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Abstract. Branching cellular automata (BCA) are introduced as generalisations of fractal
percolation by admitting neighbour dependence. We associate sequences of random sets
with BCA's and study their convergence. In case of convergence we derive the Hausdorff
dimension of the limit set and of its boundary. To accomplish the latter we proof that the
boundary of a set generated by aBCA is again a set generated by a BCA.

1. Introduction

In this paper we study generalisations of a family of random sets introduced by
Benoit Mandelbrot in [10]. Mandelbrot coined the name canonical curdling for
these sets, but they are commonly known asfractal percolation. Let p be anumber
with0 < p < 1and [0, 1]¢ be the unit cube in R4 We furthermore choose an
integer base M > 2. Random sets Ko = [0, 1]d, K1, ..., K, are generated by a
recursiveconstruction. Theset K isaunion of M¢ subcubeswithsidelengths M 1.
Generate K by retaining each of these subcubes with probability p, or discarding
it with probability 1 — p, independently of each other. In genera K, is a union
of M-adic cubes of order n, i.e., with side lengths M ", and K11 is obtained by
retaining or discarding each of the order n + 1 M-adic subcubes of these cubes
with probability p respectively 1 — p, independently of each other, and of al the
previous choices. The limit set K = N7° (K, is afractal set with a.s. Hausdorff
dimension log(pM9)/logM , conditioned on being non-empty (see[2], but also [6],
and [5]).

Mandelbrot introduced fractal percolation as an alternative model for turbu-
lencein afluid in acritique of Kolmogorov's model. However fractal percolation
is not more than a metaphor for turbulence. In the paper [15] the authors argue
that physically there is dependence on the activity in neighbouring regionsin tur-
bulence, and that therefore the independent evolution of the M -adic cubes would
be an important deficiency of Mandelbrot’s model. They then propose neighbour
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interaction to obtain a model which admittedly is still phenomenological. More-
over, they merely study one specific example in the one dimensional cased = 1.
In this paper we devel op ageneral theory of fractal percolation with neighbour in-
teraction. To assess the success of such amodel in the goal of modeling turbulence
from a phenomenological point of view, we invite the reader to compare ordinary
fractal percolation in Figure 1 with an example involving neighbour interaction in
Figure 2. We mention that theinterest in fractal percolation goes beyond an attempt
to model turbulence. Recently, Yuval Peres has revealed a surprising relationship
between fractal percolation (for specific values of p) and the path of Brownian
motion [12].

The fractal percolation process can conveniently be defined on the space of
M-adic trees, but allowing interaction with the neighbours destroys the tree prop-
erty. We have chosen to construct these random sets by way of the iteration of
random substitutions. We shall call the corresponding process a branching cellular
automaton. (See [14] for another approach.) Thiswill be done in Section 2, where
we furthermore indicate the importance of multi-type branching processes (with
dependent offspring) for the analysis of branching cellular automata (BCA's). In
Section 3 we consider the question of extinction of these multi-type branching
processes.

Since the sets (K,;) will not necessarily be decreasing anymore in our general
model, the question of convergence (in the Hausdorff metric) of the (K,,) arises.
This problem is considered in Section 4, where a complete answer is given in
Theorem 2. This theorem also gives a structure result: one deduces, for example,
directly from this theorem that the limiting set K equals all of [0, 1]¢ if all types
of the BCA communicate aperiodically. In Section 8 we determine the almost sure
Hausdorff dimension of the limit set K, using Lyons' percolation method ( [9]). In
order to do this we need the notion of a product of two BCA's which is introduced
in Section 7. For many BCA'sthe set K hasanon-empty interior, and therefore K is
not afractal set (see e.g. the example analyzed in[1]). However, K will often have
a fractal boundary. To determine the Hausdorff dimension of this boundary, it is
therefore very useful that we show in Section 5 (see Theorem 3) that the boundary
itself isagain alimit set of aBCA.

2. Definition of branching cellular automata

Let A beafinite set, acting asour alphabet. Itselementsare called lettersand | etters
can be concatenated to form words. By A" we denote the set of words of length
n and by AZ we denote the set of doubly infinite words. Let M, N > 0 be fixed
integerswith M > 2and M > N + 1. The last inequality is not essential, but it
simplifies some definitions. If « isaword in AZ, then the N—context of aletter uy
inu, denoted by By (u, k), is defined as

Bn(u, k) = up—N ... upsn,

whichisawordin A2V +1,
Define a random substitution o (-), which is a random map from AZ to itself,
asfollows. Let (W,),c42v+1 be acollection of random variables, taking valuesin
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AM For each v € A?N*L let (W, 1)rez be a sequence of independent copies of
W,. For eachu € A%, define o (u) by

o) =w,
where

WM - - - WiA+HM—-1 = WBy k) k
foral k € Z.
Let o1, 0o, ... beindependent copies of o. Define the n'" iterate of o, denoted
by o, by
ao(u) =u
0" (u) = op(op-1(...01()...))
foreachu € AZ.
Define a Branching Cellular Automaton (BCA) as the quintuple
(A, M, N, (Wy),cazn+1, u),

where u € AZ serves as the starti ng word for the random substitution o. If vy is
a letter in the word v = o (u), then the children of the parent v; are the letters
WM - -+ > Witnm—1 intheword w = o1 (u). The set of types T of aBCA is
defined as T = A2N+3, A letter vy, of aword v € AZ issaid to be of type 7, where
tisanelementof T, if Bys1(v, k) = ¢. For each redlisation of o, the types of al
letters (6" (u)); withk =0, ..., M" — 1 are determined by the type of the letter
uo in u. Here we used the assumption that M > N + 1.

Let S be asubset of the set of types T and let r € T. Defineforn =0, 1, ...
J.t,8) ={k:0<k<M"-1,
the type of (6" (u)) isan element of S},

whereu isawordin AZ, such that theletter uq hastypet intheword u. Furthermore
we define

Zu(t,8) = |Ia(t, 9]
K., 9= |J Lk,

ke (t,S)
where | - | denotes cardinality and

k k+1

I (k) = [W’ W]

isalevel-n M—adicinterval.
All definitions can be easily extended to higher dimensions. For example, the

N—context of aletter u;; inaword u e AZ% will be

UK—N,I4+N -+ Wkt NI+N
By (u,k, 1) = :

Uk—N,l—N --- Uk+N,I—-N
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For the sakeof notational simplicity weshall mostly deal withtheone-dimensional
case in the sequel.

The mean-offspring matrix .# = (ms ;)s.ter 1S defined by

mys,; = expected number of children with typer,
generated by a parent of type s
= E(Z1(s, 1)),

where Z1(s, t) isshort for Z1(s, {t}). Define .4 (n) = (ms,+(n))s.trer By mg(n) =
E(Z, (s, 1)).

Lemmal Forn=12,...
Mn) = M".

In the proof of this lemma we use the following random variables. Fix n and
definefors,v,t e Tandk =1, ..., Z,(s, v)

Zk (s, v, 1) := number of children with type ¢, generated by
the k™ type—v letter in (6™ (u))o, ... , (" (u)) pn—1,

where 1 is aword in AZ, such that the letter g has type s in the word u. To
make the ¢ (s, v, t)’s random variables on the whole probability space, we define
Lk(s,v, 1) fork = Z,(s,v) +1,..., M" asindependent copies of Z;(v, t). Note
that z1(s, v, 1), ..., Cyn (s, v, t) areidentically distributed, that each ¢ (s, v, t) is
independent of Z, (s, v) and that

Zn(s,v)
Zoga(s, )= Y Gls,v,0).
veTl k=1
However, thevariables ¢1(s, v, 1), ... , Cyn (s, v, t) do not need to be independent.

