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Abstract. Hydrodynamic large scale limit for the Ginzburg-Landau V¢ interface model
was established in [6]. Asits next stage this paper studies the corresponding large deviation
problem. The dynamic rate functional is given by

T
I(h) = %/ dt/ (0h/3t — div(Vo (Vh))}2d6
0 Td

forh = h(t,0),t € [0,T],0 € T¢, where ¢ = o (u) is the surface tension for mean tilt
u € R, Our maintool is H~1-method exploited by Landim and Yau [9]. The relationship to
therate functional obtained under the static situation by Deuschel et al. [3] isal so discussed.

1. Introduction

The Ginzburg-Landau V¢ interface model determines a stochastic dynamicsfor a
discretized hypersurface embedded in the d + 1 dimensional space. Such hyper-
surface is interpreted as an interface separating two distinct phases. The position
of hypersurface is described by height variables ¢ = {¢(x), x € 'y} measured
from afixed hyperplane I' . We shall always work on a periodic cubic lattice so
that Ty = (Z/NZ)? = {1,2,...,N}?. Itssidelength N islarge and eventually
goesto infinity.

Thedynamics of theinterface ¢ isgoverned by the stochastic differential equa-
tions (SDEs)

dpi(x)=— Y V(@ (x) =)t +v2dw,(x), x €Ty,

yelnilx—yl=1

(1.1)
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where {w;(x),x € TI'y} is a family of independent one dimensiona standard
Brownian motions. The potential V satisfies the following conditions:

(i) VeC?m),
(i) (symmetry) V(-n) =V(n), neR,
(iii) (strict convexity) c. < V"(n) <cy, neR, forsomec_,cy > 0.
(1.2)

In [6], the macroscopic behavior of the microscopically defined interface dy-
namics¢; = {¢;(x), x € I'y}isinvestigated. It isshown that, after taking the limit
N — o0, the interface dynamics viewed at the macroscopic level is governed by
the motion by mean curvature except for some anisotropy effects. To formulate
more precisely, let us define macroscopic height variablesfor theinterface asastep
function on the torus T¢ = (R/Z)? = [0, 1)¢:

AN (t,60) :== N Ypy2,(x), 0 € B(x/N,1/N), (1.3)

where B(0,a) = ]_[,‘.’:1[6,- —a/2,6; + a/2) denotes a box in T with center
0 = (95)?21 and side length a > 0. Note that (1.3) introduces a diffusive scaling
for ¢, and both x- and ¢-axes are rescaled by afactor 1/N. Thisis because the ¢-
field represents ahypersurface embedded in d + 1 dimensional space. Thefunction
hN (¢, 0) is sometimes simply denoted by 1™ (r).

One of the main results of [6] can now be stated. Assume that initial random
configuration ¢g of the SDEs (1.1) converges to some non-random ho € L?(T¢)
in the sense that

lim E[||h™(0) — hol|?] =0, (1.4)

N—o00
where|| - || denotesthe usual L2-norm of the space L2(T%). Then, for every ¢ > 0
lim E[|AY @) — h@®)|?] =0 (15)

N—o0

holds and i (¢) = h(t, 0) is a unique solution of the partial differential equation
(PDE)

d

PP S K2 y
5 h0) = ; % {8u,~ (wz(t,e))}, 6T, (1.6)

having initial data io, where Vi = (ah/aei),d:l. The function o = o () isthe
so-called surface tension determined by the statistical property of random inter-
faces with mean tilt u = (u,-)f’:1 € R?, see[6]. Since the limit & (z, 8) of random
field 1™ (¢, 6) is non-random, this result can be thought as a kind of law of large
numbers. The equation (1.6) describes the motion by mean curvature, except for
some anisotropy dueto the underlying lattice structure. Further physical motivation
can befoundin[12].

The aim of this paper is to study the corresponding large deviation problem
as anatural next stage. An extension of the H ~1-method first used by Chang and
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Yau [2] effectively worksto show the hydrodynamic limit, see[6]. Thisisagainthe
case for the large deviation problem. We shall in fact apply the method employed
by Landim and Yau [9], and also the approach used by [4], [8].

We remark that the stochastic dynamics defined by (1.1) isreversible under the
finite-volume Gibbs measures associated with an energy of the interface ¢

Hy($) = Y V(V$(b)). (17

bel'y,

HereT"y, standsfor thefamily of all directedbondsb = (x, ), x,y € Iy, [x—y| =
linTy,and Vo) := ¢(x) — ¢ (y) for b = (x, y). Eachbond b = (x, y) isdi-
rected from y to x. Wewrite x;, = x and y, = y for b = (x, y). Reversely directed
bond —b of bisdefined by —b := (yp, x). Notethat each undirected bond appears
twicein I'%,. The family of all directed bondsin Z¢ is similarly denoted by (Z4)*.

Themain result is stated in Section 2, see Theorem 2.1. Superexponential esti-
mate which is essential for the proof of the main result isa so formul ated there, see
Theorem 2.2. To prove such estimate, superexponential one-block and two-blocks
estimates are reguired. These estimates are given in Sections 4 and 5, respectively.
Section 3 prepares several a priori exponential estimates. Large deviation lower
and upper bounds are proved in Sections 6 and 7, respectively. Finally Section
8 discusses the relationship between our dynamic approach and the static result
obtained by [3].

2. Main result

Before stating the main theorem, we prepare several notation. For a microscop-
ic height varidble ¢ = ¢V = {p(x),x € 'y} € RV, WV = pN@) =
N1 err,v ¢ (x)1pi/n,1/n)(0) denotes a macroscopic height variable. Similar-
ly, for a microscopic height process ¢; = {¢;(x),x € 'y}, we denote by ¢, =
{¢N (x) := ¢y2,(x),x € Ty} aheight process which is macroscopic in time
and microscopic in space and by 2V (¢,6) :== N1 Y ery 8 ) 1pan.1n) (6)
amacroscopic height process, respectively; % (¢, 0) is the same as that defined in
(1.3). For each directed bond b = (x, y), we set n; (b) = V¢, (b) := ¢ (x) — s (y)
and nN (b) = Vo (b) := ¢ (x) — ¢ (). Note that, from the SDEs (L1.1) for ¢,,
the process ¢V satisfies the SDES

dg) (x)=-N> > V'(V¢)(b)dt + V2Ndw,(x), xeTly, (21)

bely xp=x

inlaw sense. Namely, (2.1) holdswith N w2, (x) in place of w, (x) but the laws
are certainly the same. The generator of the process ¢/ is given by

82

0
dp(x)2

ap(x) |

LN =N?Y"

xel'y

> VI(Vb)

bixp=x

2.2)
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Throughout the paper, we assume the initial configurations ¢ = qbé\’ of the
SDEs (2.1) are deterministic and satisfy

sup BN O+ N D (VN (b)) (23)

bel'y

Notethat thisconditionimpliessup,, ||2" || < oo for thecorresponding macroscop-
ic height variables. We also assume the condition (1.4) without taking expectations
for the corresponding 2" (0) and some /g € L2(T¢). Thedistribution of the process

N, t e [0, T] with initial configuration ¢ is denoted by Pyn; T > Oisfixed.
We denote the space L2(T%) equipped with the weak topology by L2 (T%) and the
classof al continuousfunctions’ : [0, T] — L2 (T?) by C([0, T], L2 (T%)). The
space HY(T?) stands for the Sobolev space on T¢ so that L2([0, T'], HY(T?)) is
thefamily of al h = h(t, 0) € L3([0, T] x T¢) satisfying that i (1) € H1(T?) for
aer e [0, T]and [y dr [, |Vh(t,0)|2d6 < co.

