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Abstract. Branching cellular automata (BCA) are introduced as generalisations of fractal
percolation by admitting neighbour dependence. We associate sequences of random sets
with BCA’s and study their convergence. In case of convergence we derive the Hausdorff
dimension of the limit set and of its boundary. To accomplish the latter we proof that the
boundary of a set generated by a BCA is again a set generated by a BCA.

1. Introduction

In this paper we study generalisations of a family of random sets introduced by
Benoit Mandelbrot in [10]. Mandelbrot coined the name canonical curdling for
these sets, but they are commonly known as fractal percolation. Let p be a number
with 0 ≤ p ≤ 1 and [0, 1]d be the unit cube in Rd . We furthermore choose an
integer base M ≥ 2. Random sets K0 = [0, 1]d ,K1, . . . , Kn are generated by a
recursive construction. The setK0 is a union ofMd subcubes with side lengthsM−1.
Generate K1 by retaining each of these subcubes with probability p, or discarding
it with probability 1 − p, independently of each other. In general Kn is a union
of M-adic cubes of order n, i.e., with side lengths M−n, and Kn+1 is obtained by
retaining or discarding each of the order n + 1 M-adic subcubes of these cubes
with probability p respectively 1 − p, independently of each other, and of all the
previous choices. The limit set K = ∩∞

n=0Kn is a fractal set with a.s. Hausdorff
dimension log(pMd )/logM , conditioned on being non-empty (see [2], but also [6],
and [5]).

Mandelbrot introduced fractal percolation as an alternative model for turbu-
lence in a fluid in a critique of Kolmogorov’s model. However fractal percolation
is not more than a metaphor for turbulence. In the paper [15] the authors argue
that physically there is dependence on the activity in neighbouring regions in tur-
bulence, and that therefore the independent evolution of the M-adic cubes would
be an important deficiency of Mandelbrot’s model. They then propose neighbour
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interaction to obtain a model which admittedly is still phenomenological. More-
over, they merely study one specific example in the one dimensional case d = 1.
In this paper we develop a general theory of fractal percolation with neighbour in-
teraction. To assess the success of such a model in the goal of modeling turbulence
from a phenomenological point of view, we invite the reader to compare ordinary
fractal percolation in Figure 1 with an example involving neighbour interaction in
Figure 2. We mention that the interest in fractal percolation goes beyond an attempt
to model turbulence. Recently, Yuval Peres has revealed a surprising relationship
between fractal percolation (for specific values of p) and the path of Brownian
motion [12].

The fractal percolation process can conveniently be defined on the space of
M-adic trees, but allowing interaction with the neighbours destroys the tree prop-
erty. We have chosen to construct these random sets by way of the iteration of
random substitutions. We shall call the corresponding process a branching cellular
automaton. (See [14] for another approach.) This will be done in Section 2, where
we furthermore indicate the importance of multi-type branching processes (with
dependent offspring) for the analysis of branching cellular automata (BCA’s). In
Section 3 we consider the question of extinction of these multi-type branching
processes.

Since the sets (Kn) will not necessarily be decreasing anymore in our general
model, the question of convergence (in the Hausdorff metric) of the (Kn) arises.
This problem is considered in Section 4, where a complete answer is given in
Theorem 2. This theorem also gives a structure result: one deduces, for example,
directly from this theorem that the limiting set K equals all of [0, 1]d if all types
of the BCA communicate aperiodically. In Section 8 we determine the almost sure
Hausdorff dimension of the limit set K , using Lyons’ percolation method ( [9]). In
order to do this we need the notion of a product of two BCA’s which is introduced
in Section 7. For many BCA’s the setK has a non-empty interior, and thereforeK is
not a fractal set (see e.g. the example analyzed in [1]). However, K will often have
a fractal boundary. To determine the Hausdorff dimension of this boundary, it is
therefore very useful that we show in Section 5 (see Theorem 3) that the boundary
itself is again a limit set of a BCA.

2. Definition of branching cellular automata

LetA be a finite set, acting as our alphabet. Its elements are called letters and letters
can be concatenated to form words. By An we denote the set of words of length
n and by AZ we denote the set of doubly infinite words. Let M,N ≥ 0 be fixed
integers with M ≥ 2 and M ≥ N + 1. The last inequality is not essential, but it
simplifies some definitions. If u is a word in AZ, then the N–context of a letter uk
in u, denoted by BN(u, k), is defined as

BN(u, k) = uk−N . . . uk+N,

which is a word in A2N+1.
Define a random substitution σ(·), which is a random map from AZ to itself,

as follows. Let (Wv)v∈A2N+1 be a collection of random variables, taking values in



Fractal percolation and branching cellular automata 279

AM . For each v ∈ A2N+1, let (Wv,k)k∈Z be a sequence of independent copies of
Wv . For each u ∈ AZ, define σ(u) by

σ(u) = w,

where

wkM . . . w(k+1)M−1 = WBN(u,k),k

for all k ∈ Z.
Let σ1, σ2, . . . be independent copies of σ . Define the nth iterate of σ , denoted

by σn, by

σ 0(u) = u

σn(u) = σn(σn−1(. . . σ1(u) . . . ))

for each u ∈ AZ.
Define a Branching Cellular Automaton (BCA) as the quintuple

(A,M,N, (Wv)v∈A2N+1 , u),

where u ∈ AZ serves as the starting word for the random substitution σ . If vk is
a letter in the word v = σn(u), then the children of the parent vk are the letters
wkM, . . . , w(k+1)M−1 in the word w = σn+1(u). The set of types T of a BCA is
defined as T = A2N+3. A letter vk of a word v ∈ AZ is said to be of type t , where
t is an element of T , if BN+1(v, k) = t . For each realisation of σn, the types of all
letters (σn(u))k with k = 0, . . . ,Mn − 1 are determined by the type of the letter
u0 in u. Here we used the assumption that M ≥ N + 1.

Let S be a subset of the set of types T and let t ∈ T . Define for n = 0, 1, . . .

Jn(t, S) = {k : 0 ≤ k ≤ Mn − 1,

the type of (σn(u))k is an element of S},
where u is a word inAZ, such that the letter u0 has type t in the word u. Furthermore
we define

Zn(t, S) = |Jn(t, S)|
Kn(t, S) =

⋃
k∈Jn(t,S)

In(k),

where | · | denotes cardinality and

In(k) = [
k

Mn
,
k + 1

Mn
]

is a level–n M–adic interval.
All definitions can be easily extended to higher dimensions. For example, the

N–context of a letter uk,l in a word u ∈ AZ
2

will be

BN(u, k, l) =
uk−N,l+N . . . uk+N,l+N

...
...

uk−N,l−N . . . uk+N,l−N
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For the sake of notational simplicity we shall mostly deal with the one-dimensional
case in the sequel.

