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Abstract. We consider a conservative stochastic lattice-gas dynamics reversible with re-
spect to the canonical Gibbs measure of the bond dilute Ising model on Z¢ at inverse tem-
perature 8. When the bond dilution density p is below the percolation threshold we prove
that for any particledensity and any 8, with probability one, the spectral gap of the generator
of the dynamicsin a box of side L centered at the origin scales like L~2. Such an estimate
is then used to prove a decay to equilibrium for local functions of the form Iﬂ,l,e wheree is
positive and arbitrarily small and o = % ford =1, = 1ford > 2. In particular our result
showsthat, contrary to what happensfor the Glauber dynamics, there is no dynamical phase

transition when 8 crosses the critical value . of the pure system.

1. Introduction

In this paper we make afirst attempt to analyze the relaxation time for areversible
stochastic spin exchange dynamics with random interactions. In other words we
consider a ssmple model of a gas of interacting random walks on the lattice such
that: i) at most one particle can sit at any given site; ii) the rate c,, with which a
particle at site x jumps to one of its nearest neighbors y, depends on the particle
distribution around x U y and on some external random field (the disorder) in such
away that the whole process is reversible w.r.t. the canonical Gibbs measure of a
|attice-gas with random interactions.

Our main interest isto analyze the dynamicsin afinite box of side L centered at
the origin asafunction of L, when the thermodynamic parameters and the disorder
distribution are such that one has simultaneously subsets of Z¢ in which the jump
rates are those of agasin the high temperature phase, i.e. they depend very weakly
on the particles configuration, and subsets where instead the jump rates are those
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of a gas in the phase coexistence region. In the physics literature this situation is
sometimes referred to as the Griffiths phase (see e.g. [Gr] and [F]).

The simplest example of a system with the above propertiesisthe bond diluted
Ising lattice-gas. In this case the grand canonical Gibbs measure takesthe (formal)
expression

Mﬁ,k (0) = %e—HJ(U)+A >, o)

where A isthechemical potential, thelattice-gasvariables{o (x)} .7« takevaluesin
{0, 1} andtheenergy function H” (o) hastheform H” (¢) = — D ey Juy (20 (x)—
1)(20 (y)—1). Here (x, y) denotesageneric bond of thegraph Z¢ and the couplings
{Jxy} arei.i.d random variables taking only two values, J,, = 0 and J,, = $ with
probability 1 — p and p respectively, where 8 > 0 can beinterpreted asthe inverse
temperature.

Let now 8. = B.(d) be the critical inverse temperature for the “pure” Ising
lattice-gas (i.e. the above model when p = 1) and choose 8 > 8. and A = 0. Let
also, for agiven realization of the random couplings {Jy,}, C bethe cluster of x,
namely the set of al sites y such that there exists a path of nearest neighbor points
joining x to y with the property that the coupling for each bond of the path isequal
to B. Then clearly the grand canonical Gibbs measure factorizes over the different
clusters and on each of them we have a grand canonical |attice-gas measure with
thermodynamic parameters A and 8 which are in the low temperature part of the
phase diagram for the “pure” infinite system. Thusin principle, depending on the
geometry of the cluster, we could have the phenomenon of long range order and,
in the canonical ensemble, the phenomenon of phase segregation. Concerning this
problem we recall that, for the diluted Ising model, it has been proved in [G] (see
also [HSS] for graphs other than Z¢) that there exists acontinuous decreasing func-
tion B* : (p¢, 1] — [Be, +00), pc = pc(d) being the critical bond-percolation
threshold inZd,withIimp_wg B*(p) = +oo, suchthatif either p < p.orp > p.
and B < B*(p) then there exists a unique infinite volume grand canonical Gibbs
measure, whileif p > p., 8 > B*(p) and A = 0 there exists more than one Gibbs
state (phase transition). Actually one can show that there is arange of values of 8
between 8. and 8*(p) such that not only the infinite volume Gibbs state is unique
but it also has very good decay property of the covariances. It is natural to conjec-
ture that these stronger propertieshold for all 8 < g*(p). Werefer to[ACCN] and
references therein for a detailed discussion of behaviour of 8*(p) closeto p. and
to [ACCMM)] and references therein for some upper boundson *(p). It should be
remarked that, even when p < p. and no phase transition occurs, the presence of
arbitrarily large (but finite) connected clusters of the pure system below its critical
temperature affects the thermodynamics by destroying, for example, the analyticity
of the free energy as a function of the chemical potential (see [Gr], [F] and aso
[BD], [DKP], [GM1], [GM2]).

Let us now examine some model of Markovian dynamics for the above lat-
tice-gas. There are basically two choices. Non conservative Glauber type (single
spin flip) dynamics reversible w.r.t. the grand canonical Gibbs measure (see e.g.
[M] for ageneral overview) and conservative Kawasaki dynamics reversible w.r.t.
the canonical Gibbs measure. In order to present the most precise and clean cut
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results we will discuss in what follows only the two dimensional case (in higher
dimensions the situation being not as sharp as far as the values of the temperature
is concerned).

In the non conservative case it has been proved in [CMM1], [CMMZ2] and
[ACCMM] that for the dilute Ising model described above there is a dynamical
phase transition when g crosses the value g, (but always remaining well below
the critical value 8*(p)) in the following sense. If p > p. then the time-law with
which the spin at the origin relaxes to its equilibrium vall ue changes from a pure

exponential e’ to a lower decay of the form e*"f*(log')? . In the non-percolative

regime p < p, for amost al coupling configurations, the relaxation to equilib-
rium is always exponentially fast but the rate in the exponential strongly depends
on the observable one is measuring. Moreover, in both cases, the average over the
disorder of the time auto-correlation function of the spin at the origin goesto zero

1
as slow as ¢ <9912 One of the main reasons behind such anomalous decay to
equilibrium is the presence, due to the statistical fluctuations of the disorder, of
cubic clusters whose relaxation time is exponentially largein their side.

In the conservative case results were available up to now only for 8 < B,
any A and p = 1 (pure case). In this situation one of the central results is that
the spectral gap of the generator of the dynamicsin a box of side L and centered
at the origin scales like L=2. Such a result was a key input for the study of the
hydrodynamical limit of the model and for the proof of the power law relaxation
to equilibrium of local functions. We refer the reader to the basic references[LY],
[Y1, [VY], [JLQY] and, more recently, [CM2]. Actualy the technique developed
in [CM2] can be adapted to extend the above result also to the case 8 < 8. and
arbitrary p, the only difficulty coming from the lack of translation invariance (see
appendix below for adiscussion of thisissuewhen p < p.).

An interesting problem is whether the diffusive scaling of the spectral gap is
affected when B crosses from below the critical value 8. with either p < p. or
p > pe, Since aso for the Kawasaki dynamics the relaxation time of an isolated
(that is with fixed number of particles) cubic cluster of side ! may scale like e
depending on the number of particles (see [CCM]). Let us examine the simpler
case p < p.. Inthe non conservative caseiit is clear that the leading contribution
to the relaxation time of alocal function is the largest among the relaxation times
of the (finite) clustersthat touch its support, simply because the Glauber dynamics
factorizes over the clusters. In the conservative case this is no longer true due to
the conservation of the number of particles and to the fact that different clusters
exchange particles. In particular, even if agiven cluster has alarge relaxation time
when its number of particlesis kept fixed, its contribution to the global relaxation
time could be not so large due to the fact that it is able to exchange particles with
its complement. Moreover, when p < p., with large probability the largest cluster
inabox A of side L and centered at the origin has volume smaller than ¢ log L so

1
that its relaxation time, with its number of particlesfixed, issmaller than ¢ (109L)2
(see theorem 5.1 below). In order to clarify what we have in mind, let usimagine
now that only one cluster, denoted by C, is present and that the number of particles
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isfixedin A. Sinceit is clear that in order to reach equilibrium the particles must
diffuse through the whole box A, at least in this extreme case we cannot expect a
global relaxation time smaller than L2 (the relaxation time of the simple exclusion
in the complement of C). Thus, in this non realistic case, the worst (with respect
to the choice of the number of particles) relaxation time for the cluster is much
smaller than the expected global relaxation time, contrary to what happens in the
non conservative case. One could push the analysis a little bit further and show
that the diffusion of the particlesis really the dominant effect. Clearly, in order to
extend the above picture to the more realistic case in which clusters on all scales
below k log L appear, one has to show that the presence of several clusters does not
produce a cooperative effect that eventually leads to a relaxation slower than the
diffusiveone L2. Thisisactually the case and its proof isthe main goal of thiswork
(see theorems 2.1, 2.2). Although we have worked out only the non percolative
regime, we think that one could also cover the percolative case for suitable values
of B between 8. and 8*(p). In conclusion, at least for this aspect of the problem,
the conservative dynamics does not show any dynamical phasetransition asthenon
conservative one.

Beforebriefly discussing our approach to the proof of themain result acomment
on the “neglected” parameter 2 or its canonical counterpart the particle density o
isin order. It is clear that, when p > p., dow relaxation to equilibrium related
to the phenomenon of phase segregation can occur only when the particle density
isin acertain range. In particular, for very low values of p depending on g, the
relaxation time should scale like L2 even when 8 > S*(p). Unfortunately all the
existing technologies to prove such a scaling law require good mixing properties
of the grand canonical Gibbs measure uniformly in the chemical potential and the
problem of removing such an obstruction, related to the dynamics of anomalous
fluctuations of the density profile, does not seem to be an easy one.

We conclude with a short discussion of our approach to the problem. Asin the
basic reference for the non conservative dynamics [CMM1], we first prove that,
given p < p.,0 < e « landabox A of side L centered at the origin, with high
probability the configuration of the random couplingsis such that in any sub-box
of A of sidel € [L€, L] the system has certain homogeneity propertiesthat makeit
quite indistiguishable from a usual, translation invariant high temperature lattice-
gas. We can then apply the techniques developed in [CM 1], [CM2] to get that

-1
gap(A)L? > [k + L™ gap(A, LE)‘l]

where gap(A, L¢) isthe largest among the spectral gapsin sub-boxes of A of side
L€ and k, o are suitable positive constants independent of €. We then show that,
if the largest cluster in A has size O (log(L)) then gap(A, L)1 < L1% and the
sought bound follows.

