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Abstract. Weintroduce the asymmetric random cluster (or ARC) model, which isagraph-
ical representation of the Potts|attice gas, and establish its basic properties. The ARC model
alows a rich variety of comparisons (in the FKG sense) between models with different
parameter values; we give, for example, values (8, ) for which the 0's configuration in
the Potts lattice gas is dominated by the “+" configuration of the (8, 1) Ising model. The
Potts model, with possibly an external field applied to one of the spins, is a special case of
the Potts lattice gas, which allows our comparisons to yield rigorous bounds on the critical
temperatures of Potts models. For example, we obtain 0.571 < 1 — exp(—f.) < 0.600 for
the 9-state Potts model on the hexagonal lattice. Another comparison bounds the movement
of the critical line when a small Potts interaction is added to a lattice gas which otherwise
has only interparticle attraction. ARC models can also be compared to related models such
asthe partial FK model, obtained by deleting a fraction of the nonsingleton clusters from a
realization of the Fortuin-Kastel eyn random cluster model. This comparison leadsto bounds
on the effects of small annealed site dilution on the critical temperature of the Potts model.

1. Introduction

Random cluster models, or graphical representations, have become an increasingly
important tool in the study of lattice models. Most prominently, the Fortuin-Kas-
teleyn random cluster model (or simply, the FK model), introduced in [17], [15]
and [16], has been used to analyze aspects of the Potts and | sing models, including
critical behavior [31], long-range versions [3], mean-field behavior in high dimen-
sions [28], covariance structure [6], mixing properties [4] and efficient simulation
[38]. Wiseman and Domany [40] and Pfister and Velenik [35] considered graphi-
cal representations of the Ashkin-Teller model, and graphical representations for
large classes of models have been considered in the contexts of efficient simulation
([11],[12]) and conditions for Gibbs uniqueness [5].

A principal advantage of random cluster modelsisthat the configuration space,
typically {0, 1} for someset 4 of bonds, ispartially orderedin anatural way, mean-
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ing that it makes sense to speak of one configuration being “larger than” another,
or of one measure on configurations dominating another, in the FKG sense. The
standard comparison theorem of [17] (see aso [3]) says (in standard notation—see
(2.22)) that if

/

p____»p

gql—p) ~ ¢'A-p)

then the FK model with parameters (p’, g’) dominates the model with parame-
ters (p, g) inthe FKG sense (that is, increasing events have larger probabilities at
(p’, q’).) Thisyields information about the smoothness of the critical line in the
(p, q)-parameter space, among other things; see [3]. Another comparison inequal-
ity for the FK model appearsin [20].

A principa disadvantage of the standard comparison theorem is that it is not
very sharp. Rephrased, the theorem says that as one movesin (p, ¢)-space up any
line p/q(1— p) = c, the configurations of the FK model get larger. In a sharper
result, the corresponding lines would approximately parallel the presumed critical
line, given by p?/q(1 — p)? = 1 for the two-dimensional integer lattice, which
is clearly not so for the lines in the standard comparison theorem; the situation in
higher dimensionsis even worse. A second disadvantageisthat an external field in
the Potts model cannot be incorporated into the FK model in avery natural way.

In this paper we introduce a new model, the asymmetric random cluster model,
(or simply, the ARC model), which is a random cluster representation of the Potts
lattice gas (that is, the annealed site-diluted Potts model.) Asis well known, the
g-state Potts lattice gas includes the (¢ + 1)-state Potts model as a special case.
We will show that the ARC model allows quite sharp comparison theorems be-
tween different parameter values of the Potts lattice gas. This leads to a variety
of consequences. We obtain rigorous bounds 81 < B, < B2 on the critical in-
verse temperature of the Potts model on various | attices (within about 5%, in many
cases, and sometimes much less, of numerical or other nonrigorous estimates in
the literature), and establish standard properties of the high-temperature regime,
such as exponential decay of correlations and weak mixing, up to the lower bound
B1. By contrast, existing methods for establishing such properties are generally
perturbative, working only for very small values of the inverse temperature. (For
exceptions, generally involvingg = 2 or g large, seee.g. [4],[28],[31], [36], [39].)
We also obtain boundson critical line, or critical surface, locationsin the parameter
space of the Potts lattice gas. We bound the change in the critical temperature, or
in the critical line, when certain models are perturbed by adding a small term to
the Hamiltonian. One such perturbation is small annealed site dilution added to a
standard Potts model. In another perturbation, we begin with alattice gaswith only
one speciesof particle, or essentailly equivalently, a Potts|atttice with g speciesbut
with no additional energy associated with adjacent particlesof mismatched species;
we then add a small Potts interaction between the different species.

Numerous aspects of the phase diagram of the Potts | attice gas (though not the
ones we consider here) have been studied in [10].

To enrich the set of possible set of comparisons which can be made using the
ARC model, we also introduce and analyze what we call the partial FK model,

1<gqg<q and
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which is obtained from the usual FK model by deleting afraction of the nonsingle-
ton clusters. Comparisons between ARC models and partial FK modelsare used in
our analysis of site dilution.

Likethe FK model, the ARC model isuseful in constructing couplings between
mesasures under different boundry conditions; we will demonstrate an application
of such aconstruction. Further, wewill usethe ARC model to examinethe question
of when the distribution of the set of empty sites of a Potts lattice gas—that is, the
distribution of {8, —o] : x € A}, where A isasubset of the lattice — has the FKG
property. Thisincludes, as a specia case, the FKG property for the distribution of
the set of sites of any one speciesin the Potts model, which was recently established
by L. Chayes[9].

Of course the advantages of the ARC model over the FK model—principally
sharper comparison theorems and more natural incorporation of external fields—
do not come without a price. For example, there is phase coexistence in the Potts
model precisely when there is percolation (under wired boundary conditions) in
the corresponding FK model. In the ARC model, by contrast, there are two bond
configurations, corresponding to the two pair interactions (Potts interaction and
interparticle attraction), and the relation between percolation and phase transition
is more complex. Further, correlations in the Potts model are given (under free
boundary conditions) by connectivities in the corresponding FK model; the ARC
model has no such property. So the ARC model supplements, but does not replace,
the FK model.

2. Preliminaries and description of the models

By alattice we mean a periodic graph embedded in Euclidean space. The degree
of a site (that is, vertex) of a graph is the number of bonds emanating from that
site. When the degreeisthe samefor every site of alattice, this degreeis called the
coordination number of the lattice.

The ¢-state Potts lattice gas on a finite subset A of alattice L. is described
by variables o, € {0, 1, .., ¢} a each site x € A; O denotes an empty site, and
1, .., g are possible spins, or species, for aparticle at x. Let ny = §[o,(1,...q)] b€
the indicator of the presence of a particle at x. We write the Hamiltonian as

H(o)=—-J annyS[gX:gy] —K anny - Zuxnx, 2.1
(xy) (xy) x

wherethefirst two sumsare over adjacent unordered pairs(that is, bonds) (xy) with
x,y € A; when there is a boundary condition we include also gacent pairs with
only oneof x, y in A. Wecall J theinteraction strength, « theinterparticle attrac-
tion, and 1, thechemical potential at x. Notethat whenx = 0, adjacent mismatched
particles are energentically equivalent to adjacent empty sites, whereas adjacent
matched particles have a lower energy. When « = 0 we call the Potts lattice gas
neutral. Let d A denotethe set of sitesin A€ which areadjacent to A ; by aboundary
condition for the Potts lattice gas we mean a configuration € {0, 1, .., ¢}’ The
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corresponding Hamiltonianisdenoted H, ,,, and the partition function for the Potts
latticegasat (B, J, k, {ux}) is

Z(A,n, B, Tk, {ux)) = Ze_ﬁHA,n(U).

o

When 1, = u for al x, the corresponding measure on {0, .., ¢} is denoted
Pff;,cq,ﬂ,J,:«, . There are really only three free numerical parameters (or sets of
parameters, If u depends on x) in the partition function, so the inverse temperature
B is aredundant parameter, though at times convenient; we will generally take 8
tobe 1.

A configuration o together with aboundary conditionn ond A (or on A€) yields
acombined configurationon A = A U 3 A (or on L) which we denote (o).

A graph G is designated by a pair (A, %), where A isaset of sitesand % is
a set of bonds. The set of sites of G isaso denoted S(G), and the set of bonds is
also denoted B(G).

Let A be afinite set of sites of alattice and let Z(A) = {(xy) : x,y € A}
and Z(A) = {(xy) : x € Aory e A}. Given asubgraph, either G = (A, %) or
G = (A, B), of (A, B(A)) and given a boundary condition » and a configuration
o on A, wedefinevariables Ny = N4 (G, (o)) by

(xy) € #: (omx = (on)y =0}, (2.2)
Nss = [{{(xy) € B (on)x = (on)y € {1, ... q}}l,
Nyg = [{{xy) € Z: (on)x, (on)y € {1, .., q}, (6M)x # (N4},
Nos = [{(xy) € #: (on)x € {1, .., q}, (on)y = 0},
Ny=|{x € Aoy €e{l,..,q}},
No=|{x e A:o, =0},

so that
H(o) = —(k + J)Ngs — k Ngy — Zﬂx”x (2.3)
x
and
|,@| :N00+Nss+Nss’+NOs- (24)
Forx € A let

my = [{y : (xy) € #}|.

In the case of L with coordination number m and Z = %#(A) we havem, = m for
al x. In general,

Z Mx8[,=0] = 2Noo + Nos.
X
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Subtracting this from (2.4), multiplying by « and adding the result to (2.3) gives

H(o) = —J Ny — kNoo + Y _(jtx + km)8[o,=0] + ¢(G) (25)
X

where ¢(G) is anonrandom constant. If ¥k = J this becomes

H(o) = —J(Nys + Noo + ) hibjo,=0)) + ¢(G),

where h, isgiven by
Jhy = —(ux + Jmy).

The Hamiltonian for the (¢ + 1)-state Potts model with external field &, applied to
spin 0 at each x is

H(o) = =Ny — Noo — Y _ hijo,=0], (26)

so the g-state Potts lattice gas at (1, J, J, {iy}) is the same as the (¢ + 1)-state
Potts model with inverse temperature 8 and external fields {%,} given by

B=1J and Bhy = —(ux + Jmy). (2-7)

Note that in the case of fixed coordination number and chemical potential, say
my, =m, b, = u foral x € A, wehavethat h = h, does not depend on x, and

> hydfo,=0) = hNo.
X

In the further special case of the Ising model (¢ + 1 = 2 states), it isnatural (since
the externa field is applied to spin 0) to relabel 0 as“+"and 1 as“-", and of course
N,y = 0. The computation yielding (2.4), done in reverse, isthen just the standard
lattice-gas transformation of the Ising model:

H(U) = —(N__ + N++ + hN+) (28)
=—2N__ 4+ (m+ h)N_ + ¢(G).

Note that in some formulations in the literature, this would be the Hamiltonian
corresponding to an external field of /2. From (2.4) and (2.7) we obtain the stan-
dard fact that when ¢ = 1 and J = 0, the Potts lattice gas (which isthen called a
binary lattice gas) is equivalent, under the same relabeling, to an Ising model with
parameters (8, h) given by

K Km
p=5. ﬂh=—(u+7). 2.9)

To construct the ARC model, we begin by rewriting the partition function of
the Potts lattice gas, as was done in [17] for the Potts model. Let G = (A, %)
be a finite subgraph of alattice L. For simplicity we first consider free boundary
conditions, with i, = u foral x € A. Let = {0, 1}”. A bond configuration is



400 K.S. Alexander

an element w € 2; when convenient we alternatively view o asasubset of % or as
asubgraph of (A, %). Bonds e with w, = 1 are open in w; those with w, = 0 are
closed. Let C(w) denote the number of open clustersin w, let w v o’ and w A o’
denote the coordinatewise maximum and minimum, respectively, and define

|w| = {e € % : eisopen},
J(w) = {x € S(G) : x isanisolated site of the graph w},
(o) = |F(0)].

Here an isolated site means asingleton cluster. The partition function corrrespond-
ing to the Hamiltonian (2.2), with 8 = 1, is

Z(N, T K, 1)
- Zexp((lc + J)Nss + & Nyy + Ny)

g

= et Z e MM TTA+ (¢ = Dneny) [TA+ (€7 — D[,y 20))-
(xy) (xy)
(2.10)
Expanding out the products over bonds yields

Z(As Js K, M)

— eMAl Z Z Z e—M\A\(eK _ 1)\wg\(ef _ 1)|wr\qc(wr)—\A\

wg€Qwr€QACI (wgVar,A)

I (wgVay)
— N Y Y <1+ _> (¢ — Dyl (! _ pylrl gClon,

wg €Q wr €

(2.11)

Note that the sets A in the expansion (2.11) correspond to sets {x : o, = 0} in
(2.10), the spin values o, in the terms of (2.10) are constant on the clusters of w,
in the corresponding terms in (2.11), and the values n, are al 1 on each nonsin-
gleton cluster of wg. The expression (2.11) motivates us to define the ARC model
on (A, #) with parameters (p,, p,, g, Q) and free boundary conditions to be the
measure on 2 x 2 given by the weights

W (@ wg) = pL sl - p)\ Il plerl (1 — p ) AI=lerl Clon gl @rvey)
(2.12)
Here p,, p; €[0,1],g > 0and Q > 1.

Edwards and Sokal [13] observed that the Potts and FK model could be con-
structed on a common probability space. The analog of their result is valid here
aswell, provided J, « > 0. Specifically, we relate parameters of the ¢-state Potts
lattice gas and the ARC model by

-
pr=l—c’ pp=1-c", Q:l—i—%; (2.13)

the parameter ¢ takes the same value in both models. We call an ARC model and
a Potts lattice gas corresponding when their parameters are related by (2.13). We
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view Q x © asaset of configurations on alattice in which there are two bonds —
one green and one red—nhbetween each adjacent pair of sitesof (A, 4). Given asite
configuration o, we obtain a green-bond configuration w, from independent bond
percolation at density p, on {(xy) : n, = n, = 1} and ared-bond configuration «;
from independent bond percolation at density p, on {(xy) : ox =0y € {1, .., q}}.
Conversely, given the bond configurations w, and w,, we obtain asite configuration
o by choosing a spin from {1, .., ¢} independently and uniformly for each cluster
of w, whichisnot an isolated site of w, v w,; for each isolated site of w, v w,, we
choose a spin independently from {0, 1, .., g} with probability proportional to e*
for 0 and proportional to 1 for each of 1, .., ¢. Thus

et 0-1

Plo,=0|x€e S(w Vo = = y 2.14
Oy =1 | X J (W w = = 1 = .. q.
! ' ¢ q+teH qQ ’

For either construction, theresult is ajoint distribution of site and bond configura-
tions for which the marginal distribution of the sitesin the Potts | attice gas and the
marginal of the bondsisthe ARC model.

