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Abstract. We introduce the asymmetric random cluster (or ARC) model, which is a graph-
ical representation of the Potts lattice gas, and establish its basic properties. The ARC model
allows a rich variety of comparisons (in the FKG sense) between models with different
parameter values; we give, for example, values (β, h) for which the 0’s configuration in
the Potts lattice gas is dominated by the “+” configuration of the (β, h) Ising model. The
Potts model, with possibly an external field applied to one of the spins, is a special case of
the Potts lattice gas, which allows our comparisons to yield rigorous bounds on the critical
temperatures of Potts models. For example, we obtain 0.571 ≤ 1 − exp(−βc) ≤ 0.600 for
the 9-state Potts model on the hexagonal lattice. Another comparison bounds the movement
of the critical line when a small Potts interaction is added to a lattice gas which otherwise
has only interparticle attraction. ARC models can also be compared to related models such
as the partial FK model, obtained by deleting a fraction of the nonsingleton clusters from a
realization of the Fortuin-Kasteleyn random cluster model. This comparison leads to bounds
on the effects of small annealed site dilution on the critical temperature of the Potts model.

1. Introduction

Random cluster models, or graphical representations, have become an increasingly
important tool in the study of lattice models. Most prominently, the Fortuin-Kas-
teleyn random cluster model (or simply, the FK model), introduced in [17], [15]
and [16], has been used to analyze aspects of the Potts and Ising models, including
critical behavior [31], long-range versions [3], mean-field behavior in high dimen-
sions [28], covariance structure [6], mixing properties [4] and efficient simulation
[38]. Wiseman and Domany [40] and Pfister and Velenik [35] considered graphi-
cal representations of the Ashkin-Teller model, and graphical representations for
large classes of models have been considered in the contexts of efficient simulation
([11],[12]) and conditions for Gibbs uniqueness [5].

A principal advantage of random cluster models is that the configuration space,
typically {0, 1}B for some setB of bonds, is partially ordered in a natural way, mean-
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ing that it makes sense to speak of one configuration being “larger than” another,
or of one measure on configurations dominating another, in the FKG sense. The
standard comparison theorem of [17] (see also [3]) says (in standard notation—see
(2.22)) that if

1 ≤ q ≤ q ′ and
p

q(1 − p) ≤
p′

q ′(1 − p′)
then the FK model with parameters (p′, q ′) dominates the model with parame-
ters (p, q) in the FKG sense (that is, increasing events have larger probabilities at
(p′, q ′).) This yields information about the smoothness of the critical line in the
(p, q)-parameter space, among other things; see [3]. Another comparison inequal-
ity for the FK model appears in [20].

A principal disadvantage of the standard comparison theorem is that it is not
very sharp. Rephrased, the theorem says that as one moves in (p, q)-space up any
line p/q(1 − p) = c, the configurations of the FK model get larger. In a sharper
result, the corresponding lines would approximately parallel the presumed critical
line, given by p2/q(1 − p)2 = 1 for the two-dimensional integer lattice, which
is clearly not so for the lines in the standard comparison theorem; the situation in
higher dimensions is even worse. A second disadvantage is that an external field in
the Potts model cannot be incorporated into the FK model in a very natural way.

In this paper we introduce a new model, the asymmetric random cluster model,
(or simply, the ARC model), which is a random cluster representation of the Potts
lattice gas (that is, the annealed site-diluted Potts model.) As is well known, the
q-state Potts lattice gas includes the (q + 1)-state Potts model as a special case.
We will show that the ARC model allows quite sharp comparison theorems be-
tween different parameter values of the Potts lattice gas. This leads to a variety
of consequences. We obtain rigorous bounds β1 ≤ βc ≤ β2 on the critical in-
verse temperature of the Potts model on various lattices (within about 5%, in many
cases, and sometimes much less, of numerical or other nonrigorous estimates in
the literature), and establish standard properties of the high-temperature regime,
such as exponential decay of correlations and weak mixing, up to the lower bound
β1. By contrast, existing methods for establishing such properties are generally
perturbative, working only for very small values of the inverse temperature. (For
exceptions, generally involving q = 2 or q large, see e.g. [4], [28], [31], [36], [39].)
We also obtain bounds on critical line, or critical surface, locations in the parameter
space of the Potts lattice gas. We bound the change in the critical temperature, or
in the critical line, when certain models are perturbed by adding a small term to
the Hamiltonian. One such perturbation is small annealed site dilution added to a
standard Potts model. In another perturbation, we begin with a lattice gas with only
one species of particle, or essentailly equivalently, a Potts latttice with q species but
with no additional energy associated with adjacent particles of mismatched species;
we then add a small Potts interaction between the different species.

Numerous aspects of the phase diagram of the Potts lattice gas (though not the
ones we consider here) have been studied in [10].

To enrich the set of possible set of comparisons which can be made using the
ARC model, we also introduce and analyze what we call the partial FK model,
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which is obtained from the usual FK model by deleting a fraction of the nonsingle-
ton clusters. Comparisons between ARC models and partial FK models are used in
our analysis of site dilution.

Like the FK model, the ARC model is useful in constructing couplings between
measures under different boundry conditions; we will demonstrate an application
of such a construction. Further, we will use the ARC model to examine the question
of when the distribution of the set of empty sites of a Potts lattice gas – that is, the
distribution of {δ[σx=0] : x ∈ �}, where � is a subset of the lattice – has the FKG
property. This includes, as a special case, the FKG property for the distribution of
the set of sites of any one species in the Potts model, which was recently established
by L. Chayes [9].

Of course the advantages of the ARC model over the FK model–principally
sharper comparison theorems and more natural incorporation of external fields–
do not come without a price. For example, there is phase coexistence in the Potts
model precisely when there is percolation (under wired boundary conditions) in
the corresponding FK model. In the ARC model, by contrast, there are two bond
configurations, corresponding to the two pair interactions (Potts interaction and
interparticle attraction), and the relation between percolation and phase transition
is more complex. Further, correlations in the Potts model are given (under free
boundary conditions) by connectivities in the corresponding FK model; the ARC
model has no such property. So the ARC model supplements, but does not replace,
the FK model.

2. Preliminaries and description of the models

By a lattice we mean a periodic graph embedded in Euclidean space. The degree
of a site (that is, vertex) of a graph is the number of bonds emanating from that
site. When the degree is the same for every site of a lattice, this degree is called the
coordination number of the lattice.

The q-state Potts lattice gas on a finite subset � of a lattice L is described
by variables σx ∈ {0, 1, .., q} at each site x ∈ �; 0 denotes an empty site, and
1, .., q are possible spins, or species, for a particle at x. Let nx = δ[σx∈{1,..,q}] be
the indicator of the presence of a particle at x. We write the Hamiltonian as

H(σ) = −J
∑
〈xy〉

nxnyδ[σx=σy ] − κ
∑
〈xy〉

nxny −
∑
x

µxnx, (2.1)

where the first two sums are over adjacent unordered pairs (that is, bonds) 〈xy〉with
x, y ∈ �; when there is a boundary condition we include also ajacent pairs with
only one of x, y in�. We call J the interaction strength, κ the interparticle attrac-
tion, andµx the chemical potential atx. Note that whenκ = 0, adjacent mismatched
particles are energentically equivalent to adjacent empty sites, whereas adjacent
matched particles have a lower energy. When κ = 0 we call the Potts lattice gas
neutral. Let ∂� denote the set of sites in�c which are adjacent to�; by a boundary
condition for the Potts lattice gas we mean a configuration η ∈ {0, 1, .., q}∂�. The



398 K.S. Alexander

corresponding Hamiltonian is denotedH�,η, and the partition function for the Potts
lattice gas at (β, J, κ, {µx}) is

Z(�, η, β, J, κ, {µx}) =
∑
σ

e−βH�,η(σ ).

When µx = µ for all x, the corresponding measure on {0, .., q}� is denoted
PPLG�,η,q,β,J,κ,µ. There are really only three free numerical parameters (or sets of
parameters, if µ depends on x) in the partition function, so the inverse temperature
β is a redundant parameter, though at times convenient; we will generally take β
to be 1.

A configuration σ together with a boundary condition η on ∂� (or on�c) yields
a combined configuration on � = � ∪ ∂� (or on L) which we denote (ση).

A graph G is designated by a pair (�,B), where � is a set of sites and B is
a set of bonds. The set of sites of G is also denoted S(G), and the set of bonds is
also denoted B(G).

Let � be a finite set of sites of a lattice and let B(�) = {〈xy〉 : x, y ∈ �}
and B(�) = {〈xy〉 : x ∈ � or y ∈ �}. Given a subgraph, either G = (�,B) or
G = (�,B), of (�,B(�)) and given a boundary condition η and a configuration
σ on �, we define variables N∗∗ = N∗∗(G, (ση)) by

N00 = |{〈xy〉 ∈ B : (ση)x = (ση)y = 0}|, (2.2)

Nss = |{〈xy〉 ∈ B : (ση)x = (ση)y ∈ {1, .., q}}|,
Nss′ = |{〈xy〉 ∈ B : (ση)x, (ση)y ∈ {1, .., q}, (ση)x �= (ση)y}|,
N0s = |{〈xy〉 ∈ B : (ση)x ∈ {1, .., q}, (ση)y = 0}|,
Ns = |{x ∈ � : σx ∈ {1, .., q}}|,
N0 = |{x ∈ � : σx = 0}|,

so that

H(σ) = −(κ + J )Nss − κNss′ −
∑
x

µxnx (2.3)

and

|B| = N00 +Nss +Nss′ +N0s . (2.4)

For x ∈ � let

mx = |{y : 〈xy〉 ∈ B}|.

In the case of L with coordination numberm and B = B(�) we havemx = m for
all x. In general,

∑
x

mxδ[σx=0] = 2N00 +N0s .
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Subtracting this from (2.4), multiplying by κ and adding the result to (2.3) gives

H(σ) = −JNss − κN00 +
∑
x

(µx + κmx)δ[σx=0] + c(G) (2.5)

where c(G) is a nonrandom constant. If κ = J this becomes

H(σ) = −J (Nss +N00 +
∑
x

hxδ[σx=0])+ c(G),

where hx is given by

Jhx = −(µx + Jmx).
The Hamiltonian for the (q+ 1)-state Potts model with external field hx applied to
spin 0 at each x is

H(σ) = −Nss −N00 −
∑
x

hxδ[σx=0], (2.6)

so the q-state Potts lattice gas at (1, J, J, {µx}) is the same as the (q + 1)-state
Potts model with inverse temperature β and external fields {hx} given by

β = J and βhx = −(µx + Jmx). (2.7)

Note that in the case of fixed coordination number and chemical potential, say
mx = m,µx = µ for all x ∈ �, we have that h = hx does not depend on x, and

∑
x

hxδ[σx=0] = hN0.

In the further special case of the Ising model (q + 1 = 2 states), it is natural (since
the external field is applied to spin 0) to relabel 0 as “+”and 1 as “-”, and of course
Nss′ = 0. The computation yielding (2.4), done in reverse, is then just the standard
lattice-gas transformation of the Ising model:

H(σ) = −(N−− +N++ + hN+) (2.8)

= −2N−− + (m+ h)N− + c(G).
Note that in some formulations in the literature, this would be the Hamiltonian
corresponding to an external field of h/2. From (2.4) and (2.7) we obtain the stan-
dard fact that when q = 1 and J = 0, the Potts lattice gas (which is then called a
binary lattice gas) is equivalent, under the same relabeling, to an Ising model with
parameters (β, h) given by

β = κ

2
, βh = −

(
µ+ κm

2

)
. (2.9)

To construct the ARC model, we begin by rewriting the partition function of
the Potts lattice gas, as was done in [17] for the Potts model. Let G = (�,B)
be a finite subgraph of a lattice L. For simplicity we first consider free boundary
conditions, with µx = µ for all x ∈ �. Let ! = {0, 1}B. A bond configuration is
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an element ω ∈ !; when convenient we alternatively view ω as a subset of B or as
a subgraph of (�,B). Bonds e with ωe = 1 are open in ω; those with ωe = 0 are
closed. Let C(ω) denote the number of open clusters in ω, let ω ∨ ω′ and ω ∧ ω′
denote the coordinatewise maximum and minimum, respectively, and define

|ω| = {e ∈ B : e is open},
I(ω) = {x ∈ S(G) : x is an isolated site of the graph ω},
I (ω) = |I(ω)|.

Here an isolated site means a singleton cluster. The partition function corrrespond-
ing to the Hamiltonian (2.2), with β = 1, is

Z(�, J, κ, µ)

=
∑
σ

exp ((κ + J )Nss + κNss′ + µNs)

= eµ|�|
∑
σ

e−µN0
∏
〈xy〉
(1 + (eκ − 1)nxny)

∏
〈xy〉
(1 + (eJ − 1)δ[σx=σy �=0]).

(2.10)
Expanding out the products over bonds yields

Z(�, J, κ, µ)

= eµ|�|
∑
ωg∈!

∑
ωr∈!

∑
A⊂I(ωg∨ωr ,�)

e−µ|A|(eκ − 1)|ωg |(eJ − 1)|ωr |qC(ωr )−|A|

= eµ|�|
∑
ωg∈!

∑
ωr∈!

(
1 + e

−µ

q

)I (ωg∨ωr )
(eκ − 1)|ωg |(eJ − 1)|ωr |qC(ωr ).

(2.11)

Note that the sets A in the expansion (2.11) correspond to sets {x : σx = 0} in
(2.10), the spin values σx in the terms of (2.10) are constant on the clusters of ωr
in the corresponding terms in (2.11), and the values nx are all 1 on each nonsin-
gleton cluster of ωg . The expression (2.11) motivates us to define the ARC model
on (�,B) with parameters (pr , pg, q,Q) and free boundary conditions to be the
measure on !×! given by the weights

W(ωr, ωg) = p|ωg |g (1 − pg)|B|−|ωg |p|ωr |r (1 − pr)|B|−|ωr |qC(ωr )QI (ωr∨ωg).
(2.12)

Here pr, pg ∈ [0, 1], q > 0 andQ ≥ 1.
Edwards and Sokal [13] observed that the Potts and FK model could be con-

structed on a common probability space. The analog of their result is valid here
as well, provided J, κ ≥ 0. Specifically, we relate parameters of the q-state Potts
lattice gas and the ARC model by

pr = 1 − e−J , pg = 1 − e−κ , Q = 1 + e
−µ

q
; (2.13)

the parameter q takes the same value in both models. We call an ARC model and
a Potts lattice gas corresponding when their parameters are related by (2.13). We
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view ! × ! as a set of configurations on a lattice in which there are two bonds –
one green and one red—between each adjacent pair of sites of (�,B). Given a site
configuration σ , we obtain a green-bond configuration ωg from independent bond
percolation at density pg on {〈xy〉 : nx = ny = 1} and a red-bond configuration ωr
from independent bond percolation at density pr on {〈xy〉 : σx = σy ∈ {1, .., q}}.
Conversely, given the bond configurationsωr andωg , we obtain a site configuration
σ by choosing a spin from {1, .., q} independently and uniformly for each cluster
of ωr which is not an isolated site of ωr ∨ωg; for each isolated site of ωr ∨ωg , we
choose a spin independently from {0, 1, .., q} with probability proportional to e−µ
for 0 and proportional to 1 for each of 1, .., q. Thus

P(σx = 0 | x ∈ I(ωr ∨ ωg)) = e−µ

q + e−µ = Q− 1

Q
, (2.14)

P(σx = i | x ∈ I(ωr ∨ ωg)) = 1

q + e−µ = 1

qQ
for each i = 1, .., q.