2. Notation and results

In this section we first define the setting in which we will work (spin model, Gibbs
measure, dynamics), and then state the main theorem of this work.
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2.1. The lattice and the configuration space

The lattice. We consider the d dimensional lattice Z¢ with sites x = (x1, ..., xq)
and norms

d 1/p
= P >1 and = = max il
lx[p (Z |x;] ) P> Il = lloo = x|

The associated distance functions are denoted by d,, (-, -) and d(-, ). By Q; we
denote the cube of al x = (x1,...,x4) € Z¢ suchthat x; € {0,..., L — 1}. If
x €74, Q1 (x) standsfor Q; +x. Wealsolet B; betheball (w.r.td(-, -)) of radius
L centered at the origin,i.e. B = Q2r11((—L, ..., —L)). If A isafinite subset
of 7¢ wewrite A cc 7¢. Thecardinality of A isdenoted by |A|. F isthe set of all
nonempty finite subsets of Z<. [x, y] is the closed segment with endpoints x and
y. The bonds of Z¢ arethose e = [x, y] with x, y nearest neighborsin 7¢. By an
abuse of notation we will still denote by Z¢ the associated graph. F isthe set of all
nonempty finite subgraphs of the graph Z¢. Given A ¢ [ wewrite A, and A for
the set of vertices and the set of bonds of A respectively. On the other hand, given
A inF, wewill alwaysidentify A with the unique element A of FF with verticesthe
sitesof A and bonds the set of all bonds of Z¢ such that both endpoints arein A.
Given A c 79 we define its interior and exterior boundaries as respectively,
={xeA:dx, A <1}anddtA ={x € A°: d(x, A) < 1}, and more
generally we define the boundaries of widthn as9, A = {x € A : d(x, A°) < n},
05 A ={xe A dx, A) <n}.

For a fixed small positive number ¢ € (0, 1) we define %} be the class of
parallelepipeds inside O with sides parallel to the coordinate axes, longest side
greater than L and ratio between the shortest and the longest side greater than ¢,
Z (1) be the class of all those parallelepipedsin #; such that the longest side is
smaller than [, and .9_22(1) the class of all parallelepipeds in % (1) such that the
shortest sideis greater than L€.

The configuration space. Our configuration space is Q = SZ' where S = {0, 1},
or Qy = SV for some V c 7¢. The single spin space S is endowed with the
discrete topology and €2 with the corresponding product topology. Given o € Q
and A ¢ 7¢ wedenoteby o the natural projection over Q4. If U, V aredigoint,
oy ty istheconfiguration on U U V which isequa to o on U and t on V. Given
V e [F we define the number of particles Ny : Q = NasNy(o) =) .y o(x)
while the density isgiven by py = Ny/|V]|.

If fisafunction on Q, A, denotes the smallest subset of Z¢ such that f (o)
depends only on oa . f iscalled local if Ay isfinite. 7 5 stands for the o —al-
gebra generated by the set of projections {r,}, x € A, from Q to {0, 1}, where
7y o o(x). When A =79 weset # = F ;4 and F coincides with the Borel
o —algebraon 2 with respect to thetopol ogy introduced above. By || f || .o Wemean
the supremum norm of f. The gradient of afunction f is defined as

(Vi )(o) = f(o¥) — f(o)
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whereo”* € Q isthe configuration obtained from o, by flipping the spin at the site
x. Finaly Osc(f) = sup,, | f (o) — f(n)l.

2.2. ThediluteIsing lattice-gas

We consider an abstract probability space (©, 4, P) and a set of i.i.d. rea vaued
random variables indexed by the bonds of 74, J = {Jxy}[x,y)eze- E() stands for
the expectation with respect to P. We assume that the couplings J,, take only two
values, B > 0 and 0, with probability p and 1 — p respectively.

Given adisorder configuration we declare abond [x, y] open if J, = 8 and
closed otherwise. We denote by C, the cluster of the site x, namely the set of all
sites in Z¢ which are connected to x by a path of open bonds, and by €, the con-
nected subgraph of Z¢ whose vertices are the sitesin C,, and whose bonds are the
open bonds with endpointsin C,. Notice that éx = {x} if al the bonds with x as
one endpoint are closed.

Given a disorder configuration J, for each o € Q and A € [ the Hamiltonian
or energy function of the particle configuration o in the graph A is given by

H{(o)=— > Jy@o(x)—D2o(y)—1
[x.y]eAp

Given acollection of real numbers i = {A,}, .z« that in the sequel will be referred
to as generalized chemical potential, we define H/(’A(a) as

H{*0) = H{(0) = Y ho()

xelhy
Finally, given t € @, welet
HY Moy = H{*(0) = Y JyQRo@) - D(@2e(y) — 1)
S,

and 7 is called the boundary condition.
For each A € [F and t € Q the (finite volume) grand canonica conditional
Gibbs measure on (2, &), isgiven by

-1
s ) = { (zj\’”&) exp[—Hf\’J'A(a)] if o (x) = r(x) foral x € A¢
0

otherwise.
(2.1

where ZZ’ "2 isthe proper normalization factor called partition function.

Warning. Inmost notation wewill drop the superscript J if that does not generate
confusion and the superscript A if A = 0. Moreover, for any A c Z¢ we will al-
wayswrite Mf\’A instead of the more precise notation ,u?\’l. Finally, if the couplings
Jxy are constant and equal to g for all [x, y] € A, and zero if either x or y are

not in A,, then we will write M’ff for the corresponding Gibbs measure. In other
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words 1 A’& is the Gibbs measure for the standard Ising model in A with inverse
temperature 8, chemical potentials A and free boundary conditions.

Wewill sometimesrefer to thismodel asthe grand canonical dilute |sing model
with parameters 8, A and p.

We finally introduce the canonical Gibbs measureson (2, %) defined as

Vi y =u5CINA=N) Ne{01... Al (2.2)

where N, isthe number of particlesin A.

2.3. Thedynamics

We consider the so-called Kawasaki dynamics in which particles (o (x) = 1) can
jump to nearest neighbor empty (o (x) = 0) locations. For o € Q, let oY be
the configuration obtained from o by exchanging the spins o (x) and o (y). Let
tyyo = oY and define (T, f)(0) = f(ty0o). Thestochastic dynamics wewant to
study is determined by the Markov generators L 5, A a connected finite subgraph
of ¢, defined by

(Laf)@)= Y @) (Viyf)o) 0eQ, f:QmR (23

[x.y]eAs

where V;, = T, — 1. The nonnegative real quantities c,, (o) are the transition
rates for the process.
The general assumptions on the transition rates are

(1) Finiterange. ¢,y (o) depends only on the spinso (z) withd({x, y},z) <r
(2) Detailed balance. For adl o € Q and [x, y] € 74

exp [— H{X,y}(o)] Cry(0) = eXp [— H{x,y}(o’xy)] ny(UX'v) (2.9

(3) Positivity and boundedness. There exist positive real numbers ¢, (8) ca(B8)
such that

cm <cxy(o)<cym Vx,ye 7%, 0 Q. (2.5)

We denote by L} , the operator L, acting on L2(Q, VT A.n) (this amounts to fix
equal to 7 the conflguratlon outside A, and N as the number of particles). As-
sumptions (1) (2) and (3) guarantee that there exists a unique Markov process
whose generator is L7, ,, and whose semigroup we denote by (7,*"%),-0. LY
is a bounded operator on L3(Q, v} ) and v}  isits unique invariant measure.
Moreover ”A v isreversible with respect to the process, i.e. L},  is self-adjoint
on L3(, v ).

A fundamental quantity associated with the dynamics of areversible systemis
the gap of the generator, i.e.

gap(L} y) =inf spec(—L} y|1h)
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where 1+ isthe subspace of L2($2, v} ) orthogonal to the constant functions. We
let & be the Dirichlet form associated with the generator L},

1

SanF D= —Lin D@ =5 2 Vha|en (Voh?] (@8
[x,yleAp

and Var},  isthe variance relative to the probability measure v} . The gap can
also be characterized as
&N )

LT = inf —_ 2.7
gep(Lan) fer2@y ), Vary y(f) @7

vary,  (/)#0

2.4. Main results

Wearefinaly in aposition to formulate the main results of this paper on the spectral
gap of the generator of Kawasaki dynamicsin afinite volume.

Let p. denote the critical percolation for independent bond percolation in 74
(seeeq. [Gri]).

Theorem 2.1. Assume p < p.. Then there existsa set ©g C ® with P(Qg) = 1
and two positive constants c1, ¢ such that for any J € ®¢ and any L large enough

L™ < Mingap(L, ) = MXGP(LY, ) = L2 (2.8)

A nice consequence of the above estimate is an inverse polynomial bound on the
time decay to equilibriumin Lz(dvf\’N) of local observables.

Theorem 2.2. Assume p < p.. Then there exists a set ®g C © with P(©g) = 1
such that, for any J € ®q, any § € (0, 1) and any local function f with0 € Ay
there exists a positive constant C s s independent of J such that for any integer
N e€{1,...,(2L)?} and provided that L and r are taken large enough

Varf\,N (etLR-N f) <Cygs

Here A ;= By anda = % ind =1,a = 1for d > 1. Furthermore there exists a
positive constant C 7,5 such that for all L and all ¢

T 1
L
E(Vary y ("3 f)) = Cros = (2.10)
Remark. An analogous result was proved in [CM2] for trandlation invariant inter-

action under a suitable mixing condition. In this case the expected decay is t_%,
exactly asfor the ssimple exclusion [BZ], at least for functions f that have non zero
grand canonical covariance with the number of particles. Werefer to [JLQY] where
avery sharp result of this kind for the zero-range process is obtained. Notice that
the power « that appearsin our bound coincides with % in one and two dimensions
but not in higher dimensions. In the disordered case and in view of theorem 2.1, we
conjecture that the decay to equilibrium is qualitatively not different from that in
the high temperature or non interacting case but we do not have any lower bound
to support it.

prms, (29
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3. Simplelarge deviationsfor independent bond percolation

In this section we prove some very simple large deviations results for independent
bond percolation below the percolation threshold that will allow usto prove some
sort of homogenization property of the dilute Ising model at large scale. The expert
reader may skip the section and just look at the final result given in Corollary 3.2.