The mean-offspring matrix M = (ms,t )s,t∈T is defined by

ms,t = expected number of children with type t ,

generated by a parent of type s

= E(Z1(s, t)),

where Z1(s, t) is short for Z1(s, {t}). Define M(n) = (ms,t (n))s,t∈T by mst (n) =
E(Zn(s, t)).

Lemma 1. For n = 1, 2, . . .

M(n) = Mn.

In the proof of this lemma we use the following random variables. Fix n and
define for s, v, t ∈ T and k = 1, . . . , Zn(s, v)

ζk(s, v, t) := number of children with type t , generated by

the kth type–v letter in (σn(u))0, . . . , (σ
n(u))Mn−1,

where u is a word in AZ, such that the letter u0 has type s in the word u. To
make the ζk(s, v, t)’s random variables on the whole probability space, we define
ζk(s, v, t) for k = Zn(s, v)+ 1, . . . ,Mn as independent copies of Z1(v, t). Note
that ζ1(s, v, t), . . . , ζMn(s, v, t) are identically distributed, that each ζk(s, v, t) is
independent of Zn(s, v) and that

Zn+1(s, t) =
∑
v∈T

Zn(s,v)∑
k=1

ζk(s, v, t).

However, the variables ζ1(s, v, t), . . . , ζMn(s, v, t) do not need to be independent.

Proof (of Lemma 1). The proof is by induction. We have

mst (n+ 1) = E(Zn+1(s, t))

= E(
∑
v∈T

Zn(s,v)∑
k=1

ζk(s, v, t))

=
∑
v∈T

E(
Zn(s,v)∑
k=1

ζk(s, v, t))

=
∑
v∈T

E(Zn(s, v))mvt

=
∑
v∈T

msv(n)mvt .
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3. Extinction

Definition 1 (Communicating class). Let M = (mst )s,t∈T be a non-negative
matrix. For s, t ∈ T , we write s → t if (Mr )st > 0 for some r ≥ 0. We say that
types s and t communicate if s → t and t → s. The communicating class C(t)
consists of all types in T that communicate with t .

Denote the restriction of the matrix M to the communicating classC by MC =
(mst )s,t∈C and denote the Perron-Frobenius eigenvalue of MC by λC .

Note that if t ∈ C, then the events {Zn(t, C) > 0 i.o.} and {Zn(t, C) >

0 for all n} are the same events P–almost surely, where i.o. is short for infinitely
often.

Theorem 1. Let t ∈ C, with C a communicating class of types.

(i) If λC < 1, then

P(Zn(t, C) = 0 eventually) = 1.

(ii) If λC > 1, then

P(Zn(t, C) > 0 infinitely often) > 0.

Moreover, for all ε > 0 there are c1 = c1(ε) > 0 and c2 = c2(ε) > 0 such that

P(c1 λ
n
C ≤ Zn(t, C) ≤ c2 λ

n
C for all n |Zn(t, C) > 0 i.o.) ≥ 1 − ε.

If λC = 0, then P(Zn(t, C) = 0 for n = 1, 2, . . . ) = 1, so assume in the
following that λC > 0. Furthermore, we assume from now on that our BCA is
such, that if λC = 1, then P(Zn(t, C) = 0 eventually) = 1 for t ∈ C.

Write C as C = {t1, . . . , tr}, where r is the cardinality of C. In the remain-
ing part of this section we fix t ∈ C and assume that t = t1. Furthermore, let
mij := mti,tj and write MC as MC = (mij )1≤i,j≤r . Let vC be a row vector
such that its transpose, denoted by v′C , is a right eigenvector of MC correspond-
ing to λC , with all entries strictly positive. Define an r–dimensional row-vector
Zn = (Zn(1), . . . , Zn(r)) by

Zn(i) = Zn(t, ti)

= number of type ti letters in (σn(u))0 . . . (σ
n(u))Mn−1,

where u ∈ AZ is such that u0 has type t in u. Note that Zn(t, C) = Zn(1)+ . . .+
Zn(r). Let (vC)1 denote the first entry of the vector vC and let (vC)(1) denote the
smallest entry.

Lemma 2. We have

E(Zn(t, C)) ≤ (vC)1

(vC)(1)
λnC.

In the sequel we will write v for vC and λ for λC .
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Proof (Lemma 2). Let e1 denote the r–dimensional row vector with a 1 at the first
entry and 0’s elsewhere. Then for all n

E(Zn(t, C)) ≤ 1
v(1)

E(Znv
′)

= 1
v(1)

e1M
n
Cv

′ by Lemma 1

= v1

v(1)
λn.

For n = 0, 1, . . . define

Fn = the σ–algebra generated by σ 0, . . . , σ n.

Lemma 3. Assume λ > 1. Then the sequence
(Znv

′

λn

)
n≥0

is a uniformly integrable martingale with respect to (Fn)n≥0.

Fix n ≥ 0 and define for i, j = 1, . . . , r and k = 1, . . . ,Mn

ζk(i, j) = ζk(t, ti , tj ).

Hence, for k = 1, . . . , Zn(i)

ζk(i, j) = number of children with type tj , generated by

the kth type–ti letter in (σn(u))0, . . . , (σ
n(u))Mn−1,

where u ∈ AZ is such that u0 has type t in u. Note that P–a.s.

Zn+1(j) =
r∑

i=1

Zn(i)∑
k=1

ζk(i, j).

Proof (Lemma 3). The fact that the sequence
(
Znv

′
λn

)
n≥0 is a martingale is proved in

the same way as in the case that (Zn)n≥0 is a multi-type Galton-Watson branching
process. To establish uniform integrability, it suffices to show that the sequence(
Var(Znv

′
λn

)
)
n≥0 is uniformly bounded. We have

Var(Zn+1v
′) = Var

( r∑
j=1

vj

r∑
i=1

Zn(i)∑
k=1

ζk(i, j)
)

= E
( r∑
j=1

vj

r∑
i=1

Zn(i)∑
k=1

ζk(i, j)− E
( r∑
j=1

vj

r∑
i=1

Zn(i)∑
k=1

ζk(i, j)
))2

= E
( r∑
j=1

vj

r∑
i=1

Zn(i)∑
k=1

(
ζk(i, j)− E(ζk(i, j))

)

+
r∑

j=1

vj

r∑
i=1

Zn(i)E(ζ1(i, j))−
r∑

j=1

vj

r∑
i=1

E(Zn(i))E(ζ1(i, j))
)2
,



Fractal percolation and branching cellular automata 283

since the ζ1(i, j), . . . , ζMn(i, j) are identically distributed and each one is inde-
pendent of Zn(i).