For either construction, the result is a joint distribution of site and bond configura-
tions for which the marginal distribution of the sites in the Potts lattice gas and the
marginal of the bonds is the ARC model.

To allow the chemical potential µx to vary with x, we can modify the ARC
model to allowQ = Qx to depend on x; we merely replace the termQI(ωr∨ωg) in
(2.12) with ∏

x∈I(ωr∨ωg)
Qx.

Via similar constructions, we can obtain the ARC model with either a site
boundary condition or a bond boundary condition, defined as follows. A bond
boundary condition on Bc is a configuration ρ = (ρr , ρg) in {0, 1}Bc × {0, 1}Bc .
Under a bond boundary condition, the ARC model on (�,B) with parameters
(pr , pg, q,Q) and boundary condition ρ is again given by the weightsW(ωr, ωg)
of (2.12), except that nowC(ωr) (also writtenC(ωr | ρr)) is defined to be the num-
ber of clusters of (ωrρr)which intersect�. We denote this model byPARC�,ρ,pr ,pg,q,Q

.
When ρr is all 1’s, the configuration ρg is irrelevant (that is, it does not affect the
weightsW(ωr, ωg)), and we say the resulting ARC model has red-wired boundary
condition. When also B = B(�) we denote the corresponding measure on bond
configurations by PARC�,rw,pr ,pg,q,Q

.
For integer q, a site boundary condition is given by a boundary condition for the

corresponding Potts lattice gas, that is, an element η ∈ {0, 1, .., q}∂�. Site boundary
conditions are defined only when G has form (�,B(�)). Define the events

Dr(�, η) = {ωr ∈ {0, 1}B(�) : ηx = ηy for every x, y ∈ ∂� for

which x ↔ y in ωr, and {x ∈ ∂� : ηx = 0} ⊂ I(ωr)},
(2.15)

Dg(�, η) = {ωg ∈ {0, 1}B(�) : {x ∈ ∂� : ηx = 0} ⊂ I(ωg)},
D(�, η) = {(ωr , ωg) : ωr ∈ Dr(�, η), ωg ∈ Dg(�, η)}.
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Here x ↔ y means there is a path of open bonds connecting x to y. Once again,
the ARC model on (�,B(�)) with parameters (pr , pg, q,Q) and site boundary
condition η, denoted PARC�,η,pr ,pg,q,Q

, is given by the weights in (2.12), with C(ωr)
now defined to be the number of clusters of ωr which do not intersect ∂�, and with
I (ωr ∨ωg) now defined to be the number of isolated sites of ωr ∨ωg in� (instead
of �), except that weight 0 is assigned to configurations not in D(�, η). This is
equivalent to the red-wired ARC model conditioned on the event D(�, η). More
generally, one can allow the boundary spins ηx to take values in an arbitrary finite
set V containing 0, in place of {0, 1, .., q}, since the definition of D(�, η) caries
over to such situations; this will be useful when q is not an integer. We call such a
boundary condition a generalized site boundary condition.

Since the definitions of C(ω),I(ω) and I (ω) depend on the boundary condi-
tion, when ambiguity is possible we will use the notation C(ω | ρ) for the number
of clusters of ω when the bond boundary condition is ρ, C(ω,�) for the number
of clusters having all sites in �, and I(ω,�) and I (ω,�) respectively for the set
and the number of isolated sites in the set �.

When η is all 0’s, D(�, η) is the event that every site of ∂� is isolated; we
therefore call site boundary condition η the isolated boundary condition and denote
the corresponding measure PARC�,iso,pr ,pg,q,Q

. The ARC model on (�,B(�)) with
isolated boundary condition is equivalent to the ARC model on (�,B(�)) with
free boundary condition. (But see Remark 2.1 below.)

In the ARC model, a green bond and a red bond connect each adjacent pair of
sites. It is convenient to add a third bond, colored black, which we define to be open
precisely when either the red or the green bond is open. Thus the corresponding
configuration of black bonds is ωb = ωr ∨ ωg . It is easy to see that only the black
and red bonds (not the green) are needed when one constructs a Potts lattice gas
configuration by labeling the clusters of an ARC model configuration. To each ARC
model there thus corresponds what we call a red/black ARC model with parameters
(pb, prb, q,Q) given by the weights

W(ωb, ωr) = p|ωb|b (1 − pb)|B|−|ωb|p|ωr |rb (1 − prb)|ωb|−|ωr |qC(ωr )QI (ωb) (2.16)

for all (ωb, ωr) with ωr ⊂ ωb,
where pb and prb are given by

1 − pb = (1 − pr)(1 − pg), prb = pr/pb. (2.17)

The weights (2.16) are obtained by first rewriting the “independent bonds” weight:

p
|ωg |
g (1 − pg)|B|−|ωg |p|ωr |r (1 − pr)|B|−|ωr |

= p|ωb|b (1 − pb)|B|−|ωb|p|ωr |rb (1 − prb)|ωb|−|ωr |p
|ωg∧ωr |
g (1 − pg)|ωr |−|ωg∧ωr |,

(2.18)

then summing over all choices of ωg ∧ ωr for a given (ωb, ωr). Equality (2.18)
reflects the fact that one can choose red and green configurations by first choosing
a black configuration, then a red configuration which is a subset of the black one,
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then a green configuration which is a subset of the red one, then adding this green
configuration an open green bond wherever there is an open black bond but a closed
red bond.

There are three important special cases of the ARC model. The first is the neu-
tral ARC model, in which pg = 0. From (2.13) a neutral ARC model corresponds
precisely to a neutral Potts lattice gas, that is, one with κ = 0. There are no green
bonds so the weights (2.12) become

W(ωr) = p|ωr |r (1 − pr)|B|−|ωr |qC(ωr )QI (ωr ).
The second special case is the Potts ARC model, in which pg = pr . Recall that

the q-state Potts lattice gas at (1, J, J, {µx}) is the same as the (q + 1)-state Potts
model at (β, {hx}) with β and hx given by (2.7). From (2.13), the condition κ = J
is equivalent to pg = pr , so for integer q a Potts ARC model corresponds to a
(q+1)-state Potts model. More precisely, the (q+1)-state Potts model at (β, {hx})
corresponds to a Potts ARC model with parameters (p, p, q, {Qx}) where

p = 1 − e−β and Qx = 1 + e
β(mx+hx)

q
. (2.19)

In the absense of an extenal field, the Potts model is of course symmetric in the spin
variables 0, 1, .., q, except for boundary conditions. By contrast, in constructing
the Potts ARC model from the (q + 1)-state Potts model by independent percola-
tion (open red bonds with probability pr on matching pairs with spins 1, .., q; open
green bonds with probability pg on general pairs with spins 1, .., q), the spin values
are clearly treated asymmetrically, with 0 given special treatment. This asymmetric
treatment of a symmetric model is a key part of what makes the Potts ARC model
a useful tool.

Remark 2.1. It was mentioned above that the ARC model on (�,B(�))with iso-
lated boundary condition is equivalent to the ARC model on (�,B(�)) with free
boundary condition. In the case of the Potts ARC model, it should be noted that
the values of mx are different for these two graphs, which affects the translation
between the external fields hx in the Potts model and the parametersQx in the Potts
ARC model. Consider for example a Potts model on a finite subset� of a lattice of
coordination number m, with constant external field h. A free boundary condition
on this model corresponds to a Potts ARC model with parameters {Qx} that are
different for sites x adjacent to ∂�. The constant-Q Potts ARC model corresponds
instead to the Potts model with 0’s boundary condition.

The third special case is the Ising ARC model, in which q = 1. This is really
a special case of the black-bond configuration in the red/black ARC model (2.16).
The red bonds are removed, or summed out, because they are irrelevant when
q = 1; the open red bonds are just obtained from independent percolation on the
open black bonds. The Ising ARC model with parameters (p,Q) is given by the
weights

W(ω) = p|ω|(1 − p)|B|−|ω|QI(ω).
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Values Qx depending on x are allowed as before. For a lattice with coordination
number m, the Ising model on � at (β, h) with boundary condition η corresponds
to an Ising ARC model model on (�,B(�)) with site boundary condition η and
parameters

p = 1 − e−2β, Q = 1 + eβ(m+h), (2.20)

provided we relabel 0 as “+”and 1 as “-”. An Ising ARC model configuration can
be obtained by independent percolation at density p on the “- -” bonds of an Ising
configuration. Conversely an Ising configuration can be obtained by labeling each
isolated site independently, according to the following analog of (2.14):

P(σx = + | x ∈ I(ωr ∨ ωg)) = Q−1
Q
,

P (σx = − | x ∈ I(ωr ∨ ωg)) = 1
Q
.

(2.21)

Note that 1/Q is precisely the probability that a site is “-” given that all its neighbors
are “+”.

By contrast, the FK model (with q = 2) is obtained from independent perco-
lation on both “++” and “- -” bonds of an ising configuration, at the lower density
p = 1−e−β . The density is higher for the Ising ARC model because the Ising ARC
model configuration is essentially the union of the red and green configurations,
each of which is obtained by independent percolation at density 1 − e−β on “- -”
bonds.

Of course, one could equally well construct a joint Ising/Ising ARC model
configuration using independent percolation on the “++” bonds of an Ising config-
uration, though as we have defined things, the Ising ARC model would then have
the opposite site boundary condition from the Ising model. We will refer to this as
the reversed polarity construction of the Ising ARC model.

Remark 2.2. Even when q > 0 is not an integer, one can still construct a joint
site-bond configuration with site variables nx ∈ {0, 1}, by using the first half of
(2.14) to label the isolated sites of an ARC model configuration; all sites not labeled
0 are labeled 1. If the ARC model has parameters (pr , pg, q, {Qx}) with q not an
integer, and J, κ, {µx} are given by (2.13), we call the resulting site-bond model
the q-state Potts lattice gas with parameters (1, J, κ, {µx}), thereby extending the
definition to noninteger q. A bond or generalized site boundary condition can be
applied in the natural way. If the ARC model is a Potts ARC model, and β, {hx} are
given by (2.19), we similarly call the site-bond model the (q+1)-state Potts model
with parameters (β, {hx}). To distinguish things when necessary, we will refer to
the standard site-variables-only Potts model or Potts lattice gas with integer q as
the usual model, and refer to the joint site-bond model just defined for general q
as the particle/bond model. We call the random variable {δ[nx=0] : x ∈ �} (or its
distribution, in a harmless abuse of terminology) the 0’s configuration of the (usual
or particle/bond) Potts lattice gas or (usual or particle/bond) Potts model. When
appropriate, the j’s configuration is defined similarly for j �= 0.
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Recently and independently, L. Chayes and J. Machta ([11], [12]) introduced
particle/bond random cluster models for a wide class of lattice gases, in the context
of efficient simulation. Our particle/bond Potts lattice gas is one example of this
class.

We turn next to our other new models, the partial and bicolored FK models.
The FK model on (�,B) with parameters (p, q) assigns weights

W(ω) = p|ω|(1 − p)|B|−|ω|qC(ω) (2.22)

to bond configurations. As shown in [13], for β given by p = 1−e−β , a configura-
tion of the usual q-state Potts model at inverse temperature β can be obtained from
a configuration ω of the FK model at (p, q), by choosing a label for each cluster of
ω independently and uniformly from {0, 1, .., q−1}; this construction yields a joint
site-bond configuration for which the sites are a Potts model and the bonds are an
FK model. Fix an integer 0 < t < q− 1 and suppose that we color yellow all open
bonds in such a joint configuration with (necessarily matching) endpoints labeled
0, .., t − 1, and color white all open bonds with endpoints labeled t, .., q − 1. The
weight of a given yellow/white bond configuration is then

W(ωy, ωw) = p|ωy |+|ωw |(1 − p)|B|−|ωy |−|ωw |qC(ωy∨ωw)
(
t

q

)C(ωy)−I (ωy)

·
(

1 − t

q

)C(ωw)−I (ωw)
δE

(
(ωy, ωw)

)

= p|ωy |(1 − p)|B|−|ωy |tC(ωy)t−I (ωy)
(

p

1 − p
)|ωw |

(q − t)C(ωw)+I (ωy∨ωw)−I (ωw) ·
(

q

q − t
)I (ωy∨ωw)

δE
(
(ωy, ωw)

)
(2.23)

where

E = E(�,B) = {(ωy, ωw) : no site is an endpoint of both an open yellow bond

and an open white bond}.

One can obtain such a yellow/white configuration directly from an FK configu-
ration, without the intermediate step of the joint Potts/FK configuration, by inde-
pendently coloring each FK cluster (including singletons) yellow with probability
t/q, and white with probability 1− t/q. Thus we neeed not restrict t or q to be an
integer; any 0 < t < q will do. We call the distribution of the yellow/white site-
bond configuration the bicolored FK model on (�,B) with parameters (p, q, t)
(and free boundary.) When (�,B) is a subgraph of a lattice, a bond boundary con-
dition for the bicolored FK model can be imposed by specifying a bond boundary
condition ρ for the uncolored FK model, then specifying a color for each cluster
of ρ. Alternately, as a special case of generalized site boundary conditions one can
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specify a color, yellow or white, for each site of ∂�. Under such a bicolored site
boundary condition η, the event E in (2.23) should be replaced by

A(�, η) = E(�,B(�)) ∩ {(ωy, ωw) : ηx = ηy for

every x, y ∈ ∂� for which x ↔ y in ωy ∨ ωw}.

We use the notation C(ω,�), and C(ω | ρ) for (bicolored) bond boundary con-
ditions ρ, as we do for the ARC model. Summing (2.23) over ωw for a given ωy
yields the weight of the yellow configuration ωy , under bicolored site boundary
condition η ∈ {yellow,white}∂�:

W(ωy) = p|ωy |(1 − p)|B|−|ωy |tC(ωy,�)t−I (ωy,�)F (ωy), (2.24)

where

F(ωy) =
∑

ωw∈{0,1}B(I(ωy ,�))

(
p

1 − p
)|ωw |

(q − t)C(ωw,�)+I (ωy∨ωw,�)−I (ωw,�)

·
(

q

q − t
)I (ωy∨ωw,�)

δA(�,η)
(
(ωy, ωw)

)
. (2.25)

We call the model given by the weights (2.24) the partial FK model on (�,B(�))
with parameters (p, q, t) and bicolored site boundary condition η. Note that the
exponentC(ωw,�)+I (ωy∨ωw,�)−I (ωw,�) in (2.25) is the number of clusters
of ωw not intersecting ∂�which have (all) sites in I (ωy,�); from this observation
we see that F(ωy) is precisely the partition function of the neutral ARC model on
(I(ωy,�),B(I(ωy,�)) with parameters (p, 0, q − t, q

q−t ), boundary condition
η on white sites in ∂�, and 0’s (or free) boundary condition on �\I(ωy,�) and
on yellow sites in ∂�. This, together with (2.14), proves the following result.