Given an integer n, let f be area function on the set of al finite connected
subgraphs of Z¢ which is trandation invariant, that is f(A) = f(A + x) for all
x € 7¢ and for all finite connected subgraph A, and such that | f(A)| < |A,|"
where A, is the set of vertices of the graph A. Let, for afixed finite set A and a
given disorder configuration J,

1 A
(Pas = BA(eD) 3.1

xeA

and let f := [E(f(Co)) provided that E(|Co|") < oo.

Proposition 3.1. Assume p < p. and let ¢g = m where n is the integer
governing thegrowth of 1. Let A be a parallelepiped with ratio between the short-
est and longest side greater than €. Then for any € € (0, ) there exist constants
0<8§=468(n,p,e) <1, m=mi(p)>0andmy = ma(p,n) > 0 such that

a) P (SUPICXI > v) < |Ale™™, Vv=0

XeA
by P((fias — F12 A7) < eIl
Proof. Part a) follows immediately from the exponential tail of the cluster size
distribution below p, (see e.g. [Gri]).

To prove part b) wefirst observethat, because of part a), f iswell defined. Next,

i = _ _ 1-c[2d(r+D)+]
givene € (0, €), letly = A%, I = | AP+ D+2€ where s = Ld((}jjl)’j .

Let also ©; betheeventthat | (f)a.; — f| = |A|~€ and ©; be the event that
SUP,cp |Cx| < 11. Then we write
P(®1) < P(©O1N O + P(O3) 3.2
The term P(®5) is bounded from above by
P(©%) < [Ale™"h < ¢~m2lAP (3.3)

because of a).

In order to estimate the first term in the r.h.s. of (3.2), consider the maximal
collection of cubes {Qy} in A such that: i) dist(Qq, Q) = 2I1 for o # g and ii)
|0yl = lg. Let N be the number of such cubes. Clearly |A \ Uy Qg < C’%|A|
for a suitable constant C’ so that |A| > ng > |A|(1 - C/f—;). Therefore, if
SupxeA |Cx| =< ll

+ C//

_ 1
[(Fag —fl< PN ;sa

|A|2€
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for asuitable constant C”, where &, = 3 «eo. [f(Cy) — f1. Thus, if [A] islarge
CxCQu
enough, we get that

for any positive ¢, because of the exponential Chebyshev inequality and the fact
that the random variables {£,} arei.i.d.
We now chooset =

=

P(®1NB7) < P(

Py and observe that with this choice

F(e26e) < 2VerPEED

Let us estimate the second moment of &, .

We denoteby .7, the set of all connected subgraphsof Z¢ that contain x. Clear-
ly P({Cy = A}N{Cy = B}) = P(Cy = A)P(Cy, = B)fordl A € o/, B € o,
such that there is no edge with one endpoint in A and the other in B.

With these notations we write

EED = Y. Y. > f(A)fB

x’yeQa Aed/x Besdy
ACQua BCQq

x [P{C, = A} N {C, = B)) — P(C, = A)P(C, = B)]
< D0 D0 D If@IIfBIx(disA, B) < 1)

x’yeQa Aed/x Bedy
ACQa BCQq

x [P(Cy = A} N (Cy = BY + P(C; = AP(Cy = B)]
< Y EQfCOlIf (€I x(dS(Cy, Cy) < 1)

x,y€Qq

+ Y D IFAIPCr = AE(F(Cy)lx (dist(A, Cy) < 1))

x.y€Qu A<
o
< kol4

for asuitable positive constant k2, because as we are below the percolation thresh-
old E(f(Co)*) < oo and P(x < x') < e~ m40x) 'wherem = m(p) isapositive
constant and x <> x’ meansthat x and x” are connected by a path of open bonds
(see [Gri]). Thus, with the above choice of ¢ and §,

rhs. of (34) < e [IAT —kar’JIAl < p=m3IAL

for a suitable constant m’, provided that |A| is large enough. Putting together the
above estimate and (3.3) the proof is concluded. |

Here is a simple consequence of the above large deviation results.

Given ¢ € (0,¢p), aninteger L and N real, trandation invariant functions
{3}, ontheset of all finiteconnected subgraphsof of Z¢ suchthat max; < | f; (A)|
< |A,|*forany A, letusconsider theevent © (e, M, N, L) = Urea; Or(e, M, N,
L) where
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Or(e, M, N, L) = {suplcx| > MlogL } U {prm" > M|R|}

XER "§4xeR

Upr|<ﬁ>R,J—ﬁ|z|R|—e}

i<N
Then

Corollary 3.2. Assume p < p.. There exists M such that for anya < oo Y 72,
SUpy <« P(O(e, M, N, L)) < +o00.

Proof. Itfollowsat oncefromproposition3.1 appliedtoeach f; andtothefunctions
gn(A) = |Ay|",n = 1,..., 4 and the fact that the cardinality of % is bounded
from above by L%, O

4. Preliminary results

In this section we collect several preliminary results that are essential in order to
prove that, with large probability, the spectral gap of the Kawasaki dynamics for
the dilute Ising model below p., on all scales between L€ to L can be bounded
from below by exactly the same methods employed in the high temperature region.
More precisely we will formulate three conditions on the disorder configuration
in the cube Q; which will ensure that, if satisfied, the corresponding dilute Ising
model shares all the relevant (for our purposes) features of the high temperature
standard Ising model. Moreover our conditionswill be meaningful in the sense that
the probability of not being all verified simultaneously will be summablein L.
Leteg = Wlu and let us fix a small positive number € € (0, €g) and alarge
positive number M. Forany A C Z4, any integer N € {1,2, ..., |A|}, any bound-
ary condition t € € and any disorder configuration J let adlso A = A(A, N, 7, J)

be the (unique) constant chemical potential such that ui’”(NA) = N and let

%o = *o(A, N) be such that E(|Col 15" (Ne,)) = i, that is the particle den-
0

sity of the cluster of the origin averaged on the disorder is equal to N/|A|. The

existence and uniqueness of the chemical potential 2 is proved in the appendix

of [CM1], for 1g a similar reasoning can be applied. Then our conditions read as

follows.
Assumption 1. For any R € %

max |Cy| <M logL and max C.|"<MIR
max |Cy| < M log ,54;'“ < MIR|
X

Assumption 2. Let i, = e~ V*H o (x). Then, for any R € %5,

sp sup "Nk, Y he) — IRIE (|Co|—1u‘§j°(zvc0, > lm)

T Nele|R|,(1—¢€)|R]] XeR xeCo

< |RI*€



508 N. Cancrini, F. Martinelli

Smilarily for A, ;= e~ V*H (1 — o (x)) and /1, = o (x).
Assumption 3. Forany R € %}

sup Sup |AM(R,N,7,J) —2o(R, N)| < |R|"¢
T Nele|RI.(1-)|RI]

Definition. The set of disorder configurations J that satisfy assumptions 1, 2 and
3 will be denoted by ©go0q (L, M, €).

Thanksto Corollary 3.2 we have the following result.
Proposition 4.1. Assume p < p.. Then

(i) thereexists M suchthatfor anye € (0, €0) Y 77 1 P(Og00a (L, M, €)°) < 00.
In particular, for any large enough M and any ¢ < (0, €g)
(i) there exists a set ®g C ©® such that P(®g) = 1 and for any J € ®g there
exists L(J) suchthat J € ©gp0q(L, M, €) for any L > L(J);
(iii) thereexistsy = y(M) > O, limy;_ 100 Y (M) = 400, such that P(L(J) >
=177,

Proof. Once point (i) of the proposition is established point (i{) is nothing but the
standard Borel Cantelli lemma.

To analyze the convergence of the series ) ", P(@go0q (L, M, €)) wefirst ob-
serve that, thanks to proposition 3.1, the probability that assumption 1 is violated
can be bounded from above by ¢ |#¢ | (L= + e=m2eLY™) (wherem isapositive
constant depending on p and n and we used |R| > (eL€)?). In order to compute
the probability that assumption 2 isviolated in R € ¢ we define for any A e F
the function fi (A) = [Al" "N (N, 3 ca ho) fOr N € [€]RI, (1— )R],
similarly we define £y (A) and fy (A) whenwe have i or i. With this notation and
using the fact that RJ %0 s the product measure over the clusters in R, we can

write
rfxo(zv)< Zh >—|R|[E 1Col 1 /3)»0 Nc,, th
XER xeCo

Z TCﬂmARO(NC“ Z h )

D€ —H|+

X€ER vaaeklf;#w yeCy
<Y (fC) = H|+CL sup|Cf?
xeR XE€R

for asuitable constant C = C(d, B). We have used here the fact that any R € %
has surface smaller than C”/L9~1. A similar computation holdsfor fy and fy. We
can at this point use proposition 3.1 and the fact that |R| > (¢L¢)? to conclude
that the probability that assumption 2 is violated can be bounded from above by
C | | |R| e~ m2el)™
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We are left with the analysis of the last assumption.

Letusfix R € % . Without lossof generality wecan assumethat Sup, .z [Cx| <
Mlog L for some large, fixed M, and that, for any N € [¢|R]|, (1 — €)|R]],
|,u;’k°(N)(NR) — N| < |R|¥¢, since the probability of the complement can be
bounded from above by ¢ |R| 29" pecause of the previous reasoning.