Proof (of Lemma 1). The proof is by induction. We have

mg(n + 1) = E(Z,41(s, 1))
Zu(s,v)

=EQ . D Gls,v0)

vel k=1
Z,(s,v)

=Y E( Y &ls,v0)
k=1

veT

= > E(Zu(s, v)) my

veT

= Z My () My

veT
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3. Extinction

Definition 1 (Communicating class). Let .# = (mg)ser be a non-negative
matrix. For s,z € T, wewrites — ¢ if (#");; > 0 for somer > 0. We say that
types s and r communicate if s — ¢ and ¢t — 5. The communicating class C(¢)
consists of all typesin T that communicate with ¢.

Denotetherestriction of the matrix .# to the communicating classC by .# ¢ =
(mst)s,rec and denote the Perron-Frobenius eigenvalue of .# ¢ by Ac.

Note that if r € C, then the events {Z,(t,C) > 0i.0.} and {Z,(t,C) >
Ofor al n} are the same events P—almost surely, where i.o. is short for infinitely
often.

Theorem 1. Lett € C, with C a communicating class of types.
(i) If x¢c < 1, then
P(Z,(t, C) = O eventually) = 1.
(i) If ¢ > 1, then
P(Z,(t, C) > Oinfinitely often) > 0.
Moreover, for all ¢ > Otherearecy = c1(¢) > 0and c2 = ¢2(¢) > 0such that
PlciAg < Zy(t,C) < corgforaln|Z,(t,C) >0i.0) > 1—e.

If \c = 0, then P(Z,(r,C) = Oforn=1,2,...) = 1, so assume in the
following that A¢ > 0. Furthermore, we assume from now on that our BCA is
such, that if A¢c = 1, thenP(Z,,(¢, C) = O eventualy) = 1fort € C.

Write C as C = {r1, ..., t,}, where r isthe cardinality of C. In the remain-
ing part of this section we fix + € C and assume that + = 1. Furthermore, let
mij = my and write .#/c as M c = (mij)1<i j<r- L€t vc be arow vector
such that its transpose, denoted by v, is aright eigenvector of .# ¢ correspond-
ing to Ac, with al entries strictly positive. Define an r—dimensional row-vector
Zy = (Zy(D), ..., Zy(r)) by

Zn(i) = Zn(t, 1;)
= number of typer; lettersin (6" (w))g. .. (c" () pyn 1,
whereu € AZ issuch that ug hastypet inu. Notethat Z,(¢t,C) = Z,(1) + ... +

Z,(r). Let (vc)1 denote the first entry of the vector vc and let (ve)(q) denote the
smallest entry.

Lemma2. We have

(ve) .

E(Z,t,C)) <
(Zn(2,C)) v €

In the sequel we will write v for ve and A for Ac.
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Proof (Lemma 2). Let e1 denote the r—dimensional row vector with a1 at the first

entry and O's elsewhere. Then for al n
E(Z,(t,C)) < @E(znv )
= —el// by Lemmal

U(l

= —A".

V(@)
Forn=0,1,... define

F, = thecs—agebragenerated by 0¥, ..., o”.
Lemma 3. Assume A > 1. Then the sequence

(%)
A >0

is a uniformly integrable martingale with respect to (% ,,),>0.
Fixn > 0Oand definefori, j=1,... ,randk=1,... ,M"
Se(i, J) = G2, ti, 1j).
Hence fork =1,...,Z,@)

Zk(i, j) = number of children with type¢;, generated by
the k™ type—; letter in (" (u))o, . . . , (" (U)) pr—1,
whereu € A% issuch that ug hastypet in u. Note that P—a.s.

r Zn()

Zora(D) =) D i, ).

i=1 k=1

Proof (Lemma 3). Thefact that the sequence (ZA",,” ).~ ISamartingaleisprovedin
the same way asin the casethat (Z,),>0 is a multi-type Galton-Watson branching
process. To establish uniform integrability, it suffices to show that the sequence

(Var(Z )),.20 1S uniformly bounded. We have

r Zy(i)
Var(Zy1v) = Var(z v G )
= i=1 k=1
r r Zy(i) r r Zy(i)
E(Zv,z 3l ) —E(X v, Z (i, n)
j=1 1 k=1 j=1 =1 k=1
r r Zy(i)
=E(Y v (¢(i. ) = E@(. )
j=1 =1 k=1

+3°0, Y Zu) B, ) Zv,ZE(z (E(@(, J)))
j=1 i=1

j=1 i=1



Fractal percolation and branching cellular automata 283

since the ¢1(i, j), ..., ¢y~ (i, j) areidenticaly distributed and each one is inde-
pendent of Z,,(i).

r r Zn(i)
Var(Zus1) = E(Y vy D - (6lis j) — E@Gs )
j= i=1 k=1

+ (24 —-E(Zn(ﬂ))jijvjnuj>2

i=1 j=1
r v Zn(i)
=E(Y 0 Y D (&l ) — B, )
j=1 i=1k=1

2
+Maﬁ-E@ww)

r Zp(i)

—E(Zv/Z 3 (6t ) — B, ) +2Var(z,).

j=1 i=1 k=1

The last equality follows by writing out the square. To see that the cross-term
cancels, condition on Z,,. We will derive an upper bound for the first term in the
last expression.
r r Zy(i)
—5(Y 2 Y (6l ) — B )
j=1 =1 k=1
Zn (i)

- ZZ“”J) E(Z £l J) — B, J))))

i=1j=1

Thelnequalltyfollowsbyapplymg(Z] 1X)? <rZ —1 X5 2 twice. Condition on
Z,(i) = m toobtain

M" m
Ap < ZZ(rv,) ZZZCOV G (i, ), G, ) P(Zy (i) = m)
i=1j=1 m=0k=11=1
M" m
—ZZ(rv,) > Z Cov(¢k (i, 1), &1, ) P(Za (@) = m),
i=1j=1 m=0k=1|k—1|<2

sinceif |k — | > 2, the k™ and the /™ type #; letter in o (u) are at least 2 places
apart, which implies that the types of the children of the k™ type #; letter and the
types of the children of the/!" typer; |etter areindependent. Bring two summations
inside the expectation and apply the inequality 2xy < x2 + y? to obtain

ror M" m
A <Y 02y E(skg(mly 7 = B j))?) B(Zu(i) = m)

i=1j=1 m=0

=YY 5(rv))*E(Z, (i) Var(cal, j))

i=1j=1
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< E(Z,(t, ©)) (). 5rv;)? max (Var(ea(i. ))) ).

j=1

By Lemma 2, we can bound E(Z, (¢, C)) by %x". Writing

v1 : 2 ..
c=52"~ (v;) max (Var(¢1(i, j))),
V(1) ; ! 1§i5r( (610, J )

we have found that A,, < cA”", and therefore
Var(Zp;1v') < e\ 4+ A2 Var(Z,v').