To alow the chemica potential w, to vary with x, we can modify the ARC
model to allow Q = Q. to depend on x; we merely replace theterm Q7 (@rV@s) in

(2.12) with
[T o

xeJ (wrVag)

Via similar constructions, we can obtain the ARC model with either a site
boundary condition or a bond boundary condition, defined as follows. A bond
boundary condition on ¢ isaconfiguration p = (o, p) in {0, 1}”° x {0, 1}*".
Under a bond boundary condition, the ARC model on (A, %) with parameters
(pr, Pg. ¢, @) and boundary condition p isagain given by theweights W (w,, w,)
of (2.12), except that now C (w,) (alsowritten C (w, | p,)) isdefined to bethe num-
ber of clustersof (w, p,) whichintersect A. Wedenotethismodel by P f,ﬁ?p,, Ped, 0"
When p, isall 1's, the configuration p, isirrelevant (that is, it does not affect the
weights W (w;, wg)), and we say the resulting ARC model has red-wired boundary
condition. When also 2 = %(A) we denote the corresponding measure on bond
configurationsby P05

For integer ¢, asite boundary condition isgiven by aboundary conditionfor the
corresponding Potts|atticegas, that is, anelement € {0, 1, .., ¢}°*. Siteboundary

conditions are defined only when G hasform (A, Z(A)). Define the events

Dy(A.n) = {w, € {0, 1)7®) 1y, = n, forevery x, y € dA for

whichx < yinw,, and{x € 9A : n, =0} C S ()},
(2.15)

Dy(A, 1) = {wg € (0, 1)W1 {x € 9A 1 n, = 0} C S (wy)},
DA, n) = {(wr, wg) T wr € Dy (A, ), wg € Dg(A, 1)}
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Here x <> y meansthereis a path of open bonds connecting x to y. Once again,
the ARC model on (A, Z(A)) with parameters (p;, Pg» ¢, Q) and site boundary
condition 7, denoted Pf,lf,s,,,pg,q,gy isgiven by theweightsin (2.12), with C(w,)
now defined to be the number of clusters of w, which do not intersect d A, and with
I (o, v wg) Now defined to be the number of isolated sites of w, v w, in A (instead
of A), except that weight 0 is assigned to configurations not in D(A, n). Thisis
equivalent to the red-wired ARC model conditioned on the event D(A, n). More
generally, one can alow the boundary spins n, to take valuesin an arbitrary finite
set V containing O, in place of {0, 1, .., ¢}, since the definition of D(A, n) caries
over to such situations; thiswill be useful when ¢ is not an integer. We call such a
boundary condition a generalized site boundary condition.

Since the definitions of C(w), .# (w) and I (w) depend on the boundary condi-
tion, when ambiguity is possible we will use the notation C (w | p) for the number
of clusters of w when the bond boundary conditionis p, C(w, A) for the number
of clustershaving al sitesin A, and .# (w, A) and I (w, A) respectively for the set
and the number of isolated sitesin the set A.

When n isal 0's, D(A, n) is the event that every site of dA isisolated; we
therefore call site boundary condition » theisolated boundary condition and denote
the corresponding measure P K¢ propeq.0- Te ARC model on (A, B(A)) with
isolated boundary condition is equivalent to the ARC model on (A, Z(A)) with
free boundary condition. (But see Remark 2.1 below.)

In the ARC model, a green bond and a red bond connect each adjacent pair of
sites. It isconvenient to add athird bond, colored black, which we define to be open
precisely when either the red or the green bond is open. Thus the corresponding
configuration of black bondsis w, = w, V w,. It iseasy to seethat only the black
and red bonds (not the green) are needed when one constructs a Potts lattice gas
configuration by labeling the clusters of an ARC model configuration. Toeach ARC
model there thus correspondswhat we call ared/black ARC model with parameters

(P, Pri» 4, Q) given by the weights

W (@p, ;) = ppl (L= pp)?I=lol plorlq — p pylenl=lorlgCen gl (2 16)
for al (wp, w,) With w, C wp,

where p;, and p,; are given by

1-ppb=QAQ—=p)A=pg), Prb=Pr/Pb (2.17)
Theweights (2.16) are obtained by first rewriting the “independent bonds” weight:

|a)g‘

pe (11— pg)\ﬂl—\wglplwr\(l_ Pr)wl_‘wfl
h B|— , =l |
= pl‘;wll(l — pp)? \wblplrab) \(1_ pop)lrl—le |pga)g

Awr|

(1 _ pg)|wr‘_|ngwr|’
(2.18)
then summing over all choices of w, A w, for agiven (v, w,). Equaity (2.18)

reflects the fact that one can choose red and green configurations by first choosing
ablack configuration, then ared configuration which is a subset of the black one,
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then a green configuration which is a subset of the red one, then adding this green
configuration an open green bond wherever thereisan open black bond but aclosed
red bond.

There are three important special cases of the ARC model. Thefirst isthe neu-
tral ARC model, in which p, = 0. From (2.13) aneutral ARC model corresponds
precisely to aneutral Potts lattice gas, that is, one with « = 0. There are no green
bonds so the weights (2.12) become

W(w,) = plwr\(l_ pr)\ﬂ\*lwr\qc(wr)Ql(wr).

The second special caseis the Potts ARC model, in which p, = p,. Recall that
the ¢g-state Pottslattice gas at (1, J, J, {1, }) isthe same asthe (¢ + 1)-state Potts
model at (8, {h,}) with g8 and k, givenby (2.7). From (2.13), the conditionx = J
is equivalent to p, = p,, so for integer g a Potts ARC model corresponds to a
(g + 1)-state Pottsmodel . More precisely, the (¢ + 1)-state Pottsmodel at (8, {Ax})
corresponds to a Potts ARC model with parameters (p, p, ¢, {Q,}) where

eBmxthy)
p=1—-¢? ad Q=14 ——. (2.19)
q

In the absense of an extenal field, the Pottsmodel isof course symmetricinthespin
variables 0, 1, .., ¢, except for boundary conditions. By contrast, in constructing
the Potts ARC model from the (¢ + 1)-state Potts model by independent percola-
tion (open red bonds with probability p, on matching pairswith spinsi, .., ¢; open
green bondswith probability p, on general pairswith spins1i, .., ¢), the spin values
areclearly treated asymmetrically, with O given special treatment. Thisasymmetric
treatment of a symmetric model is akey part of what makes the Potts ARC model
auseful tool.

Remark 2.1. It was mentioned above that the ARC model on (A, %(A)) withiso-
lated boundary condition is equivalent to the ARC model on (A, Z(A)) with free
boundary condition. In the case of the Potts ARC model, it should be noted that
the values of m, are different for these two graphs, which affects the tranglation
between the external fields 2, in the Potts model and the parameters Q. inthe Potts
ARC model. Consider for example a Potts model on afinite subset A of alattice of
coordination number m, with constant external field 2. A free boundary condition
on this model corresponds to a Potts ARC model with parameters {Q,} that are
different for sitesx adjacent to d A. The constant- Q Potts ARC model corresponds
instead to the Potts model with 0's boundary condition.

The third specia case is the Ising ARC model, in which ¢ = 1. Thisisreally
aspecia case of the black-bond configuration in the red/black ARC model (2.16).
The red bonds are removed, or summed out, because they are irrelevant when
g = 1; the open red bonds are just obtained from independent percolation on the
open black bonds. The Ising ARC model with parameters (p, Q) is given by the
weights

W(w) = plw‘(l— p)lﬂlf\wlgl(w).
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Values Q, depending on x are allowed as before. For a lattice with coordination
number m, the Ising model on A at (8, ) with boundary condition n corresponds
to an Ising ARC model model on (A, Z(A)) with site boundary condition » and
parameters

p=1l-e? Q=1+t (2.20)

provided we relabel 0 as“+"and 1 as“-". An Ising ARC model configuration can
be obtained by independent percolation at density p onthe“- -” bonds of an Ising
configuration. Conversely an Ising configuration can be obtained by labeling each
isolated site independently, according to the following analog of (2.14):

Pox =+ | x € F(0r Vwy)) = QT—l,
. (2.21)
Ploy=—]xe I (0 Vwy)) = ok

Notethat 1/ Q isprecisely the probability that asiteis”-" giventhat all itsneighbors
are“+”,

By contrast, the FK model (with ¢ = 2) is obtained from independent perco-
lation on both “++" and “- -" bonds of an ising configuration, at the lower density
p = 1—e~P. Thedensity ishigher for thelsing ARC model becausethelsing ARC
model configuration is essentially the union of the red and green configurations,
each of which is obtained by independent percolation at density 1 — e~# on “- -”
bonds.

Of course, one could equally well construct a joint Ising/Ising ARC model
configuration using independent percolation on the “++" bonds of an Ising config-
uration, though as we have defined things, the Ising ARC model would then have
the opposite site boundary condition from the Ising model. We will refer to this as
the reversed polarity construction of the Ising ARC model.

Remark 2.2. Even when ¢ > 0 is not an integer, one can still construct a joint
site-bond configuration with site variables n,, € {0, 1}, by using the first half of
(2.14) tolabel theisolated sites of an ARC model configuration; all sitesnot |abeled
O arelabeled 1. If the ARC model has parameters (p,, p,, g, {Qx}) With g not an
integer, and J, «, {11, } are given by (2.13), we call the resulting site-bond model
the ¢-state Potts lattice gas with parameters (1, J, «, {11, }), thereby extending the
definition to noninteger ¢. A bond or generalized site boundary condition can be
applied in the natural way. If the ARC model isa Potts ARC model, and 8, {h,} are
given by (2.19), we similarly call the site-bond model the (¢ + 1)-state Potts model
with parameters (8, {h.}). To distinguish things when necessary, we will refer to
the standard site-variables-only Potts model or Potts lattice gas with integer g as
the usual model, and refer to the joint site-bond model just defined for general ¢
as the particle/bond model. We call the random variable {5[,,,—q : x € A} (or its
distribution, in aharmless abuse of terminology) the 0's configuration of the (usual
or particle/bond) Potts lattice gas or (usual or particle/lbond) Potts model. When
appropriate, the j's configuration is defined similarly for j # 0.
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Recently and independently, L. Chayes and J. Machta ([11], [12]) introduced
particle/bond random cluster modelsfor awide class of | attice gases, in the context
of efficient simulation. Our particle/bond Potts lattice gas is one example of this
class.

We turn next to our other new models, the partial and bicolored FK models.
The FK model on (A, %) with parameters (p, g) assigns weights

W(w) = p“l1— p)77elge® (222)

to bond configurations. Asshown in [13], for 8 givenby p = 1—e~#, aconfigura-
tion of the usual ¢-state Potts model at inverse temperature 8 can be obtained from
aconfiguration w of the FK model at (p, ¢), by choosing alabel for each cluster of
o independently and uniformly from {0, 1, .., ¢ — 1}; thisconstruction yieldsajoint
site-bond configuration for which the sites are a Potts model and the bonds are an
FK model. Fix aninteger 0 < ¢ < ¢ — 1 and suppose that we color yellow all open
bonds in such ajoint configuration with (necessarily matching) endpoints labeled
0, .., — 1, and color white al open bonds with endpointslabeled, .., g — 1. The
weight of a given yellow/white bond configuration is then

A\ Con—I(@y)
W@y, ) = plortHonl (1 p)lB-lorl-lonl g Coyvow) (_)

q
t C(wy)—1(ww)
. (1_ ;1) 55 ((wy. 0)

[@w]
— plorl(1 = p)l#I-lesl ;C@y) =1 @y) ( p >
1-p

I {wyVay)
, - q ’
gt (Y

q—t
(2.23)
where

E = E(A, %) = {(wy, wy) : no siteis an endpoint of both an open yellow bond
and an open white bond}.

One can obtain such a yellow/white configuration directly from an FK configu-
ration, without the intermediate step of the joint Potts/FK configuration, by inde-
pendently coloring each FK cluster (including singletons) yellow with probability
t/q, and white with probability 1 — 7 /g. Thus we neeed not restrict ¢ or g to bean
integer; any 0 < ¢ < ¢ will do. We call the distribution of the yellow/white site-
bond configuration the bicolored FK model on (A, %) with parameters (p, q, t)
(and free boundary.) When (A, %) isasubgraph of alattice, abond boundary con-
dition for the bicolored FK model can be imposed by specifying a bond boundary
condition p for the uncolored FK model, then specifying a color for each cluster
of p. Alternately, as aspecial case of generalized site boundary conditions one can
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specify a color, yellow or white, for each site of 9 A. Under such a bicolored site
boundary condition n, the event E in (2.23) should be replaced by

AN, n) = ECA, B(N) N {(0y, ®y) : 0y = 1y for
every x,y € dA forwhichx < yinw, v wy}.

We use the notation C(w, A), and C(w | p) for (bicolored) bond boundary con-
ditions p, as we do for the ARC model. Summing (2.23) over w,, for a given w,
yields the weight of the yellow configuration w,, under bicolored site boundary
condition i € {yellow, white}?:

W(wy) = plw,\-l(l_ p)\f%\*IwyItC(wy,/\)tfl(wy,/\)F(wy)’ (2.24)
where
_r_ ! C(wy A+ (wy Vo, A)—1 (wy,A)
F ) = —t Dw, Wy Vwy, ) =1y,
) 2 1- ) @=0
wye(0,1}7V @y A)
q I{wyVwy,A)
' <q _ ,) Saca.m ((“)w ww))- (2.25)

We call the model given by the weights (2.24) the partial FK model on (A, Z(A))
with parameters (p, ¢, r) and bicolored site boundary condition 5. Note that the
exponent C(wy,, A)+1(wyVwy, A)—I(wy, A) in(2.25) isthenumber of clusters
of w,, not intersecting d A which have (all) sitesin I (w,, A); fromthis observation
we see that F(w,) is precisely the partition function of the neutral ARC model on
(S (wy, N), @(J(wy, A)) with parameters (p, 0, g —t, ﬁ), boundary condition
n on white sitesin dA, and O's (or free) boundary condition on A\ (wy, A) and
onyellow sitesin dA. This, together with (2.14), proves the following result.