Under this condition it isrelatively simple to bound from above the difference
IM(R, N, 7,J) — A(R, N)|. We have

/O ds " (Nk. Ng) (M(R. N, 7. J) = Ao(R. N)) | = ‘/ ds —MR*%N )‘

= oM Ve - N |

< |RI*€

where Ay, = sA(R N,t,J)+ (1 - s)Ao(R N). Using proposition 4.2 below,
We have that [LR °(NR, Ng) > Cu; S(Ng) > C’|R| for some fixed constant
=C'(¢)andany N € [¢|R|, (1 — €)|R]]. Thus

1
IAM(R,N,7,J) —2o(R, N)| < alleE

Using the fact that the cardinality of % is bounded from above by L% point (i)
follows provided that M istaken big enough.
We are left with the proof of point (iii). By the definition of L(J)

P(L(J) > 1) < P(Ogo0all, M, €)°)

proceeding as for point (ii) the result follows. |

4.1. Bounds on various covariances

Herewe report, for completeness, some results which follow immediately from the
factorization property of the grand canonical measure over the clusters, since they
enter at various levelsin the analysis of the Kawasaki dynamicsfor the dilute Ising
model.

Thesettingisasfollows. Let A = U; A; wheretheatoms Ay, ..., Ay arepair-
wise digjoint, the chemical potential A be constant on each atom of the partition
and p; = uy*(Na,)/IA].

Thenforeachset V € A andn € N we define

Vii=VNA; Vi=UeyC, and V® = Z IC,NVI" (41)

xeV

and say that asubset V ¢ A isgoodif V C A; forsomei =1,...,k,.
The following proposition holds for any disorder configuration J.
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Proposition 4.2. There exists a constant ¢ depending only on g such that for any
bounded local function f with support Ay C A

A .

a) | (Ne,av,. Ne,avy)| < e min{p;, pj} ICx N VilICx N V|
ey _

b) (NG ) = ¢t pilCon V|
A 1

) HRHNY) <cp VP

d)  pHNE) = o Vil 42

o) |uiE(f Ny

1
< cllfllee min{pi|Afmv,-|, (p,.(gfm/i)u))Z}

\/ 2
H ) <e max{ (pi Vl_(l)> (i Vl_(s))}

8)

HRECE Ny Ny = el fllo pilA g 0 V2

h)

Ao 2
WA = epv?
4.2. Equivalence of ensembles

Herewerecall some fine results on the finite volume comparison of ensemblesthat
will be crucial in most of our future arguments. We refer the reader to sections 6
and 7.2 of [CM1].

Let A be aparalelepiped in the class 9_?2 whose longest side is say along the
d direction and is L. Take L1, . .., Li such that Z’;zl Li=LgandL; > eLy
forany j =1,..., k. Wethentake A; = {x € A . L;_1 < x4 < L;} with
Lo = 0, which are elements of % . Letadso N := {N,-}f.‘:1 be a set of possible
values of Np := {Ny, }f.‘zl and let p; = % Given aboundary condition t and a
disorder configuration J, there exists a unique choice of the the chemical potential
A, constant on each A;, i = 1, ..., k, such that MRA(NA,.) =N;, i=1...,k
(see the appendix in [CM1]).

We denote by = uf\’A the grand canonical Gibbs measureand by v := v

the multi canonical Gibbs measure MZ’A(- INA, = N;) and by 2; the set of config-
urations ¢’ that coincide with 7 in the half space {x € 7¢ : x; < Ly}, where Ly is
largest among the d-coordinates of the sitesin A.

Proposition 4.3. In the above setting assume J € 004 (L, M, €). Then there
existsconstants C = C(M, ¢) and Lo = Lo(M, €) suchthat, if L > Lg

(a) for all bounded local functions f withsupport A » C A satisfying|A ¢| (M log
L)* < |A| otherwise

A®
T if A isgood
W(f) =Nl = Cllflloo

|A 7| (MlogL)*

AT otherwise
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(b) for all local functions f with support A C 3~ A,_1 N 3T A,, n <k,

T'€Qy

, ) MlogL)*  (MlogL)k+2="
sup [v*(f) —v" (f)] = C'Osc(f) [( Ldg ) + (LZ+1gn2d1)/2i|

where A? has been defined in (4.1).
Proof. Seetheorem 6.4 and proposition 7.4 in [CM1]. O

Remark. Actualy the first part of proposition 4.3 holds in a much more general
context (see section 6 in [CM1]).

Proposition 4.4. In the same setting assume J € Ogp0q (L, M, €). Let f be such
that |A; \ Ay| > €|Aj| forany j = 1,...k. Then there exists a constant A =
A(M, ¢) such that

v([f) = AndfD

In particular
v(fo f) = Audf. f)

Proof. Theproof isidentical to that of proposition 3.3in[CM 2] if we observethat,
see[CM1], forany J € Ogp0a (L, M, €)

A iz-iNA. 2
HMX (6‘ J v J |tO/7Af> f e*O(Zj tj
for asuitable constant « := «(e, M), where vjz_ = MXA(NA_,» Na ). O

4.3. Ablock dynamics bound

Here we give aresult that is a key step in our recursive bound of the spectral gap
of Kawasaki dynamics. For simplicity we discuss our estimate in two dimensions
only (see however remark at the end of section 3.3in[CM1] for its generalization
to higher dimensions).

Let A be an element of @;. Without loss of generality we can assume that

A={(X1,xz)622; O0<x1<h-1, 05)62512—1}, h=<l

Let A1 = {(x1,x2) € A; 0 <x2 < (5426) I2}, Ao = {(x1,%2) € A; (3+€)l2 <
x2 <lp},andlet A3 = A1 N Ap. Clearly A; € ,@i, i=1223

Letfinally N; be possiblevaluesof thenumber of particlesin A;,i = 1, 2, 3,and
let VAN be the multi canonical Gibbs measure u} (- | Na; = Ni, i = 1,...,3).
Then we have
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Proposition 4.5. Assume J € Og,0q(M, €, L). Then, for any y > 0 there exist
Lo = Lo(e, M, y) suchthat, if L > Lo,

Vin () = @iy (Varh, y, () + Varh, , ()

where Var,, \ (f), i = 1,2, denotes the variance of f wr.t. the multicanonical
measure on A; with N; particles, N3 of which arein A3, and boundary condition
nonatA;.

Proof. Thanksto proposition 4.3 the proof isidentical to that of proposition 3.4 of
[CM2].

4.4. On thedistribution of the particle number

Here we provide some simple results on the distribution of the particle numbers
in the atoms of a partition of agiven set A. Throughout this subsection the setting
will beasfollows.

Let,fori =1,...,k,A; € Z; beparwisedigointandlet A = U; A;. Assume
that also A belongsto #5. Let also N = {N,»}f.‘:1 be a set of possible values of
Np = {NAi}fle. Given a boundary condition t, let A be the chemical potential,
constant on each atom, such that /,LX&(N A) = N (see appendix of [CM1] for the
existence of 1). Then we have (see Corollary 6.3 in [CM1])

Proposition 4.6. Assume J € ©gp0a(M, €, L) and let v? = MXA(NAI.,NA,.).
Then

11 < uH(Np =Ny < ¢
C'Tliv — "4 - ILw

for a suitable constant C' = C'(M, €) > 1.

The next result concerns the way particles distribute inside one block of the parti-
tion.

Pick j € [1,..., k] and divide A ; into two digjoint subsets V, W that we as-
sume to be also elements of % . Denote by N* the average number of particlesin

V according to MZ’& andlet y (n) = vy y(Ny = n).

Theorem 4.7. AssumeJ € ©g004(M, €, L). Thenthereexistsco = co(M, €) such
that for all f : Q4 +— R that depend only on Ny (o) the following Poincaré
inequality holds

Vi (f ) < comin(N*, [V = N*} 3y @) Ay + DI f(n + 1) — f(m)]?

Proof. Again, thanks to the fact that J € ®g40q4(M, €, L) and using proposition
4.2, the proof isidentical to that of theorem 4.4 in [CM2]. ]
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4.5. Akey bound on special covariances

The setting isthe following. Wefix e € (0,1) and! € [L€, L]. We then consider a
volume A € %5 (1) suchthat A = U*_; A;, where A; € %5 (1) and |A;|/|A] > €
fori =1,... k. LetN := {N;}*_, beaset of possiblevaluesof N, := {Ny,}*_;.
Letasoh, := e~ V"o (x) and hy = e Vel (1— o (x)) andtekee’ = d—zbe, where
b isdefined in proposition 5.2 and d is the dimension.

Lemma4.8. Assume J € Ogpoa(M, €', L). Then for any § > O there exist a
positive constant C and Lo(M, €', §) > 0 such that

2

1 A cr?
VJT\,N [ E hyh: f_VIT\,N E sz(vxzf)z
IAIA,] — Al W5
XEN; X,Z]E(a(A
ze/\j
+ ) Var® (f)
A] AN

provided that L > Lo.

Proof. Fix § > 0. Due to lemma A.1 we can assume, without loss of generality,
that v, N(h ) = 0, Vx € A. For notation simplicity define G := |A ‘ er/\ .

