ(t))

}
+ {G(t)− Ḡ(t)

} 〉
V∗ , (6.9)

where A(h) = div (∇σ(∇h)), see Appendix I of [6] for details. Using Lemma 3.6
of [3], there is a constant c such that

V

〈
hG(t)− hḠ(t), A(hG(t))− A(hḠ(t))

〉
V∗ ≤ −c‖hG(t)− hḠ(t)‖2

V
.

Therefore,

∂

∂t

∥∥∥hG(t)− hḠ(t)

∥∥∥2 ≤ −2c‖hG(t)− hḠ(t)‖2
V

+2
V

〈
hG(t)− hḠ(t),G(t)− Ḡ(t)

〉
V∗

≤ −c

∥∥∥hG(t)− hḠ(t)

∥∥∥2

V
+ 1

c

∥∥G(t)− Ḡ(t)
∥∥2

V∗

(6.10)

holds. Integrating both sides, the conclusion is shown. �
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Proof of (2.8). By Girsanov’s formula,

dPN

dPN,G
= exp


− 1√

2

∑
x∈�N

∫ T

0
G(t,N−1x) dwt (x)

− 1

4

∑
x∈�N

∫ T

0
G2(t, N−1x) dt


 ,

where {wt(x), x ∈ �N } is a family of independent one dimensional standard
Brownian motions under PN,G. By similar calculation to (6.5), we can rewrite
dPN/dPN,G and get

lim
N→∞

N−d log
dPN

dPN,G
= −1

2

∫
Td

G(T , θ)hG(T , θ) dθ + 1

2

∫
Td

G(0, θ)h0(θ) dθ

+ 1

2

∫ T

0
dt

∫
Td

∂G

∂t
(t, θ)hG(t, θ) dθ

+ 1

2

∫ T

0
dt

∫
Td

G(t, θ) div(∇σ(∇hG)) dθ

+ 1

4

∫ T

0
dt

∫
Td

G2(t, θ) dθ

in the sense of convergence in probability under PN,G. Note that the sum of first
three terms coincides with

−1

2

∫ T

0
dt

∫
Td

G(t, θ)
∂hG

∂t
(t, θ) dθ.

Hence, recalling the definition of hG,

lim
N→∞

N−d log
dPN

dPN,G
= −1

4

∫ T

0
dt

∫
Td

(
∂hG

∂t
(t, θ)− div(∇σ(∇hG))

)2

dθ

= −I (hG),

in probability. Now, from the entropy inequality

log
PN(O)

PN,G(O)
≥ −H(PN,G|PN)+ e−1

PN,G(O)

and Theorem 6.2, we obtain

lim inf
N→∞

N−d logPN(O) ≥ −I (hG), (6.11)
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for every G ∈ C∞([0, T ] × T
d) such that hG ∈ O, where H(PN,G|PN) =

EPN,G
[
log dPN,G

dPN

]
is the relative entropy. Now, by Propositions 6.3 and 6.4, we

get

inf
G∈C∞([0,T ]×Td )

s.t.hG∈O
I (hG) = inf

h∈O
I (h). (6.12)

Combining (6.11) and (6.12), the conclusion is shown. �

7. Upper bound

In this section, we prove the the upper bound (2.7). To do this, we require some
notation. For f = f (t, θ), operators ∇ε

i and Ãε = (Ãε

i )1≤i≤d , ε > 0 are defined
by

∇ε
i f (t, θ) := (2ε)−1 (f (t, θ + εei)− f (t, θ − εei)) ,

Ãε

i f (t, θ) := (2ε)−d

∫
B(θ,ε)

∇ε2

i f (t, θ + θ ′) dθ ′.

For every smooth function J (t, θ) on [0, T ] × T
d , we denote

JN(t, θ) := Nd

∫
B(θ,1/N)

J (t, θ ′) dθ ′, θ ∈ T
d ,

and define K
N,ε
t and KN

t by

K
N,ε
t = S

N,1
t + S

N,ε,2
t , (7.1)

KN
t = S

N,1
t + S

N,2
t , (7.2)

where S
N,1
t , S

N,ε,2
t and S

N,2
t are defined respectively by

S
N,1
t = Nd

∫
Td

hN(t, θ)J (t, θ) dθ −Nd

∫ t

0
ds

∫
Td

hN(s, θ)
∂J

∂s
(s, θ) dθ

S
N,ε,2
t = Nd

∫ t

0
ds

∫
Td

d∑
i=1

∂J

∂θi
(s, θ)

∂σ

∂ui

(
Ãε

hN(s, θ)
)
dθ,

S
N,2
t = N

∫ t

0

∑
x∈�N

∑
b:xb=x

V ′(∇φN
s (b))JN(s, x/N) ds

=
∫ t

0

d∑
i=1

∑
x∈�N

N
(
JN(s, x/N + ei/N)− JN(s, x/N)

)

× V ′(∇φN
s (ei + x)) ds.