Proposition 2.3. Let p € [0,1],g > 1and0 < t < q. Let A be a finite subset of
the sites of a lattice I. and let  be a bicolored generalized site boundary condi-
tion for the bicolored FK model on (A, Z(A)). Conditionally on the yellow-bond
configuration w, of the bicolored FK mode! with parameters (p, ¢, 1),

(i) thewnhitebondsforma neutral ARC model on (f (w,, A), @(ﬂ(a)y, A))) with
parameters (p, 0, g — ¢, i_t) and boundary condition n on the white sitesin
dA, and 0's (or free) boundary condition on both A\.# (w,, A) and the yellow
sitesin 9 A;

(ii) the yellow sitesin .# (wy,, A) have the distribution of the O's configuration of
a (g — t)-state neutral Potts lattice gas on .# (w,) with the same boundary
condition asin (i), with parameters (1, J, 0, ) given by

p:l—e_], t=e M.

Wecall the neutral Potts|attice gasof Proposition 2.3(ii) the conditional neutral
Potts lattice gas of the bicolored FK model.
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Remark 2.4. Thecaser = ¢ — 1in Proposition 2.3 is of particular interest, for
F is then the partition function of an Ising ARC model. In this case, for inte-
ger g, part (ii) says that for the joint Potts/FK configuration, conditionally on the
bonds with (matching) endpointsin {1, .., ¢ — 1}, the 0 and non-0 sites left iso-
lated by these bonds form an Ising model. Further, for g givenby p = 1 — 75,
let 0 = 1+ ¢ /(q — 1) (corresponding to a Potts mode! with no external field
— cf. (2.19).) Then the yellow bonds of the bicolored FK model with parame-
ters (p, g, g — 1) have the same distribution as the red bonds of the Potts ARC
model with parameters (p, p, ¢ — 1, Q), as both configurations are obtained from
a g-state Potts model configuration by independent percolation at density p on
{(xy) e # 0y =0y, #0}.

Onetype of bicolored generalized site boundary condition specifiesonly acolor
for each site; equivalently, all white boundary sitesare 0'sand all yellow boundary
sites have a second spin, say 1. Thus we may, for example, have a bicolored FK
model with all-white or al-yellow site boundary condition.

3. Statement of main results

In this section we describe our main results; proofs appear in later sections.

Let ususe“ <" to denote the natural partial ordering on {0, 1}”. An event A is
caledincreasingifw € A, w < ' imply »’ € A, and decreasingif itscomplement
isincreasing. A probability measure P on {0, 1} issaid to have the FKG property
if

P(ANB) > P(A)P(B) foradlincreasingevents A, B.
P issaid to satisfy the FKG lattice condition if
PV o)P(wAo) > PP(W) fordl w,o. (3.1

Asproved in [18], the FKG lattice condition implies the FK G property. For P, and
P> probability measures on {0, 1}, we say P; dominates P (in the FKG sense)
if P1(A) > P2(A) for al increasing events A. Thisis equivalent to the statement
that there exists a coupling P of {0, 1}% x {0, 1}” with marginals P, and P, for
which P({(», @) : @ > &'}) = 1. Asiswell-known, if P; and P, are determined
by weights W1 and W> respectively, P1 or P has the FKG property, and W1/ W2
isan increasing function on {0, 1}, then P; dominates P,.

Let n' denotetheall-i’sboundary condition; if i £ Owecall ' aconstant-spe-
cies boundary condition. More generally, we say that a generalized site boundary
condition n hasasingle particle species if there existsi # 0 such that n, = 0or i
foral x € dA. Notethat for thelsing ARC model (¢ = 1), every (nongeneralized)
site boundary condition has just a single particle species.

L. Chayes [9] proved that for the usual Potts model without external field, the
0's configuration satisfies the FK G | attice condition and thus hasthe FK G property.
Of course, 0 can bereplaced by any other spin. In two dimensions, Chayes obtained
as a conseguence that Gibbs nonuniqueness is characterized by the percolation of
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spin i under boundary condition ;’. Chayes proof of the FKG property allows for
boundary conditions specified in terms of the variables 6|5, —q), x € dA, but does
not cover general site boundary conditions. There is good reason for this as the
following example shows.

Example 3.1. Consider a 3-state Potts model with spin space {0, 1, 2} at inverse
temperature 8 without external field,on A = {x, y, z} C Z3,wherex = (1,0,0), y
=(2,0,0),z = (3,0,0). The boundary condition is as follows: of the five bound-
ary sites adjacent to x, three have spin 1 and two have spin 2; of the four boundary
sites adjacent to y, two have spin 1 and two have spin 2; and of the five boundary
sites adjacent to z, two have spin 1 and three have spin 2. We write ijk for the
configuration o with o, =i, 0y, = j, 0, = k. For large g, most of the probability
is concentrated on the energy-minimizing configurations 111, 112, 122, 222 so the
partition function Z corresponding to the Hamiltonian (2.6) satisfies Z ~ 4¢% as
B — oco.Henceas g — oo we have

3e2k
P(oxy =0, =0) = =

66’3 673/3
P(0:=0)=P(oy =0) ~ P(022) = — ~ ——

and hence
P(o,=0|0, =0) ~ 3.

Thusfor large 8, theevents[o, = 0] and [0, = O] are negatively correlated, so the
FK G property fails for the O's configuration.

This brings up the more general question of just when the FKG property holds
for the O’s configuration of aPottslattice gas. A sufficient condition is given by the
following result; Example 3.1 demonstrates the need to restrict to single-particle-
species boundary conditions.

Theorem 3.2. The O's configuration of any particle/bond Potts lattice gas on a
finite subset A of the sites of a lattice, with J, « > 0, under free boundary con-
ditions or under any site boundary condition n which has a single particle species,
satisfies the FKG lattice condition.

We say that percolation of spini occurs under a measure P if with probability
1, there exists an infinite self-avoiding lattice path on which all sites have spin .
Using Theorem 3.2 we will establish the following.

Coroallary 3.3. Consider a ¢-state Pottslattice gas (¢ an integer) with parameters
(B, J,k, n), with J,« > 0, on a planar lattice L. If percolation of 0’'s occurs
under boundary condition ' for somei € {1, .., ¢}, then there is a unique Gibbs
distribution at (8, J, «, ).
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We turn next to conditions for Gibbs uniqueness and weak mixing, and to
the bounds on critical points that can be obtained by establishing such properties
throughout most of the high-temperature regime. A bond or site model with speci-
fied parameters (but unspecified boundary condition) issaid to havetheweak mixing
property if thereexist C, A asfollows. Givenfinitesets A C A and any two bound-
ary conditions (bond or generalized site) n1 and ;) for themodel on (A, Z(A)), the
corresponding distributions Py and P> of the configuration on (A, Z4(A)) satisfy

Var(Py, P2) < C Z e M=l
XeA,y¢A

where Var(-, -) denotes total variation distance. Loosely this says that the maxi-
mum influence, on afixed region, of the boundary condition decays exponentially
to 0 as the boundary recedes to infinity. Turning to the FK model, fix p, ¢ and for
each finite subset A of the sites of alattice L, let P; % denote the mode! at (p. ¢)

on (A, Z(A)) with wired boundary condition. The infinite-volume limit, denoted
PI'K | is said to have exponential decay of local wired-boundary connectivities if
there exist C, A > 0 such that for every finite A > 0,

PYX (0 < aA by apath of open bonds) < Ce (),

where r(1) = min{|x| :€ dA}. Note thisis stronger than the usual notion of ex-
ponential decay of connectivities (for the infinite-volume limit), as studied e.g. in
[23], though for the FK model on planar lattices the two notions have been prov-
en equivalent [4]. It is not hard to show (see [4]) that if the FK model at (p, g)
has exponential decay of local wired-boundary connectivities, then it has the weak
mixing property, as does the corresponding Potts model if ¢ is an integer. Weak
mixing for the Potts model hasavariety of useful consequences, particularly intwo
dimensions; see[32].

A planar lattice L divides the plane into polygonal faces. The dual lattice L™ is
constructed by placing a dual site at the center of each such face, and then a dual
bond between each pair of dual sitesfor which the corresponding faces have abond
(that is, an edge) in common. For example, the dual of the triangular lattice is the
hexagonal lattice, and vice versa. When necessary for clarity, bonds of I are called
regular bonds. To each regular bond e there is associated a unique dual bond e*
connecting the centers of the two faces of which e is an edge. The dual bond ¢* is
defined to be open precisely when e is closed, so that for each bond configuration
w on L, thereisuniquedual configuration »* onIL*. For eachq > 0, for p € [0, 1]
the value p* dual to p at level ¢ isgiven by

p _1-p

gl—p)  p*
If the regular bonds are distributed as the infinite-volume FK model at (p, ¢g) onL
with wired boundary condition, then the dual bonds form the infinite-volume FK

model at (p*, ¢) on L* with free boundary condition (see[21].) If p isthe self-dual
point

*

Vi

Psd(q) = m,
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then p = p*. For the FK model on the square lattice it is conjectured that the
percolation critical point is the self-dual point for al g; this is known for ¢
> 25.72, from [31].

For the Potts model, the value 8* dual to a given 8 can be obtained using FK
duality and the correspondence p = 1 — e #.

Let pf'X (g, L) denote the percolation critical point of the FK model on alattice
I, and let BF9"5 (¢, 1) denote the critical inverse temperature of the ¢-state Potts
model on I, so that

pFE (g, L) =1— e F" @ L),

If ¢ isnot an integer, we take this as the definition of 8F°"* (¢, ). For ¢ = 2 we
aternately write 824 (L).

It is believed that weak mixing should hold for the g-state Potts model for al
g > landall subcritical 8, but for the most part it has only been established pertur-
batively, for 8 near 0. Exceptions include the Ising model [24], and ¢ > 25.72 on
the sgquare lattice [31]. Here we will establish weak mixing for the Potts model on
planar | attices throughout most of the subcritical region, that is, nearly up to g£o!s.
As a byproduct we obtain rigorous bounds on the Potts and FK critical points on
such lattices. The specifics are as follows.

Theorem 3.4. Let IL be a planar lattice of coordination number m, and suppose
the dual lattice IL* has coordination number m*. Let ¢ > 1 and define 1 =

B1(q +1,m) and p1 = p1(g + 1, m) by

qg—1

1_q—2/m
= q(m—Z)/m _ 1’ =

_ -B1
pr=1—e¢ = — . 3.2
1—g1

Pl

(i) The FK model on L at (p, ¢ + 1) has exponential decay of local wired-
boundary connectivities, and has the weak mixing propety, for all
p < pi(g + 1, m). Itscritical point p. = p/¥ (g + 1, L) satisfies p1 < p.
< p2, where p» = pi1(g + 1, m*)* isthe value dual to p1(¢ + 1, m*) at
level g + 1.

(i) If ¢ is an integer, the (¢ + 1)-state Potts model at (8, 0) on L has the
weak mixing property for all 8 < Bi(g + 1, m). Its critical point 8, =
BEos(q + 1, 1) satisfies B1 < B. < B2, where B2 = Ba(g + 1, m*)*
isthevaluedual to B1(¢g + 1, m*) at level g + 1.

(iii) Thelower bounds p1 and 81 remain valid even if thereisno m™ (that is, not
all sites of IL* have the same degree.)

We now apply Theorem 3.4 to some examples.

Example 3.5. For the square lattice with certain values of ¢, it is known [31] that
the FK critical point isthe self-dua point:

FK(q. 72 _ V1 for ¢=1,2 andal ¢ > 2572,
p. (g, Z%) 1+ Ja q q >
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and thisis believed to hold for all ¢ > 1; itisknown (see[21]) that pf'X (¢, Z?) >
psa(q) for al g > 1. By contrast, the lower bound given by Theorem 3.4 is

Ji—1 1 1
ri1(q.4) = 1+—\/qu =psa(g — 1) = psalq) — 202 o 2 asqg — o9,

and the upper bound is

q 1 1
szsd(‘])—i-?‘l‘o — -
Vg q

For g = 10, for example, weobtain.760 < p. < .769, compared to the conjectured
value p,; = .760, and we establish exponential decay for all p < .750.

Example 3.6. For thetriangular and hexagonal lattices, there are computations of
the Potts critical point in the physics literature using the star-triangle transforma-
tion and variants thereof ([26],[41]), but it is not clear whether these can be made
rigorous. Sincethe triangular and hexagonal lattices are dual to each other, rigorous
upper bounds on each of these lattices come from |ower bounds on the other | attice.
For example, the values .513 and .740 are dual at level ¢ = 3, as are .413 and
.810 (see Table 1). For many other planar lattices, there are only estimates obtained
by series expansion methods, renormalization group methods and/or simulation;
see [42] for a summary and references. For the Kagome lattice lower bounds are
computed in [29], but again, the level of rigor is unclear. Our rigorous bounds, and
corresponding nonrigorous values from the physics literature, are summarized in
Table 1. The nonrigorous values for the triangular and hexagonal lattices are from
the presumably exact general formulain [26]. The nonrigorous values for the Ka-
gome lattice are from [29] for ¢ = 4 and from the conjectured general formulain
[41] for g = 9, 30; it should be noted that this general formulawas found in[14] to
beincorrect. Thelower bound from [29] for the Kagomé latticewithg = 4is.672,
better than our rigorous bound .634. The accuracy of the rigorous bounds becomes
quite high for larger values of ¢. Nonetheless, this table should perhaps be seen
less as a source of new information about critical points and more as a numerical
quantification of the sharpness of the comparison result, Proposition 4.13.

Theideabehind the proof of Theorem 3.4isasfollows. Themain stepisto prove
that there is exponential decay of loca wired-boundary connectivitiesfor p < ps;
this establishes weak mixing which showsthat p; < pf*, and then, using duality,
that p. < p2. Theboundson 8} °!"s follow from the Potts/FK correspondenceusing
(2.19). The wired-boundary FK model on afinite A can be obtained from perco-
lation at density p on the matching bonds in the Potts model with a constant, say
all-0, boundary condition. To obtain the exponential decay of local wired-boundary
connectivities, then, we need only consider percolation on“00” bonds. It isenough
to show that the probability of a path in the Potts model from the origin to 9 A on
which all spinsare 0's decays exponentialy in r(A). For this, it is enough to show
that the O’s configuration of the Potts model is dominated by the configuration of
some other species in some other model where this exponential decay property is
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Table 1. Nonrigorous values and rigorous bounds for the critical point of the FK model on
planar lattices.