H = W ZZGA‘/_ h,. Let Aj(z) be the support of h, and write # = A" +

where " is the sum over those z’sin A ; such that A;(z) C A; and #®¢ the
rest. Then, using the formularelating the covariance of two functions f and g w.r.t.
the measure v} \ to the covariance w.r.t. the same measure conditioned to a sub
o-agebra, we get
2
1

Vi L ——— Y heh | =i N(f GH)?
an | |AA|A,~|§ o antf

zEA_,-

< 2| %2, Var, \(G) Vary (f)

+a4 M2 v; N <[VZ,N (ff Gl 971\?)]2)

+4[vin (£ vin (wa ) %‘”)]2
|i| |:C/<|a A l) 2:|VarAN(f)

A
( Cxz(Vaz f)z

IAI

6{1\

+4[UAN (f, VAN G|JA6> W'n)]z (4.3)



514 N. Cancrini, F. Martinelli

provided that L is big enough. To obtain (4.3) we used the hypothesis ‘llz\\_ll > €

together with lemma A.1 to bound the term [v} \(f. G | 9",\'9)]2 and proposition
4.4 andthefact that J € ©g4p0a(M, €', L) to get

A
1 Vary = (3, hy) "
Var, \(G) < C Vary*(G) = TNE > A Xyecion 'ty < (44
eA

|Cx N A A
The third term in the r.h.s of (4.3) can be bounded from above by

2 .
[vin(G 17 50| varh y (™ varg () (45)

In turn, the second factor in the r.h.s. of (4.5), using asin (4.4) in proposition 4.4
and the hypothesis J € ©,0q4(M, €', L), is bounded from above by 5\_1| The
first factor in the r.h.s. of (4.5), thanks to the hypothesis v} \(hy) = 0Vx € A,
(a simple telescopic argument, part 1) of proposition 4.3 and assumption J €
O(M, €, A), isbounded from above by

4 i
T GQain | XEA;

2
1 , 19+ A7
1

In conclusion, for any § > 0, the first and third term in the r.h.s of (4.3) can be
bounded from above by % Var} (/) provided that L islarge enough. The proof
is complete. O

5. A general lower bound on the spectral gap in a finite subgraph

In this section we obtain arough lower bound for the spectral gap of the dynamics
in a finite subgraph A of Z¢ which depends on the size of A and on the size of
the largest cluster inside A. As acorollary we get thet, if J € ®4404(M, €, L) and
A e #7 , thespectral gapin A isnot smaller than |A|~? for asuitable b independent
of e.

Theorem 5.1. Let A beafinite subgraph of Z¢ andlet I'y (A) = MmaXyea, |Cx N

A|% . Then there exist a positive constant ¢, depending only on J and on d, and
anumerical constant &« > 8 such that

gap(Ly o)t < [Ay¥ exp(cTy(A) VN, T

Corollary 5.2. Let A € 5 andassume J € Og,q(M, €, L). Then there exists a
positive numerical constant » > 8, independent of L, such that

gap(Ly )"t < AP VN, T

Proof. It follows immediately from theorem 5.1 and the fact that max,cp |Cx| <
MlogL forany J € Ogp0a(M, €, L).
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Proof of Theorem 5.1. The proof is divided into two distinct parts. In the first step
we show that there exists a positive constant ¢, depending only on sup,, [/xy| and
d, such that for any finite subgraph A, any T and any N

gap(L} y) "t < exp (c|A|%) (5.1)

Then, using a suitable inductive procedure, we improve (5.1) to the sought bound
intermsof I';(A).

Sep 1. Let us therefore start by proving (5.1). We first remark that such a general
bound on the spectral gap has been proved in great generality for non conservative
Glauber type dynamics (see [CMM] and [M]) and for Kawasaki dynamics when
the graph A isacubein Z¢ [CCM]. The general scheme of proof is the same for
Glauber and Kawasaki dynamics and it goes as follows. Pick agraph A C F and
divide it into two disjoint subgraphs V and W in such away that

i) they both have volume (i.e. number of vertices) of the order of %|Av l;
ii) the number of edges with one endpoint in V and the other in W is not larger
than |A|“T .
A little geometric argument shows that such a partition always exists (see proposi-
tion A1.1in [CMM]). Then one proves that

gap(L] y) " = ep (AT ) [s'vuogapwv,n)—1 v wfgap(Lgm—l} (52)
T,n n,

Once (5.2) isavailable one can follow the same steps of theorem 3.8 in [M] for the
non conservative case and prove (5.1).

Thus we concentrate on the proof of (5.2).

Let A bethedisjoint union of two finite subgraphs V and W and let us consider
amodified dilute Ising model in A inwhich all (if any) the interactions between V
and W have been turned off. In other words we define a new interaction

joo— 0 ifxeV,andy e W,
Y Jyy  otherwise

and the following “dotted” quantities for the “decoupled” system
o=yt =R Li=Liy . 8L =6 )

where, as usual, A is the chemica potential such that 1 (Ny) = N. Using the
formula of the conditional variance and lemma 5.3 below we have

Var(f) = v (Vary(f [ Nv)) + Var, (0(f | Nv))
< |AIY expk Ty (A) [6(f, )+ (Vary(fINv))]  (53)

Lemma5.3. There exist a numerical constant ¢ > 8 and a positive constant
k = k(J, d) such that

Var, (0(f | Nv)) < A1 exp (kT (A) [ECf, )+ (Vars(f | Nv))]
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We postpone the proof of lemma 5.3 and conclude the proof of (5.2). Since there
is no interaction between V and W the conditional measure v(- | Ny) is a product
measure. Thus

b (Vary(f | Ny)) < [wpgap(ﬂv,n)—l % wfgap(sz,krl} E(f )
T,n n,
. d—1
sothat, sinceI"y (A) < |A| 7,

, =1 T -1 n -1 »
Vary(f) < exp(c|AlT) |:supgap(LV’n) v SIpgap(L,,) ] S )
T,n n,

(5.9
for a suitable constant ¢. All what is left is to restore the original interaction for
al x,y € A. Thisis straightforward since, because of property ii) above of the
decomposition A = V U W, there exists apositive constant k1, depending only on
J and d, such that

d-1 y d-1
e hlA T VO kAT
vf\’N(a)

Thus we can remove the “dot” in (5.4) and get (5.2) by paying a price not larger
-1
than ez"l““dT .

Proof of Lemma 5.3. Let

y(m) :=v(Ny =n), gn) :=v(f[Ny =n)

an integer}. By proposition 3.7 in [CM 2] we have

Var, (0(f [Nv)) < Cp Y y(m) Ay(n —Dlgmn) — g(n — D]?

neq

where

2 2
4% 4%
c, =4 ,
reem (,,ffﬁlg y(n)) (5”1'3; y(n))

and N isthelargest integer such that Yon<nym) < % Thanksto (1) of proposition
4.3in[CCM] -

Dy Ay —Digm) — g — D> < CIAB[E(L £)+ b Vary(f | Fv))]
ne

The result then follows if we can prove the next lemma (to be compared with
proposition 4.2 in [CCM]). O
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Lemma 5.4. Thereexist apositivenumerical constanta andaconstantc = ¢(J, d)
such that

Cy = [AI"exp(c Ty (M)

Proof. Let Ny, := j1(Ny). We begin by showing that there exists a positive con-
stant ¢’ such that for any j, n € Q with the property that either j < n < N or
j=n=>Ny
YD) o N2 |y W2 exple T (A)) (55)
y(n)
For this purpose we first remark that, by the definition of the canonical measure
and the fact that there is no interaction between vV and W, we can write

py St Ny = m) g (N = N =)
Ny =N)

y(n) =

wherethe notation b.c. in ug’f"“, X =V or X = W, means t boundary conditions
ondTX N3+ A # ¢ and free boundary conditionson 3t X N d*t A = @. Next, for

s € [0, |X]|], wedefine A x (s) asthe chemical potential such that M*;(-C-JX (Nx) =5
b.c.hx (s)

and Ix(s) := sAx(s) — log Zzg‘c—% By construction
" s

b.c.,x —I'x (s b.c,Ax(s
U (Ny = 5) = e O USEM O Ny = )

It is easy to check that

2

d d d
——Ix(s) >0, —Iw(s) =0, —Iv() =0
ds? ds S=N-NE ds =N
sothatfor j <n < Nj orj>n> Ny
Y () b.c..hy (n) b.c.,Aw (N—n) -1
o = O =iy (Nw =N =m] (56)

Thanks to proposition 3.3 in [CCM], there exists a positive constant ¢” depending
only on sup,.,, |Jxy| such that for any integer s € [0, |X]]

(5.7

b.c.i
LtE 1
Oy =)= ¢ (—gap( x ), 1)

| X] (s+2(X[-s+1

where ,SP?('C"“ isthe generator of Glauber’s dynamicson X with “heat bath” rates
(seeeg. [M]). Sincethereis no interaction between the clusters {Cy } <4 , theorem
3.8in [M] impliesthat there exists ¢’ = ¢/(J, d) > 0 such that

gap(L5EY) > exp (—¢' T (A)) (5.8)

By putting together (5.6), (5.7) and (5.8) equation (5.5) follows.
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Thanksto (5.5) we can conclude that there exists a positive numerical constant
a such that for any n < Ny,

S L < arep(e ) (5.9)

j=n

and similarly for ", ;E;n > N
Suppose now, for definiteness, that the median for y (+), N, issmaller than Ny .

Then (5.9) impliesin particular that for any n € [N + 1, N vl

. |
St = D a e (e ()

oy
Therefore
p LD apep ()
v = 7O
and
pr@ <|AI"ep(T/(A)+  sup

n=Nj=p ¥ y(n) — neQN[N+1,N3] y(n)

< 2|A|"exp (' Ty (A))
Thelemmais proved. O

Sep 2. We can now turn to the second part of the proof of our theorem.
Let

%E\,N(f’ )= % Z v[t\)N I:ny (vxyf)z]

X, YENAy

where the rates ¢y, satisfy all the assumption of section 2. In other words & is
the Dirichlet form of a conservative Markov process on Q2,, reversible w.r.t. the
canonical measure vy , in which the particles can jump between any pair of sites.

Let also Zj\ be the corresponding generator.
First we establish a Poincaré inequality of the form

Varl, y(f) < IA[Y exp(cT(A) &5 y(f. f) (5.10)

Once (5.10) is available, we get immediately the statement of the theorem with
a = 3+ a from the rough bound (see lemma 4.3 in [Y] and proposition 3.13 in
[CM2)])

5% N ) < AP N (. )

In order to prove (5.10), let {C; }f.‘zl be the clusters inside A which contain more
than one point and ordered in decreasing size. Define Vo := A, V; := A\ U{Zlc
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and write (in order to simplify the notation in what follows we drop the subscripts
A, N and the superscript 7)

Var(f) =v(Var(f |7 1) + Var(v(f | 7 1)) (5.11)

where 71 is the o-algebra generated by Nc,, the number of particles in the first
cluster.