Proposition 2.3. Let p ∈ [0, 1], q ≥ 1 and 0 < t < q. Let � be a finite subset of
the sites of a lattice L and let η be a bicolored generalized site boundary condi-
tion for the bicolored FK model on (�,B(�)). Conditionally on the yellow-bond
configuration ωy of the bicolored FK model with parameters (p, q, t),

(i) the white bonds form a neutral ARC model on (I(ωy,�),B(I(ωy,�))) with
parameters (p, 0, q − t, q

q−t ) and boundary condition η on the white sites in
∂�, and 0’s (or free) boundary condition on both�\I(ωy,�) and the yellow
sites in ∂�;

(ii) the yellow sites in I(ωy,�) have the distribution of the 0’s configuration of
a (q − t)-state neutral Potts lattice gas on I(ωy) with the same boundary
condition as in (i), with parameters (1, J, 0, µ) given by

p = 1 − e−J , t = e−µ.
We call the neutral Potts lattice gas of Proposition 2.3(ii) the conditional neutral

Potts lattice gas of the bicolored FK model.
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Remark 2.4. The case t = q − 1 in Proposition 2.3 is of particular interest, for
F is then the partition function of an Ising ARC model. In this case, for inte-
ger q, part (ii) says that for the joint Potts/FK configuration, conditionally on the
bonds with (matching) endpoints in {1, .., q − 1}, the 0 and non-0 sites left iso-
lated by these bonds form an Ising model. Further, for β given by p = 1 − e−β ,
let Q = 1 + eβm/(q − 1) (corresponding to a Potts model with no external field
– cf. (2.19).) Then the yellow bonds of the bicolored FK model with parame-
ters (p, q, q − 1) have the same distribution as the red bonds of the Potts ARC
model with parameters (p, p, q − 1,Q), as both configurations are obtained from
a q-state Potts model configuration by independent percolation at density p on
{〈xy〉 ∈ B : σx = σy �= 0}.

One type of bicolored generalized site boundary condition specifies only a color
for each site; equivalently, all white boundary sites are 0’s and all yellow boundary
sites have a second spin, say 1. Thus we may, for example, have a bicolored FK
model with all-white or all-yellow site boundary condition.

3. Statement of main results

In this section we describe our main results; proofs appear in later sections.
Let us use “≤” to denote the natural partial ordering on {0, 1}B. An event A is

called increasing ifω ∈ A,ω ≤ ω′ implyω′ ∈ A, and decreasing if its complement
is increasing. A probability measure P on {0, 1}B is said to have the FKG property
if

P(A ∩ B) ≥ P(A)P (B) for all increasing events A,B.

P is said to satisfy the FKG lattice condition if

P(ω ∨ ω′)P (ω ∧ ω′) ≥ P(ω)P (ω′) for all ω,ω′. (3.1)

As proved in [18], the FKG lattice condition implies the FKG property. For P1 and
P2 probability measures on {0, 1}B, we say P1 dominates P2 (in the FKG sense)
if P1(A) ≥ P2(A) for all increasing events A. This is equivalent to the statement
that there exists a coupling P̃ of {0, 1}B × {0, 1}B with marginals P1 and P2 for
which P̃ ({(ω, ω′) : ω ≥ ω′}) = 1. As is well-known, if P1 and P2 are determined
by weights W1 and W2 respectively, P1 or P2 has the FKG property, and W1/W2
is an increasing function on {0, 1}B, then P1 dominates P2.

Let ηi denote the all-i’s boundary condition; if i �= 0 we call ηi a constant-spe-
cies boundary condition. More generally, we say that a generalized site boundary
condition η has a single particle species if there exists i �= 0 such that ηx = 0 or i
for all x ∈ ∂�. Note that for the Ising ARC model (q = 1), every (nongeneralized)
site boundary condition has just a single particle species.

L. Chayes [9] proved that for the usual Potts model without external field, the
0’s configuration satisfies the FKG lattice condition and thus has the FKG property.
Of course, 0 can be replaced by any other spin. In two dimensions, Chayes obtained
as a consequence that Gibbs nonuniqueness is characterized by the percolation of
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spin i under boundary condition ηi . Chayes’ proof of the FKG property allows for
boundary conditions specified in terms of the variables δ[σx=0], x ∈ ∂�, but does
not cover general site boundary conditions. There is good reason for this as the
following example shows.

Example 3.1. Consider a 3-state Potts model with spin space {0, 1, 2} at inverse
temperatureβ without external field, on� = {x, y, z} ⊂ Z

3, where x = (1, 0, 0), y
= (2, 0, 0), z = (3, 0, 0). The boundary condition is as follows: of the five bound-
ary sites adjacent to x, three have spin 1 and two have spin 2; of the four boundary
sites adjacent to y, two have spin 1 and two have spin 2; and of the five boundary
sites adjacent to z, two have spin 1 and three have spin 2. We write ijk for the
configuration σ with σx = i, σy = j, σz = k. For large β, most of the probability
is concentrated on the energy-minimizing configurations 111, 112, 122, 222 so the
partition function Z corresponding to the Hamiltonian (2.6) satisfies Z ∼ 4e9β as
β →∞. Hence as β →∞ we have

P(σx = σz = 0) = 3e2β

Z
,

P (σz = 0) = P(σx = 0) ∼ P(022) = e6β

Z
∼ e−3β

4

and hence

P(σz = 0 | σx = 0) ∼ 3e−4β.

Thus for large β, the events [σz = 0] and [σx = 0] are negatively correlated, so the
FKG property fails for the 0’s configuration.

This brings up the more general question of just when the FKG property holds
for the 0’s configuration of a Potts lattice gas. A sufficient condition is given by the
following result; Example 3.1 demonstrates the need to restrict to single-particle-
species boundary conditions.

Theorem 3.2. The 0’s configuration of any particle/bond Potts lattice gas on a
finite subset � of the sites of a lattice, with J, κ ≥ 0, under free boundary con-
ditions or under any site boundary condition η which has a single particle species,
satisfies the FKG lattice condition.

We say that percolation of spin i occurs under a measure P if with probability
1, there exists an infinite self-avoiding lattice path on which all sites have spin i.
Using Theorem 3.2 we will establish the following.

Corollary 3.3. Consider a q-state Potts lattice gas (q an integer) with parameters
(β, J, κ, µ), with J, κ ≥ 0, on a planar lattice L. If percolation of 0’s occurs
under boundary condition ηi for some i ∈ {1, .., q}, then there is a unique Gibbs
distribution at (β, J, κ, µ).
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We turn next to conditions for Gibbs uniqueness and weak mixing, and to
the bounds on critical points that can be obtained by establishing such properties
throughout most of the high-temperature regime. A bond or site model with speci-
fied parameters (but unspecified boundary condition) is said to have the weak mixing
property if there existC, λ as follows. Given finite sets< ⊂ � and any two bound-
ary conditions (bond or generalized site) η1 and η2 for the model on (�,B(�)), the
corresponding distributions P1 and P2 of the configuration on (<,B(<)) satisfy

Var(P1, P2) ≤ C
∑

x∈<,y /∈�
e−λ|y−x|,

where Var(·, ·) denotes total variation distance. Loosely this says that the maxi-
mum influence, on a fixed region, of the boundary condition decays exponentially
to 0 as the boundary recedes to infinity. Turning to the FK model, fix p, q and for
each finite subset � of the sites of a lattice L, let PFK�,w denote the model at (p, q)

on (�,B(�)) with wired boundary condition. The infinite-volume limit, denoted
PFKw , is said to have exponential decay of local wired-boundary connectivities if
there exist C, λ > 0 such that for every finite � � 0,

PFK�,w(0 ↔ ∂� by a path of open bonds) ≤ Ce−λr(�),
where r(λ) = min{|x| :∈ ∂�}. Note this is stronger than the usual notion of ex-
ponential decay of connectivities (for the infinite-volume limit), as studied e.g. in
[23], though for the FK model on planar lattices the two notions have been prov-
en equivalent [4]. It is not hard to show (see [4]) that if the FK model at (p, q)
has exponential decay of local wired-boundary connectivities, then it has the weak
mixing property, as does the corresponding Potts model if q is an integer. Weak
mixing for the Potts model has a variety of useful consequences, particularly in two
dimensions; see [32].

A planar lattice L divides the plane into polygonal faces. The dual lattice L
∗ is

constructed by placing a dual site at the center of each such face, and then a dual
bond between each pair of dual sites for which the corresponding faces have a bond
(that is, an edge) in common. For example, the dual of the triangular lattice is the
hexagonal lattice, and vice versa. When necessary for clarity, bonds of L are called
regular bonds. To each regular bond e there is associated a unique dual bond e∗
connecting the centers of the two faces of which e is an edge. The dual bond e∗ is
defined to be open precisely when e is closed, so that for each bond configuration
ω on L, there is unique dual configuration ω∗ on L

∗. For each q > 0, for p ∈ [0, 1]
the value p∗ dual to p at level q is given by

p

q(1 − p) =
1 − p∗
p∗

.

If the regular bonds are distributed as the infinite-volume FK model at (p, q) on L

with wired boundary condition, then the dual bonds form the infinite-volume FK
model at (p∗, q) on L

∗ with free boundary condition (see [21].) If p is the self-dual
point

psd(q) =
√
q

1 +√
q
,
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then p = p∗. For the FK model on the square lattice it is conjectured that the
percolation critical point is the self-dual point for all q; this is known for q
≥ 25.72, from [31].

For the Potts model, the value β∗ dual to a given β can be obtained using FK
duality and the correspondence p = 1 − e−β .

Let pFKc (q,L) denote the percolation critical point of the FK model on a lattice
L, and let βPottsc (q,L) denote the critical inverse temperature of the q-state Potts
model on L, so that

pFKc (q,L) = 1 − e−βPottsc (q,L).

If q is not an integer, we take this as the definition of βPottsc (q,L). For q = 2 we

alternately write βIsingc (L).
It is believed that weak mixing should hold for the q-state Potts model for all

q ≥ 1 and all subcritical β, but for the most part it has only been established pertur-
batively, for β near 0. Exceptions include the Ising model [24], and q ≥ 25.72 on
the square lattice [31]. Here we will establish weak mixing for the Potts model on
planar lattices throughout most of the subcritical region, that is, nearly up to βPottsc .
As a byproduct we obtain rigorous bounds on the Potts and FK critical points on
such lattices. The specifics are as follows.

Theorem 3.4. Let L be a planar lattice of coordination number m, and suppose
the dual lattice L

∗ has coordination number m∗. Let q > 1 and define β1 =
β1(q + 1,m) and p1 = p1(q + 1,m) by

eβ1 = q − 1

q(m−2)/m − 1
, p1 = 1 − e−β1 = 1 − q−2/m

1 − q−1
. (3.2)

(i) The FK model on L at (p, q + 1) has exponential decay of local wired-
boundary connectivities, and has the weak mixing propety, for all
p < p1(q + 1,m). Its critical point pc = pFKc (q + 1,L) satisfies p1 ≤ pc
≤ p2, where p2 = p1(q + 1,m∗)∗ is the value dual to p1(q + 1,m∗) at
level q + 1.

(ii) If q is an integer, the (q + 1)-state Potts model at (β, 0) on L has the
weak mixing property for all β < β1(q + 1,m). Its critical point βc =
βPottsc (q + 1,L) satisfies β1 ≤ βc ≤ β2, where β2 = β1(q + 1,m∗)∗
is the value dual to β1(q + 1,m∗) at level q + 1.

(iii) The lower bounds p1 and β1 remain valid even if there is no m∗ (that is, not
all sites of L

∗ have the same degree.)

We now apply Theorem 3.4 to some examples.

Example 3.5. For the square lattice with certain values of q, it is known [31] that
the FK critical point is the self-dual point:

pFKc (q,Z2) =
√
q

1 +√
q

for q = 1, 2 and all q ≥ 25.72,
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and this is believed to hold for all q ≥ 1; it is known (see [21]) that pFKc (q,Z2) ≥
psd(q) for all q ≥ 1. By contrast, the lower bound given by Theorem 3.4 is

p1(q,4) =
√
q − 1

1 +√
q−1

= psd(q − 1) = psd(q)− 1

2q3/2
−O

(
1

q2

)
as q→∞,

and the upper bound is
√
q√

q−1
q

+√
q

= psd(q)+ 1

2q3/2
+O

(
1

q2

)
.

For q = 10, for example, we obtain .760 ≤ pc ≤ .769, compared to the conjectured
value psd = .760, and we establish exponential decay for all p < .750.

Example 3.6. For the triangular and hexagonal lattices, there are computations of
the Potts critical point in the physics literature using the star-triangle transforma-
tion and variants thereof ([26],[41]), but it is not clear whether these can be made
rigorous. Since the triangular and hexagonal lattices are dual to each other, rigorous
upper bounds on each of these lattices come from lower bounds on the other lattice.
For example, the values .513 and .740 are dual at level q = 3, as are .413 and
.810 (see Table 1). For many other planar lattices, there are only estimates obtained
by series expansion methods, renormalization group methods and/or simulation;
see [42] for a summary and references. For the Kagomé lattice lower bounds are
computed in [29], but again, the level of rigor is unclear. Our rigorous bounds, and
corresponding nonrigorous values from the physics literature, are summarized in
Table 1. The nonrigorous values for the triangular and hexagonal lattices are from
the presumably exact general formula in [26]. The nonrigorous values for the Ka-
gomé lattice are from [29] for q = 4 and from the conjectured general formula in
[41] for q = 9, 30; it should be noted that this general formula was found in [14] to
be incorrect. The lower bound from [29] for the Kagomé lattice with q = 4 is .672,
better than our rigorous bound .634. The accuracy of the rigorous bounds becomes
quite high for larger values of q. Nonetheless, this table should perhaps be seen
less as a source of new information about critical points and more as a numerical
quantification of the sharpness of the comparison result, Proposition 4.13.

The idea behind the proof of Theorem 3.4 is as follows. The main step is to prove
that there is exponential decay of local wired-boundary connectivities for p < p1;
this establishes weak mixing which shows that p1 ≤ pFKc , and then, using duality,
thatpc ≤ p2. The bounds onβPottsc follow from the Potts/FK correspondence using
(2.19). The wired-boundary FK model on a finite � can be obtained from perco-
lation at density p on the matching bonds in the Potts model with a constant, say
all-0, boundary condition. To obtain the exponential decay of local wired-boundary
connectivities, then, we need only consider percolation on “00” bonds. It is enough
to show that the probability of a path in the Potts model from the origin to ∂� on
which all spins are 0’s decays exponentially in r(�). For this, it is enough to show
that the 0’s configuration of the Potts model is dominated by the configuration of
some other species in some other model where this exponential decay property is
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Table 1. Nonrigorous values and rigorous bounds for the critical point of the FK model on
planar lattices.

Lattice m q Rigorous bounds on pFKc (q,L) Nonrigorous value

Triangular 6 3 0.413 ≤ pc ≤ 0.513 0.468
Triangular 6 4 0.460 ≤ pc ≤ 0.532 0.500
Triangular 6 9 0.571 ≤ pc ≤ 0.600 0.588
Triangular 6 30 0.699 ≤ pc ≤ 0.706 0.703
Hexagonal 3 3 0.740 ≤ pc ≤ 0.810 0.773
Hexagonal 3 4 0.779 ≤ pc ≤ 0.824 0.800
Hexagonal 3 9 0.857 ≤ pc ≤ 0.871 0.863
Hexagonal 3 30 0.926 ≤ pc ≤ 0.928 0.927
Kagomé 4 4 0.634 ≤ pc 0.686
Kagomé 4 9 0.739 ≤ pc 0.761
Kagomé 4 30 0.843 ≤ pc 0.851

known to hold. The latter role is played by the “+” configuration of an Ising model
with negative external field. The ARC model, and in particular the fact that the 0’s
configuration is obtained by independent site percolation on the isolated sites of
the ARC configuration, is used to facilitate the comparison of the Potts 0’s to the
Ising “+” configuration.

We will prove a somewhat weaker analog of Theorem 3.4 for higher dimensions.
It requires an assumption on the Ising model to which the Potts 0’s configuration
is compared, as follows. Given an inverse temperature β, a value of q and a lattice
with coordination number m, define β ′′ by

eβ
′′ = q − 1 + eβ

q(m−1)/m
(3.3)

and let β1 be as in 3.2. We will need the following condition:

independent percolation at density 1 − e−β on the “++” bonds of the (3.4)

minus phase of the Ising model at (β ′′, 0) produces no infinite cluster, a.s.