Note that the symmetry of V implies the last equality for SN,2
t .
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Our first goal is to derive an exponential bound on K
N,ε
T :

lim sup
ε↓0

lim sup
N→∞

N−d logE[expKN,ε
T ]

≤
∫

Td

J (0, θ)h0(θ) dθ +
∫ T

0
dt

∫
Td

J 2(t, θ) dθ, (7.3)

where the expectation under PφN is simply denoted by E[·]. Using Itô’s formula,

one can observe that exp
(
KN

t − ∫ t

0

∑
x∈�N

(
JN(s, y/N)

)2
ds
)

is a martingale

relative to measure PφN . Therefore, the expectation of exp (KN
T ) is given by

E[exp (KN
T )] = exp


Nd

∫
Td

hN(0, θ)J (0, θ) dθ

+
∫ T

0

∑
x∈�N

(
JN(t, y/N)

)2
dt


 . (7.4)

On the other hand, we can write

K
N,ε
T −KN

T = S
N,ε,2
T − S

N,2
T = I1 + I2 + I3,

where

I1 =
∫ T

0

d∑
i=1

∑
x∈�N

{(
∂J

∂θi

)N

(t, x/N)−N
(
JN(t, x/N + ei/N)

−JN(t, x/N)
)}

V ′(∇φN
t (ei + x)) dt,

I2 =
∫ T

0

d∑
i=1

∑
x∈�N

(
∂J

∂θi

)N

(t, x/N)

×
{
∂σ

∂ui

(
(∇φN

t )
Nε

x

)
− V ′(∇φN

t (ei + x))

}
dt,

I3 = Nd

∫ T

0
dt

∫
Td

d∑
i=1

∂J

∂θi
(t, θ)

∂σ

∂ui

(
Ãε

hN(t, θ)
)
dθ

−
∫ T

0

d∑
i=1

∑
x∈�N

(
∂J

∂θi

)N

(t, x/N)
∂σ

∂ui

(
(∇φN

t )
Nε

x

)
dt
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for every ε > 0. Using Hölder’s inequality,

E[expKN,ε
T ] = E[exp (KN

T + I1 + I2 + I3)]

≤ E[exp (pKN
T )]1/pE[exp q(I1 + I2 + I3)]

1/q

= exp


Nd

∫
Td

hN(0, θ)J (0, θ) dθ

+p

∫ T

0

∑
x∈�N

(
JN(t, y/N)

)2
dt




×E[exp q(I1 + I2 + I3)]
1/q, (7.5)

where p, q > 1 satisfy 1/p+ 1/q = 1. We have used (7.4) with pJ in place of J .
We can estimate the second term in the right hand side of (7.5) as

E[exp q(I1 + I2 + I3)]
1/q ≤ E[exp 3qI1]1/3qE[exp 3qI2]1/3qE[exp 3qI3]1/3q .

(7.6)

Since J is continuously differentiable in θ , there is a constant c1(N) that goes to 0
as N →∞ such that

|I1| ≤ c1(N)

∫ T

0

∑
b∈�∗

N

|V ′(∇φN
t (b))| dt. (7.7)

Therefore, by Corollary 3.2, we have

lim sup
N→∞

N−d logE[exp 3qI1] = 0. (7.8)

For I2, by boundedness of ∇J and Theorem 2.2,

lim sup
ε↓0

lim sup
N→∞

N−d logE[exp 3qI2] = 0. (7.9)

Finally, we estimate the third term in the right hand side of (7.6). By simple calcu-
lation, there exists a constant c2 > 0 such that

∑
x∈�N

∣∣∣∣∣∣(∇φN
t )

Nε

x − (2Nε + 1)−d
∑

y∈%Nε

∇ε′
i h

N(t, y/N + x/N)

∣∣∣∣∣∣
≤ c2(2Nε + 1)−1(2Nε′ + 1)


∑

b∈�N

(
∇φN

t (b)
)2 +Nd


 .

Choosing ε′ = ε2 and combining with Proposition 3.1, we get

lim sup
N→∞

N−d logE[exp 3qI3] = 0. (7.10)
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By (7.5), (7.6) and (7.8)–(7.10), letting p ↓ 1, we obtain (7.3).
Now we are at the position to show the large deviation upper bound (2.7). Let

us define

Ī ε(h; J ) ≡ Ī εT (h(·); J )

:=
∫

Td

J (T , θ) h(T , θ) dθ −
∫ T

0
dt

∫
Td

∂J

∂t
(t, θ)h(t, θ) dθ

+
∫ T

0
dt

∫
Td

d∑
i=1

∂J

∂θi
(t, θ)

∂σ

∂ui

(
Ãε

h(t, θ)
)
dθ. (7.11)

Then, we have the following relation:

E[expKN,ε
T ] = E[exp(Nd Ī ε(hN ; J ))]. (7.12)

Using Chebyshev’s inequality, for every J = J (t, θ) and ε > 0

lim sup
N→∞

N−d logPφN (h
N ∈ C) ≤ lim sup

N→∞
N−d logE[expKN,ε

T ] − inf
h∈C

Ī εT (h; J ).
(7.13)

Therefore, letting ε ↓ 0 in the right hand side, we conclude from (7.3)

lim sup
N→∞

N−d logPφN (h
N ∈ C) ≤ − inf

h∈C
I (h; J ).

