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Abstract. We consider a conservative stochastic lattice-gas dynamics reversible with re-
spect to the canonical Gibbs measure of the bond dilute Ising model on �d at inverse tem-
perature β. When the bond dilution density p is below the percolation threshold we prove
that for any particle density and any β, with probability one, the spectral gap of the generator
of the dynamics in a box of side L centered at the origin scales like L−2. Such an estimate
is then used to prove a decay to equilibrium for local functions of the form 1

tα−ε where ε is
positive and arbitrarily small and α = 1

2 for d = 1, α = 1 for d ≥ 2. In particular our result
shows that, contrary to what happens for the Glauber dynamics, there is no dynamical phase
transition when β crosses the critical value βc of the pure system.

1. Introduction

In this paper we make a first attempt to analyze the relaxation time for a reversible
stochastic spin exchange dynamics with random interactions. In other words we
consider a simple model of a gas of interacting random walks on the lattice such
that: i) at most one particle can sit at any given site; ii) the rate cxy with which a
particle at site x jumps to one of its nearest neighbors y, depends on the particle
distribution around x ∪ y and on some external random field (the disorder) in such
a way that the whole process is reversible w.r.t. the canonical Gibbs measure of a
lattice-gas with random interactions.

Our main interest is to analyze the dynamics in a finite box of sideL centered at
the origin as a function of L, when the thermodynamic parameters and the disorder
distribution are such that one has simultaneously subsets of �d in which the jump
rates are those of a gas in the high temperature phase, i.e. they depend very weakly
on the particles configuration, and subsets where instead the jump rates are those
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of a gas in the phase coexistence region. In the physics literature this situation is
sometimes referred to as the Griffiths phase (see e.g. [Gr] and [F]).

The simplest example of a system with the above properties is the bond diluted
Ising lattice-gas. In this case the grand canonical Gibbs measure takes the (formal)
expression

µβ,λ(σ ) = 1
Z
e−HJ (σ)+λ

∑
x σ (x)

where λ is the chemical potential, the lattice-gas variables {σ(x)}x∈�d take values in
{0, 1} and the energy functionHJ (σ)has the formHJ (σ) = −∑

〈x,y〉 Jxy(2σ(x)−
1)(2σ(y)−1). Here 〈x, y〉 denotes a generic bond of the graph �d and the couplings
{Jxy} are i.i.d random variables taking only two values, Jxy = 0 and Jxy = β with
probability 1−p and p respectively, where β > 0 can be interpreted as the inverse
temperature.

Let now βc = βc(d) be the critical inverse temperature for the “pure” Ising
lattice-gas (i.e. the above model when p = 1) and choose β > βc and λ = 0. Let
also, for a given realization of the random couplings {Jxy}, Cx be the cluster of x,
namely the set of all sites y such that there exists a path of nearest neighbor points
joining x to y with the property that the coupling for each bond of the path is equal
to β. Then clearly the grand canonical Gibbs measure factorizes over the different
clusters and on each of them we have a grand canonical lattice-gas measure with
thermodynamic parameters λ and β which are in the low temperature part of the
phase diagram for the “pure” infinite system. Thus in principle, depending on the
geometry of the cluster, we could have the phenomenon of long range order and,
in the canonical ensemble, the phenomenon of phase segregation. Concerning this
problem we recall that, for the diluted Ising model, it has been proved in [G] (see
also [HSS] for graphs other than �d ) that there exists a continuous decreasing func-
tion β∗ : (pc, 1] → [βc,+∞), pc = pc(d) being the critical bond-percolation
threshold in �d , with limp→p+c β

∗(p) = +∞, such that if either p ≤ pc or p > pc
and β < β∗(p) then there exists a unique infinite volume grand canonical Gibbs
measure, while if p > pc, β > β∗(p) and λ = 0 there exists more than one Gibbs
state (phase transition). Actually one can show that there is a range of values of β
between βc and β∗(p) such that not only the infinite volume Gibbs state is unique
but it also has very good decay property of the covariances. It is natural to conjec-
ture that these stronger properties hold for all β < β∗(p). We refer to [ACCN] and
references therein for a detailed discussion of behaviour of β∗(p) close to pc and
to [ACCMM] and references therein for some upper bounds on β∗(p). It should be
remarked that, even when p < pc and no phase transition occurs, the presence of
arbitrarily large (but finite) connected clusters of the pure system below its critical
temperature affects the thermodynamics by destroying, for example, the analyticity
of the free energy as a function of the chemical potential (see [Gr], [F] and also
[BD], [DKP], [GM1], [GM2]).

Let us now examine some model of Markovian dynamics for the above lat-
tice-gas. There are basically two choices. Non conservative Glauber type (single
spin flip) dynamics reversible w.r.t. the grand canonical Gibbs measure (see e.g.
[M] for a general overview) and conservative Kawasaki dynamics reversible w.r.t.
the canonical Gibbs measure. In order to present the most precise and clean cut
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results we will discuss in what follows only the two dimensional case (in higher
dimensions the situation being not as sharp as far as the values of the temperature
is concerned).

In the non conservative case it has been proved in [CMM1], [CMM2] and
[ACCMM] that for the dilute Ising model described above there is a dynamical
phase transition when β crosses the value βc (but always remaining well below
the critical value β∗(p)) in the following sense. If p > pc then the time-law with
which the spin at the origin relaxes to its equilibrium value changes from a pure

exponential e−t to a slower decay of the form e−te−(log t)
1
2

. In the non-percolative
regime p < pc, for almost all coupling configurations, the relaxation to equilib-
rium is always exponentially fast but the rate in the exponential strongly depends
on the observable one is measuring. Moreover, in both cases, the average over the
disorder of the time auto-correlation function of the spin at the origin goes to zero

as slow as e−c(log t)
1
2 . One of the main reasons behind such anomalous decay to

equilibrium is the presence, due to the statistical fluctuations of the disorder, of
cubic clusters whose relaxation time is exponentially large in their side.

In the conservative case results were available up to now only for β < βc,
any λ and p = 1 (pure case). In this situation one of the central results is that
the spectral gap of the generator of the dynamics in a box of side L and centered
at the origin scales like L−2. Such a result was a key input for the study of the
hydrodynamical limit of the model and for the proof of the power law relaxation
to equilibrium of local functions. We refer the reader to the basic references [LY],
[Y], [VY], [JLQY] and, more recently, [CM2]. Actually the technique developed
in [CM2] can be adapted to extend the above result also to the case β < βc and
arbitrary p, the only difficulty coming from the lack of translation invariance (see
appendix below for a discussion of this issue when p < pc).

An interesting problem is whether the diffusive scaling of the spectral gap is
affected when β crosses from below the critical value βc with either p < pc or
p > pc, since also for the Kawasaki dynamics the relaxation time of an isolated
(that is with fixed number of particles) cubic cluster of side l may scale like ecl

depending on the number of particles (see [CCM]). Let us examine the simpler
case p < pc. In the non conservative case it is clear that the leading contribution
to the relaxation time of a local function is the largest among the relaxation times
of the (finite) clusters that touch its support, simply because the Glauber dynamics
factorizes over the clusters. In the conservative case this is no longer true due to
the conservation of the number of particles and to the fact that different clusters
exchange particles. In particular, even if a given cluster has a large relaxation time
when its number of particles is kept fixed, its contribution to the global relaxation
time could be not so large due to the fact that it is able to exchange particles with
its complement. Moreover, when p < pc, with large probability the largest cluster
in a box � of side L and centered at the origin has volume smaller than c logL so

that its relaxation time, with its number of particles fixed, is smaller than ec
′(logL)

1
2

(see theorem 5.1 below). In order to clarify what we have in mind, let us imagine
now that only one cluster, denoted by C, is present and that the number of particles
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is fixed in �. Since it is clear that in order to reach equilibrium the particles must
diffuse through the whole box �, at least in this extreme case we cannot expect a
global relaxation time smaller than L2 (the relaxation time of the simple exclusion
in the complement of C). Thus, in this non realistic case, the worst (with respect
to the choice of the number of particles) relaxation time for the cluster is much
smaller than the expected global relaxation time, contrary to what happens in the
non conservative case. One could push the analysis a little bit further and show
that the diffusion of the particles is really the dominant effect. Clearly, in order to
extend the above picture to the more realistic case in which clusters on all scales
below k logL appear, one has to show that the presence of several clusters does not
produce a cooperative effect that eventually leads to a relaxation slower than the
diffusive oneL2. This is actually the case and its proof is the main goal of this work
(see theorems 2.1, 2.2). Although we have worked out only the non percolative
regime, we think that one could also cover the percolative case for suitable values
of β between βc and β∗(p). In conclusion, at least for this aspect of the problem,
the conservative dynamics does not show any dynamical phase transition as the non
conservative one.

Before briefly discussing our approach to the proof of the main result a comment
on the “neglected” parameter λ or its canonical counterpart the particle density ρ
is in order. It is clear that, when p > pc, slow relaxation to equilibrium related
to the phenomenon of phase segregation can occur only when the particle density
is in a certain range. In particular, for very low values of ρ depending on β, the
relaxation time should scale like L2 even when β > β∗(p). Unfortunately all the
existing technologies to prove such a scaling law require good mixing properties
of the grand canonical Gibbs measure uniformly in the chemical potential and the
problem of removing such an obstruction, related to the dynamics of anomalous
fluctuations of the density profile, does not seem to be an easy one.

We conclude with a short discussion of our approach to the problem. As in the
basic reference for the non conservative dynamics [CMM1], we first prove that,
given p < pc, 0 < ε � 1 and a box � of side L centered at the origin, with high
probability the configuration of the random couplings is such that in any sub-box
of� of side l ∈ [Lε, L] the system has certain homogeneity properties that make it
quite indistiguishable from a usual, translation invariant high temperature lattice-
gas. We can then apply the techniques developed in [CM1], [CM2] to get that

gap(�)L2 ≥
[
k + L−α gap(�,Lε)−1

]−1

where gap(�,Lε) is the largest among the spectral gaps in sub-boxes of� of side
Lε and k, α are suitable positive constants independent of ε. We then show that,
if the largest cluster in � has size O(log(L)) then gap(�,Lε)−1 ≤ L10ε and the
sought bound follows.

2. Notation and results

In this section we first define the setting in which we will work (spin model, Gibbs
measure, dynamics), and then state the main theorem of this work.
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2.1. The lattice and the configuration space

The lattice. We consider the d dimensional lattice �d with sites x = (x1, . . . , xd)

and norms

|x|p =
(
d∑
i=1

|xi |p
)1/p

p ≥ 1 and |x| = |x|∞ = max
i∈{1,...,d}

|xi | .

The associated distance functions are denoted by dp(·, ·) and d(·, ·). By QL we
denote the cube of all x = (x1, . . . , xd) ∈ �d such that xi ∈ {0, . . . , L − 1}. If
x ∈ �d ,QL(x) stands forQL+x. We also letBL be the ball (w.r.t d(·, ·)) of radius
L centered at the origin, i.e. BL = Q2L+1((−L, . . . ,−L)). If � is a finite subset
of �d we write� ⊂⊂ �d . The cardinality of� is denoted by |�|. � is the set of all
nonempty finite subsets of �d . [x, y] is the closed segment with endpoints x and
y. The bonds of �d are those e = [x, y] with x, y nearest neighbors in �d . By an
abuse of notation we will still denote by �d the associated graph. �̂ is the set of all
nonempty finite subgraphs of the graph �d . Given A ∈ �̂ we write Av and Ab for
the set of vertices and the set of bonds of A respectively. On the other hand, given
� in �, we will always identify� with the unique element �̂ of �̂ with vertices the
sites of � and bonds the set of all bonds of �d such that both endpoints are in �.

Given � ⊂ �d we define its interior and exterior boundaries as respectively,
∂−� = {x ∈ � : d(x,�c) ≤ 1} and ∂+� = {x ∈ �c : d(x,�) ≤ 1}, and more
generally we define the boundaries of width n as ∂n� = {x ∈ � : d(x,�c) ≤ n},
∂+n � = {x ∈ �c : d(x,�) ≤ n}.