Lattice m q Rigorous boundson pf¥(q,L) Nonrigorous value
Triangular 6 3 0.413 < p. < 0.513 0.468
Triangular 6 4 0.460 < p. < 0.532 0.500
Triangular 6 9 0.571 < p. < 0.600 0.588
Triangular 6 30 0.699 < p. < 0.706 0.703
Hexagonal 3 3 0.740 < p. < 0.810 0.773
Hexagonal 3 4 0.779 < p. < 0.824 0.800
Hexagonal 3 9 0.857 < p. <0.871 0.863
Hexagona 3 30 0.926 < p. < 0.928 0.927
Kagomé 4 4 0.634 < p. 0.686
Kagomé 4 9 0.739 < p. 0.761
Kagomé 4 30 0.843 < p, 0.851

known to hold. Thelatter roleis played by the“+” configuration of an I1sing model
with negative external field. The ARC model, and in particular the fact that the 0's
configuration is obtained by independent site percolation on the isolated sites of
the ARC configuration, is used to facilitate the comparison of the Potts 0's to the
Ising “+" configuration.

Wewill proveasomewhat weaker anal og of Theorem 3.4 for higher dimensions.
It requires an assumption on the Ising model to which the Potts 0’s configuration
is compared, asfollows. Given an inverse temperature 8, avalue of ¢ and alattice
with coordination number 2, define 8”7 by

” — 1+eﬂ
pr_4—_~T¢
e’ = =D 3.3

and let 8 beasin 3.2. We will need the following condition:

independent percolation at density 1 — ¢ ~# onthe“++” bondsof the ~ (3.4)
minus phase of the Ising model at (8”, 0) produces no infinite cluster, a.s.

Unfortunately we have no way to verify thisfor d > 2, except when we arein the
Peierls regime ¢/ > 3, where it is known that “+” spins do not percolate in the
minus phase. From (3.3), a sufficient condition for ¢/ > 3isthat ¢ > 3%, This
leads to the following two results.

Theorem 3.7. For ¢ > 1, consider the FK model at (p, ¢ + 1) on Z¢, and, for
integer ¢, the corresponding (g + 1)-state Pottsmodel at (8, 0), with p = 1—e 5.
If (3.4) holds, with g” given by (3.3), and

—1/d

1-g¢777 (3.5)
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or equivalently

qg—1

T (36)

eﬁ <
then there is no percolation in the FK model, and (for integer ¢) the Potts
model has a unique Gibbs distribution. If (3.4) holds for all g in a neighbor-
hood of 81(¢ + 1, 2d), then

1— q—l/d

1—g-1"°
Corollary 3.8. For all d > 2 and g > 3%, the FK model on Z¢ with parame-
ters (p, ¢ + 1) has no percolation provided (3.5) holds. If ¢ > 3% isan integer,

the (¢ + 1)-state Potts model on Z¢ at inverse temperature 8 has a unique Gibbs
distribution provided (3.6) holds.

pER@q+1.7% <

Remark 3.9. The equivalent conditions (3.5) and (3.6) are apparently quite sharp
for Z4, even for small ¢. For example, for the 4-state Potts model (¢ = 3) in
dimension 3, we have

1— qfl/d

1—¢-1
while nonrigorous estimates of p. in the physicsliterature range from .468 to .477
(see[42].) Itisnot hard to show that 8/2 < B” < B for dl B < B1. Since the FK
model has at most one infinite cluster a.s., we know that independent percolation
at density 1 — ¢=#" on the “++” bonds of the minus phase of the Ising model at
(B, 0) producesno infinite cluster a.s.; in (3.4) wereplace 1 — e—#" with the larger
percolation density 1 — ¢~#. Percolation at the still-larger density 1 — e=2#" on
the“++" bonds of the minus phase of the Ising model at (8”, 0) producesthelsing
ARC model (with reversed polarity), so to establish (3.4) it is enough to show that

= .460

there is no percolation in the Ising ARC model, corresponding to an Ising (3.7)
model at (8, 0), with isolated boundary condition.
Remark 3.10. We consider (3.4) and (3.7) inthe mean field limit, m = 2d — oo,

for theinteger lattice. Let g7 (¢ + 1, m) bethevalueof 8” when g = 1(g + 1, m),
that is,

qg—1 1
ql/m(q(m72)/m -1 - ql/m

(cf. (3.3).) We have from (3.2) that

Plla+lm) _ ePrig+Llm (3.8)

I
lim mpaq +1m) = 21290,
m— 00 q — 1
which isthe “right” mean field limit, in that it is believed that
2qlogg

lim 2dB.(q +1,2%) = (3.9
d—o00

qg-—1
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and it is proved in [28] that

2q 1
limsup 2dB.(q + 1, 79y < 21°994
d—oo q — 1
The limit (3.9) isknown for the Ising model, g + 1 = 2, with the RHS interpreted
as 2. Thus if for all sufficiently large d one could establish (3.4) for al g ina
neighborhood of 81, it would prove (3.9). From (3.8),
_ (@+1logg

lim mB{(q +1,m) = ——"——,
m—00 q —1

and the latter is an increasing function of ¢ > 1, sofor al ¢ > 1,
Bl(g +1,2d) > pFos(2,z%) for dl sufficiently large d.

Thusfor (3.9) it would be enough to prove (3.4) or (3.7) when 8” isabovethelsing
critical point 8Fo'# (2, Z4). Define the percolation threshhold

pls"8(B” L) = inf{p € [0, 1]: independent percolation at density p on the *++"
bonds of the minus phase of the Ising model at (8", 0) on L.
produces an infinite cluster a.s.}.

From Remark 3.9 we know p/*"¢ (8", 1L) > 1 — ¢=#" and for (3.4) it sufficesthat

plsingg” 1) > 1—e P, foral g inaneighborhood of form (81 — €, f1)
(3.10)

and for 8” asin (3.3),

wheree > 0. Weare unableto verify (3.10) for theinteger | attice but we can verify
the analog for the Cayley tree T,, with large coordination number m asfollows. It
is easily checked that

pgsing(ﬂ//’ T,,) ~ (mP’]f‘jni,n_g,}g’//l’o(Ox _ +))—1 as m — 00, (3.11)

where x is arbitrary and Pf”'f’ g o denotes the infinite-volume Ising model on

T,, a (B,,, 0) with minus boundary condition. This s just the branching-process
approximation which saysthat the critical percolation density is such that the mean
number of sites x adjacent to O for which both o, = + and (Ox) isopen is approxi-
mately 1. Supposewe have asequence {8, } withmp,, — ¢ for somec “sufficiently
close” to 2¢(logq)/(q — 1); then from (3.3), mpB,, — a(c) = é + logg, while
from themean field limit for the magnetization on atree (whichis straightforward),

» 1— My
ps f.00x = ) >~ a(c) (3.12)
where M, isthe positive solution of M = tanh(aM /2). We claim that
2 ) ) 2g lo
—— > ¢ foradl ¢ inaneighborhood of q—gq’ (3.13)
1- Ma(c) q — 1
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which with (3.11) and (3.12) establishes (3.10) for T,, with m large. Thusit seems
plausible that (3.10) may hold for the integer lattice when g > 1, at least in high
dimensions. It issufficient to prove (3.13) for ¢ = 2¢g(logq) /(g — 1),s0¢ > 2 and
a(c) = (g+1)(logq) /(g —1). Now (3.13) for thisc isequivalent to M) > 1— 2

or
tanh(@<1_3>)>1_3
2 c c
or
tanh(_‘f”("’gq _E))>1_ 9-1 (314)
2 g—1 ¢ qlogq

and (3.14) can beverified for al ¢ > 1 by atedious but straightforward calculation,
usinge* > 14 x +x2/2for x > 0. Thus(3.13) and hence (3.10) hold for m large,
so for each g > 1, for T,, with m large, (3.4) holds for all 8 in aneighborhood of
B1, asrequired.

The obvious problem with Theorem 3.7 is the difficulty of verifying (3.4).
We give next an alternate theorem which has more readily verifiable hypotheses
(at least in certain limits.) The price paid for thisis that the resulting bound on
pEK or pFoits isweaker, particularly for small g.

The magnetization M (B8, h) = M(B, h, L) of the Ising model at (8, #) on the
lattice L is the mean value of o in the infinite-volume plus phase. For 42 > 0, the
susceptibility at (B8, k) isthe quantity

h—laM h
x (B, )—E% (B, h).

Theorem 3.11. For ¢ > 1 consider the FK model at (p, g + 1) on Z4, and, for
integer ¢, the corresponding (g + 1)-state Pottsmodel at (8, 0), with p = 1—e 5.

Suppose
2x (E O) <1+ M <é 0) (3.15)
2 2
and suppose
or equivalently
P < ql/d.

Then there is no percolation in the FK model, and (for integer ¢) the Potts model
has a unique Gibbs distribution at inverse temperature 8. If (3.15) holds for all 8
in a neighborhood of (logg)/d, then

1

Pelg +1ZH 21— 5.
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Condition (3.16) is clearly less sharp than (3.5), especially for small ¢; in par-
ticular one could not hope to obtain the mean-field limit (3.9) using (3.16). For
example, forg + 1 = 4and d = 3, (3.16) dlows p < .306 while (3.5) allows
p < .460 (see Remark 3.9.) For ¢ + 1 = 30 and d = 10, thereis less difference,
as(3.16) alows p < .286 while (3.5) allows p < .296.

We can verify (3.15) in certain limits, which leads to the following.

Corollary 3.12. Supposeq + 1 > 10.56. For all sufficiently large d, the FK model
satisfies
FK d 1
@+ 12 21— —7.
q
Remark 3.13. For the Potts model, Kesten and Schonmann [28] established a
lower bound for ¢ + 1 > 2 of theform

prosig +1.20 2“0

forall d.
Their ¢(q) isvery closeto the mean-field value (¢ log q) /(¢ — 1) for small ¢, which
is better than what Corollary 3.12 gives, but for large g their ¢(g) isonly about half
the mean-field value, so Corollary 3.12 is better for large ¢.

Remark 3.14. Since x(8) — 0aspB — oo, (3.15) holds for al sufficiently large
B. Therefore for fixed d, Theorem 3.11 shows pfX (g + 1,729 > 1 — ¢~/ for
all sufficiently large ¢g. But this is of less interest that large d, because a series
expansion for pf X (g + 1, Z¢) for large g is known [30].

We turn next to the analysis of certain perturbations of the (zero-field) Potts
and Ising models. The main question of interest to us is how these perturbations
affect the critical inverse temperature of the model. We consider first annealed site
dilution, that is, a Potts lattice gas in which O's are rare. It should be pointed out
that the coresponding problem for annealed bond dilution is much simpler, because
bond dilution is essentially just a change of temperature (see [37].)

We define the dilution parameter 6 of a g-state Potts lattice gas at (1, J, «, 1)
on a lattice with coordination number m by

6 = e*(lL‘FKm) )
For the corresponding ARC model, this becomes

0 =q(Q—-DA-p)". (3.17)

Heuristically, and to an extent quantifiably (see Lemma 4.18), 6 gives the order
of magnitude of the typical fraction of 0’s in the system. Define the ARC model
critical point for red bonds by

PARC (pg, q, Q,1L) = inf{p, : percolation of red bonds occursin the
in the red-wired ARC modd &t (p-, pg. q, Q) onL}
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and the corresponding Potts lattice gas critical point by

JPEG (g, 1, u, L) = inf{J : thereis symmetry breaking in the
q — State Pottslatticegasat (1, J, «, u) on L}

As is easy to show (see Proposition 4.7), if (pg, Q) and (k, u) are related as in
(2.13), we have

_JPLG
PARC (pg,q, 0, L) = 1 — eI " @rnl, (3.18)

In the next theorem, the underlying heuristic is that when small annealed site
dilution is added to the Potts model, the changein critical temperature, the fraction
of empty sites, and the dilution parameter 6 are al of the same order of magnitude.
What we actually prove are one-sided bounds consistent with this picture. These
bounds essentially compare the effect of the dilution to the effect of change much
simpler to analyze: replacing the parameter ¢ with ¢ + 6 in the FK model.

Theorem 3.15. Let L be a lattice of coordination number m.

(i) 1fg, 0 > 1, p, €[0,1], (Q — 1)(1— pg)™/? < 1 and the dilution parameter
0 is sufficiently small, then

pEE(q,1L) < pARC(p,,q, 0, L) < pFE(g +06,1L).

(i) Ife = 0, € R,g > 1, u+ 3xm + logg > 0 and the dilution parameter
0 = e~ tkm) jsaufficiently small, then

BES (g, L) < JFPEC (g ke 1, L) < BE"S (g + 6, 1),

Remark 3.16. Let us compare Theorem 3.15 to what can be obtained by much
simpler techniques, similar to the standard comparison theorem discussed in the
introduction. As we will show (see Lemma 4.4), since Q2€(@)~1(®) js 3 decreas-
ing function of w, these simpler techniques show that the ARC model, cdll it P, at
(Pr Pg» g, Q) dominatesthe ARC model, call it P', a (p,, pg, ¢ @2, 1). Hencethe
red bond configuration under P/, which formsthe FK model at (p,, ¢ 0?), isdomi-
nated by thered bond configuration under P. Thisshowsthat p2%€ (p,, ¢, 0, L) <
pFK(qQ? 1L). ButqQ? > q +29(Q — 1) > g + 26, so thisresult is worse than
Theorem 3.15 by a factor of at least 2 in the correction 6, and by a much larger
factor if p, isnear 1, or Q islarge.

For the square lattice, and ¢ > 25.72, the FK critical point is known exactly
[31]. This tells us the exact change in pZX when ¢ is replaced by ¢ + 6, so we
can get more detailed information from Theorem 3.15 about the change in critical
point induced by the dilution. We summarize this in the following corollary.

Corollary 3.17. Supposex > 0, u € R,q > 25.72, and . + %Km +logg > 0.
Then for the square lattice, for § = e~ (<™ asg — 0,

1
B g, %) < I (g k1, 22 < B9, 22 + S VA + P + 0(0).
(3.19)
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We do not expect that the factor %ﬁ(l + /9) multiplying 6 in (3.19) is
sharp, but we do expect, though we cannot prove, that the true correction term is of
order 6.

A special case of “dilution” of the g-state Potts model isthe (g + 1)-state Potts
model with a large negative external field applied to one of the spins. Thisis the
subject of our next result.

Theorem 3.18. LetL bealatticeandg > 1, andfor & > O, let
6(h) = exp(—B."" (q. L)h).
Then
Broms(q, Ly < BPo"s (g + 1, —h, L) < BL""S (¢ +6(h), LL). (3.20)

Note that (3.20) is an equality both for A = O and in thelimit A — oo.