Var(Zn+1v
′) = E

( r∑
j=1

vj

r∑
i=1

Zn(i)∑
k=1

(
ζk(i, j)− E(ζk(i, j))

)

+
r∑

i=1

(
Zn(i)− E(Zn(i))

) r∑
j=1

vjmij

)2

= E
( r∑
j=1

vj

r∑
i=1

Zn(i)∑
k=1

(
ζk(i, j)− E(ζk(i, j))

)

+λ(Znv
′ − E(Znv

′)
))2

= E
( r∑
j=1

vj

r∑
i=1

Zn(i)∑
k=1

(
ζk(i, j)− E(ζk(i, j))

))2 + λ2Var(Znv
′).

The last equality follows by writing out the square. To see that the cross-term
cancels, condition on Zn. We will derive an upper bound for the first term in the
last expression.

An := E
( r∑
j=1

vj

r∑
i=1

Zn(i)∑
k=1

(
ζk(i, j)− E(ζk(i, j))

))2

≤
r∑

i=1

r∑
j=1

(rvj )
2E

(Zn(i)∑
k=1

(
ζk(i, j)− E(ζk(i, j))

))2

The inequality follows by applying (
∑r

j=1 xj )
2 ≤ r

∑r
j=1 x

2
j twice. Condition on

Zn(i) = m to obtain

An ≤
r∑

i=1

r∑
j=1

(rvj )
2
Mn∑
m=0

m∑
k=1

m∑
l=1

Cov
(
ζk(i, j), ζl(i, j)

)
P(Zn(i) = m)

=
r∑

i=1

r∑
j=1

(rvj )
2
Mn∑
m=0

m∑
k=1

m∑
|k−l|≤2

Cov
(
ζk(i, j), ζl(i, j)

)
P(Zn(i) = m),

since if |k − l| > 2, the kth and the lth type ti letter in σn(u) are at least 2 places
apart, which implies that the types of the children of the kth type ti letter and the
types of the children of the lth type ti letter are independent. Bring two summations
inside the expectation and apply the inequality 2xy ≤ x2 + y2 to obtain

An ≤
r∑

i=1

r∑
j=1

(rvj )
2
Mn∑
m=0

E
(

5
m∑
k=1

(
ζk(i, j)− E(ζk(i, j))

)2
)

P(Zn(i) = m)

=
r∑

i=1

r∑
j=1

5(rvj )
2 E(Zn(i))Var(ζ1(i, j))
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≤ E(Zn(t, C))
( r∑
j=1

5(rvj )
2 max

1≤i≤r
(
Var(ζ1(i, j))

))
.

By Lemma 2, we can bound E(Zn(t, C)) by v1
v(1)

λn. Writing

c = 5r2 v1

v(1)

r∑
j=1

(vj )
2 max

1≤i≤r
(
Var(ζ1(i, j))

)
,

we have found that An ≤ cλn, and therefore

Var(Zn+1v
′) ≤ cλn + λ2 Var(Znv

′).

This recursive inequality implies that

Var(Zn+1v
′) ≤ cλn

λn+1 − 1

λ− 1
.

Hence, for λ > 1

Var(
Zn+1v

′

λn+1
) ≤ c

1

λ− 1

and so our martingale sequence is uniformly integrable.

Proof (Theorem 1). The first part of the theorem is easy to prove. For all n =
0, 1, . . . , writing λ = λC and v = vC

P(Zn(t, C) > 0) ≤ E(Zn(t, C))

≤ v1

v(1)
λn

by Lemma 2. If we assume that λ < 1, then P(Zn(t, C) > 0) tends to 0 as n → ∞.
This implies that

P(Zn(t, C) > 0 for all n) = 0.

For the second part where λ > 1, we use the fact that the sequence

(
Xn

)
n≥0 = (

Znv
′

λn
)n≥0

is a uniformly integrable martingale sequence. This implies that the Xn converge
to a limit X with 0 < E(X) = E(X1) = v1 < ∞. Hence,

P(there is a c1 > 0 such that Znv
′ ≥ c1λ

n for all n) > 0

and

P(there is a c2 such that Znv
′ ≤ c2λ

n for all n) = 1.

We will show that

P(∃c1 > 0 such that Znv
′ ≥ c1λ

n for all n) > 0
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implies

P(∃c1 > 0 such that Znv
′ ≥ c1λ

n ∀n | Zm(t, C) > 0 ∀m) = 1.

To see this, define for each ti ∈ C and n ≥ 0 an r–dimensional row-vector
Yn(i) := (Yn(i, 1), . . . , Yn(i, r)) by

Yn(i, j) := Zn(ti , tj ).

Note that since t = t1, we have Zn = Yn(1). Define

ρi := P(∃c1 > 0 such that Yn(i)v
′ ≥ c1λ

n ∀n)
ρ := min{ρi : 1 ≤ i ≤ r}.

Note that ρ > 0. For all m,

P(∃c1 > 0 such that Znv
′ ≥ c1λ

n ∀n |Fm) ≥ ρ

almost surely on {Zm(t, C) > 0}. So on {Zm(t, C) > 0 for all m} we have

P(∃c1 > 0 such that Znv
′ ≥ c1λ

n ∀n |Fm) ≥ ρ

for all m almost surely. By Lévy’s 0–1 law,

P(∃c1 > 0 : Znv
′ ≥ c1λ

n ∀n |Fm) → 1{∃c1>0: Znv′≥c1λ
n ∀n} a.s.

Hence, on {Zm(t, C) > 0 for all m} we have 1{∃c1>0: Znv′≥c1λ
n ∀n} = 1 a.s., which

means that

P(∃c1 > 0 such that Znv
′ ≥ c1λ

n ∀n | Zm(t, C) > 0 ∀m) = 1.

We conclude that

P(∃c1, c2 > 0 such that c1λ
n ≤ Znv

′ ≤ c2λ
n ∀n | Zm(t, C) > 0 ∀m) = 1

and since v′ has all entries positive

P(∃c1, c2 > 0 such that c1λ
n ≤ Zn(t, C) ≤ c2λ

n ∀n | Zm(t, C) > 0 ∀m) = 1.

The second part of the theorem follows from this.

The last part of the proof is very similar to the technique to show that a branching
process (Xn) with P(X1 = 1) < 1 satisfies

P( lim
n→∞Xn = 0 or ∞) = 1.
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4. Convergence

We will consider convergence in the Hausdorff metric mH , defined for all non-
empty compact sets A,B in [0, 1]d by

mH(A,B) = inf
ε>0

{A ⊆ Bε and B ⊆ Aε},

where

Aε = {x ∈ [0, 1]d : there is an a ∈ A such that δ(x, a) ≤ ε}

and δ denotes Euclidean distance. We extend mH by defining for all non-empty
compact A in [0, 1]d

mH (A,∅) = 1
2

√
d.

Note that compact setsA1, A2, . . . in [0, 1]d converge with respect to the metric
mH , if and only if for all ε > 0 there is an n0 such that for all m, n ≥ n0 we have
An ⊆ Aε

m.