This recursive inequality implies that

n+l_l
Var(Z Ny < e ———.
(Zn1v) = A ——
Hence, for A > 1
Zpy1'
Var( )Ln-i-l )SC)L_]_

and so our martingale sequence is uniformly integrable.

Proof (Theorem 1). The first part of the theorem is easy to prove. For al n =
0,1,...,writing A = Ac andv = v¢

P(Zn(t, C) > 0) = E(Z, (2, C))

< i)\‘"
V()

by Lemma?2. If weassumethat A < 1,thenP(Z, (¢, C) > 0) tendstoOasn — oo.
Thisimplies that

P(Z,(t,C) > Oforall n) =0.
For the second part where 1. > 1, we use the fact that the sequence

Z /
(X,) o= (2,00
n>0 A

is a uniformly integrable martingale sequence. This implies that the X,, converge
toalimit X with0 < E(X) = E(X1) = v1 < oco. Hence,

P(thereisacy, > O suchthat Z,v" > cqA" foraln) > 0
and
P(thereisac, such that Z,,v’ < coA” foraln) = 1.
We will show that
P(3c; > Osuchthat Z,v" > c1A" foraln) > 0
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implies
P(3cy > Osuchthat Z,v' > ciA" V| Z,,(t, C) > 0Vm) = 1.

To see this, define for each t; € C and n > 0 an r—dimensional row-vector
Y,() = (Y,(@i,1),...,Y,(@i,r) by

Yu(i, j) = Zy(ti, t)).
Notethat sincer = 11, wehave Z,, = Y, (1). Define

P(3c1 > Osuchthat Y, (i)v' > c1A" Vn)
min{p; : 1 <i <r}.

Li -
o

Notethat p > 0. For all m,
P(dcy > Osuchthat Z,v' > c1A" Vn |F ) > p
amost surely on {Z,, (¢, C) > 0}. Soon {Z,, (¢, C) > Ofor al m} we have
P(3cy > Osuchthat Z,v' > ciA" YV |F ) = p
for all m almost surely. By Lévy’s 0-1 law,
P(3c1 > 0: Z,v' = 1) Vn | F ) = L@e=0: z,0'>c1a" ) as.

Hence, on {Z,,(z, C) > Ofor all m} wehave 1(3.,~0: 7,v'=c;a va} = 1 &S, which
means that

P(3c; > Osuchthat Z,v' > ciA" Vu | Z,,(t,C) > 0Vm) = 1.
We conclude that
P(3c1, c2 > Osuchthat ciA" < Z,v' < coM* Vi | Zy(t, C) > 0Vm) = 1
and since v’ has all entries positive
P(3c1, c2 > Osuchthat c1A” < Z,(t, C) < coA" Vn | Zy,(t, C) > 0Vm) = 1.
The second part of the theorem follows from this.

Thelast part of the proof isvery similar to thetechniqueto show that abranching
process (X,) withP(X1 = 1) < 1 satisfies

P(lim X, =0o0ro0) = 1.
n—0o0
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4. Convergence

We will consider convergence in the Hausdorff metric m g, defined for all non-
empty compact sets A, B in [0, 1]¢ by

mp (A, B) = lgfo{A C B*and B C A%},

where
A® = {x €[0,1]? : thereisana € A suchthat §(x,a) < ¢}

and § denotes Euclidean distance. We extend m g by defining for al non-empty
compact A in [0, 1]¢

mp (A, 9) = 3Vd.

Notethat compact sets A1, Ao, ... in[0, 1]¢ convergewith respect to themetric
my, if and only if for all ¢ > 0 thereisan ng such that for all m, n > ng we have
A, C A

Definition 2 (Period). Letr beatypeinacommunicating classC. Definetheperiod
d(t) of t asthe greatest common divisor of integersr > 1 for which (.#"),; > 0. It
can be shown that the periods of all 1 € C arethe same. The period of C is defined
as the common value d for the periods of thetypesin C. If d > 1, then C iscalled
periodic and if d = 1, then C is called aperiodic.

Definition 3 (Cyclic classes and extended cyclic classes). Let C be a commu-
nicating class of T with period d. If ¢ isa type in C, then the cyclic class H (¢)
consists of all types s in C that can be reached from ¢ in a multiple of d steps, i.e.
(M), > 0for somen = 0,1,.... By Hy, ..., H;_1 we denote the d cyclic
classes of C. We assume that the numbering of the classes is such that if s € H;
and .45 > 0,thent € Hi11ymodd-

If r isatypein C, then the extended cyclic class H (1) consists of all typesin T
that can be reached fromr inamultiple of d steps. By Ho, . .. , H4—1 wedenotethe
d extended cyclic classes of C.

By S= we denote the set of typesin T which can reach an element of S. So
SE={teT:t— S},

wheret — S meansthat thereisans € S suchthat r — .
Define

€(S) = {C € S=: C isacommunicating classwith A¢c > 1},

where A¢ isthe Perron—Frobenius eigenvalue of C.
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Theorem 2. LetS € T. Then (K, (¢, S))n>0 convergesto K (¢, S) P—almost surely
for all typest e T if and only if for each communicating class C € €(S)

HNS#0®

for0 <i <d—1,whered istheperiodof C,and Hy, ... , Hy_1 arethe extended
cyclic classes of C. Moreover, in case of convergence

K(,S) = U K(t,C)

Ce%(S)
P—almost surely.

We first make some comments on this result. Let C be acommunicating class.
Then Theorem 2 impliesthat the sequence (K, (¢, C)),>0 convergesforall t € T.If
t € C and A¢ < 1, then the sequence convergesto the empty set with probability 1,
by Theorem 1. If r € C and ¢ > 1, then the sequence converges with probability
one, and it converges to a non-empty set with positive probability. If 1 € C and
Ac = M, i.e., the communicating class C is closed, then the sequence converges
with probability one to the unit cube.

For the proof of Theorem 2 we need the following lemma’s. Fix atyper € T.
If I =1,() isalevel-n M—adicinterval with0 < < M™ — 1, defineforn > 0

J.&, S, D =lk:IM"<k<(I+DM",
thetype of (6™ (u))x isan element of S},

whereu € A% issuch that ug hastyper in u, and define
Zn(t, S, 1) = |J,(, S, I)|.
Notethat Z,(z, S) = Z,(t, S, [0, 1]).
Lemmad4. Let S1, So C T andt € T. If for all M—adicintervals I
P(Z,(t, S1,1) > 0i.0.and Z, (¢, S2, ) =0i.0) =0
and
P(Z,(t, S1,1) =0i.0.and Z,(t, S2, I) > 0i.0.) =0,

then P—almost surely, (K, (¢, S1)),>0 converges to K (¢, S1), (K, (t, S2))»>0 cON-
vergesto K (¢, S2) and K (¢, S1) = K (¢, S2).