For each h = h(t, 6) which isdifferentiablein (¢, ), let

2
I(h) =Ir(h) = / dt/d{ (t,0) — dIV(Va(Vh(t,G)))} do, (24)
T

if R(0) = hg and I (h) = +o0 if h(0) # ho; see Proposition 6.3 below. More pre-
cisely saying, I (h) = +oo unlessh € C ([0, T], L2 (T%)) satisfiesh € L?([0, T],
HY(T?)), and for such h

I1(h) = sup I(h; J), (2.5)
J=J(t,0)eCL([0,T]xT9)

where

I(h; J) =/ J(T,0)h(T, 9)d9—/ J (0, 0)ho(0) dO
Td Td

T aJ
—/ dt/ —(t,0)h(t,0)do
0 Td Ot

T T
+/ dt/ VJ(t,G)-VU(Vh(t,O))d@—/ dt/ J2(1,6)d6.
0 Td 0 Td
(2.6)

Recall that the function o enjoys the bound |Vo (u)| < C(1 + |ul), see Theorem
3.4 (v) of [6]. Our main result asserts that the large deviation principle holds for
hN = hN (¢, 6) with the rate functional 1 (h):

Theorem 2.1. For every closed subset C and open subset O of C ([0, T1], Lﬁ)(']rd)),
we have
limsup N~ log Pyn (h"V € ©) < — |nf 1(h), (2.7)

N—o0

I|m|nf N~ IogP¢N(h €0)>— m}‘g](h) (2.8

he
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Remark 2.1. (i) Deuschel et a. [3] recently studied the large deviations under the
static situation. They proved that the large deviation principle holds for a sequence
of finite volume Gibbs measures {;."V} and the rate functional is given by the total
surfacetension F(h) for & = h(8). The details will be discussed in Section 8.

(if) For d = 1, the V¢ interface model isidentical to the Ginzburg-Landau model
treated by Donsker and Varadhan [4]. In fact, [4] established the large deviation
principle for the process »" in our setting.

The proof of Theorem 2.1 relies on a superexponential estimate, see Theo-
rem 2.2 below. To formulate it, we recall some notation from [6] and introduce
further notation. The space X stands for the set of al n € RZ)" satisfying the
plaquette condition and w,, denoctes the unique shift invariant, ergodic tempered
Gibbs measure on X with mean u € R¢, see [6] for details. For A c Z4, we
define A* by A* = {b € (Z9)*; xp, y» € A}. Let Clocp(X) be the family of

al functions F on X of the forms F(n) = F ({n(b)}be@)*) for some finite

AczZiandF € C (R(A) ) The class of al F € Cloc,(X) defined with

F € Co ]R(A> is denoted by Coc,0(X). The (minimal) set A iscaled the sup-
port of F for F € Cioc,»(X). We denote the expectation of ' € Cioc,5(X) with
respect to u, by F(u):

F(u) = E™[F], ueR (2.9

For apositiveinteger / and x € Z¢, denote the empirical mean of the configuration
nonabox A; + x with sidelength 2/ + 1 centered at x by 77’ :

d
=@+ Y Y nlei+ye e RY,
yeA+x i=1

where A; = {y € Z9; maxi<j<q |yi| < 1} isabox centered a 0 and ¢; € Z¢
is the i-th unit vector given by (e;); = §;;; note that ¢; + y sometimes repre-
sents the directed bond (e; + y, y). Finaly, for a positive integer / and a function
F e Cloc,b(X)y set

AVp e FOD = @+ D7 Y o, F(n),
YEA+X

and
W/ (n) = Ava, F(n) — E (i),

where t, denotestheshift by y. Then, the superexponential estimatefor thereplace-
ment of sample mean by its average under equilibrium measures is formulated as
follows:
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Theorem 2.2. For every F € Clocp(X) and @ > 0, we have

T
limsuplimsup N~ log E s |:exp{a/ >
0

el0 N—-oo

sz§€(v¢,N)‘ dt” <o

xel'y
(2.10)
In particular, for every § > 0
T
limsuplimsup N~ log Py N’d/ > rxw,ﬁe(wt’v)‘ dt > 8% = —oc0.
el0 N—-oo 0 xely
(2.112)

3. A priori exponential estimates

In this section, we prove several exponential estimatesfor 2" (t) and V¢N . Propo-
sition 3.1 and its Corollary 3.2 will play key rolesin the subsequent sections, while
Propositions 3.3 and 3.4 will be used in Section 7 to show the superexponential
tightness of 2V (1).

Proposition 3.1. For every T > 0,0 < 8 < 1, N > 1 and for every initial
configuration ¢V with finite L2 norm for the corresponding " (i.e. |hV | < 00)

T
Egn {eXp{ﬂe‘ST fo (Z V(v 1)V, <b>+N"||hN<r>||2) dr”

beTy,

< exp{BNI|IhN |12 + 28N /5). (31

The following corollary is readily shown by applying this proposition and
recalling that V' (n)n > c_n2.

Corollary 3.2. Let (¢")y>1 be a sequence satisfying supy, ||| < oo. Then,

limsuplimsup N ¢
Bl0  N—oo

T 2
xlog Egx | exp ,3/0 Z(wp{v(b)) NN 012 | ard | <o.

ber,
Proof of Proposition 3.1. For every « > 0, weintroduce a martingale
M = [V @07 — [hY )17
—/Ot e (LN HhN(s)HZ —K||hN(s)||2> ds. t>0.
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From [|hN |2 = N~972) 1 ¢(x)?, we have

LV HhNuzzN_d 3 !2—2 > v’<v¢<b))¢><x)}

xel'y bixp=x

=N Z {2— Z V' (Vo (b)) (xp)+ Z V’(Vd)(b))cp(yb)}

xel'y bixp=x biyp=x

=2-N"1 " V' (Vo®)Ve(b). (3.2)

beTy

The second equality uses the symmetry of V which implies V/(V¢ (b)) =
—V/(V¢(=b)). From the representation

t
Mi =22 Y [ o dusco)
0
xel'y

we see that its quadratic variation is given by
t
(M¥)y, =8N‘d/ e 25 \hN (s) )% ds. (3.3)
0

Since M isacontinuous martingale vanishing at time 0, for every initial configu-
ration ¢ with finite L2 norm for the corresponding /%,

ﬁZ]vzd

exp{ﬁNde —~ <MK>[}

isapositive local martingale and therefore a supermartingale. Sinceitisegual to 1
ar=0,

ﬂZFJZd

Egn [exp{ﬂNdM; — <MK>T” <1

Hence, by the definition of M/ and (3.2), (3.3),
Ey |:exp l - BN/ RN 2
T
—BN? / e (2— N~ VIV 1)V, (b) —xuhN(t)uz) dt
0

bel'y

T
—4/32Nd/ e—2”||hN(t)||2dt” <1
0
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Note that we have dropped the non-negative term SN ||hN (T)||%e T appearing
in the exponentia of the left hand side. Therefore, if « — 48e~** > 1 holds for
s €[0, 7],

T
Egn [exp{ﬁ /O e Y V(Y)Y )V (b) dr

beTy

T
+ ﬂNdfO e—'”||hN(z)||2dtH

T
< e><p{ﬂNd||hN<0>||2+2ﬁNd / et dt}.
0

Choose now ¥ = 5. Then x — 48e¢™* > 1 holds for every 0 < 8 < 1 and
s € [0, T], and thus we obtain the desired estimate (3.1). O

The next proposition improves the exponential estimate for the integral
fOT IRN (£)||? dt givenin Corollary 3.2 into that for supy_, -7 2" (£)]|%.

Proposition 3.3. Let (¢")y>1 be a sequence satisfying (2.3). Then,
limsuplimsup N~ log E |:exp{ﬂNd sup ”hN(t)HZH <0. (34
B0 N—oo 0<t<T

Proof. Set
A = IRV 02 + /Ot Ly HhN(s)HZ ds.