Weturn now to adifferent perturbation: the Potts|attice gaswith small J. When
J = 0 the particles form a binary lattice gas with the Gibbs weight multiplied by
an entropy factor ¢™s, where N is the number of particles; this factor just adds
log g to the chemical potential. Thussmall J may be considered a perturbation of a
binary lattice gas, or equivalently, of an Isingmodel. More precisely, presuming we
relabel particles as”-"and empty sitesas“+”, the J = 0 Potts |attice gas becomes
an Ising model with parameters (8o, ho) given by (cf. (2.9))

K
Bo = >
We call hg the effective external field of the J = 0 Potts lattice gas. Thus for
J = 0, the phase diagram in (x, w)-space is known — there is a critical line u =
—3km —logg, k > 281578 (1) where there is phase coexistence, and Gibbs
unigqueness holds everywhere outside the closure of this critical line. For fixed
Kk > 2Bl (L), as u increases, there is a first-order aggregation transition at
n = —%Km — logq from an empty-dominated regime to a particle-dominated
regime. If the lattice is planar these regimes are characterized by the percolation
of empty sites and of particles, respectively. For small J one expects this phase
diagram to be perturbed only dlightly. It is outside the scope of this work to make
thisphrase“only slightly” into arigorous statement —this nontrivial problem would
involve showing that for small J the transition remains sharp, meaning there is no
interval of u valuesin which there is an intermediate phase, and showing that the
minimum value of « for which the transition is first-order remains near 2874 (L)
for small J. (See [10] for more on the phase diagram for positive J.) Instead we
will establish a one-sided bound—adding a positive J reduces the critical u by at
least a certain function of J. Define

Boho = —(1u + % +logq). (3.21)

ulLG (g, J,k, L) = sup{u € R : thereis percolation of 0’sin theinfinite-volume
q — State Pottslatticegasat (1, J, x, u) on L with0’s
boundary condition}
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so that for planar 1L, from the preceding discussion,
uPLC(q.0,k,L) = —% —logg foralk > 281" (L).

Theorem 3.19. Let L be a planar lattice of coordination number m. For ¢ >
1,J > 0and«x > 285" (L),

1 -1
wlEG (g, 0Ly < uP (g, 0,k, L) — %Iog (;Ie’ + qT) (322

m(qg —1)

4q2

We expect, but do not prove, that the order-J term in the RHS of (3.22) isthe
true first-order correction, and that the order-J2 termsis correct aswell for certain
lattices, including the square and hexagonal |attices, which have the property that
for abond (xy), the length of the shortest path from x to y outside (xy) is more
than 2. To see why, note first that the Potts lattice gas with small J has particles of
species which are approximately independent and uniformin {1, .., ¢}, so that for
any bond, the endpoints match specieswith probability approximately 1/¢. Condi-
tionally on the particle locations, there is approximate pairwise independence, but
not mutual independence, among the variables 8|5, —,,] as (xy) varies over bonds
with particles at both ends. If these variables 8, —,] Were mutually independent,
then each bond with particles at both ends would make a contribution to the Gibbs
weight e~ H4.1(%) of ¢¢ from the interparticle attraction and of

=quG(q,0,/<,1L)—2ﬂJ— J2+ 03 asJ—0.
q

1 -1
—eJ-i-q

q q
from the Potts interaction. Defining «g by

we see that the effect of positive J under mutual independence would be merely to
change the interparticle attraction from « to «o; we would still have effectively just
abinary lattice gas. What actually happensisaslight variation of this, as follows.
The contribution to the Gibbs weight from abond (xy) with particles at both ends
is

e (kej +1- A)),

wheretherandomvaluei = A(x, y, {n.}) istheprobability that o, = o, for aPotts
model at inverse temperature J on the particles, but with the interaction between
x and y “turned off,” and e’ + (1 — 1) istheratio of two partition functions for
the Potts model on the particles, one with the (xy) Potts interaction “turned on”
and one with it “turned off.” Assuming “nice” boundary conditions, e.g. free or
having a single particle species, we have A > 1/q. We therefore call «g (which
correspondsto A = 1/g) the minimum effective interparticle atttraction of the ¢-
state Potts lattice gas at (1, J, «, u). The heuristic content of Theorem 3.19 is that
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since uft6(q, 0, «, L) is a decreasing function of «, and the small-J system is
roughly like a J = 0 system with interparticle attraction «q or greater, we should
expect uL6(q, J,k, L) < nPr%(q, 0, ko, L). Thisisfairly sharp so long as A is
typically closeto 1/4. The deviation 1 — 1/ should be of order of the probability
of apath of open bondsin the FK model from x to y outside (xy), whichisof order
J" for small J when the shortest possible path has length n. Thusthe inequality in
(3.22) should be accurate to within order J”.

The J = 0 Potts|attice gaswith interparticle attraction «g, which we are effec-
tively using as a bound for the positive-J system, is equivalent (when we ignore
particle species) to an Ising model with parameters (8’, #’) given by

1
g = K_20’ B'h =— (M + Skom + |0961) (3.23)
or equivalently
e — ¢ (EeJ + q—_l) et — ﬁ. (324
q q q

We call ' the maximum effective external field, and g’ the minimum effective
inverse temperature, of the g-state Potts lattice gas at (1, J, «, ).

Our final topic is couplings. Couplings have been auseful tool in studying how
the boundary condition influences probabilities under a Gibbs distribution (see
[33],[5].) For a Potts lattice gas configuration o on a finite set A with boundary
condition n on 3 A, we define the boundary particle cluster

C(0A,0) ={x € A : xisconnectedto dA by apath in which
al sitesx € A haven, = 1}.

We say that the Potts lattice gas at (1, J, «, ) on alattice I has the boundary
coupling property with respect to particles if for every finite A and every bound-
ary condition 7 on 9 A, there exists a coupling P of the measures with boundary
conditions n and n* satisfying

P({(c,0") 0 ando’ agreeon A\C(3A, o")}) = 1.

This property is instrumental in [4] in establishing the following property for the
Potts model on a planar lattice with nonnegative external field applied to spin O:
exponentia decay of the (infinite-volume) probability of connecting two sitesby a
path with no 0 spins implies weak mixing.

Theorem 3.20. For every lattice L and all J,x > 0,¢q > 1and u € R, the
q-state Potts lattice gas at (1, J, «, ) on L has the boundary coupling property
with respect to particles.
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4. Basic properties of the ARC model and the partial FK model

We begin with the FKG property for the ARC model. Note that an ARC model is
a probability distribution on pairs of configurations. Hence if w = (w,, wg) and
o = (v, w;,), then w > o’ means precisely that both w, > w, and w, > wg. In
particular, thereis never acomparison of ared bond to agreen one, and one should
not view red and green as two possible states of asingle bond (xy), but rather as
two parallel bonds between x and y.

Lemma4.1. Let P bean ARC model onagraph (A, %), possibly with a boundary
condition, given by the weights (2.12) for all ® = (o, wg) € {0, 1}” x {0, 1},
with g, QO > 1. Then P satisfies the FKG lattice condition (3.1). Consequently, P
has the FKG property.

Proof. Asin the analogous proof for the FK model (see [22]), we have
C(wr vV wp) = C(wr) = C(w)) — Clwy A wy).
Similarly, setting K (w) = I (wr V wy),
KVvao)— K@) > K@) - Ko,
and (3.1) follows easily. That (3.1) implies the FK G property isaresult of [18]. O

Remark 4.2. Lemma 4.1 applies to the ARC model under any bond boundary
condition, but does not apply to the ARC model with site boundary conditions in
general, because the weights (2.12) then only apply to arestricted set of configu-
rations w. Constant-species boundary conditions are covered by Lemma4.1 since
the event D(A, n)¢ of (2.15) is empty in such cases. More generally, suppose we
have a generalized site boundary condition  which has a single particle species.
Let F/ = {x € 0A : ny = i}and E' = {x € A : n, = 0}, and let (A', #')
be the graph obtained by deleting E’ and all bonds with an endpoint in E’ from
(A, B(A)). Thenthe ARC model on (A, Z(A)) with boundary condition ; on d A
is equivalent to the ARC model on (A’, #') with al-i’s boundary condition on
F’. Thus Lemma 4.1 applies under boundary conditions having a single particle
species as well. Here we are using the fact that when the graph is (A, Z(A)), the
proof of Lemma4.1 isnot changed if 7(-) means (-, A) and not I (-, A).

Let uscall an ARC model onagraph (A, %) unconditioned if theweights(2.12)
apply toall configurationsin {0, 1}” x {0, 1}”. Thus ARC modelswith free or bond
boundary conditionsare unconditioned, and an ARC model with site boundary con-
dition having asingle particle speciesis equivalent to an unconditioned ARC model
on an appropriate subgraph, asin Remark 4.2.

Exactly as for the FK model (see [21], Theorem 3.1), we obtain the following
using Lemma4.1.
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Corollary 4.3. For fixed p, € [0, 1], pg € [0,1],9 > 1and Q > 1, the measures
on {0, 1}”M x {0, 1}”™ given by the weak limits

ARC lim ARC

Prw,p,,pg,q,Q = AS(L) PA,rw,pr,pg,q,Q and

ARC _ H ARC
PI'SO,Pr,ngq,Q - AEETE]L) PA,I’SO,Prng,q,Q

exist, and are trandlation-invariant and ergodic.

We continue with an analog for the ARC model of the standard comparison
theorem of [17] (see also [3]) for the FK model.

Lemma4.4. Consider an unconditioned ARC model on a finite graph (possibly
with a boundary condition). Let p,, pg, p;., pé, €[0,1] andletgq, Q, Q' > 1and
q' > 0. Themodel at (p;, py, q', Q') dominatesthemodel at (p,, pg, ¢, Q) under
any of the following conditions:

() pr <Py Pg < Pgoq=¢q and Q = Q'
(i) pr=pi.pg="Pg.q=q and Q > Q'
(iii) pr < p;. pg = py, Q= Q" and
P __ P
ql—p) ~ ¢'A-pp)’

(V) pr < P}, pg < Pyrq =q' and

Pr < p;
0%(1—py) ~ (QHV?(A—pp)’

Proof. Let W(w,, wg) and W (w,, w,) be the weight functions as in (2.12), for
the two parameter choices. It is easy to see that |w,|, |wgl, lor| + Cl(w;), 2|wr| +
I(wr V wg) and 2|wg| + I (w, V w,) are increasing functions of (w,, wg), while
C(w,) and I (w, Vv w,) are decreasing functions. It follows easily that in all four
cases, W'/ W isanincreasing function. ]

Suppose we have two models, P4 and Pg, for configurations on a finite A,
each with boundary conditions, and we have species i appearing under P4 and j
appearing under Pg. Asashorthand terminology, we say that the i’s configuration
under P, dominates the j’s configuration under Pg if Po({8[s,=i] : x € A} € )
dominates Pp({8[s,=j] : x € A} € -). Note these are measures on {0, 134,

For a Potts | attice gas on afinite set A, define

Xo=Xo(A,0)={x € A:o, =0}

Lemma4.5. Consider a g-state Potts lattice gas and a ¢’-state Potts lattice gas
on a finite set A under respective site boundary conditions n and »’, with pa-
rameter values (1, J, «, w) and (1, J', «’, u') respectively, satisfying J, «, J', &’ >
0. Let (pr, pg,q, Q) and (p;, p,. q', Q") be the parameters of the correspond-
ing ARC models. Suppose Q@ > Q' and the black configuration w, = w, Vv
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g of the ARC model under PRRC . dominates the black configuration
under PI("’;S% peg.0- TTen the O's configuration of the Potts lattice gas under
PLG

PLG i ' ; i
Py pa.17.,, dominatesthe 0's configuration under Py 7 4 ;v v e

Proof. Let P and P’ denotetheARC modelsat (p,, p¢.q, Q) andat (p;, pg. ¢, Q"),

respectively. There existsacoupling P of P and P’ for which P ({(wp, @}) : wp <
w,}) = 1, and hence .# (wp, A) D J(wy, A) as. From (2.14), since Q > Q’,
the ARC configurations w;, and w;, can therefore be labeled to produce lattice-gas
configurations o and o’ satisfying Xo(A, o) D Xo(A, o”).

Applying Lemmas 4.4 and 4.5 to the Ising model and Ising ARC model yields
thefollowing result, obtained by Schonmann and Shlosman ([36], Lemma 1) using
different methods.

Lemma 4.6. ([36]) Consider the Ising model on a finite subset A of a lattice with
coordination number m, with boundary condition n. Suppose that

B'(m —h') = B(m — h); (4.1)

B'(m+h') < B(m +h). (4.2)
Then the “ +” configuration on A at (8, h) dominates the “ +” configuration at
B, 1).
Notethat if —m < A’ < m, then (4.1) and (4.2) imply h > h'.

Proof (Proof of Lemma 4.6). The comparison is made by way of the model with a
third set of parameters, (8", h”’). Define these by

B'(m~+h")y=p"(m+h"), Bm—h)=p"(m—h").
It is easy to check that 8”7 < min(B, B’). From Lemma 4.5 and Lemma 4.4(i) we
have the following two conclusions:

(i) the“+" configuration at (8", ") dominatesthe “+" configuration at (8', #’);
(ii) the“+" configurationat (8", —h’") dominatesthe“+" configurationat (8, —h).

We can restate (ii) as:

(iii) the“-" configuration at (8, —h) dominatesthe“-" configurationat (8", —h").
Since(iii) isvalid under arbitrary boundary condition, we can interchange the roles
of “+"and “-" in (iii) to obtain:

(iv) the“+" configuration at (8, 1) dominatesthe “+” configuration at (8", h”).
Now (i) and (iv) prove the lemma.

For the lattice Z¢, a plaquette is aface of aunit hypercube centered at alattice
site. Each plaquette is the perpendicular bisector of a unique bond. A dual surface
(consisting of plaquettes) is the outer boundary of a connected set which is the
union of afinite collection of such hypercubes.
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Proposition 4.7. Consider the red-wired ARC model on a lattice I with param-
eters (pr, pg, q, Q), With ¢ € Z, and the (usual) g-state Potts lattice gas with
corresponding parameters (1, J, «, 1), given by (2.13).

(i) If the ARC model with red-wired boundary condition has no percolation in
the black configuration w, = w, Vv w,, then the Potts |attice gas has a unique
Gibbs distribution.

(if) Thered bonds of the ARC model with red-wired boundary condition percolate
if and only if the Potts lattice gas exhibits symmetry breaking, that is, thereis
a Gibbs distribution not symmetricin {1, .., ¢}.