Proof. Note that the sequences (K, (¢, S1))»>0 and (K, (z, S2)),>0 converge to the
same limit if and only if for al ¢ > 0 thereis an ng such that for al n,m > ng
mH(Kn(t’ Sl), Km (t, SZ)) < €.
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Suppose that with positive probability (K, (¢, S1))»>0 and (K, (t, S2))»>0 do
not converge to the same limit. Then the following event has positive probability:

= {3e > 0Vno Im, n > no suchthat K,,(¢, S1) € (K (z, $2))°
or K, (, S2) € (K (t, S1))°}
= {3e > 0Vng Im, n > ng suchthat K,,(t, S1) ¢ (K (2, $2))°}
U {3e > 0Vng dm, n > ng suchthat K,,(z, S2) 52 (K (2, S1))%)}

where (K, (¢, S1))¢ denotes the set of points closer than ¢ to K, (¢, S1). Call the
first event inthelast expression £ and the second event E;. At least one of the two
events has positive probability and we start by assuming that thisis E1. We have

E1={3¢e > 0Vnodm,n > ng Ixy, € K, (t, S1)
such that B (xpy) N Ky (2, S2) = 3},

where B (x,,) denotes the e—ball around the point x,,.
Fixarealisationw € E1. Thentherearesequences (x;);>1, (m;)i>1 Withm; > i
and (n;);>1 with n; > i such that

i) xi € Ky, (t, S1) = Ky, (¢, S1)() and
i) Be(x;) N Ko, (1, S2) = 0.

By compactness we may assume that the x; convergeto apoint xg € [0, 1]. Hence
X € 31 .(xo0) for dl i large enough. Since x; € K, (¢, S1), we have B% (x0) N
Ky, (t, Sl) # () for i large enough. Furthermore, since B (x;) N Ky, (¢, S2) = ¥,
we have B%g(xo) N Ky, (t, S2) = ¢ for i large enough. Hencewrltmg n= ge, we
have shown that E1 is a subset of

={3n>03x0 € [0, 1] : B%n(xo) N K,(t, S1) #01i.0.,
By, (x0) N K, (2, S2) = P i.0}

Fix w € E. Choose an integer k such that the diameter of a k"level M—adic
interval islessthan %77- Thischoicefor k impliesthat if ak"Jevel M—adicinterval
I (1) intersects B% ﬂ(XO)' then it is contained in B, (xg). Consider a covering of
Bl (xo) A = {Ix(1), ..., It{))} of dl level—k intervals having a non-empty
mter%ctlon with Bl (xo) Thenforal 1 <i < r, It(I;) € By(xo) and hence
I(HNK, (2, S2) = (Ziforlnflnltelymanyn whichimpliesthat Z,, (¢, S2, Ir(l;)) =
for infinitely many n. Furthermore, since B%n(x‘)) N K,(t, S1) # @ i.0., there are
M—adicintervals Jo, J1, ... and anincreasing sequence (n;);>o Withng > k such
that for all J;

i) J; isalevel-n; M-adic interval
“) Ji € Kn,- (, $1)
i) J; N B%W(XO) # 0.
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Since the level of each M-adic interval J; is greater than k, for each J; thereis
an I;(I) € A suchthat J; C Ix(I). Since A is afinite covering and B%n(x‘)) N
K, (t, S1) # ¥ i.0., there must be an interval I (/) € A suchthat J; € I (]) for
infinitely many i. This implies that Z, (¢, S1, Ix(1)) > O for infinitely many n.
So E isasubset of

E= {3k,1 Z,(t, S1, Iy (D)) > 0i.0., Z,(¢t, S2, It (1)) = 0i.0.}
Define
Ek,l ={Z,(, S1, It())) > 0i.0.,, Z,(¢t, So, I(1)) = 0i.0.}

0<PE)=P(| ] Ep) < ) P(E.

k,1>0 k,1>0

Hence there are k and [ such that ]P’(Ek,;) > 0. So there is an M—adic interval
such that

P(Z,(t, S1. 1) > 0i.0.,, Z,(t, S2, 1) =0i.0.) > 0.

If we assumethat E; has positive probability, then we obtain similarly that thereis
an M-adic interval I such that

P(Z,(t, S1, 1) = 0i.0., Z,(t, So, I) > 0i.0.) > 0.

Soif the sequences (K, (¢, S1))n>0 and (K, (¢, S2))»>0 do not converge to the same
limit with positive probability, then thereisan M-adic interval I such that

P(Z,(t, S1,1) > 0i.0.,, Z,(t, S2,1) =0i.0) >0
or
P(Z,(t, S1,1) =0i.0., Z,(¢t, S2, 1) > 0i.0.) > 0.
Lemmab. Let S € T andt € T. The event
{Z,(,S) > 0i.0}
iscontained in

{3M—adic interval | and 3communicating class C € %(S)
suchthat Z,(z, C, I) > Ofor all n},

P—almost surely.

Proof. Fix w € {Z, (¢, S) > 0i.0.}. We can find a sequence of M—adic intervals
Jo, J1, ... such that

i) Jx isalevel—k M—adicinterval
i)y Jo2J12...
iii) for al intervals J, we have Z, (¢, S, Ji)(w) > O for infinitely many n.
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Wecanfindasubsequence Ip, I1, . .. andatypes € T suchthatforallk =0, 1, ...
we have Zo(t, s, Iy)(w) = 1and Z, (¢, S, Ip)(w) > O for somen. Writing I = Iy,
it follows that

{Z,(,S) > 0i.0} C {IM—adicinterval |, and 3s € T suchthat Zg(t,s, I) = 1,
Z,(t,s,I)>0i0.and Z,(t, S, I) > 0for somen}.

Thisimplies by Theorem 1 that P—as.

{Za(1.8) > 0i.0) € {(AM—adicinterval |, and3s e | ] C
Ce%(S)
suchthat Zo(t,s,I) =1and Z,(¢t,s, I) > 0i.0.}
C {IM—-adicinterval |, and 3C € €(S)
suchthat Zo(t,C,I) =1and Z,(¢t, C,I) > 0i.0.}
C {AM—-adicinterval |, and 3C € €(S)
suchthat Z,, (¢, C, I) > Ofor al n}.

Let C be acommunicating class with period d and let Ho, ... , H;—1 be the
cyclic classesof C.

Lemma6. Assumes € Hpand Ho N S # . The event
{Z,(s,C) > 0i.0}
is contained in
{Zna(s, S) > 0 eventually}
P—almost surely.

Proof. AssumeP(Z,(s, C) > 0i.0., Z,4(s, §) = 0i.0.) > 0. By Theorem 1, for
al ¢ > Othereisac > 0 such that

0<P(Z,(s,C) > 0i.0, Z,4(s,S) =0i.0)
<P(Z,(s,C) = cagfordln, Z,;(s,5) =0i.0) + ¢
< P(Zya(s, Ho) > c A foral n, Z,u(s, S) = 0i.0.) +&.

Thisimpliesthat we canfind v € Hp, w € S,1 € Nand ¢’ > 0 such that
(M) > 0
and
P(E, i.0.) > 0,
where

En = {Zpa(s,v) > M9, Ziwina(s, w) = O}
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Define
p= ﬁ(ﬂl%
Then
P(Zig(v, w) > 0) = %E(Zm(v, w))
= %(/W)m
= p.