Then |2V (1)||2 = M, + A, holdswith the martingale M; = M,O (i.e.x = 0) given
in the proof of Proposition 3.1. Therefore, by Schwarz's inequality

1/2 1/2
Eyn [exp{f}Nd sup ||hN(¢)||2H < (111\,/;;) .(15\33) , (35)

0<t<T

where

2n2d
Iy = Egn [exp [2 sup (ﬁNer L 12\7 <M)z>”,

O<t<T

2N2d
Iz’Yﬁ=E¢N [exp {2 sup (ﬂN"Aerﬁ 5 (M)z>}]-

0<t<T

Let us estimate the term I{Yﬂ. Since

,32N2d

My, = EXD{ﬁN"Mt — <M>t}

isalocal martingale, there existsan increasing sequence of stopping times{z,} such
that {M1,.,,} are martingales for al n. Thus, by Doob’s inequality, the term I{Y [;”
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which is defined by replacing M, and (M); with M; ,, and (M), »,, respectively in

1Y can be estimated as

I = Egw [ sup (Ml,t/\tn)z:|
< 45y e (26N b1, — BN M), |
< a£, [exp [642N% 1)1, ||
The last inequality follows by Schwarz's inequality, since exp {48NYM;,,

—8B2N% (M), ,,,} is a supermartingale which is equal to 1 at r = 0. Letting
n — oo, from Fatou's lemma and monotone convergence theorem, we get

1/2
1Yy < 4Eyn [exp{6,82N2d (M)T” .
By Corollary 3.2 and noting (M) = 8N ¢ fOT AN (s)||12 ds, we have

] ) 4 v\ 2
limsuplimsup N Iog(Ilﬂ) <0.
Bl0  N—oo ’

Next, we estimate the term Ié\_’ﬂ in (3.5). Since LV AV |2 < 2, we have

T

I3y < exp (ZﬂNdHhN(O)HZ + 4,6NdT> Egn [exp {SﬂZNd/ ||hN(t)||2dt” :
0

and therefore, from Corollary 3.2 we have

. . —d N\ Y2
limsuplimsup N Iog(lzﬂ) <0.
Bl0 N—oo ’

This compl etes the proof. O

Finally, we show superexponential weak equicontinuity estimatefor 4 (¢). For
J = J(6) € C(T%), weintroduce the processh?’(]) as

W) = fT IO 0)d0 = NG S Y @M ),

xel'y
where JV (x) isthe function defined by
IN(x) = Nd/ J(0)do, xeTy.
B(x/N,1/N)
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Proposition 3.4. Let (¢")y=1 be a sequence satisfying (2.3). For all ¢ > 0 and
J € CY(T9),

limsuplimsup N~ log Py sup  |hY () —hY ()| > €| =—o0.
8]0 N—oo 0<t1<1p<T,
2—11<8
(3.6)

Proof. Using Itd's formula, we get
h (D) = b () = &N () +w (D),
where
1 t
N _ —d+1 N / N
&"'())= SN / > vINBV (Ve (b)) ds,

0 bel'y,

wl (1) = V2N~ Y TV ()w; (x).

xel'y

Therefore, for completing the proof, it is sufficient to show the superexponential
estimate (3.6) for £V (J) and w! (J) in place of AN (J), respectively. First we
consider for &N = £V (J). Since we see

[7/9]
Pyv ‘é —& ‘ Pyn sup
¢ 0<t1<t2<T " 12 Z ks<t<(k+1)8
—11<8

N N €
& _Eks‘ > Z)

and
Etl Etz

—C+N‘d||w||oof > |volw)] ds

-2 - pery

forO<r <t <T,weget

Py sup (&Y — &)
0<r1<m<T,
to—11<$
[7/9] (k+1)SAT ¢
<Y P N’d/ > VoY b)lds > -] (3.7)
k=0 ks bel},

where ¢ = 2¢4||VJ|le0; We may assume J is not a constant function. However,
for every 8 > 0, dividing the integral into the region of s € [kS, (k + 1)6 A T]
satisfying |V (b)| < p~1 and its complement, we have

(k+1)6AT
fk ‘w (b)‘ ds < 2dN“B 18+ﬂ/ 3 ’W)Y (b)’ ds.
F*

8 be ber,
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Thus, by Chebyshev’sinequality, for every o > 0

J (k+1)8AT N ¢
Py [N /k > IveYb)lds > -

8 bel'y
< exp{a (2d,3-18 - f) Ndl Egn |:exp {aﬁfT > ‘Vq&,”(b)‘z dt” .
¢ 0 bel'y

Therefore, we get

limsuplimsup N~ log Py sup g - >
840 N—o00 0<r1<02<T,
to—11<§
. d T N 2 (643
<limsupN~“log Eyv | exp aﬂf Z ‘Vq&, (b)‘ dar b | — =—.
N—oo 0 bel“;t, c

Take the limit 8 | 0in the right hand side. Then, by Corollary 3.2, the first term
vanishes. Since o > 0 is arbitrary, the estimate (3.6) is shown for &N = &N (J)
instead of 4N (J). The estimate (3.6) for w (J) iseasy, since

-1/2
[2N2d > (JN<x>)2] wp' (J)

xel'y

are Brownian motions under Py . The proof of Proposition 3.4 is concluded. [
4. One-block estimate

Thegoal of the present section isto show the following theorem from which the su-
perexponential one-block estimate followsimmediately. This theorem will be used
to prove Theorem 2.2 combining with the superexponentia two-blocks estimate
which will be shown in the next section.

Theorem 4.1. Let (¢V)n>1 be a sequence of initial configurations satisfying
supy |EV ]| < oo for the associated (h")y=1. Then, for every F € Ciocs(X)
ando > 0,

T
limsuplimsup N~ log E 4n |:exp[a/ >
0

[->00 N—o00 xely

er,F(Vq&tN)‘ dt” <o.
To conclude the proof of the theorem we have to show that for every o > 0,

T
limsuplimsup N~ log E 4n [exp {aNd/ U,Q,(qu,N)dtH <0, (41
0

|00 N—>o00
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where

Ul = NN [Ava e Fp = Bl

XEFN

The proof of the superexponential one-block estimate (4.1) will be reduced to the
usual one-block estimate (see (4.3) below) by means of Portenko’s argument, [11,
p. 117]. Such ideawas already taken by [9]; however, sincethey treated one dimen-
sional model, it was sufficient to divide the time interval [0,T] into small pieces
for the integral appearing in the exponential in (4.1). To study higher dimensional
modél, it turns out to be necessary for the | attice space simultaneously divided into
suitably small domains, namely, wedivide Ty into boxeswith sidelength N1/¢ (we
assume N/ is an integer for simplicity); see Remark 4.1 below. In other words,
we have

ryv=J A" +a,
aEﬁN
with['y = NY4(Z/ NV D7)d = (NV4 N4 N and AN = A yya

(as we have remarked, such partition in space is unnecessary in one dimension).
Then, for A > 0, set

A F . — A F
Uy ) =N~ 3" Uy o,
aefN
A F . o=l
Ug i) = 1{AV(A(N)+,1)* n?<A} Z |AVA+x B = F(1)I,
xeAM 4q

where
-1

PO

be(AWN) ta)*

AV A 4y 17 1= '(A(N) +a)*

[N\(N) = A(Nl/d_Nl/Zd)/z.
Lemma4.2. To prove Theorem4.1, it is enough to show (4.1) for every o, A > 0
with UAA}:lF replacing Uy, :

T
limsuplimsup N~ log E v [exp{aNd/O U]\A}f(qu,N)dt” <0. (42

[—->00 N—o00

Proof. For A > 0,
Ul - Ul o)