For a fixed small positive number ε ∈ (0, 1) we define RεL be the class of
parallelepipeds inside QL with sides parallel to the coordinate axes, longest side
greater than Lε and ratio between the shortest and the longest side greater than ε,
RεL(l) be the class of all those parallelepipeds in RεL such that the longest side is
smaller than l, and R̄εL(l) the class of all parallelepipeds in RεL(l) such that the
shortest side is greater than Lε .

The configuration space. Our configuration space is ' = S�d , where S = {0, 1},
or 'V = SV for some V ⊂ �d . The single spin space S is endowed with the
discrete topology and ' with the corresponding product topology. Given σ ∈ '
and� ⊂ �d we denote by σ� the natural projection over '�. If U , V are disjoint,
σUτV is the configuration on U ∪ V which is equal to σ on U and τ on V . Given
V ∈ � we define the number of particles NV : ' �→ � as NV (σ) =

∑
x∈V σ(x)

while the density is given by ρV = NV /|V |.
If f is a function on ', .f denotes the smallest subset of �d such that f (σ)

depends only on σ.f . f is called local if .f is finite. F� stands for the σ−al-
gebra generated by the set of projections {πx}, x ∈ �, from ' to {0, 1}, where
πx : σ �→ σ(x). When � = �d we set F =F�d and F coincides with the Borel
σ−algebra on'with respect to the topology introduced above. By ‖f ‖∞ we mean
the supremum norm of f . The gradient of a function f is defined as

(∇xf )(σ ) = f (σx)− f (σ)
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where σx ∈ ' is the configuration obtained from σ , by flipping the spin at the site
x. Finally Osc(f ) = supσ,η |f (σ)− f (η)|.

2.2. The dilute Ising lattice-gas

We consider an abstract probability space (1,B,�) and a set of i.i.d. real valued
random variables indexed by the bonds of �d , J = {Jxy}[x,y]∈�d . �(·) stands for
the expectation with respect to �. We assume that the couplings Jxy take only two
values, β > 0 and 0, with probability p and 1− p respectively.

Given a disorder configuration we declare a bond [x, y] open if Jxy = β and
closed otherwise. We denote by Cx the cluster of the site x, namely the set of all
sites in �d which are connected to x by a path of open bonds, and by Ĉx the con-
nected subgraph of �d whose vertices are the sites in Cx and whose bonds are the
open bonds with endpoints in Cx . Notice that Ĉx = {x} if all the bonds with x as
one endpoint are closed.

Given a disorder configuration J , for each σ ∈ ' and � ∈ �̂ the Hamiltonian
or energy function of the particle configuration σ in the graph � is given by

HJ�(σ) = −
∑

[x,y]∈�b
Jxy(2σ(x)− 1)(2σ(y)− 1)

Given a collection of real numbers λ = {λx}x∈�d that in the sequel will be referred

to as generalized chemical potential, we define HJ,λ� (σ ) as

H
J,λ

� (σ ) = HJ�(σ)−
∑
x∈�v

λxσ (x)

Finally, given τ ∈ ', we let

H
τ,J,λ

� (σ ) = HJ,λ� (σ )−
∑

[x,y]∈�d

x∈�v, y /∈�v

Jxy(2σ(x)− 1)(2τ(y)− 1)

and τ is called the boundary condition.
For each � ∈ �̂ and τ ∈ ' the (finite volume) grand canonical conditional

Gibbs measure on (',F), is given by

dµ
τ,J,λ

� (σ ) =
{(
Z
τ,J,λ

�

)−1
exp

[
−Hτ,J,λ� (σ )

]
if σ(x) = τ(x) for all x ∈ �cv

0 otherwise.
(2.1)

where Zτ,J,λ� is the proper normalization factor called partition function.

Warning. In most notation we will drop the superscript J if that does not generate
confusion and the superscript λ if λ = 0. Moreover, for any � ⊂ �d we will al-
ways write µτ,λ� instead of the more precise notation µτ,λ

�̂
. Finally, if the couplings

Jxy are constant and equal to β for all [x, y] ∈ �b and zero if either x or y are

not in �v , then we will write µβ,λ� for the corresponding Gibbs measure. In other
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words µβ,λ� is the Gibbs measure for the standard Ising model in � with inverse
temperature β, chemical potentials λ and free boundary conditions.

We will sometimes refer to this model as the grand canonical dilute Ising model
with parameters β, λ and p.

We finally introduce the canonical Gibbs measures on (',F) defined as

ντ�,N = µτ�(· |N� = N) N ∈ {0, 1, . . . , |�|} (2.2)

where N� is the number of particles in �.

2.3. The dynamics

We consider the so-called Kawasaki dynamics in which particles (σ(x) = 1) can
jump to nearest neighbor empty (σ(x) = 0) locations. For σ ∈ ', let σxy be
the configuration obtained from σ by exchanging the spins σ(x) and σ(y). Let
txyσ = σxy and define (Txyf )(σ ) = f (txyσ ). The stochastic dynamics we want to
study is determined by the Markov generators L�, � a connected finite subgraph
of �d , defined by

(L�f )(σ ) =
∑

[x,y]∈�b
cxy(σ ) (∇xyf )(σ ) σ ∈ ', f : ' �→ � (2.3)

where ∇xy = Txy − 1I. The nonnegative real quantities cxy(σ ) are the transition
rates for the process.

The general assumptions on the transition rates are

(1) Finite range. cxy(σ ) depends only on the spins σ(z) with d({x, y}, z) ≤ r
(2) Detailed balance. For all σ ∈ ' and [x, y] ∈ E�d

exp
[−H{x,y}(σ )] cxy(σ ) = exp

[−H{x,y}(σ xy)] cxy(σ xy) (2.4)

(3) Positivity and boundedness. There exist positive real numbers cm(β) cM(β)
such that

cm ≤ cxy(σ ) ≤ cM ∀ x, y ∈ �d , σ ∈ ' . (2.5)

We denote by Lτ�,N the operator L� acting on L2(', ντ�,N) (this amounts to fix
equal to τ�cv the configuration outside �v and N as the number of particles). As-
sumptions (1), (2) and (3) guarantee that there exists a unique Markov process
whose generator is Lτ�,N , and whose semigroup we denote by (T �,N,τt )t≥0. Lτ�,N
is a bounded operator on L2(', ντ�,N) and ντ�,N is its unique invariant measure.
Moreover ντ�,N is reversible with respect to the process, i.e. Lτ�,N is self-adjoint

on L2(', ντ�,N).
A fundamental quantity associated with the dynamics of a reversible system is

the gap of the generator, i.e.

gap(Lτ�,N) = inf spec (−Lτ�,N | 1I⊥)
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where 1I⊥ is the subspace of L2(', ντ�,N) orthogonal to the constant functions. We
let E be the Dirichlet form associated with the generator Lτ�,N ,

Eτ�,N (f, f ) = 〈f, −Lτ�,Nf 〉L2(',ντ�,N )
= 1

2

∑
[x,y]∈�b

ντ�,N

[
cxy (∇xyf )2

]
(2.6)

and Varτ�,N is the variance relative to the probability measure ντ�,N . The gap can
also be characterized as

gap(Lτ�,N) = inf
f∈L2(',ντ�,N ),

Varτ�,N (f )�=0

Eτ�,N (f, f )

Varτ�,N (f )
. (2.7)

2.4. Main results

We are finally in a position to formulate the main results of this paper on the spectral
gap of the generator of Kawasaki dynamics in a finite volume.

Let pc denote the critical percolation for independent bond percolation in �d

(see e.g. [Gri]).

Theorem 2.1. Assume p < pc. Then there exists a set 10 ⊂ 1 with P(10) = 1
and two positive constants c1, c2 such that for any J ∈ 10 and any L large enough

c1L
−2 ≤ min

N,τ
gap(LτQL,N) ≤ max

N,τ
gap(LτQL,N) ≤ c2L−2 (2.8)

A nice consequence of the above estimate is an inverse polynomial bound on the
time decay to equilibrium in L2(dντ�,N) of local observables.

Theorem 2.2. Assume p < pc. Then there exists a set 10 ⊂ 1 with P(10) = 1
such that, for any J ∈ 10, any δ ∈ (0, 1) and any local function f with 0 ∈ .f
there exists a positive constant Cf,δ independent of J such that for any integer
N ∈ {1, . . . , (2L)d} and provided that L and t are taken large enough

Varτ�,N
(
e
tLτ�,N f

)
≤ Cf,δ 1

tα−δ
(2.9)

Here � := BL and α = 1
2 in d = 1, α = 1 for d > 1. Furthermore there exists a

positive constant Cf,δ such that for all L and all t

�
(

Varτ�,N
(
e
tLτ�,N f

))
≤ Cf,δ 1

tα−δ
(2.10)

Remark . An analogous result was proved in [CM2] for translation invariant inter-

action under a suitable mixing condition. In this case the expected decay is t−
d
2 ,

exactly as for the simple exclusion [BZ], at least for functions f that have non zero
grand canonical covariance with the number of particles. We refer to [JLQY] where
a very sharp result of this kind for the zero-range process is obtained. Notice that
the power α that appears in our bound coincides with d2 in one and two dimensions
but not in higher dimensions. In the disordered case and in view of theorem 2.1, we
conjecture that the decay to equilibrium is qualitatively not different from that in
the high temperature or non interacting case but we do not have any lower bound
to support it.
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3. Simple large deviations for independent bond percolation

In this section we prove some very simple large deviations results for independent
bond percolation below the percolation threshold that will allow us to prove some
sort of homogenization property of the dilute Ising model at large scale. The expert
reader may skip the section and just look at the final result given in Corollary 3.2.

Given an integer n, let f be a real function on the set of all finite connected
subgraphs of �d which is translation invariant, that is f (A) = f (A + x) for all
x ∈ �d and for all finite connected subgraph A, and such that |f (A)| ≤ |Av|n
where Av is the set of vertices of the graph A. Let, for a fixed finite set � and a
given disorder configuration J ,

〈f 〉�,J = 1

|�|
∑
x∈�
f (Ĉx) (3.1)

and let f̄ := �(f (C0)) provided that �(|C0|n) <∞.

Proposition 3.1. Assume p < pc and let ε0 = 1
2d(n+1)+1 where n is the integer

governing the growth of f . Let� be a parallelepiped with ratio between the short-
est and longest side greater than ε. Then for any ε ∈ (0, ε0) there exist constants
0 < δ = δ(n, p, ε) < 1, m1 = m1(p) > 0 and m2 = m2(p, n) > 0 such that

a) �

(
sup
x∈�
|Cx | ≥ v

)
≤ |�|e−m1v, ∀ v ≥ 0

b) �(| 〈f 〉�,J − f̄ | ≥ |�|−ε) ≤ e−m2 |�|δ

Proof. Part a) follows immediately from the exponential tail of the cluster size
distribution below pc (see e.g. [Gri]).

To prove part b) we first observe that, because of part a), f̄ is well defined. Next,
given ε ∈ (0, ε0), let l1 = |�|δ , l2 = |�|δ(n+1)+2ε where δ = 1−ε[2d(n+1)+1]

1+d(n+1)2
.

Let also 11 be the event that | 〈f 〉�,J − f̄ | ≥ |�|−ε and 12 be the event that
supx∈� |Cx | ≤ l1. Then we write

�(11) ≤ �(11 ∩12)+ �(1c2) (3.2)

The term �(1c2) is bounded from above by

�(1c2) ≤ |�|e−m1l1 ≤ e−m′2|�|δ (3.3)

because of a).
In order to estimate the first term in the r.h.s. of (3.2), consider the maximal

collection of cubes {Qα} in � such that: i) dist(Qα,Qβ) = 2l1 for α �= β and ii)
|Qα| = ld2 . Let N be the number of such cubes. Clearly |� \ ∪αQα| ≤ C′ l1l2 |�|
for a suitable constant C′ so that |�| ≥ Nld2 ≥ |�|(1 − C′ l1l2 ). Therefore, if
supx∈� |Cx | ≤ l1

| 〈f 〉�,J − f̄ | ≤ 1

|�|

∣∣∣∣∣
∑
α

ξα

∣∣∣∣∣+ C′′ 1

|�|2ε
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for a suitable constant C′′, where ξα =
∑

x∈Qα
Cx⊂Qα

[f (Ĉx)− f̄ ]. Thus, if |�| is large

enough, we get that

�(11 ∩12) ≤ �

( ∣∣∣∣∣
∑
α

ξα

∣∣∣∣∣ ≥ |�|
1−ε

2

)
≤ e−t |�|1−ε

(
�(e2tξα )

)N
(3.4)

for any positive t , because of the exponential Chebyshev inequality and the fact
that the random variables {ξα} are i.i.d.