Definition 2 (Period). Let t be a type in a communicating classC. Define the period
d(t) of t as the greatest common divisor of integers r ≥ 1 for which (Mr )tt > 0. It
can be shown that the periods of all t ∈ C are the same. The period of C is defined
as the common value d for the periods of the types in C. If d > 1, then C is called
periodic and if d = 1, then C is called aperiodic.

Definition 3 (Cyclic classes and extended cyclic classes). Let C be a commu-
nicating class of T with period d . If t is a type in C, then the cyclic class H(t)

consists of all types s in C that can be reached from t in a multiple of d steps, i.e.
(Mnd)ts > 0 for some n = 0, 1, . . . . By H0, . . . , Hd−1 we denote the d cyclic
classes of C. We assume that the numbering of the classes is such that if s ∈ Hi

and Mst > 0, then t ∈ H(i+1)mod d .
If t is a type in C, then the extended cyclic class H(t) consists of all types in T

that can be reached from t in a multiple of d steps. ByH 0, . . . , Hd−1 we denote the
d extended cyclic classes of C.

By S≥ we denote the set of types in T which can reach an element of S. So

S≥ = {t ∈ T : t → S},

where t → S means that there is an s ∈ S such that t → s.
Define

C(S) = {C ⊆ S≥ : C is a communicating class with λC > 1},

where λC is the Perron–Frobenius eigenvalue of C.
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Theorem 2. Let S ⊆ T . Then (Kn(t, S))n≥0 converges toK(t, S) P–almost surely
for all types t ∈ T if and only if for each communicating class C ∈ C(S)

H i ∩ S �= ∅

for 0 ≤ i ≤ d−1, where d is the period of C, and H 0, . . . , Hd−1 are the extended
cyclic classes of C. Moreover, in case of convergence

K(t, S) =
⋃

C∈C(S)
K(t, C)

P–almost surely.

We first make some comments on this result. Let C be a communicating class.
Then Theorem 2 implies that the sequence (Kn(t, C))n≥0 converges for all t ∈ T . If
t ∈ C and λC < 1, then the sequence converges to the empty set with probability 1,
by Theorem 1. If t ∈ C and λC > 1, then the sequence converges with probability
one, and it converges to a non-empty set with positive probability. If t ∈ C and
λC = M , i.e., the communicating class C is closed, then the sequence converges
with probability one to the unit cube.

For the proof of Theorem 2 we need the following lemma’s. Fix a type t ∈ T .
If I = Im(l) is a level–mM–adic interval with 0 ≤ l ≤ Mm − 1, define for n ≥ 0

Jn(t, S, I ) = {k : l Mn ≤ k < (l + 1)Mn,

the type of (σm+n(u))k is an element of S},

where u ∈ AZ is such that u0 has type t in u, and define

Zn(t, S, I ) = |Jn(t, S, I )|.

Note that Zn(t, S) = Zn(t, S, [0, 1]).

Lemma 4. Let S1, S2 ⊆ T and t ∈ T . If for all M–adic intervals I

P(Zn(t, S1, I ) > 0 i.o. and Zn(t, S2, I ) = 0 i.o.) = 0

and

P(Zn(t, S1, I ) = 0 i.o. and Zn(t, S2, I ) > 0 i.o.) = 0,

then P–almost surely, (Kn(t, S1))n≥0 converges to K(t, S1), (Kn(t, S2))n≥0 con-
verges to K(t, S2) and K(t, S1) = K(t, S2).

Proof. Note that the sequences (Kn(t, S1))n≥0 and (Kn(t, S2))n≥0 converge to the
same limit if and only if for all ε > 0 there is an n0 such that for all n,m ≥ n0
mH(Kn(t, S1),Km(t, S2)) < ε.
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Suppose that with positive probability (Kn(t, S1))n≥0 and (Kn(t, S2))n≥0 do
not converge to the same limit. Then the following event has positive probability:

E := {∃ε > 0 ∀n0 ∃m, n ≥ n0 such that Kn(t, S1) � (Km(t, S2))
ε

or Kn(t, S2) � (Km(t, S1))
ε}

= {∃ε > 0 ∀n0 ∃m, n ≥ n0 such that Kn(t, S1) � (Km(t, S2))
ε}

∪ {∃ε > 0 ∀n0 ∃m, n ≥ n0 such that Kn(t, S2) � (Km(t, S1))
ε}

where (Km(t, S1))
ε denotes the set of points closer than ε to Km(t, S1). Call the

first event in the last expression E1 and the second event E2. At least one of the two
events has positive probability and we start by assuming that this is E1. We have

E1 = {∃ε > 0 ∀n0 ∃m, n ≥ n0 ∃xn0 ∈ Kn(t, S1)

such that Bε(xn0) ∩Km(t, S2) = ∅},

where Bε(xn0) denotes the ε–ball around the point xn0 .
Fix a realisationω ∈ E1. Then there are sequences (xi)i≥1, (mi)i≥1 withmi ≥ i

and (ni)i≥1 with ni ≥ i such that

i) xi ∈ Kni (t, S1) = Kni (t, S1)(ω) and
ii) Bε(xi) ∩Kmi

(t, S2) = ∅.

By compactness we may assume that the xi converge to a point x0 ∈ [0, 1]. Hence
xi ∈ B 1

3 ε
(x0) for all i large enough. Since xi ∈ Kni (t, S1), we have B 1

3 ε
(x0) ∩

Kni (t, S1) �= ∅ for i large enough. Furthermore, since Bε(xi) ∩ Kmi
(t, S2) = ∅,

we have B 2
3 ε
(x0) ∩Kmi

(t, S2) = ∅ for i large enough. Hence writing η = 2
3ε, we

have shown that E1 is a subset of

Ẽ = {∃η > 0 ∃x0 ∈ [0, 1] : B 1
2 η
(x0) ∩Kn(t, S1) �= ∅ i.o.,

Bη(x0) ∩Kn(t, S2) = ∅ i.o.}

Fix ω ∈ Ẽ. Choose an integer k such that the diameter of a kth–level M–adic
interval is less than 1

2η. This choice for k implies that if a kth–level M–adic interval
Ik(l) intersects B 1

2 η
(x0), then it is contained in Bη(x0). Consider a covering of

B 1
2 η
(x0) 2 = {Ik(l1), . . . , Ik(lr ))} of all level–k intervals having a non-empty

intersection with B 1
2 η
(x0). Then for all 1 ≤ i ≤ r , Ik(li) ⊆ Bη(x0) and hence

Ik(li)∩Kn(t, S2) = ∅ for infinitely manyn, which implies thatZn(t, S2, Ik(li)) = 0
for infinitely many n. Furthermore, since B 1