< 20 FlleoN™ 3 37 Liav, e 2=y AT+ IV 1A S AN

aEfN
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< 2| Fllo [N_d+lA_l D AV W g 1P N—l/Zd]

aEfN

=2/ Fllo [Nd(4dA)1 > ﬂ(b)2+Nl/2d} .

beTy
Using Corollary 3.2, (4.1) follows from (4.2) by taking A sufficiently large. O

We now reduce the proof of (4.2) to the usual one-block estimate:

Lemma4.3. Theinequality (4.2) follows from

To/N
lim limsupsup Ey. 4, [/ Ué“;\,Fl(V%N)ds] =0, (4.3)
[0 Noo ¢,y 0 Y

where Tg = T/c1, c1 = [20]|F|lT] + 1 and the supremum is taken over all
initial configurations ¢ = {¢p(x),x € AM} e RA"Y and all moving boundary
conditions ¢, = {¢;(x),x € IAM} € C ([0, TO/N],RBA(”)), where 9A ) =
{x e AWN); digt(x, (AM)) = 1}. Thedynamics ¢ = {¢pN (x),x € AN} isde
fined by the SDEs (2.1) for x € AN having initial data ¢ on A®Y) and boundary
condition ¢, at AN,

Proof. The expectation in the left hand side of (4.2) isrewritten and then bounded
asfollows:

1N kTo/N AF
Eg | TTT] exp{a/( Ua);V)I(V#V)ds}

kL ger, k—1)To/N |
To/N etV
< :Zudf) Ep.g [exp {a/o Ug'n (VoL ) ds ” . (4.4)
Pt

The second line is obtained by noting the (space-time) Markov property and the
shift invariance of the dynamics. Therefore, (4.2) is shown once we can prove

To/N
limsuplimsup sup Ey.4, [exp{a/ Ug‘;\fl(quﬁV)dsH <1 (45
) N,

[->00 N—>oo ¢,¢¢

Now, expanding the exponential as a sum of powers, using identity

t k

Ey.4, [(/0 W(V¢§\’)ds>j|
k
=KklEy 4 //0 tl‘[
<§1 <SSk =< j=

W(Vqsg) dsi... dsk:|
1
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and repeating the sametrick in time on Markov process presented above, we obtain
that the expected value appearing in (4.5) is bounded from above by

% To/N k
Z (sup Ep.o, [/O aUO’}V’l(V¢£V)ds:|)

i—o \6.01

To/N AF
=|1-sUpEp,, |:/ O‘Uo.}v,l(vqbslv)ds}
é.¢ 0 '

-1

Note that 7p is chosen in such a manner that the expected value in the last for-
mulais strictly less than 1. Therefore, the proof of (4.2) can be reduced to that
of (4.3). O

Remark 4.1. Note that |[I'y| = N9~ so that, once we divide the time interval
[0, T] into c1 N pieces, the whole space-time region 'y x [0, T] is divided into
N9=1 x ¢iN = ¢1N? pieces. This compensates with the factor N appearing in
the exponential of (4.1). If we try to introduce the division only in time, we need
to divideit into N pieces. Then, thetime length 7N~ of each piece, which cor-
responds to 7 N2~ in microscopic time scale, is too short for the system to reach
the equilibrium statesif d > 2.

The goal is now to prove (4.3). Let us define probability measures ,ué}{ 6 ON
X a0+, the configuration space on (A™))", by the space-time average of the
distribution of Vo, i.e.,

N 1 To/N
EMu[F(] == Y Esy [ f FMveM) ds:| , (4.6)
To 0 ‘
xeAW)
for every F € Cioc.(X) with support inside A, where 7! is the shift operator
on AM); weregard AN as a periodic lattice by putting bonds to connect corre-
sponding boundary points of opposite side and define n(b) := 0 for such bonds.
Extending the configurations periodically, Mf;’, 4 Can be regarded as probability

measures on X. Define the function Av 52 on X by

Avn? = limsupAv )+ 72 € [0, o).
K—o0

The operator L = )", .74 L, denotes the generator of the process n;, = {n;(b) =
Ve, (b), b € (ZY)*}, where ¢, = {¢,(x), x € Z?} isthe solution of the SDEs (1.1)
defined for x € Z¢. See[6], Sect. 4.2 for L.

Lemma4.4. Everyvaguelimit u of{ué;’,@},wy@ asN — ooisL-stationary and
shift invariant. Here, vague convergence means those for all finite dimensional
marginal distributions as well as for the distributions of Av Z.
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Proof. We recall that arbitrary family of probability measures on R:" for finite
A c 74 isvaguely tight. Assumethat . isavaguelimit of V' := MQ’N/’W/ along

asubsequence {N' 7 oo} of {N}andset Ly =), ., L. Then, since
B LR = [ L 1| < {2V 724 AT AN 1A Y ] il

holds for every F € Cioc0(X) if its support A satisfies A ¢ AN, we have
E*[LF] =O0byletting N' — oco. Accordingly, u is L-stationary. Shift invariance
of u follows by definition. O

The next lemma establishes the uniform law of large numbers for the Gibbs
measures {/,, lu| < A} for every A > 0, where u, is the unique shift invariant
ergodic tempered Gibbs measure on X’ with mean u € R¢. A probability measure
won Xiscalled tempered if EX[5(b)?] < oo for each b € (Z4)*, see[6].

Lemmad4.b. For every F € Cipep(X) and A > O,

lim sup EW HAVAI F(p) — F(ﬁg)u — 0. 4.7)

[— 00 lu|<A

Proof. For every u, v € R, Proposition 2.1 in [6] gives a shift invariant coupled
probability measure P on X’ x X with u, and u, asitsfirst and second marginals,
respectively, in such away that P satisfies

EP[IIn* = n?112] < C1lu — v|? (4.8)

for C1 > 0,where(nt, n?) € XxXand||n||2 = 0, |n(e)|*forn = {n(b)} € X.
Set the expectation in (4.7) g’ («) and estimate the difference

8'@) = g' @)l = E” [|Ava, FOi™) — Ava, )|

et ||F(amo) - F ()| @9

We first assume that the function F € Cj,c (&) is Lipschitz; namely, F has a
form F(n) = F({n(b)}be(]\)*) for some finite A ¢ Z< and Lipschitz continuous

function F on R™*, Then, since

AVA, F(nh) — Avy, F(nz)\ < Col A lent — el

XEN;

where IIHIIi = Y pechyr In(b)|?, using (4.8) and recalling the shift invariance of
P, thefirst term in the right hand side of (4.9) can be bounded by C3|u — v|. The
second term also has a similar bound, since we see

|F(a) — Fb)| < EP[IF(Y — F0®)|) < Cala—bl,  a,b e R,

Accordingly, the uniform Lipschitz continuity of g’(«) in [ is shown. However,
lim;_ o0 g’ (u) = Oiseasy for eachu € R?, and therefore the uniform convergence
(4.7) isestablished at least for Lipschitz continuous F. Sincefunctionsin Cjy¢ 5 (X)
can be uniformly approximated by Lipschitz continuous bounded local functions,
the lemmaiis proved. O
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Let us continue the proof of (4.3). We first assume F € Cjye.0(X) with sup-
port A. Take a function ok € Co(R), K > O for cut-off in such a way that
0 <og <1,¢kx(z) = 1for|z| < K and ¢k (z) = Ofor |z] > K + 1. Then,
the expectation in (4.3) divided by Tp can be estimated by the sum

N = - -
E*0r [y [AVA, FO)) = Flibok Gip)|]

+ B4 [ | Fib) tox i) — D) ] (4.10)

Note that Av 2 = = AV )y n? under u¢ " Since F has a bound |F(n)| <
||F||ool{\ln||A<R}(’7) for some R > O, for every ¢ > 0 onecan find K > 0 such
that

|F )| = [E"[F]| < |IFllocitu(lInll; < R) <€

if lu| > K. The last inequality follows from sup, g 1<;<q E**[In(ei) — uil?] <
00, see (3.6) in [6]. In particular, the second term of (4.10) is uniformly bounded
by €. On the other hand for the first term of (4.10), since F(n) and F - gk (ih) €
Cloc.0(X), from Lemma4.4

. N . _
limsup sup E*¢.¢ [1{AV”2§A} )AVA, F(n) — F(iih)ek (né)”
N—oo ¢,

whereSistheclassof all L-stationary and shift invariant subprobability measures
on X. However, each 1 € S can berepresented asamixture of extremal probability
measures ji for which Av »? = E”[||5|?] hold. Therefore the above supremum is
unchanged when it isrestricted over all © € S being tempered. Such u isamixture
of {u,, u € R} (see[6]) and accordingly the right hand side is bounded by

< 3D E" [ Lipu ez [Ava, P = Fior 7
e

sp B [|Ava, Fop — || +e.
ueR®:Eruf||y]|2]<A

if K istaken asabove. Thisproves(4.3) for F € Cjyc,0(X) from Lemma4.5.