We now choose t = 1
4(ld(n+1)

2 +|f̄ |ld2 )
and observe that with this choice

�(e2tξα ) ≤ e2
√
e t2�(ξ2

a )

Let us estimate the second moment of ξα .
We denote byAx the set of all connected subgraphs of �d that contain x. Clear-

ly �({Cx = A} ∩ {Cy = B}) = �(Cx = A)�(Cy = B) for all A ∈Ax , B ∈Ay

such that there is no edge with one endpoint in A and the other in B.
With these notations we write

�(ξ2
α) =

∑
x,y∈Qα

∑
A∈Ax
A⊂Qα

∑
B∈Ay
B⊂Qα

f (A) f (B)

× [ �({Cx = A} ∩ {Cy = B})− �(Cx = A)�(Cy = B) ]

≤
∑
x,y∈Qα

∑
A∈Ax
A⊂Qα

∑
B∈Ay
B⊂Qα

|f (A)| |f (B)|χ(dist(A,B) ≤ 1)

× [ �({Cx = A} ∩ {Cy = B})+ �(Cx = A)�(Cy = B) ]

≤
∑
x,y∈Qα

�(|f (Cx)| |f (Cy)|χ(dist(Cx, Cy) ≤ 1) )

+
∑
x,y∈Qα

∑
A∈Ax
A⊂Qα

|f (A)|�(Cx = A)�(|f (Cy)|χ(dist(A,Cy) ≤ 1) )

≤ k2l
d
2

for a suitable positive constant k2, because as we are below the percolation thresh-
old �(f (C0)

4) < ∞ and �(x ↔ x′) ≤ e−md(x,x′), where m = m(p) is a positive
constant and x ↔ x′ means that x and x′ are connected by a path of open bonds
(see [Gri]). Thus, with the above choice of t and δ,

r.h.s. of (3.4) ≤ e−
[
t |�|−ε−k3t

2
]|�| ≤ e−m′′2 |�|δ

for a suitable constant m′′2 provided that |�| is large enough. Putting together the
above estimate and (3.3) the proof is concluded. !"

Here is a simple consequence of the above large deviation results.
Given ε ∈ (0, ε0), an integer L and N real, translation invariant functions

{fi}Ni=1 on the set of all finite connected subgraphs of of �d such that maxi≤N |fi(A)|
≤ |Av|4 for anyA, let us consider the event1(ε,M,N,L) = ∪R∈RεL1R(ε,M,N,
L) where
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1R(ε,M,N,L) =
{

sup
x∈R
|Cx | ≥ M logL

}
∪
{

sup
n≤4

∑
x∈R
|Cx |n ≥ M|R|

}

∪
{

sup
i≤N
| 〈fi〉R,J − f̄i | ≥ |R|−ε

}

Then

Corollary 3.2. Assume p < pc. There exists M such that for any a < ∞∑∞
1=L

supN≤La �(1(ε,M,N,L)) < +∞.

Proof. It follows at once from proposition 3.1 applied to eachfi and to the functions
gn(A) = |Av|n, n = 1, . . . , 4 and the fact that the cardinality of RεL is bounded
from above by L2d . !"

4. Preliminary results

In this section we collect several preliminary results that are essential in order to
prove that, with large probability, the spectral gap of the Kawasaki dynamics for
the dilute Ising model below pc, on all scales between Lε to L can be bounded
from below by exactly the same methods employed in the high temperature region.
More precisely we will formulate three conditions on the disorder configuration
in the cube QL which will ensure that, if satisfied, the corresponding dilute Ising
model shares all the relevant (for our purposes) features of the high temperature
standard Ising model. Moreover our conditions will be meaningful in the sense that
the probability of not being all verified simultaneously will be summable in L.

Let ε0 = 1
10d+1 and let us fix a small positive number ε ∈ (0, ε0) and a large

positive numberM . For any� ⊂ �d , any integer N ∈ {1, 2, . . . , |�|}, any bound-
ary condition τ ∈ ' and any disorder configuration J let also λ = λ(�,N, τ, J )
be the (unique) constant chemical potential such that µJ,τ,λ� (N�) = N and let

λ0 = λ0(�,N) be such that �(|Ĉ0|−1µ
β,λ0

Ĉ0
(NC0)) = N

|�| , that is the particle den-

sity of the cluster of the origin averaged on the disorder is equal to N/|�|. The
existence and uniqueness of the chemical potential λ is proved in the appendix
of [CM1], for λ0 a similar reasoning can be applied. Then our conditions read as
follows.

Assumption 1. For any R ∈ RεL

max
x∈�
|Cx | ≤ M logL and max

n≤4

∑
x∈R
|Cx |n ≤ M |R|

Assumption 2. Let hx := e−∇xH σ (x). Then, for any R ∈ RεL,

sup
τ

sup
N∈[ε|R|,(1−ε)|R|]

∣∣∣∣∣∣µτ,λ0
R (NR,

∑
x∈R
hx)− |R| �


|C0|−1µ

β,λ0

Ĉ0
(NC0 ,

∑
x∈C0

hx)



∣∣∣∣∣∣

≤ |R|1−ε
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Similarily for ĥx := e−∇xH (1− σ(x)) and h̃x = σ(x).
Assumption 3. For any R ∈ RεL

sup
τ

sup
N∈[ε|R|,(1−ε)|R|]

| λ(R,N, τ, J )− λ0(R,N)| ≤ |R|−ε

Definition. The set of disorder configurations J that satisfy assumptions 1, 2 and
3 will be denoted by 1good(L,M, ε).

Thanks to Corollary 3.2 we have the following result.

Proposition 4.1. Assume p < pc. Then

(i) there existsM such that for any ε ∈ (0, ε0)
∑∞
L=1 �(1good(L,M, ε)

c) <∞.
In particular, for any large enoughM and any ε ∈ (0, ε0)

(ii) there exists a set 10 ⊂ 1 such that �(10) = 1 and for any J ∈ 10 there
exists L(J ) such that J ∈ 1good(L,M, ε) for any L ≥ L(J );

(iii) there exists γ = γ (M) > 0, limM→+∞ γ (M) = +∞, such that �(L(J ) >

l) ≤ l−γ .

Proof. Once point (i) of the proposition is established point (ii) is nothing but the
standard Borel Cantelli lemma.

To analyze the convergence of the series
∑
L �(1good(L,M, ε)

c) we first ob-
serve that, thanks to proposition 3.1, the probability that assumption 1 is violated
can be bounded from above by c |RεL| (L−mM+e−m2(εL

ε)dδ ) (wherem is a positive
constant depending on p and n and we used |R| ≥ (εLε)d ). In order to compute
the probability that assumption 2 is violated in R ∈ RεL we define for any A ∈ �̂

the function fN(A) = |A|−1µ
β,λ0(N)
A (NA,

∑
x∈Av hx) for N ∈ [ε|R|, (1− ε)|R|],

similarly we define f̂N (A) and f̃N (A)when we have ĥ or h̃. With this notation and
using the fact that µτ,J,λ0

R is the product measure over the clusters in R, we can
write ∣∣∣∣∣∣µτ,J,λ0(N)

R

(
NR,

∑
x∈R
hx

)
− |R| �


|C0|−1 µ

β,λ0

Ĉ0


NC0 ,

∑
x∈C0

hx





∣∣∣∣∣∣

≤
∣∣∣∣∣
∑
x∈R
(f (Cx)− f̄ )

∣∣∣∣∣+
∑
x∈R:

Cx∩Rc �=∅

∣∣∣∣∣∣µτ,β,λ0

Ĉx∩R̂ (NCx ,
∑
y∈Cx

hy)

∣∣∣∣∣∣
≤
∣∣∣∣∣
∑
x∈R
(f (Cx)− f̄ )

∣∣∣∣∣+ CLd−1 sup
x∈R
|Cx |3

for a suitable constant C = C(d, β). We have used here the fact that any R ∈ RεL
has surface smaller than C′′Ld−1. A similar computation holds for f̂N and f̃N . We
can at this point use proposition 3.1 and the fact that |R| ≥ (εLε)d to conclude
that the probability that assumption 2 is violated can be bounded from above by
c |RεL| |R| e−(m2εL

ε)dδ .
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We are left with the analysis of the last assumption.
Let us fixR ∈ RεL. Without loss of generality we can assume that supx∈R |Cx | ≤

M logL for some large, fixed M , and that, for any N ∈ [ε|R|, (1 − ε)|R|],
|µτ,λ0(N)
R (NR) − N | ≤ |R|1−ε , since the probability of the complement can be

bounded from above by c |R| e−m2(εL
ε)dδ because of the previous reasoning.

Under this condition it is relatively simple to bound from above the difference
|λ(R,N, τ, J )− λ0(R,N)|. We have

∫ 1

0
ds µ

τ,λs
R (NR,NR) ( λ(R,N, τ, J )− λ0(R,N) ) | =

∣∣∣∣∣
∫ 1

0
ds
d

ds
µ
τ,λs
R (NR)

∣∣∣∣∣
=
∣∣∣µτ,λ0(N)
R (NR)−N

∣∣∣
≤ |R|1−ε

where λs = sλ(R,N, τ, J ) + (1 − s)λ0(R,N). Using proposition 4.2 below,
we have that µτ,λsR (NR,NR) ≥ Cµτ,λsR (NR) ≥ C′|R| for some fixed constant
C′ = C′(ε) and any N ∈ [ε|R|, (1− ε)|R|]. Thus

|λ(R,N, τ, J )− λ0(R,N)| ≤ 1

C′
|R|−ε

Using the fact that the cardinality of RεL is bounded from above by L2d point (i)
follows provided thatM is taken big enough.

We are left with the proof of point (iii). By the definition of L(J )

�(L(J ) > l) ≤ �
(
1good(l,M, ε)

c
)

proceeding as for point (ii) the result follows. !"

4.1. Bounds on various covariances

Here we report, for completeness, some results which follow immediately from the
factorization property of the grand canonical measure over the clusters, since they
enter at various levels in the analysis of the Kawasaki dynamics for the dilute Ising
model.

The setting is as follows. Let� = ∪i�i where the atoms�1, . . . , �k are pair-
wise disjoint, the chemical potential λ be constant on each atom of the partition
and ρi = µτ,λ� (N�i )/|�i |.

Then for each set V ⊆ � and n ∈ � we define

Vi := V ∩�i V̄ := ∪x∈V Cx and V (n) :=
∑
x∈V
|Cx ∩ V |n (4.1)

and say that a subset V ⊂ � is good if V̄ ⊂ �i for some i = 1, . . . , k,.
The following proposition holds for any disorder configuration J .
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Proposition 4.2. There exists a constant c depending only on β such that for any
bounded local function f with support .f ⊂ �

a)

∣∣∣µτ,λ� (NCx∩Vi , NCx∩Vj )∣∣∣ ≤ c min{ρi, ρj } |Cx ∩ Vi ||Cx ∩ Vj |
b) µ

τ,λ

� (N̄
2
Cx∩Vi ) ≥ c−1 ρi |Cx ∩ Vi |

c) µ
τ,λ

� (N̄
2
Vi
) ≤ c ρi V (1)i

d) µ
τ,λ

� (N̄
2
Vi
) ≥ c−1 ρi |Vi | (4.2)

e)

∣∣∣µτ,λ� (f,NVi )∣∣∣ ≤ c ‖f ‖∞ min

{
ρi |.̄f ∩ Vi |,

(
ρi(.̄f ∩ Vi)(1)

) 1
2
}

f ) µ
τ,λ

� (N̄
4
Vi
) ≤ c max

{(
ρiV

(1)
i

)2
, (ρiV

(3)
i )

}

g)

∣∣∣µτ,λ� (f,NVi , NVi )∣∣∣ ≤ c ‖f ‖∞ ρi |.̄f ∩ Vi |2
h)

∣∣∣µτ,λ� (N̄3
Vi
)

∣∣∣ ≤ c ρiV (2)i
4.2. Equivalence of ensembles

Here we recall some fine results on the finite volume comparison of ensembles that
will be crucial in most of our future arguments. We refer the reader to sections 6
and 7.2 of [CM1].