Unfortunately we have no way to verify this for d > 2, except when we are in the
Peierls regime eβ

′′
> 3, where it is known that “+” spins do not percolate in the

minus phase. From (3.3), a sufficient condition for eβ
′′
> 3 is that q > 32d . This

leads to the following two results.

Theorem 3.7. For q > 1, consider the FK model at (p, q + 1) on Z
d , and, for

integer q, the corresponding (q+1)-state Potts model at (β, 0), with p = 1− e−β .
If (3.4) holds, with β ′′ given by (3.3), and

p <
1 − q−1/d

1 − q−1
(3.5)
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or equivalently

eβ <
q − 1

q(d−1)/d − 1
, (3.6)

then there is no percolation in the FK model, and (for integer q) the Potts
model has a unique Gibbs distribution. If (3.4) holds for all β in a neighbor-
hood of β1(q + 1, 2d), then

pFKc (q + 1,Zd) <
1 − q−1/d

1 − q−1
.

Corollary 3.8. For all d ≥ 2 and q > 32d , the FK model on Z
d with parame-

ters (p, q + 1) has no percolation provided (3.5) holds. If q > 32d is an integer,
the (q + 1)-state Potts model on Z

d at inverse temperature β has a unique Gibbs
distribution provided (3.6) holds.

Remark 3.9. The equivalent conditions (3.5) and (3.6) are apparently quite sharp
for Z

d , even for small q. For example, for the 4-state Potts model (q = 3) in
dimension 3, we have

1 − q−1/d

1 − q−1
= .460

while nonrigorous estimates of pc in the physics literature range from .468 to .477
(see [42].) It is not hard to show that β/2 ≤ β ′′ ≤ β for all β ≤ β1. Since the FK
model has at most one infinite cluster a.s., we know that independent percolation
at density 1 − e−β ′′ on the “++” bonds of the minus phase of the Ising model at
(β ′′, 0) produces no infinite cluster a.s.; in (3.4) we replace 1−e−β ′′ with the larger
percolation density 1 − e−β . Percolation at the still-larger density 1 − e−2β ′′ on
the “++” bonds of the minus phase of the Ising model at (β ′′, 0) produces the Ising
ARC model (with reversed polarity), so to establish (3.4) it is enough to show that

there is no percolation in the Ising ARC model, corresponding to an Ising (3.7)

model at (β ′′, 0), with isolated boundary condition.

Remark 3.10. We consider (3.4) and (3.7) in the mean field limit,m = 2d →∞,
for the integer lattice. Let β ′′1 (q+1,m) be the value of β ′′ when β = β1(q+1,m),
that is,

eβ
′′
1 (q+1,m) = q − 1

q1/m(q(m−2)/m − 1)
= 1

q1/m
eβ1(q+1,m) (3.8)

(cf. (3.3).) We have from (3.2) that

lim
m→∞mβ1(q + 1,m) = 2q log q

q − 1
,

which is the “right” mean field limit, in that it is believed that

lim
d→∞

2dβc(q + 1,Zd) = 2q log q

q − 1
(3.9)
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and it is proved in [28] that

lim sup
d→∞

2dβc(q + 1,Zd) ≤ 2q log q

q − 1
.

The limit (3.9) is known for the Ising model, q + 1 = 2, with the RHS interpreted
as 2. Thus if for all sufficiently large d one could establish (3.4) for all β in a
neighborhood of β1, it would prove (3.9). From (3.8),

lim
m→∞mβ

′′
1 (q + 1,m) = (q + 1) log q

q − 1
,

and the latter is an increasing function of q > 1, so for all q > 1,

β ′′1 (q + 1, 2d) > βPottsc (2,Zd) for all sufficiently large d.

Thus for (3.9) it would be enough to prove (3.4) or (3.7) when β ′′ is above the Ising
critical point βPottsc (2,Zd). Define the percolation threshhold

p
Ising
c (β ′′,L) = inf{p ∈ [0, 1] : independent percolation at density p on the “++”

bonds of the minus phase of the Ising model at (β ′′, 0) on L

produces an infinite cluster a.s.}.

From Remark 3.9 we know pIsingc (β ′′,L) ≥ 1− e−β ′′ and for (3.4) it suffices that

p
Ising
c (β ′′,L) > 1 − e−β, for all β in a neighborhood of form (β1 − ε, β1)

(3.10)

and for β ′′ as in (3.3),

where ε > 0. We are unable to verify (3.10) for the integer lattice but we can verify
the analog for the Cayley tree Tm with large coordination number m as follows. It
is easily checked that

p
Ising
c (β ′′,Tm) ∼ (mP IsingTm,−,β ′′m,0(σx = +))−1 as m→∞, (3.11)

where x is arbitrary and P Ising
Tm,−,β ′′m,0 denotes the infinite-volume Ising model on

Tm at (β ′′m, 0) with minus boundary condition. This is just the branching-process
approximation which says that the critical percolation density is such that the mean
number of sites x adjacent to 0 for which both σx = + and 〈0x〉 is open is approxi-
mately 1. Suppose we have a sequence {βm}withmβm → c for some c “sufficiently
close” to 2q(log q)/(q − 1); then from (3.3), mβ ′′m → a(c) = c

q
+ log q, while

from the mean field limit for the magnetization on a tree (which is straightforward),

P
Ising

Tm,−,β ′′m,0(σx = +)→ 1 −Ma(c)
2

(3.12)

whereMa is the positive solution ofM = tanh(aM/2). We claim that

2

1 −Ma(c) > c for all c in a neighborhood of
2q log q

q − 1
, (3.13)
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which with (3.11) and (3.12) establishes (3.10) for Tm withm large. Thus it seems
plausible that (3.10) may hold for the integer lattice when q > 1, at least in high
dimensions. It is sufficient to prove (3.13) for c = 2q(log q)/(q− 1), so c > 2 and
a(c) = (q+1)(log q)/(q−1). Now (3.13) for this c is equivalent toMa(c) > 1− 2

c
or

tanh

(
a(c)

2

(
1 − 2

c

))
> 1 − 2

c

or

tanh

(
q + 1

2

(
log q

q − 1
− 1

q

))
> 1 − q − 1

q log q
, (3.14)

and (3.14) can be verified for all q > 1 by a tedious but straightforward calculation,
using ex > 1+ x+ x2/2 for x > 0. Thus (3.13) and hence (3.10) hold form large,
so for each q > 1, for Tm with m large, (3.4) holds for all β in a neighborhood of
β1, as required.

The obvious problem with Theorem 3.7 is the difficulty of verifying (3.4).
We give next an alternate theorem which has more readily verifiable hypotheses
(at least in certain limits.) The price paid for this is that the resulting bound on
pFKc or βPottsc is weaker, particularly for small q.

The magnetization M(β, h) = M(β, h,L) of the Ising model at (β, h) on the
lattice L is the mean value of σ0 in the infinite-volume plus phase. For h ≥ 0, the
susceptibility at (β, h) is the quantity

χ(β, h) = 1

β

∂

∂h
M(β, h).

Theorem 3.11. For q > 1 consider the FK model at (p, q + 1) on Z
d , and, for

integer q, the corresponding (q+1)-state Potts model at (β, 0), with p = 1− e−β .
Suppose

2χ

(
β

2
, 0

)
< 1 +M

(
β

2
, 0

)
(3.15)

and suppose

p < 1 − 1

q1/d
(3.16)

or equivalently

eβ < q1/d .

Then there is no percolation in the FK model, and (for integer q) the Potts model
has a unique Gibbs distribution at inverse temperature β. If (3.15) holds for all β
in a neighborhood of (log q)/d , then

pc(q + 1,Zd) ≥ 1 − 1

q1/d
.
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Condition (3.16) is clearly less sharp than (3.5), especially for small q; in par-
ticular one could not hope to obtain the mean-field limit (3.9) using (3.16). For
example, for q + 1 = 4 and d = 3, (3.16) allows p < .306 while (3.5) allows
p < .460 (see Remark 3.9.) For q + 1 = 30 and d = 10, there is less difference,
as (3.16) allows p < .286 while (3.5) allows p < .296.

We can verify (3.15) in certain limits, which leads to the following.

Corollary 3.12. Suppose q+1 ≥ 10.56. For all sufficiently large d, the FK model
satisfies

pFKc (q + 1,Zd) ≥ 1 − 1

q1/d
.

Remark 3.13. For the Potts model, Kesten and Schonmann [28] established a
lower bound for q + 1 ≥ 2 of the form

βPottsc (q + 1,Zd) ≥ c(q)

d
for all d.

Their c(q) is very close to the mean-field value (q log q)/(q−1) for small q, which
is better than what Corollary 3.12 gives, but for large q their c(q) is only about half
the mean-field value, so Corollary 3.12 is better for large q.

Remark 3.14. Since χ(β)→ 0 as β →∞, (3.15) holds for all sufficiently large
β. Therefore for fixed d , Theorem 3.11 shows pFKc (q + 1,Zd) ≥ 1 − q−1/d for
all sufficiently large q. But this is of less interest that large d, because a series
expansion for pFKc (q + 1,Zd) for large q is known [30].

We turn next to the analysis of certain perturbations of the (zero-field) Potts
and Ising models. The main question of interest to us is how these perturbations
affect the critical inverse temperature of the model. We consider first annealed site
dilution, that is, a Potts lattice gas in which 0’s are rare. It should be pointed out
that the coresponding problem for annealed bond dilution is much simpler, because
bond dilution is essentially just a change of temperature (see [37].)

We define the dilution parameter θ of a q-state Potts lattice gas at (1, J, κ, µ)
on a lattice with coordination number m by

θ = e−(µ+κm).
For the corresponding ARC model, this becomes

θ = q(Q− 1)(1 − pg)m. (3.17)

Heuristically, and to an extent quantifiably (see Lemma 4.18), θ gives the order
of magnitude of the typical fraction of 0’s in the system. Define the ARC model
critical point for red bonds by

pARCc (pg, q,Q,L) = inf{pr : percolation of red bonds occurs in the

in the red-wired ARC model at (pr , pg, q,Q) on L}
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and the corresponding Potts lattice gas critical point by

JPLGc (q, κ, µ,L) = inf{J : there is symmetry breaking in the

q − state Potts lattice gas at (1, J, κ, µ) on L}
As is easy to show (see Proposition 4.7), if (pg,Q) and (κ, µ) are related as in
(2.13), we have

pARCc (pg, q,Q,L) = 1 − e−JPLGc (q,κ,µ,L). (3.18)

In the next theorem, the underlying heuristic is that when small annealed site
dilution is added to the Potts model, the change in critical temperature, the fraction
of empty sites, and the dilution parameter θ are all of the same order of magnitude.
What we actually prove are one-sided bounds consistent with this picture. These
bounds essentially compare the effect of the dilution to the effect of change much
simpler to analyze: replacing the parameter q with q + θ in the FK model.

Theorem 3.15. Let L be a lattice of coordination number m.

(i) If q,Q ≥ 1, pg ∈ [0, 1], (Q− 1)(1− pg)m/2 ≤ 1 and the dilution parameter
θ is sufficiently small, then

pFKc (q,L) ≤ pARCc (pg, q,Q,L) ≤ pFKc (q + θ,L).
(ii) If κ ≥ 0, µ ∈ R, q ≥ 1, µ + 1

2κm + log q ≥ 0 and the dilution parameter
θ = e−(µ+κm) is sufficiently small, then

βPottsc (q,L) ≤ JPLGc (q, κ, µ,L) ≤ βPottsc (q + θ,L).
Remark 3.16. Let us compare Theorem 3.15 to what can be obtained by much
simpler techniques, similar to the standard comparison theorem discussed in the
introduction. As we will show (see Lemma 4.4), since Q2C(ω)−I (ω) is a decreas-
ing function of ω, these simpler techniques show that the ARC model, call it P , at
(pr , pg, q,Q) dominates the ARC model, call itP ′, at (pr , pg, qQ2, 1). Hence the
red bond configuration under P ′, which forms the FK model at (pr , qQ2), is domi-
nated by the red bond configuration underP . This shows thatpARCc (pg, q,Q,L) ≤
pFKc (qQ2,L). But qQ2 ≥ q + 2q(Q− 1) ≥ q + 2θ , so this result is worse than
Theorem 3.15 by a factor of at least 2 in the correction θ , and by a much larger
factor if pg is near 1, orQ is large.

For the square lattice, and q ≥ 25.72, the FK critical point is known exactly
[31]. This tells us the exact change in pFKc when q is replaced by q + θ , so we
can get more detailed information from Theorem 3.15 about the change in critical
point induced by the dilution. We summarize this in the following corollary.

Corollary 3.17. Suppose κ ≥ 0, µ ∈ R, q ≥ 25.72, and µ + 1
2κm + log q ≥ 0.

Then for the square lattice, for θ = e−(µ+κm), as θ → 0,

βPottsc (q,Z2) ≤ JPLGc (q, κ, µ,Z2) ≤ βPottsc (q,Z2)+ 1

2
√
q(1 +√

q)θ + o(θ).
(3.19)
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We do not expect that the factor 1
2
√
q(1 + √

q) multiplying θ in (3.19) is
sharp, but we do expect, though we cannot prove, that the true correction term is of
order θ .

A special case of “dilution” of the q-state Potts model is the (q+ 1)-state Potts
model with a large negative external field applied to one of the spins. This is the
subject of our next result.

Theorem 3.18. Let L be a lattice and q ≥ 1, and for h ≥ 0, let

θ(h) = exp
(−βPottsc (q,L)h

)
.

Then

βPottsc (q,L) ≤ βPottsc (q + 1,−h,L) ≤ βPottsc (q + θ(h),L). (3.20)

Note that (3.20) is an equality both for h = 0 and in the limit h→∞.
We turn now to a different perturbation: the Potts lattice gas with small J . When

J = 0 the particles form a binary lattice gas with the Gibbs weight multiplied by
an entropy factor qNs , where Ns is the number of particles; this factor just adds
log q to the chemical potential. Thus small J may be considered a perturbation of a
binary lattice gas, or equivalently, of an Ising model. More precisely, presuming we
relabel particles as “-”and empty sites as “+”, the J = 0 Potts lattice gas becomes
an Ising model with parameters (β0, h0) given by (cf. (2.9))

β0 = κ

2
, β0h0 = −(µ+ κm

2
+ log q). (3.21)

We call h0 the effective external field of the J = 0 Potts lattice gas. Thus for
J = 0, the phase diagram in (κ, µ)-space is known – there is a critical line µ =
− 1

2κm − log q, κ > 2βIsingc (L) where there is phase coexistence, and Gibbs
uniqueness holds everywhere outside the closure of this critical line. For fixed
κ > 2βIsingc (L), as µ increases, there is a first-order aggregation transition at
µ = − 1

2κm − log q from an empty-dominated regime to a particle-dominated
regime. If the lattice is planar these regimes are characterized by the percolation
of empty sites and of particles, respectively. For small J one expects this phase
diagram to be perturbed only slightly. It is outside the scope of this work to make
this phrase “only slightly” into a rigorous statement – this nontrivial problem would
involve showing that for small J the transition remains sharp, meaning there is no
interval of µ values in which there is an intermediate phase, and showing that the
minimum value of κ for which the transition is first-order remains near 2βIsingc (L)

for small J . (See [10] for more on the phase diagram for positive J .) Instead we
will establish a one-sided bound—adding a positive J reduces the critical µ by at
least a certain function of J . Define

µPLGc (q, J, κ,L) = sup{µ ∈ R : there is percolation of 0’s in the infinite-volume

q − state Potts lattice gas at (1, J, κ, µ) on L with 0’s

boundary condition}
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so that for planar L, from the preceding discussion,

µPLGc (q, 0, κ,L) = −κm
2

− log q for all κ > 2βIsingc (L).