Consider the first term in the r.h.s. of (5.11). Since by construction there is no
interaction between C1 and V1, the conditional measure v(- | N¢; = n) isaproduct
measure. Therefore, if wedefinea; = supy . ga\p(i;/’]\,)‘1 andweuse (5.1), we
have that, for some ¢ > 0, '

v(Var(f | 71)) < max{a1, exp(c T (AN} E(S, f) (5.12)

Consider now the second term in the r.h.s. of (5.11). Let 7 ¢, be the o-algebra
generated by {ny}rec, and let f1 := v(f | Z¢,). Noticethat 71 C F ¢, o that
v(f | Z1) = v(f1|Z 1) wethus have

Var(v(f | 71)) = Var(v(f1| #1)) i
< A" exp(c T (A) [6(F, f) +v(Var(fi| F1))]
(5.13)

where we used lemma 5.3 in the last inequality as there is no interaction between
C1 and V3. we can now conclude the proof of the theorem. Since f1 depends only
on the spin variablesin C1, (5.1) gives

Var(fi|Ney =m) < ep(clColT ) cyn(fi f) Vi (5.14)

It is quite easy to check, again because there is no interaction between C1 and its
complement, that & ¢, . (f1, f1) < Ecyn(f, f)- Thus

v(Var(fi| 7)) < expely(A) E(f. f) < expeT (AN E(f. /) (5.15)
Using (5.12), (5.13) and (5.15) to bound (5.11) we then obtain
ao < max{ay, [Al* exp(c Ty (A))}
We can now iterate the procedure and obtain
o <max{ot1, [A“eXp(cTy(A)} Vji=0,...,k—1

so that
ag < max{ax, |Al“ exp(c Ty (A))}
Sincethe spectral gap for the symmetric simple exclusion with long range jumpsin

the region V; is greater than |V, |1 (seelemma8.1in [Q]) we have that o < |A|
and (5.10) follows. ]



520 N. Cancrini, F. Martinelli

6. Proof of the diffusive scaling of the spectral gap

Inthis section wefinally prove our main result, namely theorem 2.1, viaarecursive
scheme combined with theorem 5.1.

6.1. Recursive analysisfromscale L to scale L€

In thisfirst paragraph we prove alower bound of the spectral gap of the generator
of the Kawasaki dynamics in the box Q; interms of the smallest spectral gap in
suboxesof QO of side L€, ¢ « 1, provided that the configuration of therandom cou-
plings J is“good” for all scales between L€ and L, namely J € Ogp0a(M, €', L)
where ¢’ = 7, d is the space dimension and b is the positive numerical costant
defined in corollary 5.2. The main tool is a recursive analysis of the behavior of
the spectral gap when the linear size of the volume under consideration is doubled,
developed in [CM 2] for the high temperature case.

For simplicity we carry out our analysisin two dimensions but the extension to
higher dimension is straightforward.

Let

g, L):==g(J.I.L,e)= min mingap(Ly") (6.1)

Rea () N.7

wheregap(L;',]N) has been defined in (2.7). Notice that necessarily I > L€ because

of the very definition of 5 .
With the above notation we will prove the following recursive bound.

Theorem 6.1. Assume J € Ogp0q(M, €', L). Thenthereexist Lo(¢’, M) and k =
k(d, B, M, €') suchthat, if L > Lo,

g, L)t < gg (é L)l +ki*> forany [e[2L¢, L]
In particular

min gap(L ! )17 = [ak 4+ L2, 1yt
Proof. The fact that

min gap(Lg, y)L? = |4k + L0052 g1, L)*l]_1
isatrivial consequence of the recursive bound.

Fix now [ € [2L€, L] and let us consider arectangle A € @2 (). Without loss
of generality A can be taken of the form

A={x=(x1,x2); 0<x1 <1,0<x2 <2}

withly < lp.1f1; < 5 thenminy - gap(L} y) = g(5, L) because of the definition
of g(l, L). Thusweassume’z <) <l.Wesetd = |el] and, given an integer
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Jj €11, Ll—clkj] we partition A into three atoms {A; }3 , as follows (we omit the
index j for simplicity)

A ={xeA; 0<x2 <I2/2+ jd)}

Ao={xeA; /24 (j—Dd <x2 <lp—1} (6.2
Az3=A1NAy
Notice that each A; belongs to % therefore, since J € ®Ogp0a(M, €', L), we are
allowed to use any of the results of section 4 for each rectangle A;,i = 1, 2, 3.
Fix now a boundary condition ¢ outside A and a number of particles N €
[O, ..., |A]]l. Wewill then usetwice the formularelating the variance of afunction

fwrt the measure v}  tothevarianceof f w.r.t. the measure v} , conditioned
toasub o-agebra 7 g

VAN (L) =iy (van (f FIZ0) + vy (VAN (FIZ0) . vh y (f | F0)
(6.3)
to write

vin (f ) =vi v Wiy (f FIZD) + vy (fL fD)
=vin (van (fs f1713)) +viy (VA y (fr3. f13171))
+vin (f1, f1) (6.4)

where 1 and 7 13 are the o-algebras generated by N, and {Nj,., Na,} re-
spectively, and f1:= v y(f|F1), fiz = vy y(f|F13). Formula (6.4) will
represent our basic starting point. We will now examine separately each termin the
r.h.s. of (6.4).

6.2. Analysisof thefirst termin ther.h.s. of (6.4)

For any small § and large enough L, the first term in the r.h.s. of (6.4) can be
bounded from above using proposition 4.5 by

van WAy (Fs f1713)) < A+8)v y (vll,Nl (fs )+ Vi, f)) (6.5)

wheretheaverageisover therandomvariablesn, Ny, and N,. Asinsection 5.1 of
[CM2], let now examine the spectral gap of the bottom rectangle A 1, the reasoning
being similar for the top one.

There are two casesto analyze:

a I < 3l In this case one easly verifiesthat A1 € %5 (4l)
b) 11> 3l Inth|scaseA1 € ,%6 but now the longest is/1 and the shortest oneis
smallerthan 2 + & < 21sincel, < 1.

Thereforeif
gd,L)y:= min mmgap( )

ReZ“L([) N,t
3 3
l1<gl lp=3!
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ther.h.s. of (6.5) issmaller than

3 -1
(1+ &) max { g <Zl’ L) , 8, L)‘l}

X[éaR,N(f,f)Jr% 3 vf\’N[cxy(nyf)z]j| (6.6)

[x.y]€6 g
uniformly in j € [1, £5].

Notice that the “spurious” term 3 37
the fact that A1 and A overlap.

T 2
vylesag VAN Exy (Vay )7] comesfrom

6.3. Analysis of the second and third termin ther.h.s. of (6.4)

Here we bound from above the second and third term in (6.4) (see section 5.2 in

[CM2]). Thenecessary stepsareidentical inboth casesand therefore, for shortness,

we treat only the third term which is (notationally speaking) also the simplest.
Let p := A, u = Lp |A1]] and assume, without loss of generdlity, that p < 3

Let also Ni = pu’*(Na,), 1" being the grand canonical measure with aver-
age particle number equal to N, and let y(n) = ”/I\,N(NAl = n). Let finaly
cn =n(JA\ A1l — N +n), that is (number of particlesin A1) x (number of holes
inA\ A1), andletc), =n(|A1] — N +n).

Then, using theorem 4.7 and corollary 3.11 of [CM2], we can write

iy (f1. f1) < coNi Y (y(m) Ay(n—1)

< [VAn (FINay=n) =vi y (fINa, =n— 1)]2
< oNE Y v Avin— D) [Am? + Bw?]  (67)

where
1ymn-1 —Vi:H _ ;
Py Z Vin [V g e M Nyy=n—1] ifn<u
XEA
A(n) _ zéle\\ll\l
- 1 aw) T —ViH, _ i
FRT T > vin[(VeeH)Ap e V" [Ny, =n]  otherwise
A
zgze\\zl\l
(6.8)
1 y(n-1) T —Vy:H _ H
=5m Z vA’N[(e "—l)lEU,f|NA1_n—l] ifn<u
xeA
B(n) _ 2216\\11\1
- 1 y(n) —VizH — i
AR > vin[(eV " = 1)1, fINs, =n] otherwise
A
zglex\kl
and

Ei,={ceQ:o(x)=1, o(z) =0}. (6.9
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Exactly asin section 5.2 of [CM2], the first term in the r.h.s. of (6.7) is bounded
from above by

C'28, NS f) (6.10)

We now turn to the estimate of the second term in the r.h.s. of (6.7). Using lemma
4.8 we get that for any § > O there exists a constant C(8, M, ') such that the
second term in ther.h.s. of (6.7) is smaller than

C2EY N(f ) +8VE y (f ) (6.11)

In conclusion, for any § > 0 there existsaconstant C” (8, M, €’) such that the third
terminther.h.s. of (6.4) issmaller than

VA v (1, f1) < C"2 85\ (f )+ 805y (f ) (6.12)

A similar bound holds for the second term in ther.h.s. of (6.4).

6.4. Therecursion completed

Wearefinally in aposition to complete the proof of theorem 6.1. If we put together
(6.12) and (6.6) we get that, for any & € (0, 1)

-1
rh.s. of (6.4) < (14 §) max { g (ZZ L) , 8, L)—l }

X[co@f\,N(f,fH% 3 vz,N[cxymyf)z]}

[x,y]eo“AS

+2C" P N (f. )+ 28V y (f. f) (6.13)

thatis

. 1435 3.\t .
UA’N (fv f) = <1——28> maxq g (ZI’L> ’g(l’ L)

X[(g’f\,N(f,f)Jr% 3 v;,N[cxywxyf)?]}

[x.)]€d A,
+ k2 &N N f) (6.14)

for asuitable constant k = k(8, M, €).