Fix n and defineforal k =1, ..., Z,q(s, v)
£ (s, v, w) := number of descendants with type w in o "% (i), generated by
the k™" type—v letter in (6" (u))o, . .. , (6" () ppna _1.,

whereu € A% issuch that ug hastypes inu.
If P(Zna(s, v) > ¢/ 22) > 0, we have
P(En) = P(Zua(s,v) = ¢/ M, Zigyna(s, w) = 0)
< P(Zutnya(s, w) = 0] Zya(s, v) = ¢/ 1)
Znd(s,v)
<PC Y &sv.w) =0] Zugls.v) = ¢/ Ag)
k=1
[3¢ 2

< IP( Z Ear—_2(s, v, w) =0).

k=1

Note that if k # 1, the (3k — 2)" and the (31 — 2)™ type—v letter in 0" (u) are
at least 2 places apart, which implies that the two letters generate the types of
their offspring independently of each other. Therefore,

P(Ey) < P(Eas, v, w) = 0) 3%
< @— )3,
By the Borel-Cantelli lemmaP(E,, i.0.) = O, which is a contradiction.

Lemma7. Letr € T and S € T. Assume that for each communicating class
C eb(S)

E,-ﬂS;é(/)

for0 <i <d—1,whered istheperiodof C,and Hy, ... , Hy_1 arethe extended
cyclic classes of C. Then for any C € %(S), the event

{Z,,C) > 0i.0.}
iscontained in
{Z,(t, S) > Oeventually}
P—almost surely.
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Proof. By Lemmab

{Z,(t,C) > 0i.0.} € {AIM—adicinterval |, and 3C’ € %(S)
suchthat Z, (¢, C’, I) > Ofor al n}
= U U {Z,(t,C', I) > Ofor al n}.

I C

Consider the event {Z,,(z, C’, I) > Ofor dl n} for some fixed level-m M—adic
interval 7 and C’ € %(S). Denote the period of C’ by d. Let sg, s1, ... ,s4—1 be
typesinC’andletlp =1 2 11 2 ... 2 I;_1 be M—adic intervals such that I; is
alevel—(m + k) interval fork =0, ... ,d — 1. By Lemma6 we have

d—1
({Zo(t. st I) = 1. Z,(t. C'. ) > Ofor all n}
k=0
d-1
S (){Zua(t. S. I) > O eventually}
k=0
={Z,(, S, I) > 0eventualy}.
Since thisholdsfor any choice of sg, s1, ... ,sq—1and Ip, I1, ..., I;—1, weobtain

{(Z,t,C', 1) > O0fordln} € {Z,(@, S, I) > 0eventually}
C {Z,(t,S) > Oeventually}.

The lemmafollows directly from this.

Proof (Theorem 2). Fix aset S € T. Suppose that for some ¢ € T the K, (¢, S)
do not convergeto chg( s) K (t, C) with positive probability. Then by Lemma 4,
thereisan M—adic interval I such that

P(Zy(t.S.1) > 0i.0., Y  Zy(t.C.1)=0i0)>0
Ce%(S)

or

P(Zy(t.S. 1) =0i.0.. Y  Z,(t.C.I)>0i0)>0.
Ce%(S)

However, thefirst possibility isruled out by Lemma’5 and the second possibility
isruled out by Lemma7.

On the other hand, assume without loss of generality that there is a commu-
nicating class C € §= with Ac > 1suchthat HoNS # G and H1 NS =
@. Let the starting type ¢ be an element of Hp. By Theorem 1 and Lemma 6,
P(Z,a(t, S) > Oeventually) > 0. Since Hy N S = ¥, we have P(Z,,441(t, S) =
Ofordln) = 1. SOP(K,(t,S) = @i.0.,, K,(t,S) # ¥i.0) > 0, which implies
that Ko(z, S), K1(z, S), ... do not converge with positive probability.
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5. Theboundary of a BCA

Althoughtheresultsinthissection can bederivedin general, we consider for reasons
of simplicity a 2—dimensional BCA (A, M, N, (Wy)yey, u) with A = {0, 1} and
V= AN N2 et T = AVFD N+ b the set of types.

Hypothesis 1. Let 0 denote thetypein T consisting of only 0’s and let 1 denote
the type consisting of only 1's. Assume that the sets

Co = {0}
C1=1{1}

are closed communicating classesin T and that there are no other closed commu-
nicating classes.

It follows from thisthat Ac, = Ac, = M?. Define

Do={seT:s— Co, s~ C1}
Di={seT:s—> Cis - Co}
Dy={seT:s— Co s — C1}.

Then { Do, D1, D2} isapartition of T.
We call the BCA non-lattice if for al u € A% and n e Z the probability is 0
that one of the types of two neighbouring lettersin

@"W)omr—1 ... (0" W) pmr—1,Mn—1

(0" (u))oo s (0" (W) mr-10
is an element of Dg and the other isan e ement of D;.
Hypothesis 2. We will assume that our BCA is non-lattice.

Define the following events:

G, = { thetypeof (¢" (1)) isan element of Cq for all
(k,1) € {0, M" — 1} x {0, ... ,M" — 1} and
(k,1) €1{0,..., M" — 1} x {0, M" — 1}}

oo
G =G
n=0

Hypothesis 3. The starting typet € T is such that the event G has positive prob-
ability.

The ‘amost sure' —statements in this section will be with respect to the condi-
tional probability measure

P(- | G).
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This conditioning is added to avoid trivial problems which might arise when the
limit set K (¢, C1) would intersect the boundary of the unit square.

Finally, we will denote the boundary of aset X C [0, 1]2 by 9 X, theinterior of
X by int(X) and the closure of X by cl(X).

Theorem 3. Almost surely, we have
dK (t,C1) = K(t, D).
Lemma 8. We have the following almost surely:

i) cl(int(K (¢, Cp))) = K(t,Cy) fora =0, 1.
i) K(z,Co) UK (1, C1) =[O0, 12
iii) int(K (z, Co)) Nint(K (z, C1)) = V.

Proof. Inthisand the following proofs, all statements are almost sure.
i) Thisfollowsfrom letting » tend to infinity in
Ky (t, Cq) = cl(int(K, (2, Cy))) C cl(int(K (¢, Cp))) € K(2, Ca)

fora = 0, 1. Hereweused that (K, (¢, C,))»>0 increasesto K (¢, C,), denoted
by K, (¢, C,)  K(¢, C,), since C, isaclosed communicating class.
ii) By Theorem 2,

[0,1°=Kt,T)
= U K(t,O).

Ce%(T)

Since €(T) = € (Co) U € (C1) by Hypothesis 1 and by another application of
Theorem 2 we have

01°= |J k.o u |J k@O
Ce%b(Co) Ce%(Cq)
= K(t,Co) UK (¢, C1).

iii) Thisfollowssince (K, (¢, Co))»>0and (K, (t, C1)),>0 areincreasing sequences
and for al n

cl(int(K,(, C,))) = K,(t, Cy) fora=0,1
int(K,(t, Co)) Nint(K,,(t, Cy)) = 9.

Proposition 1. Letx € [0, 1]2, ¢ > 0 and B, (x) be the open ball of radius ¢ and
center x. For n > 0 define

4, = {level-n M-adic squares contained in B, (x) N [0, 1]%}.
Let],J € .#,. Theevent
{I € Kn(t, Do), J S Ky(t, D1)}
is contained in the event
{thereisan H € .#,, suchthat H C K,,(t, D2)}
almost surely.
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Proof. We can find squares Hy, ... , Hy € .#, such that

i) HH=1and H, =J

i) H; and H;,1 are neighbouring squares.
Since { Do, D1, D2} is apartition of T, each H; is contained in either K, (z, Do),
K, (t, D1) or K,(t, D2). Since our BCA isnon-latticeand H; and H; 1 are neigh-
bours, it cannot bethe casethat H; € K, (¢, Do) and H; 11 € K, (¢, D1). Fromthese
two observationsit followsthat at least one of Ho, ... , Hy_1 must be contained in
K, (t, Do).