Let � be a parallelepiped in the class R̄εL whose longest side is say along the
d direction and is Ld . Take L1, . . . , Lk such that

∑k
j=1 Lj = Ld and Lj ≥ εLd

for any j = 1, . . . , k. We then take �j = {x ∈ � : Lj−1 ≤ xd ≤ Lj } with
L0 = 0, which are elements of RεL. Let also N := {Ni}ki=1 be a set of possible

values of N� := {N�i }ki=1 and let ρi := Ni
|�i | . Given a boundary condition τ and a

disorder configuration J , there exists a unique choice of the the chemical potential
λ, constant on each �i, i = 1, . . . , k, such that µτ,λ� (N�i ) = Ni, i = 1, . . . , k
(see the appendix in [CM1]).

We denote by µ := µτ,λ� the grand canonical Gibbs measure and by ν := ντ�,N
the multi canonical Gibbs measure µτ,λ� (· |N�i = Ni ) and by'τ the set of config-
urations τ ′ that coincide with τ in the half space {x ∈ �d : xd < Ld}, where Ld is
largest among the d-coordinates of the sites in �.

Proposition 4.3. In the above setting assume J ∈ 1good(L,M, ε). Then there
exists constants C = C(M, ε) and L0 = L0(M, ε) such that, if L ≥ L0

(a) for all bounded local functions f with support.f ⊂ � satisfying |.f | (M log
L)4 � |�| otherwise

|ν(f )− µ(f )| ≤ C ‖f ‖∞



.̄
(3)
f

|�| if .f is good

|.f | (M logL)4

|�| otherwise
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(b) for all local functions f with support . ⊂ ∂−�n−1 ∩ ∂+�n, n ≤ k,

sup
τ ′∈'τ

|ντ (f )− ντ ′(f )| ≤ C′Osc(f )

[
(M logL)4

Ld
+ (M logL)k+2−n

L
k+1−n−(d−1)/2
d

]

where .̄(3)f has been defined in (4.1).

Proof. See theorem 6.4 and proposition 7.4 in [CM1]. !"

Remark . Actually the first part of proposition 4.3 holds in a much more general
context (see section 6 in [CM1]).

Proposition 4.4. In the same setting assume J ∈ 1good(L,M, ε). Let f be such
that |�j \ .f | ≥ ε|�j | for any j = 1, . . . k. Then there exists a constant A =
A(M, ε) such that

ν(|f |) ≤ Aµ(|f |)
In particular

ν(f, f ) ≤ Aµ(f, f )

Proof. The proof is identical to that of proposition 3.3 in [CM2] if we observe that,
see [CM1], for any J ∈ 1good(L,M, ε)

∥∥∥∥µτ,λ�
(
e
i
∑
j

tj
vj
N�j |F.f

)∥∥∥∥ ≤ e−α∑j t
2
j

for a suitable constant α := α(ε,M), where v2
j := µτ,λ� (N�j ,N�j ). !"

4.3. A block dynamics bound

Here we give a result that is a key step in our recursive bound of the spectral gap
of Kawasaki dynamics. For simplicity we discuss our estimate in two dimensions
only (see however remark at the end of section 3.3 in [CM1] for its generalization
to higher dimensions).

Let � be an element of R̄εL. Without loss of generality we can assume that

� =
{
(x1, x2) ∈ �2; 0 ≤ x1 ≤ l1 − 1, 0 ≤ x2 ≤ l2 − 1

}
, l1 ≤ l2

Let�1 = {(x1, x2) ∈ �; 0 ≤ x2 ≤ ( 1
2+2ε) l2},�2 = {(x1, x2) ∈ �; ( 1

2+ε) l2 ≤
x2 ≤ l2}, and let �3 = �1 ∩�2. Clearly �i ∈ RεL, i = 1, 2, 3.

Let finallyNi be possible values of the number of particles in�i , i = 1, 2, 3, and
let ντ�,N be the multi canonical Gibbs measure µτ�(· |N�i = Ni, i = 1, . . . , 3 ).
Then we have
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Proposition 4.5. Assume J ∈ 1good(M, ε, L). Then, for any γ > 0 there exist
L0 = L0(ε,M, γ ) such that, if L ≥ L0,

ντ�,N (f, f ) ≤ (1+ γ )ντ�,N
(

Varη�1,N1
(f )+ Varη�2,N2

(f )
)

where Varη�i,Ni (f ), i = 1, 2, denotes the variance of f w.r.t. the multicanonical
measure on �i with Ni particles, N3 of which are in �3, and boundary condition
η on ∂+r �i .

Proof. Thanks to proposition 4.3 the proof is identical to that of proposition 3.4 of
[CM2].

4.4. On the distribution of the particle number

Here we provide some simple results on the distribution of the particle numbers
in the atoms of a partition of a given set �. Throughout this subsection the setting
will be as follows.

Let, for i = 1, . . . , k,�i ∈ RεL be pairwise disjoint and let� = ∪i�i . Assume
that also � belongs to RεL. Let also N = {Ni}ki=1 be a set of possible values of
N� := {N�i }ki=1. Given a boundary condition τ , let λ be the chemical potential,

constant on each atom, such that µτ,λ� (N�) = N (see appendix of [CM1] for the
existence of λ). Then we have (see Corollary 6.3 in [CM1])

Proposition 4.6. Assume J ∈ 1good(M, ε, L) and let v2
i := µτ,λ� (N�i ,N�i ).

Then
1

C′
1∏
i vi
≤ µτ,λ� (N� = N) ≤ C′ 1∏

i vi

for a suitable constant C′ = C′(M, ε) > 1.

The next result concerns the way particles distribute inside one block of the parti-
tion.

Pick j ∈ [1, . . . , k] and divide �j into two disjoint subsets V, W that we as-
sume to be also elements of RεL. Denote by N∗ the average number of particles in

V according to µτ,λ� and let γ (n) = ντ�,N(NV = n).

Theorem 4.7. Assume J ∈ 1good(M, ε, L). Then there exists c0 = c0(M, ε) such
that for all f : '� �→ � that depend only on NV (σ) the following Poincaré
inequality holds

ντ�,N (f, f ) ≤ c0 min{N∗, |V | −N∗}
∑
n

γ (n) ∧ γ (n+ 1)[f (n+ 1)− f (n)]2

Proof. Again, thanks to the fact that J ∈ 1good(M, ε, L) and using proposition
4.2, the proof is identical to that of theorem 4.4 in [CM2]. !"
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4.5. A key bound on special covariances

The setting is the following. We fix ε ∈ (0, 1) and l ∈ [Lε, L]. We then consider a
volume � ∈ RεL(l) such that � = ∪ki=1�i , where �i ∈ RεL(l) and |�i |/|�| ≥ ε
for i = 1, . . . , k. Let N := {Ni}ki=1 be a set of possible values of N� := {N�i }ki=1.

Let also hx := e−∇xH σ (x) and ĥx := e−∇xH (1− σ(x)) and take ε′ = 2
db
ε, where

b is defined in proposition 5.2 and d is the dimension.

Lemma 4.8. Assume J ∈ 1good(M, ε′, L). Then for any δ > 0 there exist a
positive constant C and L0(M, ε

′, δ) > 0 such that

ντ�,N


f, 1

|�i ||�j |
∑
x∈�i
z∈�j

hxĥz




2

≤ Cl
2

|�| ν
τ
�,N


 ∑

[x,z]∈E�
cxz(∇xzf )2




+ δ

|�| Varτ�,N(f )

provided that L ≥ L0.

Proof. Fix δ > 0. Due to lemma A.1 we can assume, without loss of generality,
that ν�,N(hx) = 0, ∀x ∈ �. For notation simplicity define G := 1

|�i |
∑
x∈�i hx ,

H = 1
|�j |

∑
z∈�j ĥz. Let .

ĥ
(z) be the support of ĥz and write H =Hin +Hext

where Hin is the sum over those z’s in �j such that .
ĥ
(z) ⊂ �j and Hext the

rest. Then, using the formula relating the covariance of two functions f and g w.r.t.
the measure ντ�,N to the covariance w.r.t. the same measure conditioned to a sub
σ -algebra, we get

ντ�,N


f, 1

|�i ||�j |
∑
x∈�i
z∈�j

hxĥz




2

= ντ�,N(f,GH)2

≤ 2‖Hext‖2∞ Varτ�,N(G)Varτ�,N(f )

+4‖Hin‖2∞ντ�,N
([
ντ�,N

(
f,G |F�ci

)]2
)

+4
[
ντ�,N

(
f, ντ�,N

(
G |F�ci

)
Hin

)]2

≤ 1

|�|

[
C′

( |∂+r �j |
|�j |

)2

+ δ
2

]
Varτ�,N(f )

+ Cl
2

|�| ν
τ
�,N


 ∑

[x,z]∈E�
cxz(∇xzf )2




+4
[
ντ�,N

(
f, ντ�,N

(
G |F�ci

)
Hin

)]2
(4.3)
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provided that L is big enough. To obtain (4.3) we used the hypothesis |�i ||�| ≥ ε
together with lemma A.1 to bound the term [ντ�,N(f,G |F�ci

)]2 and proposition
4.4 and the fact that J ∈ 1good(M, ε′, L) to get

Varτ�,N(G) ≤ C Varτ,λ� (G) =
1

|�|2
∑
x∈�

Varτ,λ� (
∑
y∈Cx∩� hy)

|Cx ∩�| ≤ C′′

|�| (4.4)

The third term in the r.h.s of (4.3) can be bounded from above by∥∥∥ντ�,N(G |F�ci
)

∥∥∥2
Varτ�,N(H

in) Varτ�,N(f ) (4.5)

In turn, the second factor in the r.h.s. of (4.5), using as in (4.4) in proposition 4.4
and the hypothesis J ∈ 1good(M, ε′, L), is bounded from above by C1

|�| . The
first factor in the r.h.s. of (4.5), thanks to the hypothesis ντ�,N(hx) = 0 ∀x ∈ �,
(a simple telescopic argument, part 1) of proposition 4.3 and assumption J ∈
1(M, ε′,�), is bounded from above by


 sup
τ,τ ′∈'

∂
+
r �i

1

|�i |
∑
x∈�i
|ντ�i,Ni (hx)− ντ

′
�i,Ni

(hx)|



2

≤ C′
[ |∂+r �i |
|�i |

]2

In conclusion, for any δ > 0, the first and third term in the r.h.s of (4.3) can be
bounded from above by δ

2|�| Varτ�,N(f ) provided thatL is large enough. The proof
is complete. !"

5. A general lower bound on the spectral gap in a finite subgraph

In this section we obtain a rough lower bound for the spectral gap of the dynamics
in a finite subgraph � of �d which depends on the size of � and on the size of
the largest cluster inside �. As a corollary we get that, if J ∈ 1good(M, ε, L) and
� ∈ RεL, the spectral gap in� is not smaller than |�|−b for a suitable b independent
of ε.

Theorem 5.1. Let � be a finite subgraph of �d and let FJ (�) := maxx∈�v |Cx ∩
�| d−1

d . Then there exist a positive constant c, depending only on J and on d, and
a numerical constant α > 8 such that

gap(Lτ�,N)
−1 ≤ |�v|α exp (c FJ (�)) ∀ N, τ

Corollary 5.2. Let � ∈ RεL and assume J ∈ 1good(M, ε, L). Then there exists a
positive numerical constant b > 8, independent of L, such that

gap(Lτ�,N)
−1 ≤ |�|b ∀N, τ

Proof. It follows immediately from theorem 5.1 and the fact that maxx∈� |Cx | ≤
M logL for any J ∈ 1good(M, ε, L).
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Proof of Theorem 5.1. The proof is divided into two distinct parts. In the first step
we show that there exists a positive constant c, depending only on supxy |Jxy | and
d, such that for any finite subgraph �, any τ and any N

gap(Lτ�,N)
−1 ≤ exp

(
c |�| d−1

d

)
(5.1)

Then, using a suitable inductive procedure, we improve (5.1) to the sought bound
in terms of FJ (�).