Finally we average w.r.t. to theindex j (see (6.2)) and use the observation that,
as j variesin[1, ﬁ], the strips Az := Aé’) aredigoint. In particular

3D DD DY PN A R SV

jell ] [X~y]€é”Agj>



524 N. Cancrini, F. Martinelli

s0 that
vin ()
146 3 -1 ~ - T
< [(m) (1 + [10e]) max { 8 (Zl, L) (N }+ k12:| Ean(fs )
(6.15)
In other words
gap(L} )7
146 3 -1 N -1 2
< [(m) 1+ LlOeJ)max[g(Zl,L> , 8, L) } + Kkl }
(6.16)

Notice that if the original rectangle A was chosen in the sub-class of @EL () en-
tering in the definition of g(I, L), i.e ]y < ’72 + %l, then we would have ob-
tained the inequality (6.16) with the factor max{ g(%l, L)1, g, L)1) replaced
by g(31, L)~ simply because, for any j € [1, |15 ], both A1 and A2 would

belong to 25 (31). Thus

. 1+3 3 \*
¢, L)t < <m> (14 10¢)) g (Zl’ L) + kL? (6.17)
If we combine (6.16) with (6.17) we finally get
_ 1+6\? 3\t
gap(L} )t < <m) (1+ |10¢))? g (ZL) + K12 (6.18)
for another constant k. Thus
14682 3 \1
L) < (—) @+ 110eh?g(=>LL k'1?
g, L) 5(1_23>(+L eJ)g<4, ) +
and two more iterations prove the recursive inequality of the theorem provided that
the two parameters ¢, § were chosen small enough. |

6.5. Proof of theorem 2.1

Webegin by discussingthelower bound. Let g = 1/(10d+1) andlet usfix M large
enough and 0 < e < min{log, §/1og, 8 — 2+ db, €0}, where b is the constant
definedincorollary 5.2. Letalsoe” = ;. Then by proposition 4.1 there exists aset
B C ®withP(®g) = 1suchthatforany J € ®gthereexists L(J) < oo withthe
property that J € ®go0q(L, M, €") for any L > L(J). Without loss of generality
we can assumethat L(J) islarger than some fixed large constant Lo = Lo(M, ¢€).
If we now apply theorem 6.1 we obtain

. T,J 2 (1—€)log, 22 177t
min gao(LQL’N)L > [4k+L oGy §=2 o (1€ 1) ] (6.19)
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provided that L > L(J). Thanksto corollary 5.2

g(Le, L)y~t < L (6.20)
so that
1
: T,J 2
mngap(Lo, WL 2 27
and the proof of the lower bound in theorem 2.1 is concluded. O

We now turn to the proof of the upper bound.

Letg : [0, 1]¢ > R beanon-constant smooth functionsuchthat [ dx g(¥) = 0
and, for eachinteger L andany A C Qp,let Ava(g) = Lid > ren &(7). Givenan
infinite realization of the disorder J let aso A ;1 bethe set of sitesx in Q. such
that C, = {x}. Then, by means of standard large deviations estimates, it is easy to
see that for any € > O there existsaset @, . C ® with P(©, ) = 1 such that for
any J € ©g thereexists L(J) < oo with the property that

|Ava, , (9)] <€ |Ava,, (gD — (1 - p* / dig?(@) | <e

L-e)@-p¥LY <|A;l <A+ Q- p)*L?

We are now in a position to prove the sought upper bound on the spectral gap.
Givene > 0, aredlization J € ®, . and L > L(J), we pick as test function
to insert into the variational characterization of the spectral gap of L’Q’Z v thefol-
lowing slowly varying function of the local density: f(o) = > .o, 8(3)o (x).
Thanks to the smoothness assumption on g, it is easy to check that the Dirichlet
form of f (we omitin what follows all the sub/superscripts) satisfies the bound

ECF. f) < kL 2p(1 = p) / 47 V(@)

It remainsto bound from below the canonical variance of f. Because of thelack of
tranglation invariance that is not completely trivial and we found it convenient to
localize the problem into the complement set of the clusters where the interaction
is absent. More precisely, thanks to the usual formulafor the conditional variance,
we have

Var(f) = v (Var(f | F o,\a,1))

Notice that, by the very definition of the set A, ., the conditional measure
v(-| F g,;\A, ) is simply the uniform measure on the lattice-gas configurations
in Ay, p with a(random) number of particlesn. Therefore

Var(f | ‘g;QL\AJ.L)

Saen| £ o) £ GG

XEAJ,L X#}’EA_/YL
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wherey = |A . Itisnot difficult to see that

1
v(iyL—y)) > 5)7(1 -7)

where y is the grand canonical particle density inside Ay ,. Inturmn y(1 — y) >
kp(1 — p) for a suitable small numerical constant k = «(8), where p = Lﬂd In
conclusion, thanks to our choice of ®, . and provided ¢ is taken small enough
depending on g,

Var(f) = kL4p(1 - p)(L - p)X / 4% (%)

so that _ -
S S) _ oy 2] 9% [ng(’i)'
Ver(f) [ dx g%(%)
The proof of the upper bound is complete and theorem 2.1 follows. ]

6.6. Proof of theorem 2.2

Let the constants M, ¢, ¢/ as well as the set ®¢ and the constant L(J) be asin
the proof of theorem 2.1. Fix J € ®g, L > 2L(J) andtake A = Q. Let dso
f be an arbitrary local function such that 0 € Ay. Denote by E, the spectréal
projection associated to the interval [0, 1] for the self-adjoint operator —L7 ,, on
L2(S2,, dvy ). Asusua we omit the superscript J in our notation. Assume that

Vi y(f) = 0. Then we will prove that for any § € (0, 55) there exist Cr,5 inde-
pendent of A, N, J such that

IE»flI5 < Crsa®™® (6.21)

where || - ||2 denote the L2($2,, dvy y)-norm and o = a(d) is as in the theo-

rem, provided that L > 2,~1 > 2L(J)%. It is clear that once such an estimate is
available then

ethNf‘ Ze /‘E/+1f Ef‘

52 ¢ G+D"

Jj=0

;1
=Crsas

if L >2r>2L(J)5. Ifinstead t < L(J)5 thenwebound |5~ £(12 by || £[1Z.
In particular (2.9) follows at once. Moreover, because of (iii) of proposition 4.1,
Pt < L()%) < t~'7 wherey = y(M) is such that limy_ 0 y (M) = +00.
Thus, if M was chosen large enough, we can safely average over the disorder J
and get (2.10).
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Let us prove (6.21). For any [ € [L(J), L] let #; 1= F 5\p, and let f; :=
V/I\,N(f | 7)) = Ugl,Nl(n)(f)' If we use proposition 4.4 and the factorization of the
grand canonical measure over the clusters we have

Var, y (f) = AM. Ouy*(fis ) = Awy (fis /) (6.22)

where the chemical potential 1 hereis, as always, such that uf\’*(NA) = N.We
can now estimate from above uf\’*(ﬁ, /1) by applying to it the Poincare inequal-
ity for a Glauber dynamics reversible w.r.t. the gran canonical measure uf\‘k (eg.
Metropolis or Heat Bath). By the independence of the clusters, the fact that, by
construction, J € ©Og40q(M, €, 1) and theorem 3.8 in [M], the spectral gap of the

Glauber dynamics for uj\’k satisfies the following bound
-1
—c(logl) d

gap(ZL5,) = mingap(Lc,) = e

xXeB

for some constant ¢ = ¢(B), where £y isthe Glauber generator in V. c 7¢ with
free boundary conditions. Thusthe r.h.s of (6.22) can be bounded from above by

Aec(logl)%'u)él ( Z [foz]Z) (6.23)

x.d(x,B))<r
It is not difficult to check at this point that, using part (a) of proposition 4.3 and
proceeding as in the proof of lemma A.2, ther.h.s. of (6.23), forany 0 < § < d

can be bounded from above by ,% for some positive constant C = C¢ (8, d, B)
independent of J.

Observe now that for any function g and for any [ < %L the formula of the
conditional covariance (see e.g. (6.3)) together with the definition of spectral gap
and the result of theorem 2.1 give the following inequality

Viw(g N2 =205y (VEw (& £ 1FD2) + 2 Varg y(e) Vark y ()
T v 2 1 .
=2vp N (vA,N & f17D ) +2Cy =] Varl, y(g)
1

We will use (6.24) asthe starting point of arecursive procedure whose final result
will be a bound like (6.24) but with the factor 12 replaced by I* with @ = 25 if

d>2andw=1+25ifd =1, providedthat | > L(J).
Lemma6.2. LetB; =0ifd > 3,85 =8ifd=2andB; =1+6ifd =1 1In
the same hypotheses of theorem 2.2 assume that for some 8 € [84, 2) and o > 1,

some positiveconstant C(f, ), all pairsL(J)* <13 < %lz andall N thefollowing
inequality holds

1
v, N (8 HE=CB) [lf Sy, n (8 &)+ s VarE;,Z,N(g)} (6.25)
1
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Then there exists a new positive constant C’( f, ) such that the same inequality

holdswith g and « replaced by g’ = 5 wa and o’ = o =2 respectively.

Proof. Given (6.24) the proof isidentical to that of lemma6.1in [CM2]. ]

Notice that the inequality of the lemmaholds for 8 = 2 and « = 1 because of
(6.24). Therefore, by iterating n times inequality (6.25) starting from these values
for & and B, for al pairs/, L suchthat 3L > [ > L(J)*, wefind

1
vin(8 )P < Cra [lﬂ" A8 &)+ 75 — Vary N(f)}

where o, = ﬂi and the sequence 8, convergesto B, (defined in lemma 6.2) from
above. Therefore, for any § € (0, 10) there exists a constant C'r,5 such that

1
vi v )2 < Crs [l” E7(8.8) + 75 Vary N<f>] (6.26)

providedthat%LzlzL(J)%,wherewzl—}—ZB ifd=landw=25ifd > 2.
If we now take g := E; f, then (6.26) gives
1 15 .
E, fil2< .. |19 <. . 1xr2 ifd=1
I1E:fl2 = Cs [ + 1d—5} A {xl—ﬁ ifd>2

-+

prowded that Lo+4=5 > 22~1 > 21.(J)2“5~" . Above we have fixed / equal to

)" in order to obtain the last mequallty It is important to observe that our
choice gives! « L since > > CL~2 because of theorem 2.1. This ends the proof
of (6.21). o

Appendix. Proof of Lu-Yau’'stwo block estimate

Here we prove Lu-Yau's two block estimate which is the key ingredient behind
lemma4.8. The proof follows essentially the same lines of the one givenin [CM2]
for trandation invariant interaction under a mixing condition, but with some im-
portant difference due to the presence of clusters where the particle variables are
strongly interacting.