Proof (Theorem 3). We will first proof that K (z, D2) € 9K (¢, C1). By Theo-
rem 2we have K (t, D2) = Uccq(p, K(t, C). Since 6(D2) € ¢(C1), we have
K(t, Dy) C UCG%J(CI) K@, C) = K(t,Cq1). Similarly, we have K (¢, D2) <
K (¢, Cp). By Lemma8 part iii), thisimplies that

K(t, D2) € 3K (t, Co) N K (¢, C1) C 3K (¢, C1).

To provethat 9K (¢, C1) € K (¢, D2), assume by contradiction that with positive
probability thereisany € K (¢, C1) suchthaty ¢ K (¢, D2). Sincewe conditioned
on the intersection of 9K (¢, C1) with the boundary of [0, 1]2 being empty, we can
find by Lemma8 partiii) ay’ e [0, 1]° withrational coordinatesand rational > 0
such that with positive probability
d(By(y) NK(t, D2) =@
B,(y)NK(t,C1) #0
B,(y)) N K (t, Co) # 0.

Since this last event is a union over rationa y" and n, we can find non-random
x € [0, 1]% and & > 0 such that with positive probability

Ad(Bo(x)) N K(t, Do) = @
B.(x)NK(t,C1) # 0
B.(x) N K(t, Co) # 9.

By Lemma8 part i) and ii), it follows that

B:(x) Nint(K (¢, Co)) # 0
B:(x) Nint(K (¢, C1)) # 0.

Since K, (¢, Co) 1+ K(t,Co) and K, (¢, C1) + K (¢, C1), there are ng and non-
random level-ng M-adic squares I, J,, € Bg(x) such that with positive proba-
bility

Ino - Kno(ty CO)
and

Jno - Kno(ts Cl)'
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Let forn > no I, and J,, be level-n M-adic squares such that 1,y 2 I,o41 2 ...
and Ju, 2 Jyg+1 2 ... Thenfor adl n > ng, wehave I,,, J, € B.(x) and

I, € K,(t, Co)
Jn C Kn(tv Cl)-

By Proposition 1, we can find for al n > ng alevel-n M-adic square H, C B.(x)
such that

H, C Kn(t, D2)~

Thisimpliesthat that cl(B.(x)) N K (¢, D2) # @, which isacontradiction.

DefineS C T as
S={seT:sgp=1}.

Weclaim that (K, (¢, S)),>0 convergesalmost surely for all starting typess. To see
this, let

S"={seT:sjj=1forsomei, j € {—(N +1),...,N +1}}
= T\{0}.

By Theorem 2, (K, (¢, S")),>0 convergesalmost surely for all starting typesz. Since
S C 8’ wehaveforaln >0

Ku(t,8) € Ku(t, 8
and eventually
Kn(t. ) € (Ky(t, S)V2 M V+D),
where we recall that (K, (¢, S))¢ denotes the set of pointsin [0, 1] with distance
less than ¢ to the set K, (¢, S). The last inclusion holds ailmost surely since we
conditioned on the event G. Therefore (K, (¢, S)),>0 converges amost surely for
all starting types:.
Definetheset E C T as
E={€eT:s— Cos ¢ Col}.

Corollary 1. Aimost surely, we have

0K, S)=K(, E).
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Proof. Notethat S’ = E U D1 and from Theorem 2 it follows that

Kt S =K, S5)
= K@, E)UK(t, D1)
= K@, E)UK(t,Cq).

Also from Theorem 2 we get that K (¢, E) € K (¢, Co). Using thisand Lemma 8
it follows that K (¢, E) Nint(K (¢, C1)) = ¥. We claim that int(K (¢, E)) = @.
By contradiction, assume that with positive probability int(K (¢, E)) # @. Since
int(K(t, E)) € K(t, E) € K(t, Co) and since K,,(t, Co) 1 K (¢, Cp), thereisan
ng such that

iNt(K,o(t, Co) N K(t, E)) # 9.
Since K, (t, E) | K(t, E), we have
iNt(Kp, (2, Co) N Ky (2, E)) # 9,

which is impossible since E N Co = @. Hence int(K (¢, E)) = . Since also
K@, E)Nint(K (¢, Cy)) = 9,

dK(t,S) = d(K(t, E) UK (t, C1)
=K@, E)Ud(K(t, C1)).

Furthermore,
0K(,S) =K (t, E)UK(t, Dp)
by Theorem 3, and since Do C E

aK(t,S) = K(t, E).
6. Examples

Example 1. The first example of a BCA is commonly known as ordinary fractal
percolation with parameter p in dimension 2, where p € [0, 1]. Consider the BCA

(A, M, N, (Wy)yey.u),with V = A=N----N? and A = {0, 1}. Let P,, denotethe
associated probability measure. Fix v € A=N-¥ and write

Wim ... Wyum
Wo=:
Wi1 ... Wy

wherethe W;; are random variablestaking valuesin A. For fixed p, the probability
distribution of W, is such, that the W;; are independent. So

P,(Wy=w)=[] P,(Wy=uwi)
i,jefd,..., M}
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Fig. 1. A redlisation of Kg of ordinary fractal percolation (Example 1) with parameter
p=075and M = 2.

for al w e AL M Define the probability distribution of the Wij, i, j €
{1,...,M}, by

- _ pifvoozl
IP)p(VVl]_l)_{Oifvoozo.

Let
T = A{—(N+1),...,N+1}2

be the set of types. Let + € T be the type with a1 in the middle, i.e. 1o = 1 and
O'selsewhere.Let C € T be

={seT:sp=1}

and define K, := K, (¢, C). Note that C isacommunicating class. By Theorem 2,
K1, K, ... convergeto K IP,—almost surely.

Example 2. Tointroduce neighbour dependencein fractal percolation, wewill fol-
low the same construction as in the previous example. However, the probability
measure P, will be given by

]Pp(Wl'j =DH=1-(@1- p)n(v),
Wheren(v) = Z*NSi,jSN Uij- Aga'n,

T = A-(VAD),... ,N+1)2
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Fig. 2. A redlisation of Ko(r, S) of fractal percolation with neighbour dependence
(Example 2) with parameter p = 0.15, M =2and N = 1.

isthe set of typesand let S C T be
S={seT:sp=1}.
In this example, S is not acommunicating classfor N > 1, but
C={seT:sj;=1forsomei, j e {-(N+1),... , N+1}}

is. Infact, S € C and S= = C. Since C is aperiodic, we have by Theorem 2
that K1(¢, S), K2(z, S), ... amost surely convergeto K (¢, S) = K (¢, C) for al
starting typest € T.

Example 3. Consider a family of 2—dimensional BCA's, parametrised by p with
0 < p < 1. Each member of the family isa BCA (A, M, N, (Wy)yev, u) with
A={01,M =2 N =1andV = A-201? The dependence on p isin the
distribution of the random variables W,,. The probability measure which describes
the BCA shall be denoted by P,,.