Step 1. Let us therefore start by proving (5.1). We first remark that such a general
bound on the spectral gap has been proved in great generality for non conservative
Glauber type dynamics (see [CMM] and [M]) and for Kawasaki dynamics when
the graph � is a cube in �d [CCM]. The general scheme of proof is the same for
Glauber and Kawasaki dynamics and it goes as follows. Pick a graph � ⊂ F̂ and
divide it into two disjoint subgraphs V andW in such a way that

i) they both have volume (i.e. number of vertices) of the order of 1
2 |�v|;

ii) the number of edges with one endpoint in V and the other in W is not larger

than |�| d−1
d .

A little geometric argument shows that such a partition always exists (see proposi-
tion A1.1 in [CMM]). Then one proves that

gap(Lτ�,N)
−1 ≤ exp

(
c |�| d−1

d

)[
sup
τ,n

gap(LτV,n)
−1 ∨ sup

η,k

gap(LηW,k)
−1

]
(5.2)

Once (5.2) is available one can follow the same steps of theorem 3.8 in [M] for the
non conservative case and prove (5.1).

Thus we concentrate on the proof of (5.2).
Let� be the disjoint union of two finite subgraphs V andW and let us consider

a modified dilute Ising model in� in which all (if any) the interactions between V
andW have been turned off. In other words we define a new interaction

J̇xy =
{

0 if x ∈ Vv and y ∈ Wv
Jxy otherwise

and the following “dotted” quantities for the “decoupled” system

µ̇ := µτ,λ,J̇� , ν̇ := ντ,J̇�,N , L̇ := Lτ,J̇�,N , Ė(f, f ) := Eτ,J̇�,N (f, f )

where, as usual, λ is the chemical potential such that µ̇(N�) = N . Using the
formula of the conditional variance and lemma 5.3 below we have

Varν̇ (f ) = ν̇ (Varν̇ (f |NV ))+ Varν̇ (ν̇(f |NV ))
≤ |�|α exp (k FJ (�)) [Ė(f, f )+ ν̇ (Varν̇ (f |NV ))] (5.3)

Lemma 5.3. There exist a numerical constant a > 8 and a positive constant
k = k(J, d) such that

Varν̇ (ν̇(f |NV )) ≤ |�|a exp (k FJ (�)) [Ė(f, f )+ ν̇ (Varν̇ (f |NV ))]



516 N. Cancrini, F. Martinelli

We postpone the proof of lemma 5.3 and conclude the proof of (5.2). Since there
is no interaction between V and W the conditional measure ν̇(· |NV ) is a product
measure. Thus

ν̇ (Varν̇ (f |NV )) ≤
[

sup
τ,n

gap(LτV,n)
−1 ∨ sup

η,k

gap(LηW,k)
−1

]
Ė(f, f )

so that, since FJ (�) ≤ |�| d−1
d ,

Varν̇ (f ) ≤ exp
(
c |�| d−1

d

) [
sup
τ,n

gap(LτV,n)
−1 ∨ sup

η,k

gap(LηW,k)
−1

]
Ė(f, f )

(5.4)
for a suitable constant c. All what is left is to restore the original interaction for
all x, y ∈ �. This is straightforward since, because of property ii) above of the
decomposition� = V ∪W , there exists a positive constant k1, depending only on
J and d, such that

e−k1|�|
d−1
d ≤ ν̇(σ )

ντ�,N(σ )
≤ ek1|�|

d−1
d

Thus we can remove the “dot” in (5.4) and get (5.2) by paying a price not larger

than e2k1|�|
d−1
d .

Proof of Lemma 5.3. Let

γ (n) := ν̇(NV = n), g(n) := ν̇(f |NV = n)
nmin := max{0, N − |W |}, nmax := min{|V |, N} and ' := {n ∈ [nmin, nmax]: n is
an integer}. By proposition 3.7 in [CM2] we have

Varν̇ (ν̇(f |NV )) ≤ Cγ
∑
n∈'
γ (n) ∧ γ (n− 1)[g(n)− g(n− 1)]2

where

Cγ = 4 max




 sup
n≤N̄+1

∑
j≤n

γ (j)

γ (n)




2

,


 sup
n≥N̄

∑
j≥n

γ (j)

γ (n)




2



and N̄ is the largest integer such that
∑
n≤N̄ γ (n) ≤ 1

2 . Thanks to (1) of proposition
4.3 in [CCM]∑
n∈'
γ (n) ∧ γ (n− 1)[g(n)− g(n− 1)]2 ≤ C |�|8 [Ė(f, f )+ ν̇ (Varν̇ (f |FV ))

]

The result then follows if we can prove the next lemma (to be compared with
proposition 4.2 in [CCM]). !"
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Lemma 5.4. There exist a positive numerical constanta and a constant c = c(J, d)
such that

Cγ ≤ |�|a exp (c FJ (�))

Proof. Let N∗V := µ̇(NV ). We begin by showing that there exists a positive con-
stant c′ such that for any j, n ∈ ' with the property that either j ≤ n ≤ N∗V or
j ≥ n ≥ N∗V

γ (j)

γ (n)
≤ N2 |V |2 |W |2 exp{c′ FJ (�)} (5.5)

For this purpose we first remark that, by the definition of the canonical measure
and the fact that there is no interaction between V andW , we can write

γ (n) = µ
b.c.,λ
V (NV = n)µb.c.,λ

W (NW = N − n)
µ̇(N� = N)

where the notation b.c. in µb.c.,λ
X ,X = V orX = W , means τ boundary conditions

on ∂+X ∩ ∂+� �= ∅ and free boundary conditions on ∂+X ∩ ∂+� = ∅. Next, for
s ∈ [0, |X|], we define λX(s) as the chemical potential such that µb.c.,λX

X (NX) = s
and IX(s) := sλX(s)− log

Z
b.c,λX(s)
X

Z
b.c.,λX
X (s)

. By construction

µ
b.c.,λ
X (NX = s) = e−IX(s)µb.c.,λX(s)

X (NX = s)
It is easy to check that

d2

ds2
IX(s) > 0 ,

d

ds
IW (s)

∣∣∣∣
s=N−N∗V

= 0 ,
d

ds
IV (s)

∣∣∣∣
s=N∗V

= 0

so that for j ≤ n ≤ N∗V or j ≥ n ≥ N∗V
γ (j)

γ (n)
≤
[
µ

b.c.,λV (n)
V (NV = n)µb.c.,λW (N−n)

W (NW = N − n)
]−1

(5.6)

Thanks to proposition 3.3 in [CCM], there exists a positive constant c′′ depending
only on supxy |Jxy | such that for any integer s ∈ [0, |X|]

µ
λX(s)
X (NX = s) ≥ c′′

(
gap(Lb.c.,λX

X )

|X| ∧ 1

)
1

(s + 2)(|X| − s + 1)
(5.7)

where Lb.c.,λX
X is the generator of Glauber’s dynamics onX with “heat bath” rates

(see e.g. [M]). Since there is no interaction between the clusters {Cx}x∈�, theorem
3.8 in [M] implies that there exists c′ = c′(J, d) > 0 such that

gap(Lb.c.,λX
X ) ≥ exp

(−c′ FJ (�)) (5.8)

By putting together (5.6), (5.7) and (5.8) equation (5.5) follows.
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Thanks to (5.5) we can conclude that there exists a positive numerical constant
a such that for any n ≤ N∗V

∑
j≤n

γ (j)

γ (n)
≤ |�|a exp

(
c′ FJ (�)

)
(5.9)

and similarly for
∑
j≥n

γ (j)
γ (n)

, n ≥ N∗V .

Suppose now, for definiteness, that the median for γ (·), N̄ , is smaller thanN∗V .
Then (5.9) implies in particular that for any n ∈ [N̄ + 1, N∗V ]

1

2
γ (n)−1 ≤

∑
j≤n

γ (j)

γ (n)
≤ |�|a exp

(
c′ FJ (�)

)

Therefore

sup
n≤N̄+1

∑
j≤n

γ (j)

γ (n)
≤ |�|a exp

(
c′ FJ (�)

)

and

sup
n≥N̄

∑
j≥n

γ (j)

γ (n)
≤ |�|a exp

(
c′ FJ (�)

)+ sup
n∈'∩[N̄+1,N∗V ]

1

γ (n)

≤ 2|�|a exp
(
c′ FJ (�)

)
The lemma is proved. !"
Step 2. We can now turn to the second part of the proof of our theorem.
Let

Ẽτ�,N (f, f ) =
1

2

∑
x,y∈�v

ντ�,N

[
cxy (∇xyf )2

]

where the rates cxy satisfy all the assumption of section 2. In other words Ẽ is
the Dirichlet form of a conservative Markov process on '�, reversible w.r.t. the
canonical measure ντ�,N , in which the particles can jump between any pair of sites.

Let also L̃τ� be the corresponding generator.
First we establish a Poincarè inequality of the form

Varτ�,N (f ) ≤ |�|α
′

exp (c FJ (�)) Ẽ
τ
�,N (f, f ) (5.10)

Once (5.10) is available, we get immediately the statement of the theorem with
α = 3 + a from the rough bound (see lemma 4.3 in [Y] and proposition 3.13 in
[CM2])

Ẽτ�,N (f, f ) ≤ |�v|3Eτ�,N (f, f )
In order to prove (5.10), let {Ci}ki=1 be the clusters inside � which contain more

than one point and ordered in decreasing size. Define V0 := �, Vj := � \ ∪ji=1Ci
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and write (in order to simplify the notation in what follows we drop the subscripts
�,N and the superscript τ )

Var(f ) = ν(Var(f |F1))+ Var(ν(f |F1)) (5.11)

where F1 is the σ -algebra generated by NC1 , the number of particles in the first
cluster.

Consider the first term in the r.h.s. of (5.11). Since by construction there is no
interaction between C1 and V1, the conditional measure ν(· |NC1 = n) is a product
measure. Therefore, if we define αj := supN,τ gap(L̃τVj ,N )

−1 and we use (5.1), we
have that, for some c > 0,

ν(Var(f |F1)) ≤ max{α1, exp (c FJ (�))} Ẽ(f, f ) (5.12)

Consider now the second term in the r.h.s. of (5.11). Let FC1 be the σ -algebra
generated by {ηx}x∈C1 and let f1 := ν(f |FC1). Notice that F1 ⊆ FC1 so that
ν(f |F1) = ν(f1 |F1) we thus have

Var(ν(f |F1)) = Var(ν(f1 |F1))

≤ |�|a exp (c FJ (�)) [Ẽ(f, f )+ ν(Var(f1 |F1))]

(5.13)

where we used lemma 5.3 in the last inequality as there is no interaction between
C1 and V1. we can now conclude the proof of the theorem. Since f1 depends only
on the spin variables in C1, (5.1) gives

Var(f1 |NC1 = n) ≤ exp
(
c |C1| d−1

d

)
EC1,n(f1, f1) ∀ n (5.14)

It is quite easy to check, again because there is no interaction between C1 and its
complement, that EC1,n(f1, f1) ≤ EC1,n(f, f ). Thus

ν (Var(f1 |F1)) ≤ exp (c FJ (�))E(f, f ) ≤ exp (c FJ (�)) Ẽ(f, f ) (5.15)

Using (5.12), (5.13) and (5.15) to bound (5.11) we then obtain

α0 ≤ max{α1, |�|a exp (c FJ (�))}

We can now iterate the procedure and obtain

αj ≤ max{αj+1, |�|a exp (c FJ (�))} ∀ j = 0, . . . , k − 1

so that
α0 ≤ max{αk, |�|a exp (c FJ (�))}

Since the spectral gap for the symmetric simple exclusion with long range jumps in
the region Vk is greater than |Vk|−1 (see lemma 8.1 in [Q]) we have that αk ≤ |�|
and (5.10) follows. !"
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6. Proof of the diffusive scaling of the spectral gap

In this section we finally prove our main result, namely theorem 2.1, via a recursive
scheme combined with theorem 5.1.