2 η
(x0) ∩ Kn(t, S1) �= ∅ i.o., there are

M–adic intervals J0, J1, . . . and an increasing sequence (ni)i≥0 with n0 ≥ k such
that for all Ji

i) Ji is a level–ni M-adic interval
ii) Ji ⊆ Kni (t, S1)

iii) Ji ∩ B 1
2 η
(x0) �= ∅.
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Since the level of each M-adic interval Ji is greater than k, for each Ji there is
an Ik(l) ∈ 2 such that Ji ⊆ Ik(l). Since 2 is a finite covering and B 1

2 η
(x0) ∩

Kn(t, S1) �= ∅ i.o., there must be an interval Ik(l) ∈ 2 such that Ji ⊆ Ik(l) for
infinitely many i. This implies that Zn(t, S1, Ik(l)) > 0 for infinitely many n.
So Ẽ is a subset of

Ê = {∃k, l Zn(t, S1, Ik(l)) > 0 i.o., Zn(t, S2, Ik(l)) = 0 i.o.}
Define

Êk,l = {Zn(t, S1, Ik(l)) > 0 i.o., Zn(t, S2, Ik(l)) = 0 i.o.}
Then Ê = ⋃

k,l≥0 Êk,l . So

0 < P(Ê) = P(
⋃
k,l≥0

Êk,l) ≤
∑
k,l≥0

P(Êk,l).

Hence there are k and l such that P(Êk,l) > 0. So there is an M–adic interval I
such that

P(Zn(t, S1, I ) > 0 i.o., Zn(t, S2, I ) = 0 i.o.) > 0.

If we assume that E2 has positive probability, then we obtain similarly that there is
an M-adic interval I such that

P(Zn(t, S1, I ) = 0 i.o., Zn(t, S2, I ) > 0 i.o.) > 0.

So if the sequences (Kn(t, S1))n≥0 and (Kn(t, S2))n≥0 do not converge to the same
limit with positive probability, then there is an M-adic interval I such that

P(Zn(t, S1, I ) > 0 i.o., Zn(t, S2, I ) = 0 i.o.) > 0

or

P(Zn(t, S1, I ) = 0 i.o., Zn(t, S2, I ) > 0 i.o.) > 0.

Lemma 5. Let S ⊆ T and t ∈ T . The event

{Zn(t, S) > 0 i.o}
is contained in

{∃M–adic interval I and ∃communicating class C ∈ C(S)

such that Zn(t, C, I ) > 0 for all n},
P–almost surely.

Proof. Fix ω ∈ {Zn(t, S) > 0 i.o.}. We can find a sequence of M–adic intervals
J0, J1, . . . such that

i) Jk is a level–k M–adic interval
ii) J0 ⊇ J1 ⊇ . . .

iii) for all intervals Jk we have Zn(t, S, Jk)(ω) > 0 for infinitely many n.
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We can find a subsequence I0, I1, . . . and a type s ∈ T such that for all k = 0, 1, . . .
we have Z0(t, s, Ik)(ω) = 1 and Zn(t, S, I0)(ω) > 0 for some n. Writing I = I0,
it follows that

{Zn(t, S) > 0 i.o.} ⊆ {∃M–adic interval I, and ∃s ∈ T such that Z0(t, s, I ) = 1,

Zn(t, s, I ) > 0 i.o. and Zn(t, S, I ) > 0 for some n}.
This implies by Theorem 1 that P–a.s.

{Zn(t, S) > 0 i.o.} ⊆ {∃M–adic interval I, and ∃s ∈
⋃

C∈C(S)
C

such that Z0(t, s, I ) = 1 and Zn(t, s, I ) > 0 i.o.}
⊆ {∃M–adic interval I, and ∃C ∈ C(S)

such that Z0(t, C, I ) = 1 and Zn(t, C, I ) > 0 i.o.}
⊆ {∃M–adic interval I, and ∃C ∈ C(S)

such that Zn(t, C, I ) > 0 for all n}.
Let C be a communicating class with period d and let H0, . . . , Hd−1 be the

cyclic classes of C.

Lemma 6. Assume s ∈ H0 and H 0 ∩ S �= ∅. The event

{Zn(s, C) > 0 i.o.}
is contained in

{Znd(s, S) > 0 eventually}
P–almost surely.

Proof. Assume P(Zn(s, C) > 0 i.o., Znd(s, S) = 0 i.o.) > 0. By Theorem 1, for
all ε > 0 there is a c > 0 such that

0 < P(Zn(s, C) > 0 i.o., Znd(s, S) = 0 i.o.)

≤ P(Zn(s, C) ≥ c λnC for all n, Znd(s, S) = 0 i.o.)+ ε

≤ P(Znd(s,H0) ≥ c λndC for all n, Znd(s, S) = 0 i.o.)+ ε.

This implies that we can find v ∈ H0, w ∈ S, l ∈ N and c′ > 0 such that

(Mld )vw > 0

and

P(En i.o.) > 0,

where

En = {Znd(s, v) ≥ c′ λndC , Z(n+l)d (s, w) = 0}.
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Define

ρ = 1

Mld
(Mld )vw.

Then

P(Zld(v,w) > 0) ≥ 1

Mld
E(Zld(v,w))

= 1

Mld
(Mld )vw

= ρ.

Fix n and define for all k = 1, . . . , Znd(s, v)

ξk(s, v,w) := number of descendants with type w in σ (n+l)d (u), generated by

the kth type–v letter in (σnd(u))0, . . . , (σ
nd(u))Mnd−1,

where u ∈ AZ is such that u0 has type s in u.
If P(Znd(s, v) ≥ c′ λndC ) > 0, we have

P(En) = P(Znd(s, v) ≥ c′ λndC , Z(n+l)d (s, w) = 0)

≤ P(Z(n+l)d (s, w) = 0 | Znd(s, v) ≥ c′ λndC )

≤ P(
Znd (s,v)∑
k=1

ξk(s, v,w) = 0 | Znd(s, v) ≥ c′ λndC )

≤ P(

� 1
3 c

′ λndC �∑
k=1

ξ3k−2(s, v, w) = 0).

Note that if k �= l, the (3k − 2)th and the (3l − 2)th type–v letter in σnd(u) are
at least 2 places apart, which implies that the two letters generate the types of
their offspring independently of each other. Therefore,

P(En) ≤ P(ξ1(s, v, w) = 0)
1
3 c

′λndC

≤ (1 − ρ)
1
3 c

′λndC .

By the Borel-Cantelli lemma P(En i.o.) = 0, which is a contradiction.

Lemma 7. Let t ∈ T and S ⊆ T . Assume that for each communicating class
C ∈ C(S)

H i ∩ S �= ∅
for 0 ≤ i ≤ d−1, where d is the period of C, and H 0, . . . , Hd−1 are the extended
cyclic classes of C. Then for any C ∈ C(S), the event

{Zn(t, C) > 0 i.o.}
is contained in

{Zn(t, S) > 0 eventually}
P–almost surely.
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Proof. By Lemma 5

{Zn(t, C) > 0 i.o.} ⊆ {∃M–adic interval I, and ∃C′ ∈ C(S)

such that Zn(t, C
′, I ) > 0 for all n}

=
⋃
I

⋃
C′

{Zn(t, C
′, I ) > 0 for all n}.