Taking infimum in J , since supJ and infh∈C can be interchanged if C is compact,
(2.7) is shown for compact C. Now, Propositions 3.3 and 3.4 mean superexponential
tightness of hN(t). Therefore, we can generalize the result for closed set C.

8. Discussion

Deuschel et al. [3] recently investigated the large deviations for a sequence of finite
volume Gibbs measures {µN }N≥1 for φ-field defined on D ∩ N−1

Z
d having Di-

richlet boundary conditions 0, where D is a bounded domain in R
d with Lipschitz

boundary; the Gaussian case was studied by [1]. They have shown that the rate
functional is given by the total surface tension

FD(h̄) :=
∫
D

σ(∇h̄(θ)) dθ, h̄ = h̄(θ) ∈ H 1
0 (D). (8.1)

The dependence of random variables {φ(x)}x under µN extended over long dis-
tances caused by massless character of the model makes the proof non-trivial. In
fact, their method relies on the technique exploited by Naddaf and Spencer [10],
especially representations of covariances in terms of random walks in random en-
vironments fluctuating in time, and also PDE technique to treat boundary effect.

This paper, on the other hand, studies the corresponding dynamical problem.
Since the distribution of ∇hN(T , ·) weakly converges as T →∞ to the finite vol-
ume Gibbs measures µN on �N for ∇φ-field, the natural question is whether one
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can recover the rate functional FTd (h̄) for {µN }N defined by the integral over T
d in

place of D in (8.1) from the dynamical rate functional I (h) = IT (h) as T → ∞.
To answer such question, we denote the distribution of hN(T , ·) under PφN by µN

T .
Then, the contraction principle implies that the large deviation principle holds for
{µN

T }N with rate functional

ST (h̄) := inf
h=h(t,θ) s.t. h(T ,θ)=h̄(θ)

IT (h), h̄ = h̄(θ) ∈ H 1(Td).

The relationship between ST (h̄) and the total surface tension FTd (h̄) is stated in
the following proposition:

Proposition 8.1.

lim
T→∞

ST (h̄) = FTd (h̄). (8.2)

Proof. Since the Fréchet derivative of the functional FTd is given by

δFTd

δh(θ)
(h) = − div(∇σ(∇h))(θ),

the hydrodynamic equation which characterizes the minimal point h = h(t, θ) of
I , i.e. h satisfying I (h) = 0, is simply a gradient flow determined by the poten-
tial energy FTd , see [12]. Another remark is that the critical points of FTd are the
horizontal surfaces: In fact, if δFTd /δh(θ) = 0,

0 = 〈h(· + θ ′)− h(·), div(∇σ(∇h))(· + θ ′)− div(∇σ(∇h))(·)〉
= −〈∇h(· + θ ′)− ∇h(·),∇σ(∇h)(· + θ ′)− ∇σ(∇h)(·)〉
≤ −C‖∇h(· + θ ′)− ∇h(·)‖2,

for every θ ′ ∈ T
d and for some C > 0. We have used the strict convexity of σ for

the last inequality, see [3]. This shows ‖∇h(·+θ ′)−∇h(·)‖ = 0 and consequently
∇h ≡ const which implies ∇h ≡ 0 since

∫
Td ∇h(θ)dθ = 0. Therefore h is a

horizontal surface: h ≡ const.
The infimum of IT (h) is attained by the time-reversed classical trajectory.

Indeed, let h̃(t, θ), 0 ≤ t ≤ T , be the solution of the hydrodynamic equation
∂h̃/∂t = div(∇σ(∇h̃)) with initial data h̃(0, θ) = h̄(θ), and define h(t, θ) :=
h̃(T − t, θ), t ∈ [0, T ]. Then, we have IT (h) = FTd (h̄) − FTd (h̃(T , ·)), since
‖∂h/∂t − div(∇σ(∇h))‖2 = 4dFTd (h(t))/dt . However, since the critical points
of FTd are horizontal surfaces, we have limT→∞ FTd (h̃(T , ·)) = 0 and this com-
pletes the proof. �

Remark 8.1. (i) The left hand side of (8.2) is called a quasi potential. It is known
that, if the classical dynamics which is the minimizer of I is a gradient flow for a
certain potential F and if all stable equilibrium points are global minimal points of
F, the quasi potential actually coincides with the potential F itself, see Theorem 3.1,
p. 118 of [5] in a finite dimensional setting.
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(ii) Proposition 8.1 shows that one can at least recover the static rate functional from
the dynamic one. This does not imply that the static large deviations themselves
can be recovered from the dynamic large deviations. What we did here is to take
the limits first N →∞ and then T →∞. We need to interchange the order of the
limits, for which the uniformity in T for the dynamic large deviations is required.
This is left as a future problem.
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