6.1. Recursive analysis from scale L to scale Lε

In this first paragraph we prove a lower bound of the spectral gap of the generator
of the Kawasaki dynamics in the box QL in terms of the smallest spectral gap in
suboxes ofQL of sideLε , ε � 1, provided that the configuration of the random cou-
plings J is “good” for all scales between Lε

′
and L, namely J ∈ 1good(M, ε′, L)

where ε′ = ε
db

, d is the space dimension and b is the positive numerical costant
defined in corollary 5.2. The main tool is a recursive analysis of the behavior of
the spectral gap when the linear size of the volume under consideration is doubled,
developed in [CM2] for the high temperature case.

For simplicity we carry out our analysis in two dimensions but the extension to
higher dimension is straightforward.

Let
g(l, L) := g(J, l, L, ε) = min

R∈R̄εL(l)
min
N,τ

gap(Lτ,JR,N ) (6.1)

where gap(Lτ,JR,N ) has been defined in (2.7). Notice that necessarily l ≥ Lε because

of the very definition of R̄εL.
With the above notation we will prove the following recursive bound.

Theorem 6.1. Assume J ∈ 1good(M, ε′, L). Then there exist L0(ε
′,M) and k =

k(d, β,M, ε′) such that, if L ≥ L0,

g(l, L)−1 ≤ 3

2
g

(
l

2
, L

)−1

+ k l2 for any l ∈ [2Lε, L]

In particular

min
N,τ

gap(Lτ,JQL,N )L
2 ≥

[
4k + L(1−ε) log2

3
8−2εg(Lε, L)−1

]−1

Proof. The fact that

min
N,τ

gap(Lτ,JQL,N )L
2 ≥

[
4k + L(1−ε) log2

3
8−2εg(Lε, L)−1

]−1

is a trivial consequence of the recursive bound.
Fix now l ∈ [2Lε, L] and let us consider a rectangle � ∈ R̄εL(l). Without loss

of generality � can be taken of the form

� = {x = (x1, x2); 0 ≤ x1 < l1, 0 ≤ x2 < l2 }
with l1 ≤ l2. If l2 ≤ l

2 then minN,τ gap(Lτ�,N) ≥ g( l2 , L) because of the definition

of g(l, L). Thus we assume l
2 < l2 ≤ l. We set d = *ε l+ and, given an integer
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j ∈ [1, * 1
10ε +], we partition � into three atoms {�i}3i=1 as follows (we omit the

index j for simplicity)

�1 = {x ∈ �; 0 ≤ x2 ≤ l2/2+ jd}
�2 = {x ∈ �; l2/2+ (j − 1)d < x2 ≤ l2 − 1} (6.2)

�3 = �1 ∩�2

Notice that each �i belongs to RεL therefore, since J ∈ 1good(M, ε′, L), we are
allowed to use any of the results of section 4 for each rectangle �i , i = 1, 2, 3.

Fix now a boundary condition τ outside � and a number of particles N ∈
[0, . . . , |�|]. We will then use twice the formula relating the variance of a function
f w.r.t. the measure ντ�,N to the variance of f w.r.t. the measure ντ�,N conditioned
to a sub σ -algebra F0

ντ�,N (f, f ) = ντ�,N
(
ντ�,N (f, f |F0)

)+ ντ�,N (
ντ�,N (f |F0) , ν

τ
�,N (f |F0)

)
(6.3)

to write

ντ�,N (f, f ) = ντ�,N
(
ντ�,N (f, f |F1)

)+ ντ�,N (f1, f1)

= ντ�,N
(
ντ�,N

(
f, f |F1,3

))+ ντ�,N (
ντ�,N

(
f1,3, f1,3 |F1

))
+ ντ�,N (f1, f1) (6.4)

where F1 and F1,3 are the σ -algebras generated by N�1 and {N�1 , N�3} re-
spectively, and f1 := ντ�,N(f |F1), f1,3 := ντ�,N(f |F1,3). Formula (6.4) will
represent our basic starting point. We will now examine separately each term in the
r.h.s. of (6.4).

6.2. Analysis of the first term in the r.h.s. of (6.4)

For any small δ and large enough L, the first term in the r.h.s. of (6.4) can be
bounded from above using proposition 4.5 by

ντ�,N
(
ντ�,N

(
f, f |F1,3

)) ≤ (1+ δ)ντ�,N (
ν
η
�1,N1

(f, f )+ νη�2,N2
(f, f )

)
(6.5)

where the average is over the random variables η,N�1 andN�2 . As in section 5.1 of
[CM2], let now examine the spectral gap of the bottom rectangle�1, the reasoning
being similar for the top one.

There are two cases to analyze:

a) l1 ≤ 3
4 l. In this case one easly verifies that �1 ∈ R̄ε�(

3
4 l).

b) l1 > 3
4 l. In this case�1 ∈ R̄εL but now the longest is l1 and the shortest one is

smaller than l2
2 + l

10 ≤ 3
5 l since l2 ≤ l.

Therefore if
ĝ(l, L) := min

R∈R̄ε
L
(l)

l1<
3
5 l, l2≥

3
4 l

min
N,τ

gap
(
L
τ,J
R,N

)
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the r.h.s. of (6.5) is smaller than

(1+ δ)max

{
g

(
3

4
l, L

)−1

, ĝ(l, L)−1

}

×

Eτ�,N (f, f )+ 1

2

∑
[x,y]∈E�3

ντ�,N

[
cxy (∇xyf )2

] (6.6)

uniformly in j ∈ [1, 1
10δ ].

Notice that the “spurious” term 1
2

∑
[x,y]∈E�3

ντ�,N [ cxy (∇xyf )2 ] comes from
the fact that �1 and �2 overlap.

6.3. Analysis of the second and third term in the r.h.s. of (6.4)

Here we bound from above the second and third term in (6.4) (see section 5.2 in
[CM2]). The necessary steps are identical in both cases and therefore, for shortness,
we treat only the third term which is (notationally speaking) also the simplest.

Let ρ := N
|�| , u = *ρ |�1|+ and assume, without loss of generality, that ρ ≤ 1

2 .

Let also N∗1 = µτ,λ� (N�1), µ
τ,λ
� being the grand canonical measure with aver-

age particle number equal to N , and let γ (n) := ντ�,N(N�1 = n). Let finally
cn = n(|� \�1| −N + n), that is (number of particles in�1)× (number of holes
in � \�1), and let c′n = n(|�1| −N + n).

Then, using theorem 4.7 and corollary 3.11 of [CM2], we can write

ντ�,N (f1, f1) ≤ c0N∗1
∑
n

(γ (n) ∧ γ (n− 1))

× [
ντ�,N

(
f |N�1 = n

)− ντ�,N (
f |N�1 = n− 1

)]2

≤ c0N∗1
∑
n

(γ (n) ∧ γ (n− 1))
[
A(n)2 + B(n)2

]
(6.7)

where

A(n) =




1
cn

γ (n−1)
γ (n)

∑
x∈�1
z∈�\�1

ντ�,N
[
(∇zxf )1IEzx e−∇xzH� |N�1 = n− 1

]
if n ≤ u

1
c′
N−n+1

γ (n)

γ (n−1)

∑
x∈�1
z∈�\�1

ντ�,N
[
(∇xzf )1IExz e−∇xzH� |N�1 = n

]
otherwise

(6.8)

B(n) =




1
cn

γ (n−1)
γ (n)

∑
x∈�1
z∈�\�1

ντ�,N
[(
e−∇xzH� − 1

)
1IEzx , f |N�1 = n− 1

]
if n ≤ u

1
c′
N−n+1

γ (n)

γ (n−1)

∑
x∈�1
z∈�\�1

ντ�,N
[(
e−∇xzH� − 1

)
1IExz , f |N�1 = n

]
otherwise

and
Exz = {σ ∈ ' : σ(x) = 1, σ (z) = 0} . (6.9)
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Exactly as in section 5.2 of [CM2], the first term in the r.h.s. of (6.7) is bounded
from above by

C′l2Eτ�,N (f, f ) (6.10)

We now turn to the estimate of the second term in the r.h.s. of (6.7). Using lemma
4.8 we get that for any δ > 0 there exists a constant C(δ,M, ε′) such that the
second term in the r.h.s. of (6.7) is smaller than

Cl2 Eτ�,N (f, f )+ δ ντ�,N (f, f ) (6.11)

In conclusion, for any δ > 0 there exists a constant C′′(δ,M, ε′) such that the third
term in the r.h.s. of (6.4) is smaller than

ντ�,N (f1, f1) ≤ C′′l2 Eτ�,N (f, f )+ δ ντ�,N (f, f ) (6.12)

A similar bound holds for the second term in the r.h.s. of (6.4).

6.4. The recursion completed

We are finally in a position to complete the proof of theorem 6.1. If we put together
(6.12) and (6.6) we get that, for any δ ∈ (0, 1

2 )

r.h.s. of (6.4) ≤ (1+ δ)max

{
g

(
3

4
l, L

)−1

, ĝ(l, L)−1

}

×

Eτ�,N (f, f )+ 1

2

∑
[x,y]∈E�3

ντ�,N

[
cxy (∇xyf )2

]
+ 2C′′l2 Eτ�,N (f, f )+ 2δ ντ�,N (f, f ) (6.13)

that is

ντ�,N (f, f ) ≤
(

1+ δ
1− 2δ

)
max

{
g

(
3

4
l, L

)−1

, ĝ(l, L)−1

}

×

Eτ�,N (f, f )+ 1

2

∑
[x,y]∈E�3

ντ�,N

[
cxy (∇xyf )2

]
+ kl2 Eτ�,N (f, f ) (6.14)

for a suitable constant k = k(δ,M, ε).
Finally we average w.r.t. to the index j (see (6.2)) and use the observation that,

as j varies in [1, 1
10ε ], the strips �3 := �(j)3 are disjoint. In particular

1

2

∑
j∈[1, 1

10ε ]

∑
[x,y]∈E

�
(j)
3

ντ�,N

[
cxy (∇xyf )2

]
≤ Eτ�,N (f, f )
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so that

ντ�,N (f, f )

≤
[(

1+ δ
1− 2δ

)
(1+ *10ε+)max

{
g

(
3

4
l, L

)−1

, ĝ(l, L)−1

}
+ kl2

]
Eτ�,N (f, f )

(6.15)

In other words

gap(Lτ�,N)
−1

≤
[(

1+ δ
1− 2δ

)
(1+ *10ε+)max

{
g

(
3

4
l, L

)−1

, ĝ(l, L)−1

}
+ kl2

]

(6.16)

Notice that if the original rectangle � was chosen in the sub-class of R̄εL(l) en-
tering in the definition of ĝ(l, L), i.e. l1 ≤ l2

2 + 1
10 l, then we would have ob-

tained the inequality (6.16) with the factor max{ g( 3
4 l, L)

−1, ĝ(l, L)−1 } replaced
by g( 3

4 l, L)
−1 simply because, for any j ∈ [1, * 1

10ε +], both �1 and �2 would
belong to R̄εL(

3
4 l). Thus

ĝ(l, L)−1 ≤
(

1+ δ
1− 2δ

)
(1+ *10ε+) g

(
3

4
l, L

)−1

+ kL2 (6.17)

If we combine (6.16) with (6.17) we finally get

gap(Lτ�,N)
−1 ≤

(
1+ δ

1− 2δ

)2

(1+ *10ε+)2 g
(

3

4
L

)−1

+ k′l2 (6.18)

for another constant k′. Thus

g(l, L)−1 ≤
(

1+ δ
1− 2δ

)2

(1+ *10ε+)2 g
(

3

4
l, L

)−1

+ k′l2

and two more iterations prove the recursive inequality of the theorem provided that
the two parameters ε, δ were chosen small enough. !"