Define for v € A{-10.1)° n1.1(v) to be 2 if both the north-neighbour vg 1 of
vo,0 and the east—neighbour v1 o are equal to 0, to be 1 if exactly one of themisO
and to be 0 if none of them is 0. Written shortly, n1,1(v) = 2 — v1,0 — vo1. Inthe
same spirit, define

n-1-1(v) =2—v_10—vo-1
n_11(v) =2—v-10— vo,1
n1,-1(v) = 2 —v1,0 — vo,—1.
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Fix v € AI-10.1% and write

W_o11 Wi
Wy = o bt b
VT Wogoq Wi

wherethe W;; are random variablestaking valuesin A. For fixed p, the probability
distribution of W, is such, that the W;; are independent. So

P,(W, =w) = l_[ P,(Wij = w;j)
ije{-1.1}

for al w € A=11”_ Define the probability distribution of the W;;, i, j € {—1, 1},
by

priW ifugo =1
Pp(Wij:l):{O i 100 — 0.

For this example, it suffices to take A"10Y% as set of types T instead of
Al-2-10.12% gince one is still able to determine the distribution of the types
of the offspring, based on the type of the parent.

Let 0 denote the type in T consisting of only O's and let 1 denote the type

consisting of only 1’s. Define the following subsets of T = A{~10.1%,

S={seT:spo=1}, Co = {0}, C1={1}
Do={seT:sgp=0} D1 =C1
Dy ={s € T :spo = landtherearei, j € {—1,0, 1} such that s;; = 0}.

Note that Cp and C1 are closed communicating classes, and that these are the
only closed ones. Note that by Theorem 2 we have K (¢, S) = K (¢, C1), since
%(S) C €(C1). The sets Do, D1 and D, play the same role as in the previous
section:

Do={seT:s— Co,s - C1}
Di={seT:s—> Cis - Co}
Dy={seT:s—> Cos— Ci}.

Furthermore, the BCA is non-lattice, since if u; and u; are neighbouring lettersin
u € A% and uy € Do, then uy = O and so u; ¢ Di. Condition on K (z, S) =
K (¢, C1) having an empty intersection with 3[0, 1]2. Then by Theorem 3 we have
0K (t,S) = 0K (t, C1) = K(t, D2) dmost surely.
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Fig. 3. A realisation of Ko(z, S) of the BCA in Example 3 with p = %

Fig. 4. Kq(t, D,) of the same redlisation asin Figure 3.
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7. Product BCA

Let Z = (A, M, N, (Wy),cpzv+1,u) and B’ = (A, M, N, (W), caryon+1, u') be
two BCA'swiththe samesubstitutionlength M andinteractionlength N . Denotethe
probability measure associated with % by P and the probability measure associated
with ' by P’. We are going to define a product BCA with alphabet A = A x A'.

For eachn > O and for each v = (v1,...,v,) € A" wewrite v; = (vl.(l), vfz))
where vl.(l) € A and vl_(z) e A’. We denote (vil),... oDy e A" by v® and
@2, ... v?) e (A" by v@. Similarly, for v = (..., v_1,v0, v1,...) € AZ

wewrite v; = (vl.(l), vi(z)) and

1 1 1 2 2 2
U(1)=(... ,vgi,vé),vi),...) v(2)=(...,vgi,vé),vg),...).

Define asequence (W,) . ;av+1 Of random wordsin AM by
P(W, = w) = P(W,a) = w) P’ (W, = w?)

foral v e A2+l and w € AM. Furthermore, defineii € AZ by

Thenthe BCA % = (A, M, N, (W), _ jov+1, #) is called the product BCA of
#and #'.

Each random variable and quantity concerning %', respectively the product
BCA # will havea ', respectively a” attached to it.

Lets € T bethetypeof uginu, € T’ bethetypeof (u')ginu’ andi € T be
thetype of (1)g in 4. Hence r® = and i@ =1+,

LetSCT,S < T’ andlet S € T bedefined by

S={seT;sVes s?eg).
The proof of the following rather obvious lemmais left to the reader.
Lemma. Let s, S’ and S asabove. Then

P(K,(7,8) = #) =P x P'(K,(t, )N K. (', ") = ).
8. Dimension

Let B bean arbitrary set in R¢ and let {U;}i>1 be acountable collection of setsin
R?. We say that {U;}i>1isas—cover of B, if B C [ J72; U; and diam(U;) < & for
ali=1,2,...,wherediam(U;) denotes the diameter of the set U;. Define

H§(B) =inf{ Y (diam(U;))* : {U;}i»1 isas—cover of B)
i=1
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and let

H(B) = '5'['8 HY(B),

which is called the a—dimensional Hausdorff measure of B. Define the Hausdorff
dimension of B as

dimy(B) = inf{a : #*(B) = 0}.

Once more, for the sake of simplicity we will consider in this section a
1-dimensional BCA (A, M, N, (W,),c2v+1, u), but al results extend easily to
the higher dimensional case (including Lemma 11 by Lyons). Let ¢ be the type
of the letter ug in u and assume that ¢ is an element of a communicating class
C. Furthermore assume that the Perron—Frobenius eigenvalue ¢ is strictly larger
than 1. In the following, we will write K, for K, (¢, C) and Z, for Z,(¢, C). By
Theorem 2, the sets Ko, K1, ... convergeamost surely to alimit K, whichisnon—
empty with positive probability by Theorem 1. Define the event ‘ non—extinction’
as{Z, > 0i.0.}.

Lemma 10. Conditioned on non—extinction, dimy K is a constant P—a.s.
Proof. Let
D(s) :=dimy(K (s, C))

D := D(t) = dimy(K (¢, C))

dy :=sup{x : P(D(s) <x) < 1}.
Let d = max;ec ds, and let s* be such that dg« = d. For any s € C ascaed copy
of K(s*, C) isasubset of K (s, C) with some positive probability, since s — s*.
But then the probability that D(s) > D(s*) — § is positive for all § > 0. Hence

dy =dy =dfordls e C.
Definefore > 0ands € C,

ps(e) :=P(D(s) > d —¢).
Notethat ps(¢) > Oforall ¢ > Oandforal s € C. So
p&) :=min{ps(e) : s € C}

isstrictly larger than 0.
Fix e > 0. Then for dl n,

P(D >d—¢|7,) = p(e)

amost surely on {Z,, > 0}. To seethis, let w € {Z, > 0} and notethat P(D > d —
elF ) (w) =P(D > d—e¢lo"(u) = v),wherev = ¢" (1) (w). Sincew € {Z,, > 0},
at least one of the lettersvo, ... , vy-n_1 hasatypes € C. Conditioned on o” (u)
being equal to v, K (¢, C) contains a copy of K (s, C) scaled by afactor M~" and
SOP(D > d —¢lo"(u) = v) = ps(e) = p(e).
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Thenalsoon {Z, > Ofor al n} we have
P(D >d—¢|F,) = p(e)
for all n amost surely. By Lévy's 0-1 law,
P(D>d—¢lZp) = LD>d—s) as.
Hence, on {Z,, > Ofor al n} we have 1;p>4—, = 1as., which meansthat
P(D >d—¢|Z, > 0fordln) =1

Letting e — 0, weseethat P(D = d|Z, > Oforaln) = 1.