Next we consider for F € Cjyc,p(X) With support A. Take another cut-off func-
tion y = Yx(nz) € Ciope,0(X), K > Osuchthat 0 < ¢ < 1,¢(n) = 1for
lInll; < K andy¥(n) = Ofor ||n]l; > K + 1, and decompose F' into the sum
F=F-¢y+F(1—y).SinceF -y € Ciye,0(X), 0necan apply the result obtained
above. On the other hand, for theterm F(1 — )

1 ara- 1] _
Ut ) = T Ly ey Do AV W) + B
xeAM)
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where Wk (17) = 1y >k}. Under the condition Av )y n? < Aforn e X, if
N islarger enough than/ (I isindeed fixed here),

1 1
T 2 AVa Yk () < > Wk ()
xeAW) XEA (N1/d_N1/2dy 5y
1 Al
<% > 104 < VA
xXeA

(WY _nY/2dyoq

We similarly have under the same condition for n € X

_ c1|A| 1 _ C1lA|
l [
— 14+ = <= A
Z < +NZ|77X|_K(+\/_),
xeA(N) xeAW)
since
- 1. C1|A|
‘I’K(”)EEEM [inllx] < X (L + ful)),

usetheestimate E#«[|(b)|?] < C2(1+]|u|?) whichfollowsfrom Theorem 3.4-(iv),
(v) of [6]. We have therefore shown

1 .
ugvm < Wy v

which can be made small enough for Iarge K > 0. Thus the proof of (4.3) and
therefore that of Theorem 4.1 is concluded.

5. Two-Blocks Estimate
For f € C(RY), set

WiN o = Avay £ ()| - o).

In this section, we shall prove thefollowing theorem. Theorem 2.2 isreadily shown
from this theorem and Theorem 4.1; see the end of this section.

Theorem 5.1. Let (¢")y>1 be a sequence satisfying the condition (2.3). Then,
for every bounded and globally Lipschitz continuous function f on R¢ and every
o > 0,

limsuplimsuplimsup N ¢
[—00 €l0 N—o0

x log Egn {exp[ / >

xel'y

o W (Vg )‘ d:” <0. (5.1

The proof of Theorem 5.1 is given based on the next theorem.
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Theorem 5.2. Under the condition (2.3) on (¢")y>1, for every a > 0,

limsuplimsup N~ log E 4n |:exp [a(ZNe +179

€l]0 N—>oo
T
x Z/ > Wb VeY)—4aN? | dr | <0,
venne 70 \pery,

where
Wy (b;n) == {V'(nb+ ) — V') Hnb + y) — n(b)}
andthebond b + y isdefined by b + y := (xp + v, yp + ¥).

Proof of Theorem 5.1. We assume Theorem 5.2 is already shown. For afixed pos-
itive integer / and x, y € Z¢ suchthat (x + A;) N (y + A;) = @, define U, , and
Wl as

d
Ury) =2 _{V'(nei +x)) — V'(lei + )} {nlei +x) — nlei + )} — 4,
i=1

(5.2)
W =@+ 3 Uy (5.3)
1EA
Senrty

From Proposition 3.1 and Theorem 5.2, we get the following estimate for every [
anda > O:

T
limsuplimsup N~ log E 4n |:exp {af (2Ne + 14
el0 N-oo 0

<Y Y wh (vl )dz” <o0. (5.4)
yeEANeNAg xel'y
We now introduce cut-off. For K > 0, define functions V. and Ik on R by
Vi) = (Vi) v V' (=K)) AV(K),
Ix(m) =V (=K)) AK,
forn € Rand UK, and Wyy on X'by
d

UK ) =23 " {Vik((ei +x)) — Vi (n(ei + y))}
i=1

x {Ig(mei +x)) — Ixk(m(e; + )} — 4,
Wik =@+ > Uk _m.

z1€A+x
z2€N1+y
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for n € X, respectively. Since V isstrictly convex, W! , > —4and W! , > Wiy
hold, and therefore we get

1 1I,K
Wi ey = Weery MYz 0 1<a =4 Livia,, >4 (55

forevery A, K > 0and n € X. However, W)’C’,f has the representation

Wi’,f =21 AVA;4x 8k +AVA 4y 8K

d

= (AVA Vi - AV T+ AVA oy Vies - AVA s Ik ) | — 4,
i=1
(5.6)

where gk, V}Q and I ;, 1 <i < d, arefunctions on X defined respectively by

d
gk (M) =Y Ve Ik (n(e)).

i=1
Vi.i(m) = Vi (n(e),
Ik () = Ik (n(e;)).

For every o > 0, using one-block estimate (Theorem 4.1), we get from (5.4), (5.5)
and (5.6)

T
limsuplimsuplimsup N~ log E 4 |:exp {a/ (2Ne +1)~4
0

[—o0 €l0 N—oo

x Yy {2<§K (0) + &k (s, )

yeAnyeNAy xel'y

-3V () e (1, 0)

i=1

d
-2 Vi (ﬁiﬂ(’)) I i (ﬁi(”) - 2) Lot o1=a
i=1 i

—4x 1ﬁi<t>|v|ﬁ§+y<r>|>A} d’” =0, (6.7)

wherethefunctionsgx (u), V’K,i (u) and fK,,- (u) onR? are defined by the expected
values under u, of gk, V,’(’l. and Ik ;, respectively; recall the formula (2.9). We
have simply denoted n¥ = V¢! by n(t). From Theorem 3.4-(iv) of [6] and Bras-
camp-Lieb uniform exponential bound on ., (see (3.6) in [6]), the sequence gk
convergesas K — oo to
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d

2w =Y E"[n(e)V'(n(e)] =u-Vo(u)+1
i=1

uniformly on every compact set of R?. In the same manner, % k.iand I, k.i converge
uniformly on every compact set to do/du; and u;, respectively. Therefore,

T
limsuplimsuplimsup N~ log E v [exp{a/ 22Ne + 1)~
0

=00 €l0 N—oo

71, A
x> {Ux,xﬂ(”(’)) —2x 1\ﬁi(t)|v|ﬁi+y(t)|>A} dip | =0,

yeANeNAgy xel'y

(5.8)
where Uy is defined by
Ugy () = (Vo (i) — Vo (i) - (i — i) Lzt i 1<a-

Using Schwarz's inequality and Proposition 3.1, for every o > 0,

A—oo >0 €l0 N—oo

T
limsuplimsuplimsuplimsup N~ log E |:exp{a/ (2Ne +1)~¢
0

x Yy Ui’;‘ﬂ(vd){v)mﬂ <0. (5.9)

yEANeNAy xely

From the convexity of o, the expected valuein (5.9) isincreasing in A. Therefore,
for every A > O,

[—00 €l0 N—oo

T
limsuplimsuplimsup N~ log E v |:exp{a/ (2Ne +1)~¢
0

x>y Ui’;‘ﬂ,(vd){v)dz” <0. (5.10)

YEANeNAy xely

Since f isglobally Lipschitz and o is strictly convex (see[3] or [7]), the proof of
Theorem 5.1 is concluded. O

Weturn to the proof of Theorem 5.2, which requiressomenotation. For 6’ € T¢,
Ty represents the macroscopic space shift by 6'. In this way, for afunction f on
T,

(T )(0) = f(O' +6), 6eT.