Consider the event {Zn(t, C
′, I ) > 0 for all n} for some fixed level–m M–adic

interval I and C′ ∈ C(S). Denote the period of C′ by d. Let s0, s1, . . . , sd−1 be
types in C′ and let I0 = I ⊇ I1 ⊇ . . . ⊇ Id−1 be M–adic intervals such that Ik is
a level–(m+ k) interval for k = 0, . . . , d − 1. By Lemma 6 we have

d−1⋂
k=0

{Z0(t, sk, Ik) = 1, Zn(t, C
′, Ik) > 0 for all n}

⊆
d−1⋂
k=0

{Znd(t, S, Ik) > 0 eventually}

= {Zn(t, S, I ) > 0 eventually}.

Since this holds for any choice of s0, s1, . . . , sd−1 and I0, I1, . . . , Id−1, we obtain

{Zn(t, C
′, I ) > 0 for all n} ⊆ {Zn(t, S, I ) > 0 eventually}

⊆ {Zn(t, S) > 0 eventually}.

The lemma follows directly from this.

Proof (Theorem 2). Fix a set S ⊆ T . Suppose that for some t ∈ T the Kn(t, S)

do not converge to
⋃

C∈C(S) K(t, C) with positive probability. Then by Lemma 4,
there is an M–adic interval I such that

P(Zn(t, S, I ) > 0 i.o.,
∑

C∈C(S)
Zn(t, C, I ) = 0 i.o.) > 0

or

P(Zn(t, S, I ) = 0 i.o.,
∑

C∈C(S)
Zn(t, C, I ) > 0 i.o.) > 0.

However, the first possibility is ruled out by Lemma 5 and the second possibility
is ruled out by Lemma 7.

On the other hand, assume without loss of generality that there is a commu-
nicating class C ⊆ S≥ with λC > 1 such that H 0 ∩ S �= ∅ and H 1 ∩ S =
∅. Let the starting type t be an element of H0. By Theorem 1 and Lemma 6,
P(Znd(t, S) > 0 eventually) > 0. Since H 1 ∩ S = ∅, we have P(Znd+1(t, S) =
0 for all n) = 1. So P(Kn(t, S) = ∅ i.o., Kn(t, S) �= ∅ i.o.) > 0, which implies
that K0(t, S),K1(t, S), . . . do not converge with positive probability.
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5. The boundary of a BCA

Although the results in this section can be derived in general, we consider for reasons
of simplicity a 2–dimensional BCA (A,M,N, (Wv)v∈V , u) with A = {0, 1} and
V = A{−N,... ,N}2 . Let T = A{−(N+1),... ,N+1}2 be the set of types.

Hypothesis 1. Let 0 denote the type in T consisting of only 0’s and let 1 denote
the type consisting of only 1’s. Assume that the sets

C0 = {0}
C1 = {1}

are closed communicating classes in T and that there are no other closed commu-
nicating classes.

It follows from this that λC0 = λC1 = M2. Define

D0 = {s ∈ T : s → C0, s � C1}
D1 = {s ∈ T : s → C1, s � C0}
D2 = {s ∈ T : s → C0, s → C1}.

Then {D0,D1,D2} is a partition of T .
We call the BCA non-lattice if for all u ∈ AZ

2
and n ∈ Z the probability is 0

that one of the types of two neighbouring letters in

(σn(u))0,Mn−1 . . . (σ
n(u))Mn−1,Mn−1

...
...

(σ n(u))00 . . . (σ n(u))Mn−1,0

is an element of D0 and the other is an element of D1.

Hypothesis 2. We will assume that our BCA is non-lattice.

Define the following events:

Gn = { the type of (σn(u))kl is an element of C0 for all

(k, l) ∈ {0,Mn − 1} × {0, . . . ,Mn − 1} and

(k, l) ∈ {0, . . . ,Mn − 1} × {0,Mn − 1}}

G =
∞⋃
n=0

Gn.

Hypothesis 3. The starting type t ∈ T is such that the event G has positive prob-
ability.

The ‘almost sure’–statements in this section will be with respect to the condi-
tional probability measure

P( · |G).
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This conditioning is added to avoid trivial problems which might arise when the
limit set K(t, C1) would intersect the boundary of the unit square.

Finally, we will denote the boundary of a set X ⊆ [0, 1]2 by ∂X, the interior of
X by int(X) and the closure of X by cl(X).

Theorem 3. Almost surely, we have

∂K(t, C1) = K(t,D2).

Lemma 8. We have the following almost surely:

i) cl(int(K(t, Ca))) = K(t, Ca) for a = 0, 1.
ii) K(t, C0) ∪K(t, C1) = [0, 1]2

iii) int(K(t, C0)) ∩ int(K(t, C1)) = ∅.

Proof. In this and the following proofs, all statements are almost sure.

i) This follows from letting n tend to infinity in

Kn(t, Ca) = cl(int(Kn(t, Ca))) ⊆ cl(int(K(t, Ca))) ⊆ K(t, Ca)

for a = 0, 1. Here we used that (Kn(t, Ca))n≥0 increases to K(t, Ca), denoted
by Kn(t, Ca) ↑ K(t, Ca), since Ca is a closed communicating class.

ii) By Theorem 2,

[0, 1]2 = K(t, T )

=
⋃

C∈C(T )
K(t, C).

Since C(T ) = C(C0) ∪ C(C1) by Hypothesis 1 and by another application of
Theorem 2 we have

[0, 1]2 =
⋃

C∈C(C0)

K(t, C) ∪
⋃

C∈C(C1)

K(t, C)

= K(t, C0) ∪K(t, C1).

iii) This follows since (Kn(t, C0))n≥0 and (Kn(t, C1))n≥0 are increasing sequences
and for all n

cl(int(Kn(t, Ca))) = Kn(t, Ca) for a = 0, 1

int(Kn(t, C0)) ∩ int(Kn(t, C1)) = ∅.
Proposition 1. Let x ∈ [0, 1]2, ε > 0 and Bε(x) be the open ball of radius ε and
center x. For n ≥ 0 define

In = {level-n M-adic squares contained in Bε(x) ∩ [0, 1]2}.
Let I, J ∈ In. The event

{I ⊆ Kn(t,D0), J ⊆ Kn(t,D1)}
is contained in the event

{there is an H ∈ In such that H ⊆ Kn(t,D2)}
almost surely.
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Proof. We can find squares H1, . . . , Hk ∈ In such that

i) H1 = I and Hk = J

ii) Hi and Hi+1 are neighbouring squares.