6.5. Proof of theorem 2.1

We begin by discussing the lower bound. Let ε0 = 1/(10d+1) and let us fixM large
enough and 0 < ε < min{log2

8
3

/
log2

8
3 − 2+ db, ε0}, where b is the constant

defined in corollary 5.2. Let also ε′ = ε
db

. Then by proposition 4.1 there exists a set
10 ⊂ 1with �(10) = 1 such that for any J ∈ 10 there existsL(J ) <∞with the
property that J ∈ 1good(L,M, ε′) for any L ≥ L(J ). Without loss of generality
we can assume that L(J ) is larger than some fixed large constant L0 = L0(M, ε).
If we now apply theorem 6.1 we obtain

min
N,τ

gap
(
L
τ,J
QL,N

)
L2 ≥

[
4k + L(1−ε) log2

3
8−2εg(Lε, L)−1

]−1
(6.19)
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provided that L > L(J ). Thanks to corollary 5.2

g(Lε, L)−1 ≤ Ldbε (6.20)

so that

min
N,τ

gap(Lτ,JQL,N )L
2 ≥ 1

4k + 1

and the proof of the lower bound in theorem 2.1 is concluded. !"
We now turn to the proof of the upper bound.
Let g : [0, 1]d �→ � be a non-constant smooth function such that

∫
d ,x g(,x) = 0

and, for each integer L and any� ⊂ QL, letAv�(g) := 1
Ld

∑
x∈� g(

x
L
). Given an

infinite realization of the disorder J let also �J,L be the set of sites x in QL such
that Ĉx = {x}. Then, by means of standard large deviations estimates, it is easy to
see that for any ε > 0 there exists a set 1g,ε ⊂ 1 with �(1g,ε) = 1 such that for
any J ∈ 10 there exists L(J ) <∞ with the property that

∣∣Av�J,L(g)∣∣ ≤ ε,
∣∣∣∣Av�J,L(g2)− (1− p)2d

∫
d ,x g2(,x)

∣∣∣∣ ≤ ε
(1− ε)(1− p)2dLd ≤ |�J,L| ≤ (1+ ε)(1− p)2dLd

We are now in a position to prove the sought upper bound on the spectral gap.
Given ε > 0, a realization J ∈ 1g,ε and L > L(J ), we pick as test function

to insert into the variational characterization of the spectral gap of Lτ,JQL,N the fol-
lowing slowly varying function of the local density: f (σ) = ∑

x∈QL g(
x
L
)σ (x).

Thanks to the smoothness assumption on g, it is easy to check that the Dirichlet
form of f (we omit in what follows all the sub/superscripts) satisfies the bound

E(f, f ) ≤ kLd−2ρ(1− ρ)
∫
d ,x |∇g(,x)|2

It remains to bound from below the canonical variance of f . Because of the lack of
translation invariance that is not completely trivial and we found it convenient to
localize the problem into the complement set of the clusters where the interaction
is absent. More precisely, thanks to the usual formula for the conditional variance,
we have

Var(f ) ≥ ν (Var(f |FQL\�J,L)
)

Notice that, by the very definition of the set �J,L, the conditional measure
ν(· |FQL\�J,L) is simply the uniform measure on the lattice-gas configurations
in �J,L with a (random) number of particles n. Therefore

Var(f |FQL\�J,L)

= γ (1− γ )

 ∑
x∈�J,L

g2
( x
L

)
− 1

|�J,L| − 1

∑
x �=y∈�J,L

g
( x
L

)
g
( y
L

)



526 N. Cancrini, F. Martinelli

where γ = n
|�J,L| . It is not difficult to see that

ν (γ (1− γ )) ≥ 1

2
γ̄ (1− γ̄ )

where γ̄ is the grand canonical particle density inside �J,L. In turn γ̄ (1 − γ̄ ) ≥
kρ(1 − ρ) for a suitable small numerical constant k = κ(β), where ρ = N

Ld
. In

conclusion, thanks to our choice of 1g,ε and provided ε is taken small enough
depending on g,

Var(f ) ≥ kLdρ(1− ρ)(1− p)2d
∫
d ,x g2(,x)

so that
E(f, f )

Var(f )
≤ k′L−2

∫
d ,x |∇g(,x)|2∫
d ,x g2(,x)

The proof of the upper bound is complete and theorem 2.1 follows. !"

6.6. Proof of theorem 2.2

Let the constants M, ε, ε′ as well as the set 10 and the constant L(J ) be as in
the proof of theorem 2.1. Fix J ∈ 10, L > 2L(J ) and take � = QL. Let also
f be an arbitrary local function such that 0 ∈ .f . Denote by Eλ the spectral
projection associated to the interval [0, λ] for the self-adjoint operator −Lτ�,N on

L2('�, dν
τ
�,N). As usual we omit the superscript J in our notation. Assume that

ντ�,N(f ) = 0. Then we will prove that for any δ ∈ (0, 1
10 ) there exist Cf,δ inde-

pendent of �, N, J such that

‖Eλf ‖22 ≤ Cf,δ λα−δ (6.21)

where ‖ · ‖2 denote the L2('�, dν
τ
�,N)-norm and α = α(d) is as in the theo-

rem, provided that L ≥ 2λ−1 ≥ 2L(J )
d
δ . It is clear that once such an estimate is

available then ∣∣∣etLτ�,N f ∣∣∣2
2
≤
∞∑
j=0

e−j
∣∣∣Ej+1

t

f − Ej
t
f

∣∣∣2
2

≤ Cf,δ 1

tα−δ

∞∑
j=0

e−j (j + 1)α

≤ C′f,δ
1

tα−δ

if L ≥ 2t ≥ 2L(J )
d
δ . If instead t ≤ L(J ) dδ then we bound ‖etLτ�,N f ‖22 by ‖f ‖2∞.

In particular (2.9) follows at once. Moreover, because of (iii) of proposition 4.1,

�(t ≤ L(J ) dδ ) ≤ t− γ δd where γ = γ (M) is such that limM→∞ γ (M) = +∞.
Thus, if M was chosen large enough, we can safely average over the disorder J
and get (2.10).
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Let us prove (6.21). For any l ∈ [L(J ), 1
2L] let Fl := F�\Bl and let fl :=

ντ�,N(f |Fl ) = νηBl,Nl(η)(f ). If we use proposition 4.4 and the factorization of the
grand canonical measure over the clusters we have

Varτ�,N (fl) ≤ A(M, ε)µτ,λ� (fl, fl) = AµλB̄l (fl, fl) (6.22)

where the chemical potential λ here is, as always, such that µτ,λ� (N�) = N . We

can now estimate from above µτ,λ� (fl, fl) by applying to it the Poincarè inequal-

ity for a Glauber dynamics reversible w.r.t. the gran canonical measure µτ,λ� (e.g.
Metropolis or Heat Bath). By the independence of the clusters, the fact that, by
construction, J ∈ 1good(M, ε′, l) and theorem 3.8 in [M], the spectral gap of the
Glauber dynamics for µτ,λ� satisfies the following bound

gap(LB̄l
) = min

x∈B̄l
gap(LCx ) ≥ e−c (log l)

d−1
d

for some constant c = c(β), where LV is the Glauber generator in V ⊂ �d with
free boundary conditions. Thus the r.h.s of (6.22) can be bounded from above by

Aec (log l)
d−1
d
µλ
B̄l


 ∑
x: d(x,Bl)≤r

[∇xfl]2


 (6.23)

It is not difficult to check at this point that, using part (a) of proposition 4.3 and
proceeding as in the proof of lemma A.2, the r.h.s. of (6.23), for any 0 < δ < d
can be bounded from above by

Cf

ld−δ for some positive constant Cf = Cf (δ, d, β)
independent of J .

Observe now that for any function g and for any l ≤ 1
2L the formula of the

conditional covariance (see e.g. (6.3)) together with the definition of spectral gap
and the result of theorem 2.1 give the following inequality

ντ�,N(g, f )
2 ≤ 2 ντ�,N

(
ντ�,N (g, f |Fl )

2
)
+ 2 Varτ�,N (g) Varτ�,N (fl)

≤ 2 ντ�,N
(
ντ�,N (g, f |Fl )

2
)
+ 2Cf

1

ld−δ
Varτ�,N (g)

≤ C′f
[
l2 Eτ�,N (g, g)+

1

ld−δ
Varτ�,N (g)

]
(6.24)

We will use (6.24) as the starting point of a recursive procedure whose final result
will be a bound like (6.24) but with the factor l2 replaced by lω with ω = 2δ if

d ≥ 2 and ω = 1+ 2δ if d = 1, provided that l ≥ L(J ) 2
ω .

Lemma 6.2. Let βd = 0 if d ≥ 3, βd = δ if d = 2 and βd = 1 + δ if d = 1. In
the same hypotheses of theorem 2.2 assume that for some β ∈ [βd, 2) and α ≥ 1,
some positive constantC(f, δ), all pairsL(J )α ≤ l1 ≤ 1

2 l2 and allN the following
inequality holds

ντBl2 ,N
(g, f )2 ≤ C(f, β)

[
l
β

1 EτBl2 ,N
(g, g)+ 1

ld−δ1

VarτBl2 ,N
(g)

]
(6.25)
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Then there exists a new positive constant C′(f, β) such that the same inequality
holds with β and α replaced by β ′ = 2β

d−δ+β and α′ = α (β+d−δ)2 respectively.

Proof. Given (6.24) the proof is identical to that of lemma 6.1 in [CM2]. !"

Notice that the inequality of the lemma holds for β = 2 and α = 1 because of
(6.24). Therefore, by iterating n times inequality (6.25) starting from these values
for α and β, for all pairs l, L such that 1

2L ≥ l ≥ L(J )αn , we find

ντ�,N(g, f )
2 ≤ Cf,n

[
lβn Eτ�(g, g)+

1

ld−δ
Varτ�,N (f )

]

where αn = 2
βn

and the sequence βn converges to βd (defined in lemma 6.2) from

above. Therefore, for any δ ∈ (0, 1
10 ), there exists a constant Cf,δ such that

ντ�,N(g, f )
2 ≤ Cf,δ

[
lω Eτ�(g, g)+

1

ld−δ
Varτ�,N (f )

]
(6.26)

provided that 1
2 L ≥ l ≥ L(J )

2
ω , where ω = 1+ 2δ if d = 1 and ω = 2δ if d ≥ 2.

If we now take g := Eλf , then (6.26) gives

‖Eλf ‖22 ≤ C′f,δ
[
lω λ+ 1

ld−δ

]
≤ C′f,δ

{
λ

1
2−δ if d = 1
λ1−δ if d ≥ 2

provided that Lω+d−δ ≥ 2λ−1 ≥ 2L(J )2
ω+d−δ
ω . Above we have fixed l equal to

λ−
1

ω+d−δ in order to obtain the last inequality. It is important to observe that our
choice gives l � L since λ ≥ CL−2 because of theorem 2.1. This ends the proof
of (6.21). !"
Appendix. Proof of Lu–Yau’s two block estimate

Here we prove Lu–Yau’s two block estimate which is the key ingredient behind
lemma 4.8. The proof follows essentially the same lines of the one given in [CM2]
for translation invariant interaction under a mixing condition, but with some im-
portant difference due to the presence of clusters where the particle variables are
strongly interacting.

The setting is the following. We fix ε ∈ (0, 1) and l ∈ [2Lε, L]. We then
consider a volume � ∈ RεL(l) such that � = ∪ki=1�i , where �i ∈ RεL(l) and
|�i |/|�| ≥ ε for i = 1, . . . , k. Let N := {Ni}ki=1 be a set of possible values of

N� := {N�i }ki=1. Let also hx := e−∇xH σ (x) and ĥx := e−∇xH (1−σ(x)) and take
ε′ = 2

db
ε, where b is defined in corollary 5.2 and d is the dimension. We define

G := 1
|�i |

∑
x∈�i gx where gx = hx or gx = ĥx .

Proposition A.1. Assume J ∈ 1good(M, ε′, L). Then for any δ > 0 there exist a
positive constant C and L0(ε

′,M, δ) > 0 such that

ντ�,N(f,G)
2 ≤ Cl

2

|�| E
τ
�,N(f, f )+

δ

|�| Varτ�,N(f )

provided that L ≥ L0.
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Proof. To simplify the notation we prove the proposition in the case k = 1. When
k > 1 the proof can be easly generalized.