Proof. Wegivethe proof for theinteger | attice only; for other lattices one need only
extend the notion of an* outermost dual surface” inthe appropriate way. By Lemma
4.1, onafinite (A, Z(A)) the ARC model with red-wired boundary dominates the
ARC model with any other generalized site boundary conditionn. If A € A andin
some configuration w;, thereis no path of open bondsfrom 9 A to A, then thereis
aunique outermost dual surfaceI" = I'(wp) surrounding A whichis crossed by no
open black bond. Let P; and P, denote the red-wired measure (that is, the measure
under boundary condition »') and the measure under 7, respectively, for the ARC
model on (A, Z(A)). As is well-known in the context of the FK model (see e.g.
[33]), the coupling P of P; and P> can be chosen so that

P({(wp, @}) : @ and w), agreeinside I'(wp)} | A £ Ainwy) = 1.

When o, and w;, agreeinside I’ (wp), clusters of w;, and wj, can belabeled identical-
ly to create Potts configurations, under boundary conditions n* and », which also
agreeinside I'(wp). Letting A 7 S(L) we have P(AA % A inwy) — 1and (i)
follows. The proof of (ii) issimilar to the the proof for the FK model (see[3].) O

The next result is an analog of Proposition 2.3.

Lemma4.8. Let A be afinite subset of a lattice I with coordination number m.
Consider a g-state particle/bond Potts|attice gason (A, Z(A)) with a generalized
site boundary condition n, with parameters (1, J, «, w) satisfying «, J > 0. Then
conditionally on w,, the O's of the Potts lattice gas form the “ +” configuration of
an Ising model on .7 (w,, A) with parameters (8, ) given by

G ey _ ¢
2 q
and with boundary condition as follows: “-" on A\.# (w,, A) andon {x € 9A :

ne # 0}, “+” on{x € dA : n, = 0}. In particular, for the (¢ + 1)-state parti-
cle/bond Potts model at (8, 0), we have

=P iz iz

2 q
Proof. It is immediate from (2.12) that conditionally on w,, the green bonds of
the ARC model in 2(I") form an Ising ARC model on (T, #(I')), where ' =
F(wr, A), with “-”, or equivalently wired, boundary condition. Applying (2.19)
yields the result. |

(4.3
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We call thelsing model of Lemma4.8 the conditional 1sing model of the (parti-
cle/bond) Potts lattice gas or of the equivalent ARC model. Note that conditionally
on w,, in addition to the Ising ARC model formed by the green bondsin %(T"), the
remaining green bonds of the ARC model —those with neither endpoint isolated in

—are independently open with probability p,.

For L = Z4¢ wehavefrom (4.3) thath < Oif andonly if ¢ < ¢%/4. Thisisvery
close to the condition that 8 is subcritical, at least for large ¢ [31]. Thus, except
perhaps near the critical point, O's are favored relative to particles on .4 (w,, A)
when g is supercritical, and particles are favored when g is subcritical.

Given abond configuration o and abond e, welet w \ e denote the configuation
obtained by adding the bond e to w (that is, by declaring e to be open.) The ratio
U(w)/V (w) of two functionsis an increasing function if and only if

U(wVe) - V(o Ve)
Ul — Vv
In some situations of interest, the ratios appearing in (4.4) can be interpreted as
probabilities, as the next three lemmas show. Let PI sing , denote the distribution
of the Ising model with parameters (8, ) on afi nlteset A Wlth boundary condition
nondA,andlet P'“"ﬁ and P”’”g denote the infinite volume limits under “+” and
“-" boundary conditions, respectlvely, on the full lattice IL.

Lemma4.9. Letp € (0,1) and Q > 1,andlet A beafinite set of sites of alattice
IL with coordination number m. For o € {0, 1}#) define

|y |
G(C{))Z Z ( 14 ) Ql(w,\/w,A).

1-—
wr 6{0, 1}.%(/((4)./\)) p

for all w and e. (4.9

Then for e = (xy) € B(A),

G(wVe) —(0— )I(ww A)—I(w,A) Plsmg

G(w) S A)—pj2n@x =0y =—), (45
where g and & are given by

p=1— e—ﬁ7 0=1+ eﬂ(m—h)/Z- (46)

It x ¢ A then P;S(ZLgA) ﬂ/Z,h(Gx = o0, = —) should be interpreted as

P}I,S(Z’gA) /2.0y = —). Similarly if both x, y ¢ A then P]I,s('a'fg/\) pr2n(0x =
oy =—) should be interpreted as 1. Also, in the event that (.7 (w, A)) is empty,
we define G (w) to be Q1@ 1),

Given an ARC-model red-bond configuration w, there is a conditional Ising
model on .# (w, A), and acorresponding reversed-polarity Ising ARC model. G (w)
isaversion of the partition function for this reversed-polarity Ising ARC model.
In the case that the origind ARC model is a Potts ARC model, we may view w
as the FK portion of ajoint FK/Potts configuration, with the “00” bonds deleted.
The configurations o, summed to obtain G (w) arejust the possible choicesfor the
set of “00” bondsto make w Vv w, afull FK configuration. Thisis made precisein
Lemma4.12.
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Proof (Proof of Lemma 4.9). Fix w and e = (xy). Let T’ = J(w, A) and A =
I(w,A) — I(w Ve, A) = |{x,y} NT|. Consider an Ising ARC model, which we
denote Py, on (T, Z(I")) with parameters (p, Q) and “+”, or equivalently isolated,
boundary conditions. Thisis equivalent (see Remark 2.1) to an Ising ARC model
P> on (T, #(T")) with the same parameters (p, Q) but with free boundary. The
weightsfor P, are given by the terms of the sum G (w):

||
Wa(w,) = (—p ) Q' w, e {0, 17D,
1-p

Let P3 bethelsing ARC model on (T'\{x, y}, Z(I'\{x, y})) with parameters(p, Q)
and free boundary, and let .o = Z(T)\B(T \{x, y}). Note e € .«7. Each w, for
which all bonds of .« are closed (that is, {x,y} N T C #(w,,I')) corresponds
to a unique configuration «, which is the restriction of w, to Z(I"'\{x, y}), and
conversely. The corresponding weight is

lo |

Wa(er) = (—1 . p) Q" NN = Wa(w,) 074, 47
Summing W3(«,) over al «, yields G(w Vv e), so summing (4.7) and dividing by
G(w) yields

G(%;j)e) = PZ({)C, y}ﬂF C <ﬂ((,()r, F)))Q_A = Pl({x’ y}ﬂI‘ C j(wr, F))Q—A
(4.8)
But from (2.14),
PR o =0y =—) =PI, (0 =0y =)
Q-1\*
= P1({x, ) NT C (e, ) (T) ,
and (4.5) follows. -

Wehaveviewed G (w) asthe partition function of areversed-polarity IsSngARC
model. We could do the same without reversing the polarity. Thisyields adifferent
partition function T (), expressed below as a sum over configurations w,. These
configurations w, are precisely those of the Ising ARC mode! which appeared in
the proof of Lemma4.8.

Lemma4.10. Let p € (0, 1) and Q0 > 1, and let A be a finite subset of a lattice
L. For o € {0, 1} define b(w) = |%4(S (w, A))| and
T(Cl)) — Z p‘a)g|(1 _ p)b(w)—\wgl Ql(w\/wg,A).

wg€{0, 1} @A)

Thenfor e = (xy) € B(A),

T((,() v e) Ising
T@) - pr2n(0x =0y =), (4.9)
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where g and h are given by
p=1—eP Q=142 (4.10)
Note that the configurations , in Lemma 4.9 are on (. (w, A)), while the
configurations w, in Lemma4.10 are on (S (w, A)).

Proof (Proof of Lemma4.10). Asinthe proof of Lemma4.9, fixwande = (xy) and
letl = S (w, A), A =I(w, A)—I(wVe, A) = |{x, yyNA|and b(w) = |%()|.
This time consider an Ising ARC model P; on (T, Z(I")) with parameters (p, Q)
and with “-", or equivalently wired, boundary condition. The weights for P; are
given by the terms of the sum T (w):

Wi(wg) = pl*sl(L— p)" @Il gIVee o, € (0,70,

Let P3 bethelsing ARC model on (I"\{x, y}, @(E\{x, y}) with parameters(p, Q)
and*“-" boundary condition, and let ¢ = #(I'")\#(I"\{x, y}). Notee € €. Each w,
for which @l bonds of % are open corresponds to a unique configuration , which
isthe restriction of wg to A(T\{x, y}), and conversely. The corresponding weight
is

W3(§g) — p|§g|(1 _ p)b(w)*l{(flflfg\ QI(Cg,F\{Ly}) — Wl(a)g)pf‘(é/l. (4_11)
Summing W3(g,) over al ¢, yields T (w Vv e), o summing (4.11) and dividing by
T (w) yields

Twve _ P (al bonds of % are open) p~!%!.
T(w)

But from (2.14),

P1(al bonds of % are open) = Plffi’f/gg/zqh(ax =g, =—)pl¢l

and (4.9) follows. |

Here is a related result for the FK model. Write w\{e} for the configuration
obtained by closing thebond e € w.

Lemma4.11. Let p € (0,1) andg > 1, let A be afinite set of sitesin alattice L,

and let  be a generalized site boundary condition. For » € {0, 1}2®) 0 Dy(A, )
define

R@) =Y pll@— p)leerlg@erop, (5 ().
w, Cw
Thenfor e € w,
R(w\{e}) 1
R(w)  1-
where PF'K denotes probability for the FK model on the graph (A, w) with param-
eters (p, ¢q) and site boundary condition . Further,
R(w)
(L +1-pl

PEK (¢isclosed), (4.12)
p

is an increasing function. (4.13)
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Proof. The proof of (4.12) issimilar to those of Lemmas 4.9 and 4.10 so we omit
it. From [3] we have

q(1-p)
p+ql—p)
s0 (4.13) follows from (4.12) and the criterion (4.4). |

PIK (¢ isclosed) <

We have used red/green coloring for the ARC model and its cousin the parti-
cle/bond Potts model, and yellow/white coloring for the bicolored FK model, to
help avoid confusion between the models. In the next lemmawe want to add bonds
to the particle/bond Potts model red configuration to obtain abicolored FK model.
To maintain our color scheme, this requires thinking of these red bonds as instead
being yellow. Thus we refer to the particle/bond Potts model “with the red bonds
recolored yellow.”

Lemma4.12. Let A beafinite subset of alattice I, and consider a (¢ + 1)-state
particle/bond Potts model on (A, Z(A)) at (B, 0) with 0's boundary condition,
with the red bonds recol ored yellow. The yellow bonds of this model, supplemented
by independent percolation of white bonds at density p = 1 — ¢~# on the “ 00
bonds, form a bicolored FK model on (A, Z(A)) with parameters (p, g + 1, q)
and all-white boundary condition.

Proof. From Remark 2.4, the yellow bonds of the particle/bond Potts model form
a partial FK model on (A, Z(A)) with parameters (p, g + 1, ¢) and al-white
boundary condition. From Lemma 4.8, conditionally on w, (or equivalently w,),
the O's (relabeled “-") and the particles (relabeled “+") form an Ising model on
4 (wy, A) a (B, h), where § and i are given by (4.3), with boundary condition “+”
on A\ (wy, A) and “-” on 9 A. Hence, till conditionaly on w,, the white bonds
from the independent percolation form an Ising ARC model a (p, Q) with this
same boundary condition, where 9 = 1 + #"+" = 4 1 1. However, by Propo-
sition 2.3(i), for the bicolored FK model with parameters (p, g + 1, ¢), the white
bonds have exactly this same Ising ARC model as their conditiona distribution
given . The result follows. O

The next proposition isthe key to the proof of Theorem 3.4.

Proposition 4.13. Let A be a finite set of sites of a lattice L with coordination
number m, let J, k > 0and ¢ > 1 and consider a ¢-state Potts lattice gason A at
(1, J, «, ) with siteboundary condition n. Let 8’ be the minimum effective inverse
temperature, and 4’ the maximum effective external field, of this Potts | attice gas,
asgiven in (3.24), and define an Ising-model boundary condition n" by n, = + if
ny = 0, 0, = — if 5y # 0. Then the following hold:

(i) TheQ'sconfiguration of this Potts lattice gas is dominated by the “ +” config-
uration of an Ising model on A at (8, &") with boundary condition r’.
(ii) Ifh’ < 0,this“+" configurationisfurther dominated bythe“ +” configuration
of an Ising model on A at (8”, 0) with boundary condition r’, where
m—h

B =p"—"

m
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or equivalently,

" 1 -1
P = (qe“)l/’"e" <—ej + q_) .
q q

In particular:

(ili) The O's configuration of a (¢ + 1)-state Potts model at (8, #) with boundary
condition » is dominated by the “ +” configuration of an Ising model on A at
(B, 1) (and at (B”, 0), if h’ < 0) with boundary condition ', where (8’, h’)

isgiven by
_ (m+h)
2B — B (leﬂ L 4 _1) . P mh) — eﬁL (4.14)
q q q
and 8" = B'(m — h')/m, or eguivalently
" —1+ef
B LT g (4.15)

- q(m—l)/m

Proof. Corresponding to the Potts lattice gas there is a red/black ARC model on
(A, #(A)) with site boundary condition n and parameters given by (2.13) and
(2.17):

1—e¢’ e M

—(k+J) _ _ c
prb_l_ei(K+‘/)v Q_1+ q .

pp=1—e ;
Summing (2.16) over w,, we see that the black configuration has weights given by

W (wp) = pp (1 — pp) PDI=lenl Q1@ D R ()55, (7 ) ()
where

Rwp) = Y P @ = )l =lerlgCen®gp 5 (@)

wr Cwp

Sincethelsing ARC model with arbitrary (nongeneralized) site boundary condition
hasthe FKG property, by (4.13) in Lemma4.11 thisblack configuration dominates
an|sing ARC model with parameters (p’, Q) and site boundary condition n’, where
p’ isgiven by

! 1 -1
P /:(prb—i—l—prb) P =1+e"(—ej+—q )
q — Pb q

1-p 1 q

Butthen p’ =1 — e so from (2.20) this Ising ARC model correspondsto an
Ising model at (B, ") with boundary condition n’. Now (i) follows from Lemma
4.5, and then (ii) from Lemma 4.6; (iii) isaspecia case of (i) and (ii). |
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Remark 4.14. Proposition 4.13 is particularly useful when &’ < 0, for then the
dominating Ising “+” configuration isaminority spin. Particularly for the (¢ + 1)-
state Potts model in two dimensions, we will see that the comparison can be used
to transfer known properties of the Ising model to the Potts model. Thisis useful
because a number of properties are easier to prove for the Ising model, where one
has tools such as symmetry inequalities which are not available for the Potts model
in general. From (3.24) we have

—u /
<P,

h" <0 if andonly if

or equivalently

1
—(u+35km) 1 -1 m/2
h <0 ifandonly if ¢ (—ef + q—) . (4.16)
q q q

Lemma4.15. In any infinite-volume limit of the Potts ARC model corresponding
to a Potts model at (8, i) with 2 > 0, red bonds a.s. do not percolate.