Since {D0,D1,D2} is a partition of T , each Hi is contained in either Kn(t,D0),
Kn(t,D1) or Kn(t,D2). Since our BCA is non-lattice and Hi and Hi+1 are neigh-
bours, it cannot be the case thatHi ⊆ Kn(t,D0) andHi+1 ⊆ Kn(t,D1). From these
two observations it follows that at least one of H2, . . . , Hk−1 must be contained in
Kn(t,D2).

Proof (Theorem 3). We will first proof that K(t,D2) ⊆ ∂K(t, C1). By Theo-
rem 2 we have K(t,D2) =

⋃
C∈C(D2)

K(t, C). Since C(D2) ⊆ C(C1), we have
K(t,D2) ⊆ ⋃

C∈C(C1)
K(t, C) = K(t, C1). Similarly, we have K(t,D2) ⊆

K(t, C0). By Lemma 8 part iii), this implies that

K(t,D2) ⊆ ∂K(t, C0) ∩ ∂K(t, C1) ⊆ ∂K(t, C1).

To prove that ∂K(t, C1) ⊆ K(t,D2), assume by contradiction that with positive
probability there is an y ∈ ∂K(t, C1) such that y /∈ K(t,D2). Since we conditioned
on the intersection of ∂K(t, C1) with the boundary of [0, 1]2 being empty, we can
find by Lemma 8 part iii) a y′ ∈ [0, 1]2 with rational coordinates and rational η > 0
such that with positive probability

cl(Bη(y
′)) ∩K(t,D2) = ∅

Bη(y
′) ∩K(t, C1) �= ∅

Bη(y
′) ∩K(t, C0) �= ∅.

Since this last event is a union over rational y′ and η, we can find non-random
x ∈ [0, 1]2 and ε > 0 such that with positive probability

cl(Bε(x)) ∩K(t,D2) = ∅
Bε(x) ∩K(t, C1) �= ∅
Bε(x) ∩K(t, C0) �= ∅.

By Lemma 8 part i) and ii), it follows that

Bε(x) ∩ int(K(t, C0)) �= ∅
Bε(x) ∩ int(K(t, C1)) �= ∅.

Since Kn(t, C0) ↑ K(t, C0) and Kn(t, C1) ↑ K(t, C1), there are n0 and non-
random level-n0 M-adic squares In0 , Jn0 ⊆ Bε(x) such that with positive proba-
bility

In0 ⊆ Kn0(t, C0)

and

Jn0 ⊆ Kn0(t, C1).
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Let for n ≥ n0 In and Jn be level-n M-adic squares such that In0 ⊇ In0+1 ⊇ . . .

and Jn0 ⊇ Jn0+1 ⊇ . . . . Then for all n ≥ n0, we have In, Jn ⊆ Bε(x) and

In ⊆ Kn(t, C0)

Jn ⊆ Kn(t, C1).

By Proposition 1, we can find for all n ≥ n0 a level-n M-adic square Hn ⊆ Bε(x)

such that

Hn ⊆ Kn(t,D2).

This implies that that cl(Bε(x)) ∩K(t,D2) �= ∅, which is a contradiction.

Define S ⊆ T as

S = {s ∈ T : s00 = 1}.

We claim that (Kn(t, S))n≥0 converges almost surely for all starting types t . To see
this, let

S′ = {s ∈ T : sij = 1 for some i, j ∈ {−(N + 1), . . . , N + 1}}
= T \{0}.

By Theorem 2, (Kn(t, S
′))n≥0 converges almost surely for all starting types t . Since

S ⊆ S′ we have for all n ≥ 0

Kn(t, S) ⊆ Kn(t, S
′)

and eventually

Kn(t, S
′) ⊆ (Kn(t, S))

√
2 M−n(N+1),

where we recall that (Kn(t, S))
ε denotes the set of points in [0, 1]2 with distance

less than ε to the set Kn(t, S). The last inclusion holds almost surely since we
conditioned on the event G. Therefore (Kn(t, S))n≥0 converges almost surely for
all starting types t .

Define the set E ⊆ T as

E = {s ∈ T : s → C0, s /∈ C0}.

Corollary 1. Almost surely, we have

∂K(t, S) = K(t, E).



Fractal percolation and branching cellular automata 297

Proof. Note that S′ = E ∪D1 and from Theorem 2 it follows that

K(t, S) = K(t, S′)
= K(t, E) ∪K(t,D1)

= K(t, E) ∪K(t, C1).

Also from Theorem 2 we get that K(t, E) ⊆ K(t, C0). Using this and Lemma 8
it follows that K(t, E) ∩ int(K(t, C1)) = ∅. We claim that int(K(t, E)) = ∅.
By contradiction, assume that with positive probability int(K(t, E)) �= ∅. Since
int(K(t, E)) ⊆ K(t, E) ⊆ K(t, C0) and since Kn(t, C0) ↑ K(t, C0), there is an
n0 such that

int(Kn0(t, C0) ∩K(t, E)) �= ∅.
Since Kn(t, E) ↓ K(t, E), we have

int(Kn0(t, C0) ∩Kn0(t, E)) �= ∅,
which is impossible since E ∩ C0 = ∅. Hence int(K(t, E)) = ∅. Since also
K(t, E) ∩ int(K(t, C1)) = ∅,

∂K(t, S) = ∂(K(t, E) ∪K(t, C1))

= K(t, E) ∪ ∂(K(t, C1)).

Furthermore,

∂K(t, S) = K(t, E) ∪K(t,D2)

by Theorem 3, and since D2 ⊆ E

∂K(t, S) = K(t, E).

6. Examples

Example 1. The first example of a BCA is commonly known as ordinary fractal
percolation with parameter p in dimension 2, where p ∈ [0, 1]. Consider the BCA
(A,M,N, (Wv)v∈V , u), with V = A{−N,... ,N}2 and A = {0, 1}. Let Pp denote the

associated probability measure. Fix v ∈ A{−N,... ,N}2 and write

Wv =
W1,M . . . WM,M

...
...

W1,1 . . . WM,1

where the Wij are random variables taking values in A. For fixed p, the probability
distribution of Wv is such, that the Wij are independent. So

Pp(Wv = w) =
∏

i,j∈{1,... ,M}
Pp(Wij = wij )
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Fig. 1. A realisation of K9 of ordinary fractal percolation (Example 1) with parameter
p = 0.75 and M = 2.

for all w ∈ A{1,... ,M}2 . Define the probability distribution of the Wij , i, j ∈
{1, . . . ,M}, by

Pp(Wij = 1) =
{
p if v00 = 1
0 if v00 = 0.

Let

T = A{−(N+1),... ,N+1}2

be the set of types. Let t ∈ T be the type with a 1 in the middle, i.e. t00 = 1 and
0’s elsewhere. Let C ⊆ T be

C = {s ∈ T : s00 = 1}
and define Kn := Kn(t, C). Note that C is a communicating class. By Theorem 2,
K1,K2, . . . converge to K Pp–almost surely.