In this section we will denote by (A’, M, N, (W,),c(ary2v+1, u') ordinary frac-
tal percolation with parameter p (see Example 1). So A’ = {0,1} and ' =
(...,0,1,0,...) € (A’)Z. All quantities and random variables concerning frac-
tal percolation will be written with a tilde. Recall that K, = K (', C’) and
K’ =K'(t',C"), wheret" isthetypeof uginu’ and C' = {s € T" : sy41 = 1}.

The following lemma due to Russell Lyons ([9], p. 933) gives alower bound
for the Hausdorff dimension of a non-random closed set B in [0, 1].

Lemmall (Lyons).Let B beaclosed setin [0, 1]. If (B N K’ # ¥) > 0, then

f log p
dimyB > —Tog 17"

Consider the product BCA (A, M, N, (W,),_ zn-1. it) Of our initial BCA with
fractal percolation with parameter p. S0 A = A x A’ = A x {0, 1} and iV = u,
i@ = u’. All quantities and random variables concerning the product BCA will
be written with a hat. WeW|II write K, = K,(f, C) and K K, C), wheref is
the type of iig in &t and C isthe communicating classin 7" which contains 7.

Define

) ={s e T:sDec,s@ eC').

Note that § does not need to be a communicating class. We have ¢ < § and from
each s € § we can reach ‘. Thisimpliesthat if s isatypein S\C, then f-»sand
therefore K, (i, S) = K, (7, C) for al n > 0 amost surely.

Let.Z, = (n%,)g ;7 bethe mean offspring matrix of the product BCA.
Lemma 12. For the Perron-Frobenius eigenvalue 4, of %, restricted to C we
have

)t,, =DpA,

where A = A¢ isthe Perron—Frobenius eigenvalue of .# restricted to the commu-
nicating class C.
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For the proof we need the following proposition due to Furstenberg (cf. [11]).

Proposition 2 (Furstenberg). Let A = (a;j)1<i,j<» be a non-negative, irre-
duciblen x n—matrixandlet B = (b;;)1<i, j<- beanon-negative, irreducibler x r—
matrix, wherel <r <n.LetI1, ..., I, beapartition of theindexset {1, ... , n},
where all sets I, are non—empty. Assumethat for A, Band{l; : k=1,...,r}the
following relation holds. For all 1 < i, j < r we have

foralll e I; Zalk:b,'j.
kE[j

Then the Perron—Frobenius eigenval ues of the matrices A and B are the same.

Proof. Let A4 and A be the Perron—Frobenius eigenvalues of A and B and let vy
and vy beassociated | eft eigenvectorswith all entriesstrictly positive. Furthermore,
let w}, bearight eigenvector associated with A 3 having all entries strictly positive.
Define

R = (rij)i<i<n, 1<j<r
by

o 1 ifiGIj
i =10 dse.

Then AR = RB. Definex € R" asx = vqR. Since {14, ..., I} isapartition, al
entries of x are strictly positive. Then

XB =v4RB = vVAAR = ApVaR = Aax,

and therefore A 4 isan eigenvalue of B.
Furthermore, we have

Aaxwy = xBwy = Apxwyp.
Since both x and wp have al entries strictly positive, we concludethat 14 = Ap.
Proof (of Lemma 12). Consider the partition {I;},cc of C, where
I :{veé:v(l) =s}.

Thenweclaimthat foral s, € C andforal v € I

§ Myy = P Mgy

wel;
To seethisdefineforf e T,SC T and S’ € T’

J(@,S,8)=1{k: 0<k <M, thetypev of (6(ii))x
hasv® € S andv@ € §'},
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where the type of fig in iz isf. So we have
JG, 8,8 =J@F S, TYNJ(E T, S).
Recall thatforr e Tand S € T
J.t,8) ={k: 0<k <M"—1, thetypeof (o(u)"); isan element of S},

wherethetype of ug inu isz.
Writing Z (s, t) for Z1(s, {t}) and J (s, t) for J1(s, {t}), we havefor al v € I,

Y i =Y B, (Z(v, w)

wel; wel;

= E(lj(v(l),z)(k)) E/p(lj/(v(Z),c/)(k))
k=0
= pE(Z(s,1))
= pMmg;.
By Proposition 2, the Perron—Frobenius eigenvalues of Vi p restricted to ¢ and
p M restricted to C are the same. Therefore, ip =pAi.
Lemma13. If p > I, then
]P’X]P’/I,(KDK/;A(ZJ) > 0.
Proof. By Lemma9 we have
Pp(Ky =) =By (K, (i, C) = 0)
= }fbp(kn(f, S) =0)
=P x P,(Ku(t, C)NK, (1, C") = )
:PX]P’/[,(K,,HK,/, =)
fordln=0,1,....Since (K, = 8} | {K = @} andsimilarly {K, N K, = @} |
{K N K’ = @}, we have
P,(K =) =P xP,(KNK'=0).
If p > % then the Perron—Frobenius eigenvalue f\p = pAisdtrictly larger than 1.
So by Theorem 1,

P,(K #0) =P x P, (KNK ) >0.
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Our main theorem specifies the Hausdorff dimension of the limit set K of our
BCA.

Theorem 4. Let K = K (¢, C) be a set generated by a BCAwithr € C and C a
communicating classwith A¢ > 1. Conditioned on non—extinction, we have

log A
dmyK = 094 P-as.
logM

Proof. The easy part of the proof is showing that dimy K < kﬁ’g?M as. Fixe > 0.
By Theorem 1 we can find a constant ¢ such that

P(Z, <cX'foradln)>1—e¢.
Hence

P(K,, can be covered with lessthan c A"
n'-level M-adicintervals, foraln) > 1 —e¢.
Thisimplies that
P(AH#*(K) <o0) >1—c¢,
wherea = |I§§AA4 and 7% (K) isthe a-dimensional Hausdorff measure of K. Since
thisholdsfor al ¢, we conclude that dimHK < lfgﬂ’\l
To prove the converse, dmy K > ]Og—M a.s., we will usethe previouslemma'’s.

Lete > Oandp = p(e) = X+8- By Lemmal3wehavePx P, (KNK' # @) > 0.
Thisimplies by Fubini’s theorem that the set

as.

B={ow: ]P’/I,(K(w)ﬂK/;é@) > 0}

has positive P-measure.

By Lemmall, dmyK > —]'gif’w with positive probability. Since conditioned
on non-extinction dlmHK is a constant a.s. (Lemma 10), we have in this case
that dimyK > —,gg—p as. If welet e — O, then p(e) — + and so we have

dimyK > |Ic?§11k/1 a.s., conditioned on non-extinction.

Example 4. Consider fractal percolation with parameter p in dimension 2 (Exam-
ple1). Recall that K, := K, (¢, C), where

={seT:sp=1}

and ¢ is the type with a 1 in the middle and 0’s elsewhere. By Proposition 2, the
largest eigenvalue of ./#, is equal to p M?. Hence by Theorem 4, we have that
conditioned on non—extinction

log p
log M

dmpK =2+
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Example 5. Consider the BCA described in Example 3, parametrised by p. Recall

that

and

S={seT:spp=1}

Dy ={s €T : soo = land therearei, j € {—1, 0, 1} suchthat s;; = 0}.

Conditioned on K (¢, S) being non-empty and having an empty intersection with

310,

1]2, we have almost surely
dimyK (@, S) =2
' log A,
K =
dimy 9K (z, S) log M

where 1, is the Perron—Frobenius eigenvalue associated with Do.
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