Theorem 3.19. Let L be a planar lattice of coordination number m. For q ≥
1, J ≥ 0 and κ > 2βIsingc (L),

µPLGc (q,J,κ,L) ≤ µPLGc (q, 0, κ,L)− m
2

log

(
1

q
eJ + q − 1

q

)
(3.22)

= µPLGc (q, 0, κ,L)− m

2q
J − m(q − 1)

4q2
J 2 +O(J 3) as J→0.

We expect, but do not prove, that the order-J term in the RHS of (3.22) is the
true first-order correction, and that the order-J 2 terms is correct as well for certain
lattices, including the square and hexagonal lattices, which have the property that
for a bond 〈xy〉, the length of the shortest path from x to y outside 〈xy〉 is more
than 2. To see why, note first that the Potts lattice gas with small J has particles of
species which are approximately independent and uniform in {1, .., q}, so that for
any bond, the endpoints match species with probability approximately 1/q. Condi-
tionally on the particle locations, there is approximate pairwise independence, but
not mutual independence, among the variables δ[σx=σy ] as 〈xy〉 varies over bonds
with particles at both ends. If these variables δ[σx=σy ] were mutually independent,
then each bond with particles at both ends would make a contribution to the Gibbs
weight e−H�,η(σ ) of eκ from the interparticle attraction and of

1

q
eJ + q − 1

q

from the Potts interaction. Defining κ0 by

eκ0 = eκ
(

1

q
eJ + q − 1

q

)

we see that the effect of positive J under mutual independence would be merely to
change the interparticle attraction from κ to κ0; we would still have effectively just
a binary lattice gas. What actually happens is a slight variation of this, as follows.
The contribution to the Gibbs weight from a bond 〈xy〉 with particles at both ends
is

eκ
(
λeJ + (1 − λ)),

where the random value λ = λ(x, y, {nz}) is the probability that σx = σy for a Potts
model at inverse temperature J on the particles, but with the interaction between
x and y “turned off,” and λeJ + (1 − λ) is the ratio of two partition functions for
the Potts model on the particles, one with the 〈xy〉 Potts interaction “turned on”
and one with it “turned off.” Assuming “nice” boundary conditions, e.g. free or
having a single particle species, we have λ ≥ 1/q. We therefore call κ0 (which
corresponds to λ = 1/q) the minimum effective interparticle atttraction of the q-
state Potts lattice gas at (1, J, κ, µ). The heuristic content of Theorem 3.19 is that
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since µPLGc (q, 0, κ,L) is a decreasing function of κ , and the small-J system is
roughly like a J = 0 system with interparticle attraction κ0 or greater, we should
expect µPLGc (q, J, κ,L) ≤ µPLGc (q, 0, κ0,L). This is fairly sharp so long as λ is
typically close to 1/q. The deviation λ− 1/q should be of order of the probability
of a path of open bonds in the FK model from x to y outside 〈xy〉, which is of order
J n for small J when the shortest possible path has length n. Thus the inequality in
(3.22) should be accurate to within order J n.

The J = 0 Potts lattice gas with interparticle attraction κ0, which we are effec-
tively using as a bound for the positive-J system, is equivalent (when we ignore
particle species) to an Ising model with parameters (β ′, h′) given by

β ′ = κ0

2
, β ′h′ = −

(
µ+ 1

2
κ0m+ log q

)
(3.23)

or equivalently

e2β ′ = eκ
(

1

q
eJ + q − 1

q

)
, eβ

′(m+h′) = e−µ

q
. (3.24)

We call h′ the maximum effective external field, and β ′ the minimum effective
inverse temperature, of the q-state Potts lattice gas at (1, J, κ, µ).

Our final topic is couplings. Couplings have been a useful tool in studying how
the boundary condition influences probabilities under a Gibbs distribution (see
[33],[5].) For a Potts lattice gas configuration σ on a finite set � with boundary
condition η on ∂�, we define the boundary particle cluster

C(∂�, σ) = {x ∈ � : x is connected to ∂� by a path in which

all sites x ∈ � have nx = 1}.

We say that the Potts lattice gas at (1, J, κ, µ) on a lattice L has the boundary
coupling property with respect to particles if for every finite � and every bound-
ary condition η on ∂�, there exists a coupling P̃ of the measures with boundary
conditions η and η1 satisfying

P̃ ({(σ, σ ′) : σ and σ ′ agree on �\C(∂�, σ ′)}) = 1.

This property is instrumental in [4] in establishing the following property for the
Potts model on a planar lattice with nonnegative external field applied to spin 0:
exponential decay of the (infinite-volume) probability of connecting two sites by a
path with no 0 spins implies weak mixing.

Theorem 3.20. For every lattice L and all J, κ ≥ 0, q ≥ 1 and µ ∈ R, the
q-state Potts lattice gas at (1, J, κ, µ) on L has the boundary coupling property
with respect to particles.
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4. Basic properties of the ARC model and the partial FK model

We begin with the FKG property for the ARC model. Note that an ARC model is
a probability distribution on pairs of configurations. Hence if ω = (ωr , ωg) and
ω′ = (ω′r , ω′g), then ω ≥ ω′ means precisely that both ωr ≥ ω′r and ωg ≥ ω′g . In
particular, there is never a comparison of a red bond to a green one, and one should
not view red and green as two possible states of a single bond 〈xy〉, but rather as
two parallel bonds between x and y.

Lemma 4.1. Let P be an ARC model on a graph (�,B), possibly with a boundary
condition, given by the weights (2.12) for all ω = (ωr , ωg) ∈ {0, 1}B × {0, 1}B,
with q,Q ≥ 1. Then P satisfies the FKG lattice condition (3.1). Consequently, P
has the FKG property.

Proof. As in the analogous proof for the FK model (see [22]), we have

C(ωr ∨ ω′r )− C(ωr) ≥ C(ω′r )− C(ωr ∧ ω′r ).

Similarly, setting K(ω) = I (ωr ∨ ωg),

K(ω ∨ ω′)−K(ω) ≥ K(ω′)−K(ω ∧ ω′),

and (3.1) follows easily. That (3.1) implies the FKG property is a result of [18]. � 

Remark 4.2. Lemma 4.1 applies to the ARC model under any bond boundary
condition, but does not apply to the ARC model with site boundary conditions in
general, because the weights (2.12) then only apply to a restricted set of configu-
rations ω. Constant-species boundary conditions are covered by Lemma 4.1 since
the event D(�, η)c of (2.15) is empty in such cases. More generally, suppose we
have a generalized site boundary condition η which has a single particle species.
Let F ′ = {x ∈ ∂� : ηx = i} and E′ = {x ∈ ∂� : ηx = 0}, and let (�′,B′)
be the graph obtained by deleting E′ and all bonds with an endpoint in E′ from
(�,B(�)). Then the ARC model on (�,B(�))with boundary condition η on ∂�
is equivalent to the ARC model on (�′,B′) with all-i’s boundary condition on
F ′. Thus Lemma 4.1 applies under boundary conditions having a single particle
species as well. Here we are using the fact that when the graph is (�,B(�)), the
proof of Lemma 4.1 is not changed if I (·) means I (·,�) and not I (·,�).

Let us call an ARC model on a graph (�,B) unconditioned if the weights (2.12)
apply to all configurations in {0, 1}B×{0, 1}B. Thus ARC models with free or bond
boundary conditions are unconditioned, and an ARC model with site boundary con-
dition having a single particle species is equivalent to an unconditioned ARC model
on an appropriate subgraph, as in Remark 4.2.

Exactly as for the FK model (see [21],Theorem 3.1), we obtain the following
using Lemma 4.1.
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Corollary 4.3. For fixed pr ∈ [0, 1], pg ∈ [0, 1], q ≥ 1 andQ ≥ 1, the measures
on {0, 1}B(L) × {0, 1}B(L) given by the weak limits

PARCrw,pr ,pg,q,Q
= lim
�↗S(L)

PARC�,rw,pr ,pg,q,Q
and

PARCiso,pr ,pg,q,Q
= lim
�↗S(L)

PARC�,iso,pr ,pg,q,Q

exist, and are translation-invariant and ergodic.

We continue with an analog for the ARC model of the standard comparison
theorem of [17] (see also [3]) for the FK model.

Lemma 4.4. Consider an unconditioned ARC model on a finite graph (possibly
with a boundary condition). Let pr, pg, p′r , p′g ∈ [0, 1] and let q,Q,Q′ ≥ 1 and
q ′ > 0. The model at (p′r , p′g, q ′,Q′) dominates the model at (pr , pg, q,Q) under
any of the following conditions:

(i) pr ≤ p′r , pg ≤ p′g, q = q ′ andQ = Q′;
(ii) pr = p′r , pg = p′g, q ≥ q ′ andQ ≥ Q′;

(iii) pr ≤ p′r , pg = p′g,Q = Q′ and

pr

q(1 − pr) ≤
p′r

q ′(1 − p′r )
;

(iv) pr ≤ p′r , pg ≤ p′g, q = q ′ and

pr

Q2(1 − pr) ≤
p′r

(Q′)2(1 − p′r )
.

Proof. Let W ′(ωr , ωg) and W(ωr, ωg) be the weight functions as in (2.12), for
the two parameter choices. It is easy to see that |ωr |, |ωg|, |ωr | + C(ωr), 2|ωr | +
I (ωr ∨ ωg) and 2|ωg| + I (ωr ∨ ωg) are increasing functions of (ωr , ωg), while
C(ωr) and I (ωr ∨ ωg) are decreasing functions. It follows easily that in all four
cases,W ′/W is an increasing function. � 

Suppose we have two models, PA and PB , for configurations on a finite �,
each with boundary conditions, and we have species i appearing under PA and j
appearing under PB . As a shorthand terminology, we say that the i’s configuration
under PA dominates the j ’s configuration under PB if PA({δ[σx=i] : x ∈ �} ∈ ·)
dominates PB({δ[σx=j ] : x ∈ �} ∈ ·). Note these are measures on {0, 1}�.

For a Potts lattice gas on a finite set �, define

X0 = X0(�, σ) = {x ∈ � : σx = 0}.
Lemma 4.5. Consider a q-state Potts lattice gas and a q ′-state Potts lattice gas
on a finite set � under respective site boundary conditions η and η′, with pa-
rameter values (1, J, κ, µ) and (1, J ′, κ ′, µ′) respectively, satisfying J, κ, J ′, κ ′ ≥
0. Let (pr , pg, q,Q) and (p′r , p′g, q ′,Q′) be the parameters of the correspond-
ing ARC models. Suppose Q ≥ Q′ and the black configuration ωb = ωr ∨
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ωg of the ARC model under PARC
�,η′,p′r ,p′g,q ′,Q′ dominates the black configuration

under PARC�,η,pr ,pg,q,Q
. Then the 0’s configuration of the Potts lattice gas under

PPLG�,η,q,1,J,κ,µ dominates the 0’s configuration under PPLG
�,η′,q ′,1,J ′,κ ′,µ′ .

Proof. LetP andP ′ denote the ARC models at (pr ,pg,q,Q) and at (p′r , p′g, q ′,Q′),
respectively. There exists a coupling P̃ of P and P ′ for which P̃ ({(ωb, ω′b) : ωb ≤
ω′b}) = 1, and hence I(ωb,�) ⊃ I(ω′b,�) a.s. From (2.14), since Q ≥ Q′,
the ARC configurations ωb and ω′b can therefore be labeled to produce lattice-gas
configurations σ and σ ′ satisfying X0(�, σ) ⊃ X0(�, σ

′).

Applying Lemmas 4.4 and 4.5 to the Ising model and Ising ARC model yields
the following result, obtained by Schonmann and Shlosman ([36], Lemma 1) using
different methods.

Lemma 4.6. ([36]) Consider the Ising model on a finite subset� of a lattice with
coordination number m, with boundary condition η. Suppose that

β ′(m− h′) ≥ β(m− h); (4.1)

β ′(m+ h′) ≤ β(m+ h). (4.2)

Then the “+” configuration on � at (β, h) dominates the “+” configuration at
(β ′, h′).

Note that if −m ≤ h′ ≤ m, then (4.1) and (4.2) imply h ≥ h′.
Proof (Proof of Lemma 4.6). The comparison is made by way of the model with a
third set of parameters, (β ′′, h′′). Define these by

β ′(m+ h′) = β ′′(m+ h′′), β(m− h) = β ′′(m− h′′).
It is easy to check that β ′′ ≤ min(β, β ′). From Lemma 4.5 and Lemma 4.4(i) we
have the following two conclusions:

(i) the “+” configuration at (β ′′, h′′) dominates the “+” configuration at (β ′, h′);
(ii) the “+” configuration at (β ′′,−h′′) dominates the “+” configuration at (β,−h).
We can restate (ii) as:

(iii) the “-” configuration at (β,−h) dominates the “-” configuration at (β ′′,−h′′).
Since (iii) is valid under arbitrary boundary condition, we can interchange the roles
of “+”and “-” in (iii) to obtain:

(iv) the “+” configuration at (β, h) dominates the “+” configuration at (β ′′, h′′).

Now (i) and (iv) prove the lemma.

For the lattice Z
d , a plaquette is a face of a unit hypercube centered at a lattice

site. Each plaquette is the perpendicular bisector of a unique bond. A dual surface
(consisting of plaquettes) is the outer boundary of a connected set which is the
union of a finite collection of such hypercubes.
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Proposition 4.7. Consider the red-wired ARC model on a lattice L with param-
eters (pr , pg, q,Q), with q ∈ Z, and the (usual) q-state Potts lattice gas with
corresponding parameters (1, J, κ, µ), given by (2.13).

(i) If the ARC model with red-wired boundary condition has no percolation in
the black configuration ωb = ωr ∨ ωg , then the Potts lattice gas has a unique
Gibbs distribution.

(ii) The red bonds of the ARC model with red-wired boundary condition percolate
if and only if the Potts lattice gas exhibits symmetry breaking, that is, there is
a Gibbs distribution not symmetric in {1, .., q}.

Proof. We give the proof for the integer lattice only; for other lattices one need only
extend the notion of an “outermost dual surface” in the appropriate way. By Lemma
4.1, on a finite (�,B(�)) the ARC model with red-wired boundary dominates the
ARC model with any other generalized site boundary condition η. If< ⊂ � and in
some configuration ωb there is no path of open bonds from ∂� to <, then there is
a unique outermost dual surface F = F(ωb) surrounding< which is crossed by no
open black bond. Let P1 and P2 denote the red-wired measure (that is, the measure
under boundary condition η1) and the measure under η, respectively, for the ARC
model on (�,B(�)). As is well-known in the context of the FK model (see e.g.
[33]), the coupling P̃ of P1 and P2 can be chosen so that

P̃
({(ωb, ω′b) : ωb and ω′b agree inside F(ωb)} | ∂� �↔ < in ωb

) = 1.

Whenωb andω′b agree insideF(ωb), clusters ofωb andω′b can be labeled identical-
ly to create Potts configurations, under boundary conditions η1 and η, which also
agree inside F(ωb). Letting � ↗ S(L) we have P̃ (∂� �↔ < in ωb) → 1 and (i)
follows. The proof of (ii) is similar to the the proof for the FK model (see [3].) � 

The next result is an analog of Proposition 2.3.