Proof. Asiswell-known (see [4]), by use of a “ghost site” one can construct an
FK model corresponding to a (usual) Potts model with a positive external field
applied to species 0. This model has the finite energy property (see [34] or [7] for
the definition) so a configuration a.s. has at most one infinite cluster [7]. It follows
easily that inthejoint Potts/FK configuration, thereis no percolation of open bonds
whose endpoints x, y have specieso, = o, # 0. These are precisely the red bonds
of the ARC model. O

The next result will be used in the proof of Theorem 3.15, when we compare
the ARC model corresponding to ag-state Potts | attice gas with dilution parameter
0 toapartial FK model at (p, g +6, ¢). Thered bonds of this“g-state” ARC model
may be viewed loosaly as an FK model with the same ¢, diluted by the addition of
some 0 sites, just asthe original Pottslattice gasisadiluted Potts model. Similarly,
the bicolored FK model at (p, g + 0, ¢) is, again loosely, an FK model at (p, q),
with bonds colored yellow, diluted by the addition of some white bonds. It is thus
reasonable to try to compare these two types of models, particularly when the di-
[ution is small. The main question to be answered is, given an ARC model, what is
the comparable value of 6 in the partial FK model? An answer, or more precisely
aone-sided bound on an answer, comes from the following.

Proposition 4.16. Let A beafiniteset of sitesof alatticelL with coordination num-
ber m and consider an ARC model P on (A, #(A)) at (pr, pe. g, Q), withg > 1,
and with single-species site boundary condition n. Let 0 = ¢(Q — 1)(1 — py)™ be
the dilution parameter.

@) If

(4.17)
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then the red-bond configuration under P dominates the partial FK model at
(pr.q +6,q) on (A, Z(A)) with site boundary condition 5’ given by n. =
“white” if n, =0, n,, = “yelow” if n, #0.

(ii) Let B/2 and h be the parameters of the conditional Ising model of the ARC
model P, given by

pe=1-cf, Lo, (4.18)

and suppose that, in the infinite volume limit, for some0 < § < 1/2,

Pffé’}%gh(ax = + for some x adjacentto 0 | og = +) < 6. (4.19)
Suppose also that 1 is a constant-species (equivalently, red-wired) boundary
condition. Then the red-bond configuration under P dominatesthe partial FK
mode at (p,,q + 60, g) on (A, Z#(A)) with all-yellow boundary condition,
where

, 1-$§

1-25"

Sincethelsingmodel in (4.19) is(except for boundary condition) the conditional
Ising model of the ARC model P, the®+"spinsin (4.19) correspond approximately
to the O's configuration of the ARC model P. Loosdly, (4.19) holds when O's are
so rare that most O's are isolated from any other 0's, and this will be true when
0 is small. Thus (4.19) is a substitute for (4.17) when the dilution is very small.
The values of greatest interest in Proposition 4.16 are small 6 and p, near the FK
critical point pf X (g,1L). Since 8’ > 6, the conclusion in (ii) is weaker than (i),
but for small § the differenceis small, and for the aformentioned values of greatest
interest, we only expect our 6 to be sharp up to a constant depending on ¢ anyway;
see Remark 4.17.

Proof (Proof of Proposition 4.16). The basic technique is roughly to compare the
conditional 1sing model of the ARC model P to the conditional neutral Potts|attice
gas of the partial FK model. For clarity of exposition we give the proof of (i) only
when 5 isthe all-1's, or equivalently red-wired, boundary condition (so that »’ is
all-yellow); the general caseis quite similar. The weights for the partial FK model
are given by (2.24) and (2.25):

‘wy|

WP (@) = pr (L= pp) PIllg €@ Dg 1@ D P () oy € {0,170,

where

|y | 0 I(wyVwy,A)
Fl)= Y <1pr ) gt rion <q; > '

awel ey VTP

Herewe usethefact that under theall-yellow boundary condition, wehave (wy,, wy)
€ A(A, n) if andonly if (w,). = Oforal e ¢ B(S (wy, A)), meaning that effec-
tively w,, € {0, 1}7/(@y-A) Theweights for the ARC-model red bonds are given
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by summing (2.12):
WA (@) = plrl@ = pP VI lgCr DT @), o, € (0,27,
(4.20)
where

T(w,) = Z pgwg‘(l _ pg)b(w,)—\wg| Ql(w,ng,A) (4.21)

wg e{O’ ]_}E(f(wh/\))

with b(w,) = |%(F (w,, A))|. Note that green bonds not in %(.# (w,, A)) have
been summed out; thisis possible because the states of such bonds (open or closed)
do not affect the factor Q1 (@Ves:A) Define

1 _gq+0
©-DA-pym 6

so that the values 8, 1 obtained from p, and Q via(4.6) are the same as the values
B, h obtained from p, and Q' via (4.10). Define

Q=1+

[y |
G(w) = Z (1 ng > (Q/)I(wWVw,A).

wpel0 @Ay T P8

By Lemmas 4.9 and 4.10,

Twve _ o _plen-1even GOV (o 0 onde.  (422)
T (w) G(w)
Let P}f(‘w,m bethelsing ARC model on (J (w, A), B(F (w, A))) & (pg, Q) with
freeboundary, and | et P_Q’(ﬂ),A) betheneutral ARCmodel on (# (w, A), #(SF (w, A)))
a (pr, 0,0, ‘1%9) with free boundary. Note that I{%M) isalso the ARC model at
(pg. 0,1, Q). By (4.8) in the proof of Lemma4.9,
G(w Ve)
G(w)
1 I(w,N)—I(wVe,A)
= Pyl p({ow  (x. )N I (@, A) C I (wn. M) <§> )

(4.23)

By an argument similar to the proof of (4.8) we have

F(wVe)
F(w)

>I(a),A)1(a)ve,A)

(4.24)



The asymmetric random cluster model 433

Under (4.17), by Lemma4.4, P)% , dominates /¢ , .Hence(4.24),(4.22)
and (4.23) show that

/ I(w,A)—1(wVe,A)
F(wVe) - < 0 ) G(wVe) (4.25)
F(w) q+90 G(w)
~ <E>I(w,A)—I(w\/e,A) T(w\Ve)
~\4q T ()

Using (4.4) this shows that WARC /WP FK s an increasing function. Since from
Lemma4.1 the ARC model (with boundary condition n) hasthe FK G property, so
does the red-bond configuration alone, and (i) follows.

Now suppose (4.19) holds. Thevalue of I (w, A) — I(w Ve, A) = |{x, y} N
J(w, N)| iseither 0, 1 or 2; the case of O istrivial because then (4.22), (4.23) and
(4.24) are dl equa to 1. Let usassume I (w, A) — I (w Ve, A) = 2; thecaseof 1
issimilar. Let U denote the event that o, = + for some z adjacent to 0. We have

P}?w A)({ww tx ¢ I (oV oy, A)})
= P}S(i:‘i\) p2.1(0x =+, 02 = + for some z adjacent to x)

< Plsmg h([UO — +] NnU)

B2,
PV (oo =+]1NU)
P L(UO)
_ PRS0 =+1UOPIE U oo =)
PIYS (US| o0 = +)
1)
< _
S Q-9

and similarly for y, so, using the FKG property,

S I(w,A)—I(wVe,N)

Q'1-9
(4.26)
Let
8
T=1-—.
0'(1-9)
Combining (4.26) with (4.22) and (4.23) yields
T(wVe) — (0 - 1)1(’“ A)—I(@ve.A) G(wVe)
T (w) G(w)

(Q 1)_[ I(w,AN)—1(wVe,A)
= (%) -
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It follows using the criterion (4.4) that the red-bond configuration of the ARC
model P dominates the red-bond configuration of the neutral ARC model at
(pr,0,q, Q") on (A, #(A)) with boundary condition 5, where

0 q+0
Q' =Dt gt
But this neutral ARC model satisfies the hypotheses of (i), so its red-bond con-

figuration dominates the partial FK model at (p,, g + 0", ¢) on (A, Z(A)) with
all-yellow (equivalently wired) boundary condition, where

q+0
0" =q(Q"-D="-q

Q// —

A short calculation shows 8” < 6/, and (ii) follows. |

Remark 4.17. It is apparent from the proof of Proposition 4.16 that if we could
find asmaller value of 6 (sothat Q' < 1+ ¢/0) for which the inequality between
thefirst and last terms of (4.25) were reversed, the domination in (i) and (ii) would
then also be reversed. Now from (2.14), if we extend the neutral ARC model to its
particle/bond form, we have

q I(w,A)—1(wVe,A)
Rliy(é),A) ({ow : {x, ¥} C I (@ V wu, A)}) (m)

= ley(?o,A)(”x =ny =0);

note that this particle/lbond neutral ARC model has 0's boundary condition on
9.7 (w, A). Thusto establish the reverse of (4.25), it is enough to choose 6 so that
for the particle/bond neutral ARC model at (p,, 0, 9, qoﬁ) we have (in the notation
of the last proof)

r_1 I(w,A)—1(wVe,A)
Q ) (4.27)

Q/
The bonds of this neutral ARC model are precisely the white bonds of the bicol-
ored FK model from which it was obtained, and the O's of the neutral ARC model

are precisely the isolated yellow sites of this bicolored FK model. Thus we might
expect that for fixed w, when x € . (w, A),

PYA Ay (ny=ny =0)> <

PYA o) (ne =1 = PPIX (x iswhite | o, = w)
~ PBFK (x iswhite | x € 7 (wy, A))
PBFK (x jswhite)
- PBFK (x iswhite or isolated yellow)

(4.28)

where PEFK denotesthe bicolored FK model at (p,, g +6, g) on (A, Z(A)) with
boundary condition »'. (It isonly the approximation that isnonrigorous here.) Since

. . 0 . ..
(x iswhite) < — and PBFK(xisyellow | x isisolated) = — 1,
q

q+0

PBFK
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the right side of (4.28) is at most

0
0 +qgPFK(x isisolated)’

(4.29)

where PFX denotes the FK model at (p,, ¢ + 6) on (A, Z(A)) with general-
ized site boundary condition »’. We might expect (4.27) to hold when (4.29) is
approximately 1/Q’, that is,

_ qPTX(x isisolated)
0 ~ 0 ,

which for small 6 is within approximately a factor of PX (x is isolated) of the
vaued = q/(Q’ — 1) of Proposition 4.16. Thus we expect that the value of 9 in
the Proposition is sharp “up to a constant,” but we are unable to prove this; the
main obstacle is the absense of the FKG property for the neutral ARC model at
(pr, 0,6, %) when o < 1.

Our next lemmashowsthat 0'sarerarein the Potts | attice gas roughly when the
dilution parameter 6 is small and the effective external field (on empty sites-see
(3.21)) is negative for the binary lattice gas obtained by replacing parameters J, «
with 0, J + «.

Lemma4.18. Supposex; > 0and ux € Rforeachk > 1,andg > 1, J > O. Let
IL be a lattice of coordination number m, and let P, be the infinite-volume ¢-state
Pottslattice gas at (1, J, ki, ux) with all-1's boundary condition. If

Wi + kpm — 00 (4.30)

and
1 -
Mk + Eka +logg > 0 for all sufficiently large k, (4.31)

then Py(ngp = 0) - O0ask — oo. Conversdly if Py(ngp = 0) — 0 then (4.30)
holds and

fiming 1t 26m +10gg
k—o00 Kk -

0. (4.32)

(The quantity (ux + %'Kkm + logg) /i should be interpreted as +oo if k, = 0.)

Proof. We may assume our Potts lattice gas is in particle/lbond form. Let
(pr, (Po)k, g, Qk) be the parameters of the ARC model corresponding to Py (see
(2.13). The conditional Ising model of P, has parameters (8r/2, hy) given by
Lemma4.8:

1 1
Br = Kk, _Eﬂkhk = i + EKkm +logg,
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%ﬂk(m — hi) = pk + kem +10ggq.
Thus (4.30) and (4.31) are equivalent respectively to
Bx(m — hy) > oo and hi <0, (4.33)
while (4.30) and (4.32) are equivalent respectively to
Bx(m — hy) —> oo, and limsuph; <O. (4.34)

k— o0

Now the ARC-model red-bond configuration on the full lattice under Py is dom-
inated by the FK model at (p,, g) SO Pr(A C 4 (w,, S(IL))) stays bounded away
from 0 ask — oo for each finite set of sites A. Hence in particular

Pi(ng=0) — 0 ifandonlyif Pi(no=0]0¢€ #(w,, S(L))) — 0. (4.35)

But this latter probability is just the probability of a“+” at O for the conditional
Ising model on .# (w,, S(IL)) which has“-" boundary condition, and this probability
is bounded above by the same probability for the infinite-volume minus phase of
thelsing model on L. That is,

Pi(no=0]0¢ S (w, SIL))) < P (00 = +), (4.36)

where Pkl””g denotes the infinite-volume minus phase of the Ising model at

(B/2, hi)-

If (4.30) and (4.31) hold, or equivalently (4.33) holds, thenfor largek either — iy,
islarge or both g, islarge and ; < 0; €ither way we obtain Pk”’”g(ao =4+)—0
and hence from (4.35) and (4.36), Py(ng = 0) — O.

Conversely suppose Py (ng = 0) — 0. Analogously to (4.36) we have

Pi(no=0]0¢€ J(w, SL))) > Pkm"g(ao =+ | o, = — for al x adjacent to 0)
3 1
T 14 Bm—h0)/2’

so thefirst half of (4.34) follows from (4.35).

To provethesecond half of (4.34), supposethefirst half holdsbut limsupz; > €
for somee > 0; we may assume iy > ¢ for al k, so B — oo. If A issufficiently
large then for all large ,

j 1
Pi(no=01A C I (wr, SWL))) = P (00 =+ |0y = —foral x € 9A) > >

Since Py (A C J(w,, S(LL))) isbounded away from O, it follows that Py (rng = 0)
is bounded away from 0.