The proof of Theorem 5.2 relies on three lemmas. We simply denote ¢ by ¢.
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Lemmab.3. Foreveryy € Aye,

2w - hNHZ <N (Vo b)) (5.11)
beTy,
Proof. By the definition of 1",
[ =iV = N2 Y g+ )~ p0)P

xelly

—N2 Y

xelly

2

> Vb +x)

beCo,y

Here Co,, denotes a sequence of bonds b connecting two sites 0 and y. One can
tekein suchamanner that |Co ,| = |y|. Noting that theright hand sideisan average
over dl x € 'y, we get the conclusion by Schwarz's inequality. d

The next lemma corresponds to Lemma 4.4 of [9] and its proof is based on the
symmetry of V and similar to that of Lemma 2.3 of [6].

Lemmab.4.

LV |7 h" - hNH2 —4- NS W, b; V9). (5.12)

bel'y,

Proof. We may assume y # 0. Since || 7,/ nh" — bV ||2 has a representation given
in the proof of Lemma 5.3,

LV ny/NhN—hNH2=N—”’ 3 [4—2 3 B+ —d() b

xel'y bixp=x

where we set
Dy (b) 1= V' (Vo (b + y) — V' (Ve (b))
However, > .., . @y(0) = — 4.\, _ Py(b) by symmetry of V and therefore

N ny/NhN_hNuzzN—d 3 i4_ Y @, (B) @b+ ) — b (xp)

xely bixp=x

+ Y B @b +y) — ¢()

biyp=x

—4-_ N4 Z O, (b)(Vo(b+y) — Vo (b)),

beTy,

which shows (5.12). O
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For afixed y € T'y, we consider the martingale MM (y) defined by
MY (y) = N? H 2 nhN (1) — N (1) Hz — N ny/NhN(O) —wN ) H2
N /(: Ly ny/NhN(s) - hN(s)H2 ds.

Defi neMtN’E, e > Oasamartingalewhichistheaverageof themartingales M} (y)
iny € Aye:
MM =@Ne+ D)™ Y MN(y).
YEANe

To keep notation simple, we denote the martingale M€ by MmN,
Lemma5.5. The quadratic variation of M}V has a bound

t
MmN 322/ Vol (b))? ds.
(M"); < 32 OZ(@()) 5

bel'y

Proof. Since ¢!V is a solution of the SDEs (2.1), the martingale M (y) has the
following representation:

t
MY (y) = 2V2N 1 /0 3 @Y () — @ (x — v) — 9 (x + ) dy (x).
xelly

Therefore, for any y, z € Ay, computing cross-variation of M (y) and M} (z),

(MM (y), MY (2));

t
- 8N’2/0 3 @Y ) — B —y) — B + y)

xel'y

X 29 () = ¢ (x —2) — ¢ (x +2)) ds
t
<16N 2 /0 D HGN ) = Y (x = )7+ @) (1) — ) (x — )%} ds

xely

t
< 3262f > Vol (b))?ds.
0

bel'y

The last inequality is shown similarly to that in the proof of Lemma 5.3. The
conclusion follows by recalling the definition of M. O

Proof of Theorem 5.2. Since we have

Egv[exp{2aMy — 222 (MN)7}] < 1,
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for every o > 0, recalling the definition of M}V and using Lemmas 5.3-5.5,

Egn |:exp {—2%2 Z (Vod (0))? — 2a(2Ne + 1)~

bel'y,

x Z / ( — Z\yy(b;w{v)) dt

YEANe bel'y

T
—640!262f Z (v¢;"’(b))2dtH <1
0

bel'y

An application of Schwarz'sinequality implies

T
E4n |:exp{a(2Ne+1)_d Z / (Z Wy (b; v¢,N)—4Nd) d;”

YEANe bel'y

bel'y, beTy,

1/2
< Egn |:exp{2a62 D (Ved (0))% + 64a’e 2/ > (v (b))zdt]:| )

Thus the proof of Theorem 5.2 is concluded by applying Corollary 3.2. O

Proof of Theorem 2.2. For every | > 1, we estimate

2

W )| = 3 [AVA o F) = AVay e AV, FO)

xel'y xely
+ Z ‘AVANEJFx AVp, F() — AVA y 4x {F (%)H
xel'y
+ 3 Ay 7 ()} - Ft
xel N
= I )+ B+ 15 (.

(5.13)

Thefirst term has atrivia bound: IN’I’G(n) < CI(Ne)? || F||oo. Wetherefore ob-
tain (2.10) by applying Theorem 4.1 for 1, noting that 1,""(y) <

Y ver,, [z W/ ()] and Theorem 5.1 for 13 taking f (u) = F (u), respectively.
The equallty (2.11) isanimmediate consequence of (2.10).

6. Lower bound

Before starting the proof of the large deviation principle, we show the following
proposition which guarantees that the rate functional I (k) of the large deviation
principleis defined as +o0 unlessh € L2([0, T], HX(T%)).
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Proposition 6.1. Let h € C([0, T], L2 (T9)) be given. If there exists p > 0 such
that

limsup N~ log Pyv (b € O) > —p (6.1)

N—o0

holds for every open set O in C([0, T1], Li(?l‘d)) which contains 4, then 1 €
L2([0, T], HX(T?)).

Proof. We define the operator A¢ = (AS) e >0by

1<i<d’

(k) (1.0 = @) [ 0"+ e = (1,07~ e o
B(0.€)
(t,0) € [0, T] x T¢,

for h € L2([0, T] x T¢). Then, by Lemma5.3,

IASAN (1, N oy < N7~ (Vg ()2

beTy

Combining with Corollary 3.2, we get

Iimwplimwppr‘dlogE¢N [exp (ﬂNd HAth
Bl0 N—oo €

2
<0
L2([O,T]><'J1‘d)>:| -

for every 1 < i < d. On the other hand, using Chebyshev’s inequality,

—d N i 2
N~log Pyn (b € O) + B S:D/:QIO IAF 1S 20, 77T

= &ijfd log £y [exp <ﬁNd HAthHizqo,T]de))} '

Therefore, letting N — oo and taking 8 sufficiently small, we get

psup inf IASANZ 2 0,777y < -

Now, wenotethat for every € > 0, A i, convergesto A5 i pointwiseon[0, 7] x T4
if h, convergesto h in C([0, T], Li('lrd)). Therefore we can conclude

[
5
that is, the family {ASh; e > 0} is precompact in L2([0, T] x T¢) under the
weak topology. Thus, one can find a limit point #; € L2([0, T] x T9) of this

sequence as € | 0, and can easily see h; = 9h/36;, 1 < i < d. This shows
h € L3([0, T], HY(T9)). O

SUP A AlI% 2 (6, 797y <
€
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We proceed to the proof of thelower bound (2.8) of thelargedeviation principle.
To thisend, let us consider the following weakly perturbed SDEs:

e )= —N? 3 Ve ) di + NG, N Loy di

bely xp=x

++/2Ndw,(x), x €Ty, (6.2)

where G (t, 0) isan arbitrarily given smooth function in ¢ and 6. The generator of
#N-C isdenoted by LV-C:

32 3
LN = N? _— - V' (Ve (b)) ——
x;; 3¢ (x)? hg;x (Vo ))3¢(X)

NGk, N1t
+ (t X) 00()

The distributions on the space C ([0, T], R'V) of weakly perturbed process ¢, *©
and original unperturbed process ¢ are denoted by PV-¢ and PV, respective-

ly. We assume the initial configurations are common: ¢év G = ¢(’)" . The mac-
roscopic height process corresponding to q&,N ‘G is denoted by hV-C(r); namely,
WG (,0) = N2 oy ¢ (01,1 (©) for 6 e T4

Theorem 6.2. e assume that there exists a function hg € L2(T%) such that the
initial configurations 2™ (0) = 1N (0) satisfy

lim Y6 (0) — ho| = 0.
N—oo

Then, for all J € C*°([0, T] x T9),

T T
lim / dt/ J(t,@)hN’G(t,Q)dezf dt/ J(t,0)hCt,0)do
N—o0 0 Td 0 Td

in probability on P9, where 19 (¢) is the unique weak solution of

e G
= = dv (Vo’(Vh )) +G (6.3)

with the initial data g.