Fix δ > 0. If ρ ≤ δ or 1 − ρ ≤ δ the statement follows at once from the
Schwartz inequality together with proposition 4.4 and the fact that using that J ∈
1good(M, ε

′, L)

µ
τ,λ
� (G,G) =

1

|�|2
∑
x∈�

∑
y,z∈Cx∩� µ

τ,λ
� (gy, gz)

|Cx ∩�| ≤ C(β)ρ(1− ρ) 1

|�|

for large values of the (constant) chemical potential λ. We will thus assume, without
further notice, that ρ ∈ (δ, 1− δ).

We define {Qα}α∈I to be a collection of cubes of side Lε
′
, such that for any

α �= β dist(Qα,Qβ) ≥ 2M logL, dist(Qα, ∂�) ≥ 2M logL and |� \ ∪αQα| ≤
|�| logL/Lε

′
. Clearly such collection exists. Next we observe that, without loss of

generality, we can replace gx by gx − γ σ(x), γ being an arbitrary constant inde-
pendent of x, because

∑
x∈� σ(x) = N almost surely w.r.t. ντ�,N . Accordingly we

define Gγ := G− γ N�|�| . Our choice of γ will be made later. We then set

Gint
γ := 1

|�|
∑

x∈∪αQint
α

(gx − γ σ(x)) and Gext
γ := Gγ −Gin

γ

whereQint
α = {x ∈ Qα : d(x,Qcα) ≥ 2M logL }. Notice that

Varτ�,N (G
ext
γ ) ≤ C′µτ,λ� (Gext

γ ,G
ext
γ ) ≤ C′′

∑
x∈�\∪αQin

α
|Cx |

|�|2 ≤ C′′ (logL)2

|�|Lε′
(A.1)

because of proposition 4.4 and the definition of {Qα}α∈I . In particular, for any
given δ > 0,

ντ�,N
(
f,Gext

δ

)2 ≤ δ

|�| Varτ�,N (f )

provided that L is big enough.
We now turn to bound the relevant part ντ�,N(f,G

int
γ )

2. Let F0 be the σ -al-
gebra generated by the the random variables {σ(x)}x∈�\∪αQα , {Nα}α∈I , where
Nα(σ) :=∑

x∈Qα σ(x). Then we write

ντ�,N

(
f,Gint

γ

)2

≤ 2 ντ�,N
(
ντ�,N

(
f,Gint

γ

∣∣∣ F0

) )2 + 2 ντ�,N
(
f, ντ�,N

(
Gint
γ

∣∣∣ F0

) )2

≤ 2 Varτ�,N
(
Gint
γ

)
ντ�,N

(
Varτ�,N (f | F0

) )
+2 ντ�,N

(
f, ντ�,N

(
Gint
γ

∣∣∣ F0

) )2

≤ C(L)|�| E
τ
�,N (f, f )+ 2 Varτ�,N (f ) Varτ�,N

(
ντ�,N

(
Gint
γ

∣∣∣ F0

))
(A.2)
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where we have used (A.1) to bound Varτ�,N (G
int
γ ) by C′

|�| and the estimate

ντ�,N
(

Varτ�,N (f |F0)
) ≤ C(L)Eτ�,N (f, f )

for some constant C(L), valid since ντ�,N(· |F0) is the product of canonical Gibbs
measures over the cubes Qα . Actually, using corollary 5.2, the constant C(L) is
not larger than Lbdε

′ ≤ l2.
The key point is now to prove that, for any δ > 0, Varτ�,N (ν

τ
�,N(G

int
γ |F0)) is

smaller than δ
|�| provided that L is large enough.

Notice that ντ�,N(G
int
γ |F0)(η) is the sum of local functions

ντ�,N

(
Gint
γ |F0

)
(η) = 1

|�|
∑
α∈I
ν
η

Qα,Nα(η)


 ∑
x∈Qint

α

gx − γ σ(x)



:= 1

|�|
∑
α∈I
Gγα(η)

Thus, if we order in an arbitrary way the set I , we can split the above sum into the
sum of even and odd α’s and apply proposition 4.4 to each term and get

Varτ�,N
(
ντ�,N

(
Gint
γ

∣∣∣ F0

))
≤ C′ 1

|�|2 µ
τ,λ
�

(∑
α

Gγα,
∑
α

Gγα

)

for some constant C′ independent of � and L0.
Let now ξγα (η) := µη,λ(η)Qα

(
∑
x∈Qint

α
[gx − γ σ(x)] ), where the chemical poten-

tial λ(η) is such that µη,λ(η)Qα
(Nα) = Nα(η). In the (rare) case in which Nα(η) = 0

(Nα(η) = |Qα|) the measure µη,λ(η)Qα
will simply be the Dirac measure on the con-

stant configuration identically equal to 0 (1). Thanks to 1) of proposition 4.3 and
the hypothesis J ∈ 1good(M, ε′, L) we have supη |Gγα(η)− ξγα (η)| ≤ C′.

In particular, using the fact that dist(Qα,Qβ) ≥ 2M logL for any α �= β, we
get

1

|�|2µ
τ,λ
�

(∑
α

Gγα − ξγα ,
∑
α

Gγα − ξγα
)
≤ C

|�|2
∑
α

µ
τ,λ
�

(
Gγα − ξγα ,Gγα − ξγα

)

≤ C′ 1

|�|Ldε′ ≤
δ

|�|

for L large enough. It is therefore enough to bound µτ,λ� (
∑
α ξ
γ
α ,

∑
α ξ
γ
α ).

We can now apply the Poincaré inequality µτ,λ� (f, f ) ≤ C′(L)µτ,λ� (
∑
x∈�

(∇xf )2) where C′(L) = gap(Lτ
�)
−1 and Lτ

� is Glauber generator. By the inde-
pendence of the clusters, the fact that J ∈ 1good(M, ε′, L) and theorem 3.8 in [M]
we have

gap(Lτ
�) = min

x∈�
gap(LCx ) ≥ exp{−c(logL)

d−1
d }
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so that

1

|�|2 µ
τ,λ
�

(∑
α

ξγα ,
∑
α

ξγα

)
≤ 1

|�|2 e
c(logL)

d−1
d
µ
τ,λ
�


∑
y∈�

[
∇y

∑
α∈I
ξγα

]2



(A.3)
Observe now that, by construction, ∇y ξγα = 0 unless dist(y,Qα) ≤ r . Thus

µ
τ,λ
�


∑
y∈�

[
∇y

∑
α∈I
ξγα

]2

 =∑

α∈I

∑
y∈�

dist(y,Qα)≤r

µ
τ,λ
�

([∇y ξγα ]2
)

(A.4)

Let us estimate a generic term µ
τ,λ
� ([∇y ξγα ]2). It is at this stage that the sub-

traction with the free parameter γ made at the beginning becomes important. Let
∇̃yf (σ ) := (1− σ(y))∇y f − σ(y)∇yf and notice that

[∇y ξγα ]2 =
[
∇̃y ξγα

]2 =

 ∇̃y µη,λ(η)Qα


 ∑
x∈Qint

α

gx


− γ




2

Let λ0 = λ0(�,N) be the chemical potential such that �(|C0|−1 µ
β,λ0
C0
(NC0)) =

N/|�| where C0 is the cluster of the center of � (see section 3). The follow-
ing lemma concludes the proof of the proposition. Equation (A.5) below and the
fact that J ∈ 1good(M, ε′, L) imply that (A.4) can be bounded from above by

c|�|( logL
Lε
′ + 1

|Qα |2ε′ ). Thus the right hand side of (A.3) is smaller than δ
|�| provided

that L is large enough.

Lemma A.2. In the same setting of Proposition A.1 define

γ :=
�
[
|C0|−1 µ

λ0
C0

(∑
x∈C0

gx,NC0

)]
�
[
|C0|−1 µ

λ0
C0

(
NC0 , NC0

)]

Then there exist two positive constants k1, k2 independent of L and L0 =
L0(ε

′,M, δ) such that γ ≤ k1 and

µ
τ,λ
�

([
∇̃y ξγα

]2
)
≤
{
k2|Cy | if y ∈ ∂+r Qα
k2

|Qα |2ε′ if y ∈ Qα (A.5)

provided that L ≥ L0

Proof. The fact that γ is bounded from above uniformly in L follows immediately
from its definition and the fact that �(|C0|n) ≤ k for p < pc (see e.g. [Gri]).
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We first consider the case y ∈ ∂+r Qα then

|∇̃yξγα | = |∇̃yµη,λ(η)Qα


 ∑
x∈Qinα

gx


− γ |

≤
∑
x∈Qinα

|µλ(ηy)Cx
(gx)− µλ(η)Cx

(gx)| + γ

≤ c
∑
x∈Qinα

|Cx | |Cy |
|Qα| + γ ≤ k2 |Cy |

where we used that J ∈ 1good(M, ε′, L) in the last inequality.
Let us now consider y ∈ Qα .
In this case, under the flip of the variable η(y), the value of ξγα changes only

because the number of particles of η varies by ±1. Define Gα := ∑
x∈Qinα gx ,

call Nα(η) = n and let λ(s) = λ(η, s) be the chemical potential such that
µ
η,λ(η,s)
Qα

(Nα) = s with s ∈ [0, |Qα|]. Then

dλ(s)

ds
= 1

µ
η,λ(s)
Qα

(Nα,Nα)
(A.6)

so that

∇̃yµη,λ(η,n)Qα
(Gα) = (1− η(y))

∫ n+1

n

µ
η,λ(η,s)
Qα

(Gα,Nα)

µ
η,λ(η,s)
Qα

(Nα,Nα)
ds

−η(y)
∫ n−1

n

µ
η,λ(η,s)
Qα

(Gα,Nα)

µ
η,λ(η,s)
Qα

(Nα,Nα)
ds

By adding and subtracting inside the integrals the termµη,λQα (Gα,Nα)/µ
η,λ
Qα
(Nα,Nα)

(λ here is the chemical potential of the grand canonical measure on the volume�),
we have

µ
τ,λ
�

([
∇̃yµη,λ(s)Qα

(Gα)− γ
]2
)

≤ 2µτ,λ�



∣∣∣∣∣
µ
η,λ
Qα
(Gα,Nα)

µ
η,λ
Qα
(Nα,Nα)

− γ
∣∣∣∣∣
2+ 2µτ,λ�



∣∣∣∣∣
∫ n+1

n−1
R(s)ds

∣∣∣∣∣
2

 (A.7)

where

R(s) = µ
η,λ(s)
Qα

(Gα,Nα)

µ
η,λ(s)
Qα

(Nα,Nα)
− µ

η,λ
Qα
(Gα,Nα)

µ
τ,λ
Qα
(Nα,Nα)
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Notice that, using the fact that J ∈ 1good(M, ε′, L) it is easy to prove that

∣∣∣∣∣
µ
η,λ
Qα
(Gα,Nα)

µ
η,λ
Qα
(Nα,Nα)

− γ
∣∣∣∣∣ ≤ c

ρ0|Qα|ε′
(A.8)

where ρ0 := µτ,λ0
� (N�)/|�|.

Let ñ = µη,λQα (Nα). Then using (A.6) we can write

R(s) = 1

µ
η,λ
Qα
(Nα,Nα)

∫ s

ñ

ds′
µ
η,λ(s′)
Qα

(Gα,Nα,Nα)

µ
η,λ(s′)
Qα

(Nα,Nα)

+ µ
η,λ(s)
Qα

(Gα,Nα)

µ
η,λ(s)
Qα

(Nα,Nα)µ
η,λ
Qα
(Nα,Nα)

∫ ñ

s

ds′
µ
η,λ(s′)
Qα

(Nα,Nα,Nα)

µ
η,λ(s′)
Qα

(Nα,Nα)

so that by proposition 4.2, (A.6) and the fact that J ∈ 1good(M, ε′, L), it is easy
to see that

µ
τ,λ
�


(∫ n+1

n−1
R(s)ds

)2

 ≤ c‖g‖2∞ µτ,λ�

(
(n− ñ)2
ñ2

)

= c‖g‖2∞ µτ,λ�
(
µ
η,λ
Qα
(Nα,Na)

µ
η,λ
Qα
(Nα)2

)
≤ c

ρ|Qα| (A.9)

Putting together (A.8), (A.9), the fact that |ρ0 − ρ| ≤ |�|−ε and ρ > γ the lemma
follows for L big enough. !"
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