Lemma 4.8. Let � be a finite subset of a lattice L with coordination number m.
Consider a q-state particle/bond Potts lattice gas on (�,B(�))with a generalized
site boundary condition η, with parameters (1, J, κ, µ) satisfying κ, J ≥ 0. Then
conditionally on ωr , the 0’s of the Potts lattice gas form the “+” configuration of
an Ising model on I(ωr ,�) with parameters (β̃, h̃) given by

β̃ = κ

2
, eβ̃(m+h̃) = e−µ

q

and with boundary condition as follows: “-” on �\I(ωr ,�) and on {x ∈ ∂� :
ηx �= 0}, “+” on {x ∈ ∂� : ηx = 0}. In particular, for the (q + 1)-state parti-
cle/bond Potts model at (β, 0), we have

β̃ = β

2
, eβh̃/2 = eβm/2

q
. (4.3)

Proof. It is immediate from (2.12) that conditionally on ωr , the green bonds of
the ARC model in B(F) form an Ising ARC model on (F,B(F)), where F =
I(ωr ,�), with “-”, or equivalently wired, boundary condition. Applying (2.19)
yields the result. � 
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We call the Ising model of Lemma 4.8 the conditional Ising model of the (parti-
cle/bond) Potts lattice gas or of the equivalent ARC model. Note that conditionally
on ωr , in addition to the Ising ARC model formed by the green bonds in B(F), the
remaining green bonds of the ARC model – those with neither endpoint isolated in
ωr – are independently open with probability pg .

For L = Z
d we have from (4.3) that h̃ < 0 if and only if eβ < q1/d . This is very

close to the condition that β is subcritical, at least for large q [31]. Thus, except
perhaps near the critical point, 0’s are favored relative to particles on I(ωr ,�)
when β is supercritical, and particles are favored when β is subcritical.

Given a bond configurationω and a bond e, we letω∨e denote the configuation
obtained by adding the bond e to ω (that is, by declaring e to be open.) The ratio
U(ω)/V (ω) of two functions is an increasing function if and only if

U(ω ∨ e)
U(ω)

≥ V (ω ∨ e)
V (ω)

for all ω and e. (4.4)

In some situations of interest, the ratios appearing in (4.4) can be interpreted as
probabilities, as the next three lemmas show. Let P Ising�,η,β,h denote the distribution
of the Ising model with parameters (β, h) on a finite set�with boundary condition
η on ∂�, and let P Ising+,β,h and P Ising−,β,h denote the infinite volume limits under “+” and
“-” boundary conditions, respectively, on the full lattice L.

Lemma 4.9. Let p ∈ (0, 1) andQ ≥ 1, and let� be a finite set of sites of a lattice
L with coordination number m. For ω ∈ {0, 1}B(�) define

G(ω) =
∑

ωr∈{0,1}B(I(ω,�))

(
p

1 − p
)|ωr |

QI(ωr∨ω,�).

Then for e = 〈xy〉 ∈ B(�),

G(ω ∨ e)
G(ω)

= (Q− 1)I (ω∨e,�)−I (ω,�) P IsingI(ω,�),−,β/2,h(σx = σy = −), (4.5)

where β and h are given by

p = 1 − e−β, Q = 1 + eβ(m−h)/2. (4.6)

If x /∈ � then P IsingI(ω,�),−,β/2,h(σx = σy = −) should be interpreted as

P
Ising

I(ω,�),−,β/2,h(σy = −). Similarly if both x, y /∈ � then P IsingI(ω,�),−,β/2,h(σx =
σy = −) should be interpreted as 1. Also, in the event that B(I(ω,�)) is empty,
we define G(ω) to beQI(ω,�).

Given an ARC-model red-bond configuration ω, there is a conditional Ising
model on I(ω,�), and a corresponding reversed-polarity Ising ARC model.G(ω)
is a version of the partition function for this reversed-polarity Ising ARC model.
In the case that the original ARC model is a Potts ARC model, we may view ω

as the FK portion of a joint FK/Potts configuration, with the “00” bonds deleted.
The configurations ωr summed to obtainG(ω) are just the possible choices for the
set of “00” bonds to make ω ∨ ωr a full FK configuration. This is made precise in
Lemma 4.12.
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Proof (Proof of Lemma 4.9). Fix ω and e = 〈xy〉. Let F = I(ω,�) and < =
I (ω,�)− I (ω ∨ e,�) = |{x, y} ∩ F|. Consider an Ising ARC model, which we
denote P1, on (F,B(F))with parameters (p,Q) and “+”, or equivalently isolated,
boundary conditions. This is equivalent (see Remark 2.1) to an Ising ARC model
P2 on (F,B(F)) with the same parameters (p,Q) but with free boundary. The
weights for P2 are given by the terms of the sum G(ω):

W2(ωr) =
(

p

1 − p
)|ωr |

QI(ωr ,F), ωr ∈ {0, 1}B(F).

LetP3 be the Ising ARC model on (F\{x, y},B(F\{x, y}))with parameters (p,Q)
and free boundary, and let A = B(F)\B(F\{x, y}). Note e ∈ A. Each ωr for
which all bonds of A are closed (that is, {x, y} ∩ F ⊂ I(ωr , F)) corresponds
to a unique configuration αr which is the restriction of ωr to B(F\{x, y}), and
conversely. The corresponding weight is

W3(αr) =
(

p

1 − p
)|αr |

QI(αr ,F\{x,y}) = W2(ωr)Q
−<. (4.7)

Summing W3(αr) over all αr yields G(ω ∨ e), so summing (4.7) and dividing by
G(ω) yields

G(ω ∨ e)
G(ω)

=P2
({x, y}∩F⊂I(ωr , F))

)
Q−<=P1

({x, y}∩F⊂I(ωr , F)
)
Q−<.

(4.8)

But from (2.14),

P
Ising

F,−,β/2,h(σx = σy = −) = P IsingF,+,β/2,−h(σx = σy = +)

= P1
({x, y} ∩ F ⊂ I(ωr , F)

) (
Q− 1

Q

)<
,

and (4.5) follows. � 
We have viewedG(ω) as the partition function of a reversed-polarity Ising ARC

model. We could do the same without reversing the polarity. This yields a different
partition function T (ω), expressed below as a sum over configurations ωg . These
configurations ωg are precisely those of the Ising ARC model which appeared in
the proof of Lemma 4.8.

Lemma 4.10. Let p ∈ (0, 1) and Q ≥ 1, and let � be a finite subset of a lattice
L. For ω ∈ {0, 1}B(�) define b(ω) = |B(I(ω,�))| and

T (ω) =
∑

ωg∈{0,1}B(I(ω,�))
p|ωg |(1 − p)b(ω)−|ωg |QI(ω∨ωg,�).

Then for e = 〈xy〉 ∈ B(�),

T (ω ∨ e)
T (ω)

= P IsingI(ω,�),−,β/2,h(σx = σy = −), (4.9)
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where β and h are given by

p = 1 − e−β, Q = 1 + eβ(m+h)/2. (4.10)

Note that the configurations ωr in Lemma 4.9 are on B(I(ω,�)), while the
configurations ωg in Lemma 4.10 are on B(I(ω,�)).

Proof (Proof of Lemma 4.10). As in the proof of Lemma 4.9, fixω and e = 〈xy〉 and
let F = I(ω,�),< = I (ω,�)− I (ω∨e,�) = |{x, y}∩�| and b(ω) = |B(F)|.
This time consider an Ising ARC model P1 on (F,B(F)) with parameters (p,Q)
and with “-”, or equivalently wired, boundary condition. The weights for P1 are
given by the terms of the sum T (ω):

W1(ωg) = p|ωg |(1 − p)b(ω)−|ωg |QI(ω∨ωg,�), ωg ∈ {0, 1}B(F).
LetP3 be the Ising ARC model on (F\{x, y},B(F\{x, y}))with parameters (p,Q)
and “-” boundary condition, and let C = B(F)\B(F\{x, y}). Note e ∈ C. Eachωg
for which all bonds of C are open corresponds to a unique configuration ζg which
is the restriction of ωg to B(F\{x, y}), and conversely. The corresponding weight
is

W3(ζg) = p|ζg |(1 − p)b(ω)−|C|−|ζg |QI(ζg,F\{x,y}) = W1(ωg)p
−|C|. (4.11)

SummingW3(ζg) over all ζg yields T (ω ∨ e), so summing (4.11) and dividing by
T (ω) yields

T (ω ∨ e)
T (ω)

= P1(all bonds of C are open)p−|C|.

But from (2.14),

P1(all bonds of C are open) = P IsingF,−,β/2,h(σx = σy = −)p|C|
and (4.9) follows. � 

Here is a related result for the FK model. Write ω\{e} for the configuration
obtained by closing the bond e ∈ ω.

Lemma 4.11. Let p ∈ (0, 1) and q ≥ 1, let� be a finite set of sites in a lattice L,
and let η be a generalized site boundary condition. For ω ∈ {0, 1}B(�)∩Dg(�, η)
define

R(ω) =
∑
ωr⊂ω

p|ωr |(1 − p)|ω|−|ωr |qC(ωr ,�)δDr (�,η)(ωr).

Then for e ∈ ω,

R(ω\{e})
R(ω)

= 1

1 − pP
FK
ω (e is closed), (4.12)

where PFKω denotes probability for the FK model on the graph (�,ω) with param-
eters (p, q) and site boundary condition η. Further,

R(ω)

(
p
q
+ 1 − p)|ω| is an increasing function. (4.13)
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Proof. The proof of (4.12) is similar to those of Lemmas 4.9 and 4.10 so we omit
it. From [3] we have

PFKω (e is closed) ≤ q(1 − p)
p + q(1 − p)

so (4.13) follows from (4.12) and the criterion (4.4). � 
We have used red/green coloring for the ARC model and its cousin the parti-

cle/bond Potts model, and yellow/white coloring for the bicolored FK model, to
help avoid confusion between the models. In the next lemma we want to add bonds
to the particle/bond Potts model red configuration to obtain a bicolored FK model.
To maintain our color scheme, this requires thinking of these red bonds as instead
being yellow. Thus we refer to the particle/bond Potts model “with the red bonds
recolored yellow.”

Lemma 4.12. Let � be a finite subset of a lattice L, and consider a (q + 1)-state
particle/bond Potts model on (�,B(�)) at (β, 0) with 0’s boundary condition,
with the red bonds recolored yellow. The yellow bonds of this model, supplemented
by independent percolation of white bonds at density p = 1 − e−β on the “00”
bonds, form a bicolored FK model on (�,B(�)) with parameters (p, q + 1, q)
and all-white boundary condition.

Proof. From Remark 2.4, the yellow bonds of the particle/bond Potts model form
a partial FK model on (�,B(�)) with parameters (p, q + 1, q) and all-white
boundary condition. From Lemma 4.8, conditionally on ωy (or equivalently ωr ),
the 0’s (relabeled “-”) and the particles (relabeled “+”) form an Ising model on
I(ωy,�) at (β̃, h̃), where β̃ and h̃ are given by (4.3), with boundary condition “+”
on �\I(ωy,�) and “-” on ∂�. Hence, still conditionally on ωy , the white bonds
from the independent percolation form an Ising ARC model at (p,Q) with this
same boundary condition, where Q = 1 + eβ̃(m+h̃) = q + 1. However, by Propo-
sition 2.3(i), for the bicolored FK model with parameters (p, q + 1, q), the white
bonds have exactly this same Ising ARC model as their conditional distribution
given ωy . The result follows. � 

The next proposition is the key to the proof of Theorem 3.4.

Proposition 4.13. Let � be a finite set of sites of a lattice L with coordination
number m, let J, κ ≥ 0 and q ≥ 1 and consider a q-state Potts lattice gas on � at
(1, J, κ, µ)with site boundary condition η. Let β ′ be the minimum effective inverse
temperature, and h′ the maximum effective external field, of this Potts lattice gas,
as given in (3.24), and define an Ising-model boundary condition η′ by η′x = + if
ηx = 0, η′x = − if ηx �= 0. Then the following hold:

(i) The 0’s configuration of this Potts lattice gas is dominated by the “+” config-
uration of an Ising model on � at (β ′, h′) with boundary condition η′.

(ii) Ifh′ < 0, this “+” configuration is further dominated by the “+” configuration
of an Ising model on � at (β ′′, 0) with boundary condition η′, where

β ′′ = β ′m− h′
m

,
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or equivalently,

eβ
′′ = (qeµ)1/meκ

(
1

q
eJ + q − 1

q

)
.

In particular:

(iii) The 0’s configuration of a (q + 1)-state Potts model at (β, h) with boundary
condition η is dominated by the “+” configuration of an Ising model on � at
(β ′, h′) (and at (β ′′, 0), if h′ < 0) with boundary condition η′, where (β ′, h′)
is given by

e2β ′ = eβ
(

1

q
eβ + q − 1

q

)
, eβ

′(m+h′) = eβ(m+h)

q
(4.14)

and β ′′ = β ′(m− h′)/m, or equivalently

eβ
′′ = q − 1 + eβ

q(m−1)/m
eβh/m. (4.15)

Proof. Corresponding to the Potts lattice gas there is a red/black ARC model on
(�,B(�)) with site boundary condition η and parameters given by (2.13) and
(2.17):

pb = 1 − e−(κ+J ), prb = 1 − e−J
1 − e−(κ+J ) , Q = 1 + e

−µ

q
.

Summing (2.16) over ωr , we see that the black configuration has weights given by

W(ωb) = p|ωb|b (1 − pb)|B(�)|−|ωb|QI(ωb,�)R(ωb)δDg(�,η)(ωb)

where

R(ωb) =
∑
ωr⊂ωb

p
|ωr |
rb (1 − prb)|ωb|−|ωr |qC(ωr ,�)δDr (�,η)(ωr).

Since the Ising ARC model with arbitrary (nongeneralized) site boundary condition
has the FKG property, by (4.13) in Lemma 4.11 this black configuration dominates
an Ising ARC model with parameters (p′,Q) and site boundary condition η′, where
p′ is given by

p′

1 − p′ =
(
prb

q
+ 1 − prb

)
pb

1 − pb = 1 + eκ
(

1

q
eJ + q − 1

q

)
.

But then p′ = 1 − e−2β ′ , so from (2.20) this Ising ARC model corresponds to an
Ising model at (β ′, h′) with boundary condition η′. Now (i) follows from Lemma
4.5, and then (ii) from Lemma 4.6; (iii) is a special case of (i) and (ii). � 
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Remark 4.14. Proposition 4.13 is particularly useful when h′ < 0, for then the
dominating Ising “+” configuration is a minority spin. Particularly for the (q + 1)-
state Potts model in two dimensions, we will see that the comparison can be used
to transfer known properties of the Ising model to the Potts model. This is useful
because a number of properties are easier to prove for the Ising model, where one
has tools such as symmetry inequalities which are not available for the Potts model
in general. From (3.24) we have

h′ < 0 if and only if
e−µ

q
< eβ

′m,

or equivalently

h′ < 0 if and only if
e
−(µ+ 1

2 κm)

q
<

(
1

q
eJ + q − 1

q

)m/2
. (4.16)

Lemma 4.15. In any infinite-volume limit of the Potts ARC model corresponding
to a Potts model at (β, h) with h > 0, red bonds a.s. do not percolate.