Proof. Since we have

N.G 21/2
PN-G(A) < PN(AYY2EPY [(dp > }

dpPV



560 T. Funaki, T. Nishikawa

for all events A, once we can prove

. dPN-G\?
||Ar]nsupN—dlogEPN |:( T ) j| < 00, (6.4)
—> 00

the superexponential estimate (2.11) holdsfor PV-S inplaceof P = P,v. Then,
it isstandard in the theory of hydrodynamic limit to show the conclusion. To prove
(6.4) we use Girsanov’s formula and 1td’s formula, and obtain

dPN-C\?
(W) = exp IZ/ G(t, N71x) dwy (x)

xelly

- Z / G4, N—lx)dt)

XEFN

XEFN

= exp (N-l Y G(T,N"'0)¢7 (x)

—N"1 )" GO, NI (x)

xel'n
-N1 Z f —(t N~I0)eN (x) di
xely
-N Zf Gt.N1x) Y V'(VeN b)) dt
xel'y bixp=x
—Z Z / G%(r, N"Ix) dt (6.5)
XEFN

Therefore, there exists a constant C > 0 which depends on ||G|loo, 190G /01|
and | VG|l such that

AR 1nrd d N2
<dPN) <exp| CBT"N®+ CBN® sup [h™ (D)
O<t<T

beTy

+CP Y / IVe; ()] dr) (6.6)

for every 8 > 0. From Corollary 3.2 and Proposition 3.3, we get (6.4) taking ﬂ
sufficiently small.

The next proposition is routine so that the proof is omitted, see Lemma 2.4
in[4].
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Proposition 6.3. If the rate functional of 4 isfinite (i.e. I(h) < c0), then G, :=
dh/or — div(Vo (Vh)) € L2([0, T] x T¢). Moreover, in this case, I (h) has the
following representation:

1 T
I(h) = -/ dt/ Gh(t,0)%d6. (6.7)
4 Jo Td
An energy estimate gives the continuity of the solution 2¢ of the PDE (6.3)
inG:
Proposition 6.4. There exists a constant K > 0 such that for every G, G €
L%([0, T], V*)
_ T 3
s 100 =S 0IZ+ [ 100w~ h 0l ar
0<t<T 0
T -
<K / IG(t) — G ()5 dt (6.8)
0
holds if we assume 4% (0) = hC(0), where V = H1(T¢) and V* = H~L(T9) is
the dual space of V.

Proof. From the PDE (6.3), we get

% OR hé(f)HZ =2 (%0 —h @, {40 @) - AnS @)

+{G) - G(;)}) (6.9)

v+’

where A(h) = div (Vo (Vh)), see Appendix | of [6] for details. Using Lemma 3.6
of [3], thereisaconstant ¢ such that

SO =nCw. 40 @) = awC @), = —eln®o — w3

Therefore,

2 ne o | = ~2etn® @ g

G G A
+2V<h ) —h (t),G(t)—G(t)>V*

< —c[nS0 -1m H; + % G0 — G|

(6.10)

holds. Integrating both sides, the conclusion is shown. O
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Proof of (2.8). By Girsanov’s formula,

N T
AP’ exp L 2/ G(t, N"1x) dw; (x)
= —_— , x)dws(x
dPN’G \/EXEFN 0 t

1 T
-3 Z/O G%(t,N"Yx)dr |,

xelly

where {w;(x),x € Ty} is a family of independent one dimensional standard
Brownian motions under PV-¢. By similar calculation to (6.5), we can rewrite
dPV /dPN-C and get

lim N~?lo i = l/ G(T,0)hS(T,0)do + 1/ G(0,0)ho(0) do
N—00 gdPN'G T2 ’ ’ 2 Jrd ’ 0

1 (7 G
b dt | —(t.0)hCt,6)do
+2/0 /Tdat( YO (1, 0)

1 T
+—/ dz/ G(t,0)div(Vo(Vh©)) do
2 Jo Td
1 T
+—/ d:/ G2(t,6)do
4 Jo T

in the sense of convergence in probability under PY-C. Note that the sum of first
three terms coincides with

1/T dt/ Gt e)ahG(t 0) do
2 Jo Td ’ ar -

Hence, recalling the definition of 1€,

N T G 2
lim N~“log ap” _ —}/ dt/ <%(t,9)—div(Va(VhG))) do
4 Jo Td at

N—00 dpPN-G
=—1(h%),

in probability. Now, from the entropy inequality

PN©O) _  HPNIPN) et

%9 576 0) = PN.G(0)

and Theorem 6.2, we obtain

liminf N~ log PN (0) = —1(h°), (6.11)
N—o0
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for every G € C°°([O, T] x T9) such that hY e ©, where H(PN-C|PN) =

EPMC [Iog dPN ] is the relative entropy. Now, by Propositions 6.3 and 6.4, we
get
inf I1(h®) = inf I(h). (6.12)
GeC™®([0,T]xT%) heO
St.n6eO
Combining (6.11) and (6.12), the conclusion is shown. O

7. Upper bound

In this section, we prove the the upper bound (2.7). To do this, we require some
notation. For f = f (¢, ), operators Vi and A = (ﬂf)lfifd, € > 0 are defined
by

VEF(t,0) = )1 (f (1,0 +€e;) — f(t,0 —ee)),

A f.60) = (26)“’/ VL 0+0)d0.
B(6,¢)

For every smooth function J (¢, #) on [0, T] x T¢, we denote
JN(,0) = Nd/ J(t,0"do', 6T,
B(0,1/N)

and define k,\*¢ and KN by
KN =Nt s, (7.2)
KN =sNtygh2 (7.2)

SNEZ

where sV and 52 are defined respectively by

t
S,N’l:Nd/ hN(t,G)J(t,G)dG—Nd/ ds/ hN(s,G)a—j(s,O)dO
0 Td as
SN€2_N"/ ds/ Z—(s 9)—<A W (s, 9))

—N/ Y Vel )TN (s, x/N)ds

XEFN bixp=x

/ Z >N (JN(s x/N +ei/N)— IV, x/N)>

i=1xely

x V' (Vo (e; +x)) ds.