The setting is the following. We fix € € (0,1) and ! € [2L€, L]. We then
consider avolume A € # (1) such that A = Uf.‘:lA,-, where A; € % (1) and
|Ail/IA] = efori =1,....k LetN := {N;}*_, beaset of possible values of
Ny = {NA . Letdsoh, i= e ViHlo(x) and i, := e V1 (1— 0 (x)) and take

e = dhe where b is defined in corollary 5.2 and d is the dimension. We define

G = |A [ erA g Where g, = hy or gy = ;.

Proposition A.1. Assume J € Og40q(M, €', L). Then for any § > O there exist a
positive constant C and Lo(e’, M, §) > 0 such that

Ci?
VAN(S G < —— &% (. f)+

= 1Al Vary \(f)

Al
provided that L > Lo.
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Proof. To simplify the notation we prove the proposition in the case k = 1. When
k > 1the proof can be easly generalized.

Fixé > 0.1f p < dorl— p < § the statement follows at once from the
Schwartz inequality together with proposition 4.4 and the fact that using that J €
Ogood (M, €,L)

1y (G, G) =

T\
Dyzecina Ha 8y 82)

|2 > TARYY <C(Bp- ")W
xeA
for large values of the (constant) chemical potential A. Wewill thus assume, without
further notice, that p € (5, 1 — 9).

We define {Qq}qcs to be a collection of cubes of side L€', such that for any
o # B dist(Qu, Op) = 2M log L, dist(Qq, dA) > 2MlogL and |[A \ Uy Qul <
|A|log L/LG/. Clearly such collection exists. Next we observe that, without | oss of
generality, we can replace g, by g, — yo(x), y being an arbitrary constant inde-
pendent of x, because er/\ o(x) = N amost surely w.r.t. vy . Accordingly we

defineG, == G —y \A\ Our choice of y will be made later. We then set

) 1 )
int.__ ext . in
G = A Y (g—yo) ad G¥:=G, -G

xeUy Qint

where Q'" = {x € Q, : d(x, Q%) = 2M log L }. Notice that

Z)CEA\UQQL? |CX| < C// (Iog L)2
|A[2 T lAlLe
(A1)
because of proposition 4.4 and the definition of {Qy}yer. IN particular, for any
given$ > 0,

VarA N(Gext) <’ TA)»(Gext’ G‘;Xt) < c’

Vi (1G5 = A| —Var v (f)
provided that L is big enough. _
We now turn to bound the relevant part vj\’N(f, G;j‘t)z. Let 7o bethe o-d-

gebra generated by the the random variables {0 (x)}xea\Uy Qs {Nalaer, Where
Ny(o) = erQa o (x). Then we write

v (£.6)°
<20}y (viw (1G] 7o) )2 +20]  (fivin (G0
=2 Var} y (V) viw (Val y (F | #0))
+2vi .y (£ vin (6] #0) )2

_cw -
< |§\|)(§AN(f f)+2VarAN(f)VarAN( N(G;‘t

7o)’

970)) (A2)
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where we have used (A.1) to bound Varj\’ N(Giy”t) by lf\_l and the estimate

vin (Vary y(f1F0)) < C(L)EY y(f. f)

for some constant C(L), valid since vA ~ (| 7o) isthe product of canonical Gibbs
measures over the cubes Q. Actualy, using corollary 5.2, the constant C(L) is
not larger than L?¢" < |2, '

The key poi nt is now to prove that, for any § > 0, Varj\’N(vj\,,\,(G'y”t | Fo)) is
smaller than TAT provided that L islarge enough.

Notice that VA,N (G'},nt | Z0)(n) isthe sum of local functions

UII\,N (Gi;t | 9—;0) (n = |A| Z Qa Ne (1) ( Z 8x — J/O(X))

xeQint
= Z Gl

ael

Thus, if we order in an arbitrary way the set 7, we can split the above sum into the
sum of even and odd «’s and apply proposition 4.4 to each term and get

1
7)) = ¢t (S D)
o o

for some constant C’ independent of A and Lo.

Let now &) () := u's A(”)(erer[gx yo (x)]), where the chemical poten-
tial () is such that 5" (Ny) = Na (n). In the (rare) case in which N (1) =
(No(n) = |Qq|) the measure 5™ will simply be the Dirac measure on the con-
stant configuration identically equal to 0 (1). Thanksto 1) of proposmon 4.3 and
the hypothesis J € Ogp0q(M, €', L) We have sup,, |G () — &) (n)| < C'.

In particular, using the fact that dist(Qy, Qg) > 2M log L for any o # 8, we
get

RS (ZGV 20 y) |A|ZZ“ 0L -8

SOV S
T |AILYE T A

T T int
VarA,N (VA’N (Gy

for L large enough. It is therefore enough to bound 4. (Z £, S, ED.

We can now apply the Poincaré inequality uf\)\(f ) < L en
(Vx f)?) where C'(L) = gap(£%)~t and %, is Glauber generator. By the inde-
pendence of the clusters, the fact that J e ®g00d(M €/, L) and theorem 3.8in[M]
we have

gap(Zy) = mmgap(fc ) > exp{—c(log L)’ T }
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s0 that

d-1 2
s (Zsz»zsy) < et (Z [vy ng] )

yeA ael
(A.3)
Observe now that, by construction, V, &) = Ounlessdist(y, Qy) < r. Thus

g (z[ Bv]):; Y (vl ea

yEA ael acl  yeA

dist(y, 0u)<r

Let us estimate a generic term MA ([V £/1%). It is at this stage that the sub-
traction with the free parameter y made at the beginning becomes important. L et
Vyf(0) = (1—0a()Vy f — o (y)V, f and notice that

v P=[oe] =9 { up, " ( > gx) - }
xeQint

Let Ao = Ag(A, N) be the chemical potential such that [E(|C0|‘1M’2’0’\°(NCO)) =
N/|A| where Cy is the cluster of the center of A (see section 3). The follow-
ing lemma concludes the proof of the proposition. Equation (A.5) below and the
fact that J € ®gm,d(M €', L) imply that (A.4) can be bounded from above by

'°9L o |2,) Thustheright hand side of (A. 3)|ssmallerthan 7 Provided
that L |s large enough.

LemmaA.2. Inthe same setting of Proposition A.1 define

E[1C01 18 (Lreco 81 Neo) |

E[ICoI 2 1 (Neos Neo)

Then there exist two positive constants k1, k2 independent of L and Lo =
Lo(e’, M, §) suchthat y < k1 and

Mf{k <|:6y go)g/ ]2)

provided that L > Lg

A

ity c 0, (A-5)

{k2|Cy| ify € 3F Q4
ko
TNES

Proof. Thefact that y isbounded from above uniformly in L followsimmediately
from its definition and the fact that E(|Co|") < & for p < p. (see e.g. [Gri]).
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We first consider the case y € 8 Q,, then

= A
Vi | = [Vl [ > g | — v
xeQin
r(nY A
< 0 1™ (g0 — ne (g0l + v
xeQin
[eNNeN
<c > ﬁws k2|C,y|
o

xeQy

wherewe used that J € ©g,04(M, €', L) inthelast inequality.

Let usnow consider y € Q.

In this case, under the flip of the variable n(y), the value of & changes only
because the number of particles of n varies by +1. Define G, = ZXGQ,H 8x»
cal Ny(n) = n and let A(s) = A(n,s) be the chemica potential such’ that

Mg;\(n’”(]va) = s withs € [0, |Qq[]. Then

drs) 1

= (A.6)
ds B (Ny, No)

S0 that

’I)L(T] s)(GOl a)

n+l
S k( )
o>

( )f 77)»(71 S)(Ga,N )d
—nyy s
71)‘(7[ S)(NQ,N )

By adding and subtractinginsidetheintegral stheterm “gi (G, Ny)/ ;/7Q: (Ng, Ng)
(1 hereisthe chemical potentia of the grand canonical measure on the volume A),
we have

~ 2
wy’ ([vyugj@ (Go) — ] )

1y (Ga. No)
Qot (Na’ ND!)

2
A

<2uf +2u5t (A7)

n+1
-y / R(s)ds

-1

where
WEr) (Gao Na) 11y (G Na)

’ZQQ(” (Naw No) 15 (N No)

R(s) =
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Notice that, using the fact that J € ©g00q(M, €', L) it iseasy to prove that

n,A
o (Gg, Ny)
TQa T T2 | ¢ (A.8)

m Y=o
1y (N, Noy) 0l Qc|

where po := 1y (Na)/|Al.
Letii = ng(Na). Then using (A.6) we can write

1,2 (s")
R =1 / 57 (Ga. No. No)
n

7 A
/‘,’Qa (Ng, Ny) u"Qa(S ) (Ny» Na)
A . Al
15 (G No) [ 5 (N N No)
S
(s x M’
/'LnQa(é) (Ng, Ny) lunQa (Ng, Ny) Js M”]Qa(Y) (Ne, Neo)

o that by proposition 4.2, (A.6) and the fact that J € ©g00q(M, €', L), it is easy
to see that

n+1 2
/LZ’)‘ f R(s)ds
n—1

IA

2 T\ (n_ﬁ)z
cllgllse 7

A
1, (Nars Na) c
- <
1, (No)? p1Qal

= cllgl?, u}* ( (A.9)

Putting together (A.8), (A.9), thefact that |pg — p| < |A|~€ and p > y thelemma
followsfor L big enough. O
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