Proof. As is well-known (see [4]), by use of a “ghost site” one can construct an
FK model corresponding to a (usual) Potts model with a positive external field
applied to species 0. This model has the finite energy property (see [34] or [7] for
the definition) so a configuration a.s. has at most one infinite cluster [7]. It follows
easily that in the joint Potts/FK configuration, there is no percolation of open bonds
whose endpoints x, y have species σx = σy �= 0. These are precisely the red bonds
of the ARC model. � 

The next result will be used in the proof of Theorem 3.15, when we compare
the ARC model corresponding to a q-state Potts lattice gas with dilution parameter
θ to a partial FK model at (p, q+θ, q). The red bonds of this “q-state” ARC model
may be viewed loosely as an FK model with the same q, diluted by the addition of
some 0 sites, just as the original Potts lattice gas is a diluted Potts model. Similarly,
the bicolored FK model at (p, q + θ, q) is, again loosely, an FK model at (p, q),
with bonds colored yellow, diluted by the addition of some white bonds. It is thus
reasonable to try to compare these two types of models, particularly when the di-
lution is small. The main question to be answered is, given an ARC model, what is
the comparable value of θ in the partial FK model? An answer, or more precisely
a one-sided bound on an answer, comes from the following.

Proposition 4.16. Let� be a finite set of sites of a lattice L with coordination num-
berm and consider an ARC model P on (�,B(�)) at (pr , pg, q,Q), with q > 1,
and with single-species site boundary condition η. Let θ = q(Q− 1)(1−pg)m be
the dilution parameter.

(i) If

pg ≤ pr and
pg

1 − pg ≤
pr

θ(1 − pr) , (4.17)
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then the red-bond configuration under P dominates the partial FK model at
(pr , q + θ, q) on (�,B(�)) with site boundary condition η′ given by η′x =
“white” if ηx = 0, η′x = “yellow” if ηx �= 0.

(ii) Let β/2 and h be the parameters of the conditional Ising model of the ARC
model P, given by

pg = 1 − e−β, q

θ
= eβ(m−h)/2, (4.18)

and suppose that, in the infinite volume limit, for some 0 < δ < 1/2,

P
Ising

−,β/2,h(σx = + for some x adjacent to 0 | σ0 = +) < δ. (4.19)

Suppose also that η is a constant-species (equivalently, red-wired) boundary
condition. Then the red-bond configuration under P dominates the partial FK
model at (pr , q + θ ′, q) on (�,B(�)) with all-yellow boundary condition,
where

θ ′ = 1 − δ
1 − 2δ

θ.

Since the Ising model in (4.19) is (except for boundary condition) the conditional
Ising model of the ARC model P , the “+”spins in (4.19) correspond approximately
to the 0’s configuration of the ARC model P . Loosely, (4.19) holds when 0’s are
so rare that most 0’s are isolated from any other 0’s, and this will be true when
θ is small. Thus (4.19) is a substitute for (4.17) when the dilution is very small.
The values of greatest interest in Proposition 4.16 are small θ and pr near the FK
critical point pFKc (q,L). Since θ ′ > θ , the conclusion in (ii) is weaker than (i),
but for small δ the difference is small, and for the aformentioned values of greatest
interest, we only expect our θ to be sharp up to a constant depending on q anyway;
see Remark 4.17.

Proof (Proof of Proposition 4.16). The basic technique is roughly to compare the
conditional Ising model of the ARC model P to the conditional neutral Potts lattice
gas of the partial FK model. For clarity of exposition we give the proof of (i) only
when η is the all-1’s, or equivalently red-wired, boundary condition (so that η′ is
all-yellow); the general case is quite similar. The weights for the partial FK model
are given by (2.24) and (2.25):

WPFK(ωy)=p|ωy |r (1−pr)|B(�)|−|ωy |qC(ωy,�)q−I (ωy,�)F (ωy), ωy ∈ {0,1}B(�),
where

F(ωy) =
∑

ωw∈{0,1}B(I(ωy ,�))

(
pr

1 − pr

)|ωw |
θC(ωw,I(ωy,�))

(
q + θ
θ

)I (ωy∨ωw,�)
.

Here we use the fact that under the all-yellow boundary condition, we have (ωy, ωw)
∈ A(�, η) if and only if (ωw)e = 0 for all e /∈ B(I(ωy,�)), meaning that effec-
tively ωw ∈ {0, 1}B(I(ωy,�)). The weights for the ARC-model red bonds are given
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by summing (2.12):

WARC(ωr) = p|ωr |r (1 − pr)|B(�)|−|ωr |qC(ωr ,�)T (ωr), ωr ∈ {0, 1}B(�),
(4.20)

where

T (ωr) =
∑

ωg∈{0,1}B(I(ωr ,�))
p
|ωg |
g (1 − pg)b(ωr )−|ωg |QI(ωr∨ωg,�) (4.21)

with b(ωr) = |B(I(ωr ,�))|. Note that green bonds not in B(I(ωr ,�)) have
been summed out; this is possible because the states of such bonds (open or closed)
do not affect the factorQI(ωr∨ωg,�). Define

Q′ = 1 + 1

(Q− 1)(1 − pg)m = q + θ
θ
,

so that the values β, h obtained from pg andQ via (4.6) are the same as the values
β, h obtained from pg andQ′ via (4.10). Define

G(ω) =
∑

ωw∈{0,1}B(I(ω,�))

(
pg

1 − pg

)|ωw |
(Q′)I (ωw∨ω,�).

By Lemmas 4.9 and 4.10,

T (ω ∨ e)
T (ω)

= (Q′ − 1)I (ω,�)−I (ω∨e,�)
G(ω ∨ e)
G(ω)

for all ω and e. (4.22)

Let P IAI(ω,�) be the Ising ARC model on (I(ω,�),B(I(ω,�))) at (pg,Q′) with

free boundary, and letPNAI(ω,�) be the neutral ARC model on (I(ω,�),B(I(ω,�)))

at (pr , 0, θ,
q+θ
θ
) with free boundary. Note that P IAI(ω,�) is also the ARC model at

(pg, 0, 1,Q′). By (4.8) in the proof of Lemma 4.9,

G(ω ∨ e)
G(ω)

= P IAI(ω,�)
({ωw : {x, y} ∩I(ω,�) ⊂ I(ωw,�)}

) (
1

Q′

)I (ω,�)−I (ω∨e,�)
.

(4.23)

By an argument similar to the proof of (4.8) we have

F(ω ∨ e)
F (ω)

= PNAI(ω,�)

({ωw : {x, y} ∩I(ω,�) ⊂ I(ωw,�)}
) (

1

q + θ
)I (ω,�)−I (ω∨e,�)

.

(4.24)
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Under (4.17), by Lemma 4.4, PNAI(ω,�) dominates P IAI(ω,�). Hence (4.24), (4.22)
and (4.23) show that

F(ω ∨ e)
F (ω)

≤
(
Q′

q + θ
)I (ω,�)−I (ω∨e,�)

G(ω ∨ e)
G(ω)

(4.25)

=
(

1

q

)I (ω,�)−I (ω∨e,�)
T (ω ∨ e)
T (ω)

.

Using (4.4) this shows that WARC/WPFK is an increasing function. Since from
Lemma 4.1 the ARC model (with boundary condition η) has the FKG property, so
does the red-bond configuration alone, and (i) follows.

Now suppose (4.19) holds. The value of I (ω,�) − I (ω ∨ e,�) = |{x, y} ∩
I(ω,�)| is either 0, 1 or 2; the case of 0 is trivial because then (4.22), (4.23) and
(4.24) are all equal to 1. Let us assume I (ω,�)− I (ω ∨ e,�) = 2; the case of 1
is similar. Let U denote the event that σz = + for some z adjacent to 0. We have

P IAI(ω,�)
({ωw : x /∈ I(ω ∨ ωw,�)}

)
≤ P IsingI(ω,�),−,β/2,h(σx = +, σz = + for some z adjacent to x)

≤ P Ising−,β/2,h([σ0 = +] ∩ U)

<
P
Ising

−,β/2,h([σ0 = +] ∩ U)
P
Ising

−,β/2,h(Uc)

=
P
Ising

−,β/2,h(σ0 = + | Uc)P Ising−,β/2,h(U | σ0 = +)
P
Ising

−,β/2,h(Uc | σ0 = +)

≤ δ

Q′(1 − δ)
and similarly for y, so, using the FKG property,

P IAI(ω,�)
({ωw : {x, y} ⊂ I(ω ∨ ωw,�)}

) ≥
(

1 − δ

Q′(1 − δ)
)I (ω,�)−I (ω∨e,�)

.

(4.26)

Let

τ = 1 − δ

Q′(1 − δ) .

Combining (4.26) with (4.22) and (4.23) yields

T (ω ∨ e)
T (ω)

= (Q′ − 1)I (ω,�)−I (ω∨e,�)
G(ω ∨ e)
G(ω)

≥
(
(Q′ − 1)τ

Q′

)I (ω,�)−I (ω∨e,�)
.
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It follows using the criterion (4.4) that the red-bond configuration of the ARC
model P dominates the red-bond configuration of the neutral ARC model at
(pr , 0, q,Q′′) on (�,B(�)) with boundary condition η, where

Q′′ = Q′

(Q′ − 1)τ
= q + θ

qτ
.

But this neutral ARC model satisfies the hypotheses of (i), so its red-bond con-
figuration dominates the partial FK model at (pr , q + θ ′′, q) on (�,B(�)) with
all-yellow (equivalently wired) boundary condition, where

θ ′′ = q(Q′′ − 1) = q + θ
τ

− q.

A short calculation shows θ ′′ < θ ′, and (ii) follows. � 
Remark 4.17. It is apparent from the proof of Proposition 4.16 that if we could
find a smaller value of θ (so thatQ′ < 1 + q/θ ) for which the inequality between
the first and last terms of (4.25) were reversed, the domination in (i) and (ii) would
then also be reversed. Now from (2.14), if we extend the neutral ARC model to its
particle/bond form, we have

PNAI(ω,�)

({ωw : {x, y} ⊂ I(ω ∨ ωw,�)}
) (

q

q + θ
)I (ω,�)−I (ω∨e,�)

= PNAI(ω,�)(nx = ny = 0);
note that this particle/bond neutral ARC model has 0’s boundary condition on
∂I(ω,�). Thus to establish the reverse of (4.25), it is enough to choose θ so that
for the particle/bond neutral ARC model at (pr , 0, θ,

q+θ
θ
)we have (in the notation

of the last proof)

PNAI(ω,�)(nx = ny = 0) ≥
(
Q′ − 1

Q′

)I (ω,�)−I (ω∨e,�)
. (4.27)

The bonds of this neutral ARC model are precisely the white bonds of the bicol-
ored FK model from which it was obtained, and the 0’s of the neutral ARC model
are precisely the isolated yellow sites of this bicolored FK model. Thus we might
expect that for fixed ω, when x ∈ I(ω,�),

PNAI(ω,�)(nx = 1) = PBFK(x is white | ωy = ω)
≈ PBFK(x is white | x ∈ I(ωy,�))

= PBFK(x is white)

PBFK(x is white or isolated yellow)
(4.28)

where PBFK denotes the bicolored FK model at (pr , q+ θ, q) on (�,B(�))with
boundary condition η′. (It is only the approximation that is nonrigorous here.) Since

PBFK(x is white) ≤ θ

q + θ and PBFK(x is yellow | x is isolated) = q

q + θ ,
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the right side of (4.28) is at most

θ

θ + qPFK(x is isolated)
, (4.29)

where PFK denotes the FK model at (pr , q + θ) on (�,B(�)) with general-
ized site boundary condition η′. We might expect (4.27) to hold when (4.29) is
approximately 1/Q′, that is,

θ ≈ qPFK(x is isolated)

Q′ ,

which for small θ is within approximately a factor of PFK(x is isolated) of the
value θ = q/(Q′ − 1) of Proposition 4.16. Thus we expect that the value of θ in
the Proposition is sharp “up to a constant,” but we are unable to prove this; the
main obstacle is the absense of the FKG property for the neutral ARC model at
(pr , 0, θ,

q+θ
θ
) when θ < 1.

Our next lemma shows that 0’s are rare in the Potts lattice gas roughly when the
dilution parameter θ is small and the effective external field (on empty sites–see
(3.21)) is negative for the binary lattice gas obtained by replacing parameters J, κ
with 0, J + κ .

Lemma 4.18. Suppose κk ≥ 0 and µk ∈ R for each k ≥ 1, and q ≥ 1, J ≥ 0. Let
L be a lattice of coordination number m, and let Pk be the infinite-volume q-state
Potts lattice gas at (1, J, κk, µk) with all-1’s boundary condition. If

µk + κkm→∞ (4.30)

and

µk + 1

2
κkm+ log q ≥ 0 for all sufficiently large k, (4.31)

then Pk(n0 = 0) → 0 as k → ∞. Conversely if Pk(n0 = 0) → 0 then (4.30)
holds and

lim inf
k→∞

µk + 1
2κkm+ log q

κk
≥ 0. (4.32)

(The quantity (µk + 1
2κkm+ log q)/κk should be interpreted as +∞ if κk = 0.)

Proof. We may assume our Potts lattice gas is in particle/bond form. Let
(pr , (pg)k, q,Qk) be the parameters of the ARC model corresponding to Pk (see
(2.13). The conditional Ising model of Pk has parameters (βk/2, hk) given by
Lemma 4.8:

βk = κk, −1

2
βkhk = µk + 1

2
κkm+ log q,
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so

1

2
βk(m− hk) = µk + κkm+ log q.

Thus (4.30) and (4.31) are equivalent respectively to

βk(m− hk)→∞ and hk ≤ 0, (4.33)

while (4.30) and (4.32) are equivalent respectively to

βk(m− hk)→∞, and lim sup
k→∞

hk ≤ 0. (4.34)

Now the ARC-model red-bond configuration on the full lattice under Pk is dom-
inated by the FK model at (pr , q) so Pk(� ⊂ I(ωr , S(L))) stays bounded away
from 0 as k→∞ for each finite set of sites �. Hence in particular

Pk(n0 = 0)→ 0 if and only if Pk
(
n0 = 0 | 0 ∈ I(ωr , S(L))

) → 0. (4.35)

But this latter probability is just the probability of a “+” at 0 for the conditional
Ising model onI(ωr , S(L))which has “-” boundary condition, and this probability
is bounded above by the same probability for the infinite-volume minus phase of
the Ising model on L. That is,

Pk
(
n0 = 0 | 0 ∈ I(ωr , S(L))

) ≤ P Isingk (σ0 = +), (4.36)

where P Isingk denotes the infinite-volume minus phase of the Ising model at
(βk/2, hk).

If (4.30) and (4.31) hold, or equivalently (4.33) holds, then for large k either−hk
is large or both βk is large and hk ≤ 0; either way we obtain P Isingk (σ0 = +)→ 0
and hence from (4.35) and (4.36), Pk(n0 = 0)→ 0.

Conversely suppose Pk(n0 = 0)→ 0. Analogously to (4.36) we have

Pk
(
n0 = 0 | 0 ∈ I(ωr , S(L))

) ≥ P Isingk (σ0 = + | σx = − for all x adjacent to 0)

= 1

1 + eβ(m−hk)/2 ,

so the first half of (4.34) follows from (4.35).
To prove the second half of (4.34), suppose the first half holds but lim suphk > ε

for some ε > 0; we may assume hk ≥ ε for all k, so βk →∞. If � is sufficiently
large then for all large k,

Pk
(
n0 = 0 | � ⊂ I(ωr , S(L))

) ≥ P Isingk (σ0 = + | σx = − for all x ∈ ∂�) > 1

2
.

Since Pk(� ⊂ I(ωr , S(L))) is bounded away from 0, it follows that Pk(n0 = 0)
is bounded away from 0.