In terms of ARC model parameters, (4.31) can be restated as
(Qk =D — (p)"? < 1. (4.37)
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Remark 4.19. The proof of Lemma 4.18 contains the fact that (4.33) implies

P/*"™ (0o = +) — 0. One can actually obtain the stronger conculsion from
(4.33) that

Pkls‘ing(ax = + for some x adjacentto O | oo = +) — 0.

Indeed, (4.33) impliesthat for large k, either —hy, isvery large or both 4, < 0 and
B islarge enough that a Peierls-type argument shows that a cluster of two or more
“+" spinsis much less likely than asingle isolated “+" spin.

5. Proofs of the main theorems

Proof (Proof of Theorem 3.2). The Hamiltonian for the ¢-state Potts lattice gasis
asgiven by (2.1); for simplicity we assume ., = p for al x and assumethereisa
site boundary condition which has asingle particle speciesi. Let F/ = {x € 9A :
ny = i}. Asin Remark 4.2, the corresponding ARC model on asubgraph (A’, %')
of (A, Z(A)) is unconditioned. We use P”L¢ to denote the Potts lattice gas and
PARC to denote this ARC model on (A’, %), which hasweights W (o, w) given
by (2.12), parameters given by (2.13) and site boundary condition » equivalent to
ared-wired boundary conditionon F’. Let WX (w,) and PFX denote the weights
and probabilities, respectively, for an FK model on (A’, %4') at (p,, ¢) with wired
boundary condition on F’. Let P¢ denote probability corresponding to indepen-
dent percolation at density p, on #’. For A, B C A we haveusing (2.14):

PLG ARC Q -1 Al 1 il
PPLG(Xg=A) = Y P*C(I(wp. A) = K) <—> (—)
KDA Q Q

_ W(wy, wg)

— _ 1lAl7z—-1 Rttt

=(@-1 ZARC Z Ql(w,-ng)
(wr,wg): I (wr Vg, A)DA

=@-Dze D W) Y Py
wr:. I (wr,A)DA wgI (wg,A)DA
=(Q - DMzt Zrk PTE(B(A) al closed) P (B(A) al closed),

(5.39)

where Zsrc and Zpg are the partition functions of trEARC and FK models, re-
spectively. The FKG property of the measure PFX (- | (A N B) dl closed) yields
that

PFK(%(A U B) al closed) - PFK(%(B) all closed)
PFK((A)dlclosed) ~— PFK(%(AN B)al closed)’
and similarly for P, This and (5.38) readily yield

PPLG(Xo=AUB)PPLS(Xg=ANB) > PPLO(Xg = A)PPLC (Xo = B),

which is the FKG lattice condition. The proof under free boundary condition, or
for nonconstant ., isessentially similar. O
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Proof (Proof of Corollary 3.3). For ajoint ARC/Potts lattice gas configuration on
L, black bonds cannot percolate if each site is surrounded by a circuit on which
every site x haso, = 0. Asin [9], with this observation the corollary is a direct
consequence of Proposition 4.7, Theorem 3.2 and the main result of [19]. O

Proof (Proof of Theorem 3.4). Consider first the FK model with p < p1; define 8
by p =1 — e #. Let 8/ be the minimum effective inverse temperature, and /1’ the
maximum effective external field, of the corresponding (g + 1)-state Potts model
at (8, 0), asgiven by (4.14). It is easily checked that

h <0 ifandonlyif B < 1.

Let B” be asin (4.15) and let A be afinite subset of the sites of I, with 0 € A.
By Proposition 4.13(iii), the O's configuration of the g-state Potts model at (8, 0)
with 0’'s boundary condition on d A is dominated by the “+” configuration of the
Ising model at (8’, 1) with “+" boundary condition on d A. Therefore by Lemma
4.12, the white-bond configuration of the bicolored FK model at (p, ¢ + 1, ¢) on
(A, (A)) with all-white boundary condition is dominated by independent per-
colation at density p on the “++”bonds of this Ising model. Since &’ < 0, results
from [24] and [36] say that the Ising model has the weak mixing property, and
results from [25] and [8] say that it has exponential decay of “+” connectivity.
(These proofs are only written for the square lattice, but everything works for gen-
era planar lattices; the key fact used in [8] is the result of [2] that the Ising model
has exponential decay of correlationsfor all g < g2*""#(LL), and this proof works
on general periodic lattices with minor modifications [1].) Therefore there exist
constants C, A > 0, not depending on A, such that
Piffjg,’h,(o < dA by alattice path on which all sites x have

oy =+) < Ce M), (5.39)
Define probability measuresasfollows: P 1{”;”;’; h’,ip for thedistribution of the bond-
site configuration produced by independent percolation at density p on“++" bonds,
in (A, Z(A)), of the lsing model at (8, ') on A with “+” boundary condition;
Pfful}f for the bicolored FK model on (A, %(A)) with all-white boundary condi-
tion; and P}f’ K for the FK model on (A, #(A)) with wired boundary condition.
From (5.39),

Ising,++
PA,+,/3’,h/.,

Hence by the domination,

,(0 < A by apath of open bonds) < Ce™ W), (5.40)

BFK

P2IR (0 <> A by apath of open white bonds) < Ce™*" (),

which is equivaent to

Py X (0 < 9A by apath of open bonds) < Ce "), (5.41)
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this proves exponential decay of local wired-boundary connectivities, and thusalso
weak mixing, for the FK model. This proves (iii). Applying this result to the dua
lattice L*, we seethat when p > po, thatis, p* < p1(g + 1, m*), the dua config-
uration has exponential decay of local wired-boundary connectivities, and thus has
thewesk mixing property. But weak mixing for the dual configurationisequivalent
to weak mixing for the regular configuration, and (i) follows. (ii) is an immediate
consequence of (i). O

Proof (Proof of Theorem 3.7). For simplicity we restrict attention to the integer lat-
tice. Consider the FK model ind dimensionsat (p, g + 1) with p < p1(g + 1, 2d).
Let B’, h’, B” be as in the proof of Theorem 3.4. In order to show that there is
no percolation in the wired-boundary infinite-volume limit, one must establish the
following analog of (5.41):

lim lim PfX (0« dAq by apath of open bonds) = 0.
AoSZd ASTZd

For thisit is enough to establish the following analog of (5.40):

Ali;nzd Ali]mzd P/{‘fi:"“’;g/fhfp(o < 3Ag by apath of openbonds) = 0.  (5.42)
0

Sinceh’ < 0,thelsingmodel at (8, h") hasaunique Gibbs distribution, so onecan
replace the “+” boundary condition with “-" in (5.42). From Proposition 4.13(ii),
one can then also replace (8’, 1’) with (87, 0) in (5.42). Further, since the FK
model is monotonein p, one need only consider B8 close to B1. Thus the proof of
Gibbs uniqueness in Theorem 3.4 goes through since we have assumed (3.4) for

appropriate 8. O

Proof (Proof of Theorem 3.11). The idea is to show that the corresponding Potts
ARC model is dominated by another Potts ARC model corresponding to a Potts
model with a positive external field on O's; then Lemma 4.15 can be applied.

We claim that for some e > 0, we have

29 Ising 1 Ising
Ea_hPA’+'ﬁ/2’h(GX:+)S E—G PA‘+,ﬂ/2,h(O—x:+) (543)
foral h > 0and al finite A and x € A.

Indeed, asisstandard, from symmetry inequalitiestheleft sideof (5.43) isadecreas-
ing function of & and an increasing function of A, while from the FKG property
the right side is a decreasing function of A. So it is enough to verify (5.43) in the
limitash \,Oand A 7 Z¢, but thisis exactly (3.15). Thus (5.43) is proved. By
symmetry, (5.43) is equivalent to

20 i 1 ‘
T Ao (0 = =) < (5 - 6) A 2 (0 = ) (5.49)

foral h < Oand all finite A and x € A.
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Let Q = 14 ¢%# /4, sothe Potts ARC model corresponding to the Potts model
a (B, 0) has parameters (p, p, g, Q). It is sufficient to show that this Potts ARC
model, with red-wired boundary condition, has no percolation of red bondsin the
infinite-volume limit. By Lemma 4.15, for thisit isenough to find ¢’ and ' > 0
such that, letting (p, p, q’, Q') be the parameters of the Potts ARC model corre-
sponding to a ¢’-state Potts model at (8, /'), this Potts ARC model dominates the
Potts ARC modd at (p, p, g, Q), both models having red-wired boundary condi-
tion on some (A, Z(A)). The external field i; of the conditional 1sing model of
the latter Potts ARC model is given by

0 =14 £P@+hD/2,

s0efh1/2 = ¢ /g < 1and thush; < 0. Hence we can choose O > /1, > hy, then
chooseq’ < g and0 < i’ < e(h), — hy) satisfying

, BQd+1")
QP2 _ &
qg
and set
eB@d+h")
Q/ =1 + T

We now show that under red-wired boundary condition, the red-bond configura-
tion of the Potts ARC modél at (p, p, ¢’, Q") dominatesthe red-bond configuration
of the Potts ARC moddl at (p, p, ¢, Q). Theweightsfor the ARC model red-bond
configurationat (p, p, ¢, Q) on (A, #(A)) withred-wired boundary condition, and
the definition of T (w,), are given by (4.20) and (4.21). Welet W/ (w,) and T’ (w,)
denote the corresponding quantitiesfor themodel at (p, p, ¢’, Q). To establishthe
desired domination, by (4.4) it is sufficient to show that

C(w,A)—C(wVe,A) 4/
<1/> flove) e [wve) foral w and al e = (xy).
p T/(CU) T(a))

(5.45)

If neither x nor y isin .#(w, A), then both sides of (5.45) are 1. Let us assume both
xandyarein #(w, A),s0 C(w, A) — C(w Ve, A) = 1; the casein which exactly
oneisin.#(w, A) issimilar. By Lemma4.10,

T(wVe) _ plsing (0, = =)
T  Z@N.=p/2h 0% =0 =~
__ plsing _ Ising —
= Prw.n)—p/20 @ = Py nyup.— pr2n, @y = =), (5.46)

and similarly for T’, with h; replaced by #/,. Also,

’ ’ 1 ’
1/ — o BUhI=HD/2,=Bl 5 (G=OpUh—hi) (5.47)
q
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Integrating (5.44) gives

Ising _ Ising _
log PJ(w,A),—,ﬁ/Z,h’I (0x = —) —log Pyw.n).—p2n @ =)
/ —
Y A Vi et 00
- 2 2
and
Ising _ Ising _
log Pﬂ(w,A)U{x},—.ﬂ/Z,h’, (0y = —) —log Pﬁ(w,A)U{x},—,ﬂ/Z,hl(UY =-)
/ J—
> — 1- — € M7
- 2 2

which with (5.46) and (5.47) proves (5.45).

Proof (Proof of Corollary 3.12). Wewill show that for larged, (3.15) holdsfor all 8
inaneighborhood of (log ¢)/d. Consider the mean-field magnetization Mo(Bo, ho),
which for Bo > 2 and ko > 0 is the positive solution of

Mo+ h
Mo = tanh <W> . (5.48)
We claim that for g > 2.257 we have
1 oM
= 2080, 0) < 1+ Mo(Bo, 0). (5.49)
Bo dho
In fact, differentiating (5.48) yields
2 0My 1- M3
Bo dho  1— 101 MD)
s0 (5.49) is equivaent to
1- My 1
S <1-3hod- M3)
at (Bo, 0). For thisit suffices that
1
Mo>1——,
0 Bo
which is equivalent to
Bo — 1) 1
tanh >1-—. 5.50
( 2 Bo (550)

A routine calculation verifies that (5.50) holds for 8p > 2.257.
Now suppose {84} is a sequence with dB; — logg. Sinceg + 1 > 10.56 we
havelogq > 2.257. Also, from convergence to mean-field limits [28],

M <'3?d,0) — Mp(logg, 0)
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and

Ba 1 oMy
—.,0 — 0).
X<2’ >_)Iogq aho(qu’ )

With (5.49) this proves (3.15) for all 8 in aneighborhood of (logq)/d, for larged.
i

Proof (Proof of Theorem 3.15). Fix § > Oand let 8’ = 9(1 + 8)/(1 + 268). Fix
pr > pF&(g +6',1L). From Lemma 4.18, Remark 4.19 and (3.17), if 6 is suffi-
ciently small then (4.19) holdsfor 8, & asin (4.18). Hence by Proposition 4.16(ii)
the red bonds percolate in the infinite-volume ARC model on L a (p,, pg, g, Q)
with red-wired boundary condition. Thus p2&€ (p,, ¢, 0, L) < pfX(g +6',L).
Sinceé§ isarbitrary, (i) follows. Part (ii) isjust arestatement of (i) in the context of
the Potts | attice gas, using (3.18). |

Proof (Proof of Corollary 3.17). Thisisimmediate from Theorem 3.15(ii) and the
result from [31] that exp(BL7""S (¢, Z?)) = 1+ /g foral ¢ > 25.72. O

Proof (Proof of Theorem3.18). Let 8 > LS (q+6(h), L). Since BFo"5 (g+t, L)
isanincreasing function of 1, wehave g > Br""s (g +e=P", L). Let (p, pg. g, Q)
be the parameters of the Potts ARC model corresponding to the Potts model at
(B, —h). The dilution parameter of this Potts ARC model ise™#" < 1, and p, =
pe = 1— e~ P, so Proposition 4.16 applies and shows that the red bond con-
figuration of this ARC model, with red-wired boundary condition, dominates the
partial FK model a (p,,q + e ", ). Since B > BL"5(q + e~ P L), there is
percolation in the infinite-volume wired-boundary FK model a (p,, g + e~ #"), so
there is aso percolation a.s. in the yellow-boundary partial FK model at (p,, ¢ +
e~ P ¢). Therefore the red bonds of our Potts ARC model percolate, meaning
B = Bros (q + 1, —h, L), and the theorem follows. O

Proof (Proof of Theorem 3.19). Since the Ising model has the FKG property, on a
planar lattice thereis no percolation of “+” spinswhen the external field is negative
(see [24], [25].) Hence the theorem is an immediate consequence of Proposition
4.13 and (4.16). O

Proof (Proof of Theorem 3.20). Fix a finite A and a boundary condition 5. The
corresponding ARC model on (A, Z(A)) with boundary condition n' (equiva-
lently, red-wired) dominates the ARC model with boundary condition », so as
in the proof of Proposition 4.7, the Potts lattice gases under the two boundary
conditions can be coupled, creating a pair of configurations ((w,, w,), (v, a);,))
which agree everywhere inside each dua surface which is crossed by no open
bond (red or green) of the red-wired ARC model configuration (w,, wg). But
every site not inside such a dual surface is necessarily in the boundary particle
cluster, and the result follows. |
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