Note that the symmetry of V impliesthe last equality for StN*Z.
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Our first goal isto derive an exponential bound on K 1Tv €

limsuplimsup N~ log E[exp K ¢
€l0 N—o00

T
5/ J(O,@)ho(e)de—i—/ d;/ J2(t,0)do, (7.3)
Td 0 Td

where the expectation under P,~ is simply denoted by E[-]. Using Ito’s formula,
one can observe that exp (KtN — Jo Xvery (NG, y/N))2 ds) is a martingale
relative to measure Py . Therefore, the expectation of exp (K }V ) isgiven by

E[exp(K{)] = exp (Nd /d hN(0,0)J(0, 6) do
T

+/OT 3 (JN(t,y/N)>2 dt) - (7.4)

xel'y
On the other hand, we can write

s ,€,2 2
Ky — KN =SV —sNe =+ L+ 13,

rd aT\Y
I = Z Z {(—) (t,X/N)—N(JN(t,x/NJre,-/N)

—JN@, x/N))}V/(Vfth(ei +x))dt,

rd AN
L= ¥ % <£> (1, x/N)

x {887“ <(V¢ZN)1V€> — V(Y (e +x))} dr,

T d
37 9 /e
=N ar| —t,9—<AhNt,9 o
3 /0 /le_:lae,-( ou; ( )>

rd aJ\N 00 (= Ne
_/O ; ZN (8_95) X/ ((Vqs, ). )dt
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for every € > 0. Using Holder' s inequality,

ElexpK7 ] = E[exp(KY + 11 + I + I3)]
< E[exp (pKM)YPElexpq (I + I + 13)]Y4

= exp (Nd/ 1N (0, 6)J(0,6)do
Td

+p/OT 3 (JN(t,y/N)>2 dt)

xel'y

xE[expq (1 + I + I3)]"*, (7.5)

where p, g > 1satisfy 1/p + 1/g = 1. We have used (7.4) with pJ in place of J.
We can estimate the second term in the right hand side of (7.5) as

Elexpq (1 + I + 13)]Y7 < E[exp3q11]Y/* E[exp3q 1]/ E[exp 3¢ 3] Y/*.
(7.6)

Since J iscontinuoudly differentiablein 6, thereisaconstant c1(N) that goesto 0
as N — oo such that

T
11| < c1(N) / S VIveY byl at. (7.7)
0 bel'y
Therefore, by Corollary 3.2, we have
limsup N~ log E[exp3¢11] = O. (7.8)

N—o00

For I, by boundedness of VJ and Theorem 2.2,

limsuplimsup N~ log E[exp3q¢12] = 0. (7.9)
€l0 N—o0

Finally, we estimate the third term in the right hand side of (7.6). By simple calcu-
lation, there exists a constant ¢ > 0 such that

> (V¢}V)iv€ —@Ne+ D™ > VERN (1, y/N 4+ x/N)

xely YEANe

<c2(2Ne +1)712Ne + 1) ( > (v¢,N (b))2 + Nd) .
bel'y

Choosing €’ = €2 and combining with Proposition 3.1, we get

limsup N ¢ log E[exp3¢13] = O. (7.10)

N—oo
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By (7.5), (7.6) and (7.8)—7.10), letting p | 1, we obtain (7.3).
Now we are at the position to show the large deviation upper bound (2.7). Let
us define

I€(h; J) = I5(h(-); J)

T
Z:/ J(T,0)h(T, G)de—/ dt/ a—J(t,G)h([,G)dG
Td 0 Td Ot

r LT 00 e
+/O dt Ad ; 35050 (A h(t,@)) do. (7.12)
Then, we have the following relation:
E[expKN€] = E[exp(N*I¢(h"V; J))]. (7.12)
Using Chebyshev'sinequality, for every J = J(¢,0) ande > 0

limsup N~ log Pyn (h" € C) < limsup N~ log E[exp K] — inf I(h; J).
N—00 N—00 heC

(7.13)
Therefore, letting € | 0in theright hand side, we conclude from (7.3)

limsup N~ log Pyn (h" € C) < —inf I(h; J).
N—oo heC
Teking infimum in J, since sup; and inf .- can be interchanged if C is compact,
(2.7) isshown for compact C. Now, Propositions 3.3 and 3.4 mean superexponential
tightness of 1 (¢). Therefore, we can generalize the result for closed set C.

8. Discussion

Deuschel et al. [3] recently investigated the large deviations for a sequence of finite
volume Gibbs measures {u } y>1 for ¢-field defined on D N N~1Z¢ having Di-
richlet boundary conditions 0, where D is abounded domain in R with Lipschitz
boundary; the Gaussian case was studied by [1]. They have shown that the rate
functional is given by the total surface tension

Fp(h) = /Do(wl(e))de, h = h(9) € Hy(D). (8.1)

The dependence of random variables {¢ (x)}, under 1" extended over long dis-
tances caused by massless character of the model makes the proof non-trivial. In
fact, their method relies on the technique exploited by Naddaf and Spencer [10],
especially representations of covariances in terms of random walks in random en-
vironments fluctuating in time, and also PDE technique to treat boundary effect.
This paper, on the other hand, studies the corresponding dynamical problem.
Since the distribution of VAN (T, -) weakly convergesas T — oo to thefinite vol-
ume Gibbs measures 1V on 'y for Ve-field, the natural question is whether one
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can recover therate functional Frpe (k) for {11V} v defined by theintegral over T¢ in
place of D in (8.1) from the dynamical rate functional 1(h) = Iy (h) asT — oo.
To answer such question, we denote the distribution of 2V (7', -) under Py by 11§
Then, the contraction principle implies that the large deviation principle holds for
{u}n with rate functional

Sr(h) = inf I (h), h=h) € HY(TY).
h=h(t,0) S.t. h(T,0)=h(0)

The relationship between S7 (i) and the total surface tension Foa (/) is stated in
the following proposition:

Proposition 8.1.
lim Sz (h) = Fra(h). (8.2
T—o00
Proof. Since the Fréchet derivative of the functional Fp. is given by

S]F']l'd
Sh(0)

(h) = —div(Vo (Vh))(0),

the hydrodynamic eguation which characterizes the minimal point 7 = h(t, 6) of
1,i.e. h satisfying I (h) = 0, issimply a gradient flow determined by the poten-
tial energy Fra, see [12]. Another remark is that the critical points of Fr. arethe
horizontal surfaces: In fact, if §Fpa/8h(0) =0,

0= (h(-+0") —h(), div(Vo (Vh) (- + 0" — div(Va (VR)) ()
= —(Vh(-+ 9’) — Vh(), Vo (Vh)(- + 0’) — Vo (Vh)())
< —C|Vh(-+6") = Vh()|?,

for every 6’ € T¢ and for some C > 0. We have used the strict convexity of o for
thelast inequality, see[3]. Thisshows || Vi (- +60") — VA(-)|| = 0 and consequently
Vh = const which implies VA = 0 since de Vh(©)do = 0. Therefore h isa
horizontal surface: h = const.

The infimum of I7(h) is attained by the time-reversed classical trajectory.
Indeed, let 7(z,0),0 < t < T, be the solution of the hydrodynamic equation
dh/dt = div(Vo (Vh)) with initid data #(0,6) = h(0), and define h(z, ) =
h(T —1,0),t € [0, T]. Then, we have I7(h) = Fra(h) — Fra(h(T,-)), since
|dh/8t — div(Vo (VR))|2 = 4dFra(h(1))/dt. However, since the critical points
of Fs are horizontal surfaces, we have limy_, o Fpa (A(T, -)) = 0 and this com-
pletes the proof. O

Remark 8.1. (i) The left hand side of (8.2) iscalled aquasi potential. It is known
that, if the classical dynamics which isthe minimizer of I isagradient flow for a
certain potential IF and if all stable equilibrium points are global minimal points of
IF, thequasi potentia actually coincideswith the potential I itself, see Theorem 3.1,
p. 118 of [5] in afinite dimensional setting.



568 T. Funaki, T. Nishikawa

(ii) Proposition 8.1 showsthat one can at |east recover the static rate functional from
the dynamic one. This does not imply that the static large deviations themselves
can be recovered from the dynamic large deviations. What we did here is to take
thelimitsfirst N — oo andthen T — oo. We need to interchange the order of the
limits, for which the uniformity in 7 for the dynamic large deviationsis required.
Thisisleft asafuture problem.
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