In terms of ARC model parameters, (4.31) can be restated as

(Qk − 1)(1 − (pg)k)m/2 ≤ 1. (4.37)
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Remark 4.19. The proof of Lemma 4.18 contains the fact that (4.33) implies
P
Ising
k (σ0 = +) → 0. One can actually obtain the stronger conculsion from

(4.33) that

P
Ising
k (σx = + for some x adjacent to 0 | σ0 = +)→ 0.

Indeed, (4.33) implies that for large k, either −hk is very large or both hk ≤ 0 and
βk is large enough that a Peierls-type argument shows that a cluster of two or more
“+” spins is much less likely than a single isolated “+” spin.

5. Proofs of the main theorems

Proof (Proof of Theorem 3.2). The Hamiltonian for the q-state Potts lattice gas is
as given by (2.1); for simplicity we assume µx = µ for all x and assume there is a
site boundary condition which has a single particle species i. Let F ′ = {x ∈ ∂� :
ηx = i}. As in Remark 4.2, the corresponding ARC model on a subgraph (�′,B′)
of (�,B(�)) is unconditioned. We use PPLG to denote the Potts lattice gas and
PARC to denote this ARC model on (�′,B′), which has weightsW(ωr, ωg) given
by (2.12), parameters given by (2.13) and site boundary condition η equivalent to
a red-wired boundary condition on F ′. LetWFK(ωr) and PFK denote the weights
and probabilities, respectively, for an FK model on (�′,B′) at (pr , q) with wired
boundary condition on F ′. Let P ind denote probability corresponding to indepen-
dent percolation at density pg on B′. For A,B ⊂ � we have using (2.14):

PPLG(X0 = A) =
∑
K⊃A

PARC(I(ωb,�) = K)
(
Q− 1

Q

)|A| ( 1

Q

)|K|−|A|

= (Q− 1)|A|Z−1
ARC

∑
(ωr ,ωg):I(ωr∨ωg,�)⊃A

W(ωr, ωg)

QI(ωr∨ωg)

= (Q− 1)|A|Z−1
ARC

∑
ωr :I(ωr ,�)⊃A

WFK(ωr)
∑

ωg :I(ωg,�)⊃A
P ind(ωg)

= (Q− 1)|A|Z−1
ARCZFKP

FK(B(A) all closed)P ind(B(A) all closed),

(5.38)

where ZARC and ZFK are the partition functions of the ARC and FK models, re-
spectively. The FKG property of the measure PFK(· | B(A∩B) all closed) yields
that

PFK(B(A ∪ B) all closed)

P FK(B(A) all closed)
≥ PFK(B(B) all closed)

P FK(B(A ∩ B) all closed)
,

and similarly for P ind . This and (5.38) readily yield

PPLG(X0 = A ∪ B)PPLG(X0 = A ∩ B) ≥ PPLG(X0 = A)PPLG(X0 = B),
which is the FKG lattice condition. The proof under free boundary condition, or
for nonconstant µx , is essentially similar. � 
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Proof (Proof of Corollary 3.3). For a joint ARC/Potts lattice gas configuration on
L, black bonds cannot percolate if each site is surrounded by a circuit on which
every site x has σx = 0. As in [9], with this observation the corollary is a direct
consequence of Proposition 4.7, Theorem 3.2 and the main result of [19]. � 
Proof (Proof of Theorem 3.4). Consider first the FK model with p < p1; define β
by p = 1 − e−β . Let β ′ be the minimum effective inverse temperature, and h′ the
maximum effective external field, of the corresponding (q + 1)-state Potts model
at (β, 0), as given by (4.14). It is easily checked that

h′ < 0 if and only if β < β1.

Let β ′′ be as in (4.15) and let � be a finite subset of the sites of L, with 0 ∈ �.
By Proposition 4.13(iii), the 0’s configuration of the q-state Potts model at (β, 0)
with 0’s boundary condition on ∂� is dominated by the “+” configuration of the
Ising model at (β ′, h′) with “+” boundary condition on ∂�. Therefore by Lemma
4.12, the white-bond configuration of the bicolored FK model at (p, q + 1, q) on
(�,B(�)) with all-white boundary condition is dominated by independent per-
colation at density p on the “++”bonds of this Ising model. Since h′ < 0, results
from [24] and [36] say that the Ising model has the weak mixing property, and
results from [25] and [8] say that it has exponential decay of “+” connectivity.
(These proofs are only written for the square lattice, but everything works for gen-
eral planar lattices; the key fact used in [8] is the result of [2] that the Ising model
has exponential decay of correlations for all β < βIsingc (L), and this proof works
on general periodic lattices with minor modifications [1].) Therefore there exist
constants C, λ > 0, not depending on �, such that

P
Ising

�,+,β ′,h′(0 ↔ ∂� by a lattice path on which all sites x have

σx = +) ≤ Ce−λr(�). (5.39)

Define probability measures as follows:P Ising,++
�,+,β ′,h′,p for the distribution of the bond-

site configuration produced by independent percolation at densityp on “++” bonds,
in (�,B(�)), of the Ising model at (β ′, h′) on � with “+” boundary condition;
PBFK�,wh for the bicolored FK model on (�,B(�)) with all-white boundary condi-

tion; and PFK�,w for the FK model on (�,B(�)) with wired boundary condition.
From (5.39),

P
Ising,++
�,+,β ′,h′,p(0 ↔ ∂� by a path of open bonds) ≤ Ce−λr(�). (5.40)

Hence by the domination,

PBFK�,wh (0 ↔ ∂� by a path of open white bonds) ≤ Ce−λr(�),
which is equivalent to

PFK�,w(0 ↔ ∂� by a path of open bonds) ≤ Ce−λr(�); (5.41)
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this proves exponential decay of local wired-boundary connectivities, and thus also
weak mixing, for the FK model. This proves (iii). Applying this result to the dual
lattice L

∗, we see that when p > p2, that is, p∗ < p1(q + 1,m∗), the dual config-
uration has exponential decay of local wired-boundary connectivities, and thus has
the weak mixing property. But weak mixing for the dual configuration is equivalent
to weak mixing for the regular configuration, and (i) follows. (ii) is an immediate
consequence of (i). � 
Proof (Proof of Theorem 3.7). For simplicity we restrict attention to the integer lat-
tice. Consider the FK model in d dimensions at (p, q+1)with p < p1(q+1, 2d).
Let β ′, h′, β ′′ be as in the proof of Theorem 3.4. In order to show that there is
no percolation in the wired-boundary infinite-volume limit, one must establish the
following analog of (5.41):

lim
�0↗Zd

lim
�↗Zd

P FK�,w(0 ↔ ∂�0 by a path of open bonds) = 0.

For this it is enough to establish the following analog of (5.40):

lim
�0↗Zd

lim
�↗Zd

P
Ising,++
�,+,β ′,h′,p(0 ↔ ∂�0 by a path of open bonds) = 0. (5.42)

Since h′ < 0, the Ising model at (β ′, h′) has a unique Gibbs distribution, so one can
replace the “+” boundary condition with “-” in (5.42). From Proposition 4.13(ii),
one can then also replace (β ′, h′) with (β ′′, 0) in (5.42). Further, since the FK
model is monotone in p, one need only consider β close to β1. Thus the proof of
Gibbs uniqueness in Theorem 3.4 goes through since we have assumed (3.4) for
appropriate β. � 
Proof (Proof of Theorem 3.11). The idea is to show that the corresponding Potts
ARC model is dominated by another Potts ARC model corresponding to a Potts
model with a positive external field on 0’s; then Lemma 4.15 can be applied.

We claim that for some ε > 0, we have

2

β

∂

∂h
P
Ising

�,+,β/2,h(σx = +) ≤
(

1

2
− ε

)
P
Ising

�,+,β/2,h(σx = +) (5.43)

for all h > 0 and all finite � and x ∈ �.
Indeed, as is standard, from symmetry inequalities the left side of (5.43) is a decreas-
ing function of h and an increasing function of �, while from the FKG property
the right side is a decreasing function of �. So it is enough to verify (5.43) in the
limit as h ↘ 0 and � ↗ Z

d , but this is exactly (3.15). Thus (5.43) is proved. By
symmetry, (5.43) is equivalent to

− 2

β

∂

∂h
P
Ising

�,−,β/2,h(σx = −) ≤
(

1

2
− ε

)
P
Ising

�,−,β/2,h(σx = −) (5.44)

for all h < 0 and all finite � and x ∈ �.
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LetQ = 1+e2dβ/q, so the Potts ARC model corresponding to the Potts model
at (β, 0) has parameters (p, p, q,Q). It is sufficient to show that this Potts ARC
model, with red-wired boundary condition, has no percolation of red bonds in the
infinite-volume limit. By Lemma 4.15, for this it is enough to find q ′ and h′ > 0
such that, letting (p, p, q ′,Q′) be the parameters of the Potts ARC model corre-
sponding to a q ′-state Potts model at (β, h′), this Potts ARC model dominates the
Potts ARC model at (p, p, q,Q), both models having red-wired boundary condi-
tion on some (�,B(�)). The external field hI of the conditional Ising model of
the latter Potts ARC model is given by

Q = 1 + eβ(2d+hI )/2,
so eβhI /2 = edβ/q < 1 and thus hI < 0. Hence we can choose 0 > h′I > hI , then
choose q ′ < q and 0 < h′ ≤ ε(h′I − hI ) satisfying

eβ(2d+h
′
I )/2 = eβ(2d+h′)

q ′
,

and set

Q′ = 1 + e
β(2d+h′)

q ′
.

We now show that under red-wired boundary condition, the red-bond configura-
tion of the Potts ARC model at (p, p, q ′,Q′) dominates the red-bond configuration
of the Potts ARC model at (p, p, q,Q). The weights for the ARC model red-bond
configuration at (p, p, q,Q) on (�,B(�))with red-wired boundary condition, and
the definition of T (ωr), are given by (4.20) and (4.21). We letW ′(ωr) and T ′(ωr)
denote the corresponding quantities for the model at (p, p, q ′,Q′). To establish the
desired domination, by (4.4) it is sufficient to show that

(
q

q ′

)C(ω,�)−C(ω∨e,�)
T ′(ω ∨ e)
T ′(ω)

≥ T (ω ∨ e)
T (ω)

for all ω and all e = 〈xy〉.
(5.45)

If neither x nor y is in I(ω,�), then both sides of (5.45) are 1. Let us assume both
x and y are in I(ω,�), so C(ω,�)−C(ω∨ e,�) = 1; the case in which exactly
one is in I(ω,�) is similar. By Lemma 4.10,

T (ω ∨ e)
T (ω)

= P IsingI(ω,�),−,β/2,hI (σx = σy = −)

= P IsingI(ω,�),−,β/2,hI (σx = −)P IsingI(ω,�)∪{x},−,β/2,hI (σy = −), (5.46)

and similarly for T ′, with hI replaced by h′I . Also,

q

q ′
= e−β(hI−h′I )/2e−βh′ ≥ e( 1

2−ε)β(h′I−hI ). (5.47)
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Integrating (5.44) gives

logP Ising
I(ω,�),−,β/2,h′I

(σx = −)− logP IsingI(ω,�),−,β/2,hI (σx = −)

≥ −
(

1

2
− ε

)
β(h′I − hI )

2

and

logP Ising
I(ω,�)∪{x},−,β/2,h′I

(σy = −)− logP IsingI(ω,�)∪{x},−,β/2,hI (σy = −)

≥ −
(

1

2
− ε

)
β(h′I − hI )

2
,

which with (5.46) and (5.47) proves (5.45).

Proof (Proof of Corollary 3.12). We will show that for large d, (3.15) holds for all β
in a neighborhood of (log q)/d . Consider the mean-field magnetizationM0(β0, h0),
which for β0 > 2 and h0 ≥ 0 is the positive solution of

M0 = tanh

(
β0(M0 + h0)

2

)
. (5.48)

We claim that for β0 > 2.257 we have

1

β0

∂M0

∂h0
(β0, 0) < 1 +M0(β0, 0). (5.49)

In fact, differentiating (5.48) yields

2

β0

∂M0

∂h0
= 1 −M2

0

1 − 1
2β0(1 −M2

0 )

so (5.49) is equivalent to

1 −M0

2
< 1 − 1

2
β0(1 −M2

0 )

at (β0, 0). For this it suffices that

M0 > 1 − 1

β0
,

which is equivalent to

tanh

(
β0 − 1

2

)
> 1 − 1

β0
. (5.50)

A routine calculation verifies that (5.50) holds for β0 > 2.257.
Now suppose {βd} is a sequence with dβd → log q. Since q + 1 > 10.56 we

have log q > 2.257. Also, from convergence to mean-field limits [28],

M

(
βd

2
, 0

)
→ M0(log q, 0)
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and

χ

(
βd

2
, 0

)
→ 1

log q

∂M0

∂h0
(log q, 0).

With (5.49) this proves (3.15) for all β in a neighborhood of (log q)/d, for large d.
� 

Proof (Proof of Theorem 3.15). Fix δ > 0 and let θ ′ = θ(1 + δ)/(1 + 2δ). Fix
pr > p

FK
c (q + θ ′,L). From Lemma 4.18, Remark 4.19 and (3.17), if θ is suffi-

ciently small then (4.19) holds for β, h as in (4.18). Hence by Proposition 4.16(ii)
the red bonds percolate in the infinite-volume ARC model on L at (pr , pg, q,Q)
with red-wired boundary condition. Thus pARCc (pg, q,Q,L) ≤ pFKc (q + θ ′,L).
Since δ is arbitrary, (i) follows. Part (ii) is just a restatement of (i) in the context of
the Potts lattice gas, using (3.18). � 

Proof (Proof of Corollary 3.17). This is immediate from Theorem 3.15(ii) and the
result from [31] that exp(βPottsc (q,Z2)) = 1 +√

q for all q ≥ 25.72. � 

Proof (Proof of Theorem 3.18). Letβ > βPottsc (q+θ(h),L). SinceβPottsc (q+t,L)
is an increasing function of t , we have β > βPottsc (q+e−βh,L). Let (pr , pg, q,Q)
be the parameters of the Potts ARC model corresponding to the Potts model at
(β,−h). The dilution parameter of this Potts ARC model is e−βh ≤ 1, and pr =
pg = 1 − e−β , so Proposition 4.16 applies and shows that the red bond con-
figuration of this ARC model, with red-wired boundary condition, dominates the
partial FK model at (pr , q + e−βh, q). Since β > βPottsc (q + e−βh,L), there is
percolation in the infinite-volume wired-boundary FK model at (pr , q + e−βh), so
there is also percolation a.s. in the yellow-boundary partial FK model at (pr , q +
e−βh, q). Therefore the red bonds of our Potts ARC model percolate, meaning
β ≥ βPottsc (q + 1,−h,L), and the theorem follows. � 

Proof (Proof of Theorem 3.19). Since the Ising model has the FKG property, on a
planar lattice there is no percolation of “+” spins when the external field is negative
(see [24], [25].) Hence the theorem is an immediate consequence of Proposition
4.13 and (4.16). � 

Proof (Proof of Theorem 3.20). Fix a finite � and a boundary condition η. The
corresponding ARC model on (�,B(�)) with boundary condition η1 (equiva-
lently, red-wired) dominates the ARC model with boundary condition η, so as
in the proof of Proposition 4.7, the Potts lattice gases under the two boundary
conditions can be coupled, creating a pair of configurations ((ωr , ωg), (ω′r , ω′g))
which agree everywhere inside each dual surface which is crossed by no open
bond (red or green) of the red-wired ARC model configuration (ωr , ωg). But
every site not inside such a dual surface is necessarily in the boundary particle
cluster, and the result follows. � 
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