Example 2. To introduce neighbour dependence in fractal percolation, we will fol-
low the same construction as in the previous example. However, the probability
measure Pp will be given by

Pp(Wij = 1) = 1 − (1 − p)n(v),

where n(v) = ∑
−N≤i,j≤N vij . Again,

T = A{−(N+1),... ,N+1}2



Fractal percolation and branching cellular automata 299

Fig. 2. A realisation of K9(t, S) of fractal percolation with neighbour dependence
(Example 2) with parameter p = 0.15, M = 2 and N = 1.

is the set of types and let S ⊆ T be

S = {s ∈ T : s00 = 1}.
In this example, S is not a communicating class for N ≥ 1, but

C = {s ∈ T : sij = 1 for some i, j ∈ {−(N + 1), . . . , N + 1}}
is. In fact, S ⊆ C and S≥ = C. Since C is aperiodic, we have by Theorem 2
that K1(t, S),K2(t, S), . . . almost surely converge to K(t, S) = K(t, C) for all
starting types t ∈ T .

Example 3. Consider a family of 2–dimensional BCA’s, parametrised by p with
0 < p < 1. Each member of the family is a BCA (A,M,N, (Wv)v∈V , u) with
A = {0, 1}, M = 2, N = 1 and V = A{−1,0,1}2 . The dependence on p is in the
distribution of the random variables Wv . The probability measure which describes
the BCA shall be denoted by Pp.

Define for v ∈ A{−1,0,1}2 n1,1(v) to be 2 if both the north–neighbour v0,1 of
v0,0 and the east–neighbour v1,0 are equal to 0, to be 1 if exactly one of them is 0
and to be 0 if none of them is 0. Written shortly, n1,1(v) = 2 − v1,0 − v0,1. In the
same spirit, define

n−1,−1(v) = 2 − v−1,0 − v0,−1

n−1,1(v) = 2 − v−1,0 − v0,1

n1,−1(v) = 2 − v1,0 − v0,−1.
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Fix v ∈ A{−1,0,1}2 and write

Wv = W−1,1 W1,1
W−1,−1 W1,−1

where the Wij are random variables taking values in A. For fixed p, the probability
distribution of Wv is such, that the Wij are independent. So

Pp(Wv = w) =
∏

i,j∈{−1,1}
Pp(Wij = wij )

for all w ∈ A{−1,1}2 . Define the probability distribution of the Wij , i, j ∈ {−1, 1},
by

Pp(Wij = 1) =
{
pnij (v) if v0,0 = 1
0 if v0,0 = 0.

For this example, it suffices to take A{−1,0,1}2 as set of types T instead of
A{−2,−1,0,1,2}2 , since one is still able to determine the distribution of the types
of the offspring, based on the type of the parent.

Let 0 denote the type in T consisting of only 0’s and let 1 denote the type
consisting of only 1’s. Define the following subsets of T = A{−1,0,1}2 .

S = {s ∈ T : s00 = 1}, C0 = {0}, C1 = {1}
D0 = {s ∈ T : s00 = 0}, D1 = C1

D2 = {s ∈ T : s00 = 1 and there are i, j ∈ {−1, 0, 1} such that sij = 0}.

Note that C0 and C1 are closed communicating classes, and that these are the
only closed ones. Note that by Theorem 2 we have K(t, S) = K(t, C1), since
C(S) ⊆ C(C1). The sets D0, D1 and D2 play the same role as in the previous
section:

D0 = {s ∈ T : s → C0, s � C1}
D1 = {s ∈ T : s → C1, s � C0}
D2 = {s ∈ T : s → C0, s → C1}.

Furthermore, the BCA is non-lattice, since if uk and ul are neighbouring letters in
u ∈ AZ

2
and uk ∈ D0, then uk = 0 and so ul /∈ D1. Condition on K(t, S) =

K(t, C1) having an empty intersection with ∂[0, 1]2. Then by Theorem 3 we have
∂K(t, S) = ∂K(t, C1) = K(t,D2) almost surely.
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Fig. 3. A realisation of K9(t, S) of the BCA in Example 3 with p = 1
2 .

Fig. 4. K9(t,D2) of the same realisation as in Figure 3.
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7. Product BCA

Let B = (A,M,N, (Wv)v∈A2N+1 , u) and B′ = (A′,M,N, (W ′
v)v∈(A′)2N+1 , u′) be

two BCA’s with the same substitution lengthM and interaction lengthN . Denote the
probability measure associated with B by P and the probability measure associated
with B′ by P′. We are going to define a product BCA with alphabet Â = A× A′.
For each n ≥ 0 and for each v = (v1, . . . , vn) ∈ Ân we write vi = (v

(1)
i , v

(2)
i )

where v
(1)
i ∈ A and v

(2)
i ∈ A′. We denote (v

(1)
1 , . . . , v

(1)
n ) ∈ An by v(1) and

(v
(2)
1 , . . . , v

(2)
n ) ∈ (A′)n by v(2). Similarly, for v = (. . . , v−1, v0, v1, . . . ) ∈ ÂZ

we write vi = (v
(1)
i , v

(2)
i ) and

v(1) = (. . . , v
(1)
−1, v

(1)
0 , v

(1)
1 , . . . ) v(2) = (. . . , v

(2)
−1, v

(2)
0 , v

(2)
1 , . . . ).

Define a sequence (Ŵv)v∈Â2N+1 of random words in ÂM by

P̂(Ŵv = w) = P(Wv(1) = w(1))P′(W ′
v(2)

= w(2))

for all v ∈ Â2N+1 and w ∈ ÂM . Furthermore, define û ∈ ÂZ by

û(1) = u,

û(2) = u′.

Then the BCA B̂ = (Â,M,N, (Ŵv)v∈Â2N+1 , û) is called the product BCA of
B and B′.

Each random variable and quantity concerning B′, respectively the product
BCA B̂ will have a ′, respectively a ˆ attached to it.

Let t ∈ T be the type of u0 in u, t ′ ∈ T ′ be the type of (u′)0 in u′ and t̂ ∈ T̂ be
the type of (û)0 in û. Hence t̂ (1) = t and t̂ (2) = t ′.

Let S ⊆ T , S′ ⊆ T ′ and let Ŝ ⊆ T̂ be defined by

Ŝ = {s ∈ T̂ ; s(1) ∈ S, s(2) ∈ S′}.
The proof of the following rather obvious lemma is left to the reader.

Lemma 9. Let S, S′ and Ŝ as above. Then

P̂(K̂n(t̂ , Ŝ) = ∅) = P × P′(Kn(t, S) ∩K ′
n(t

′, S′) = ∅).

8. Dimension

Let B be an arbitrary set in Rd and let {Ui}i≥1 be a countable collection of sets in
Rd . We say that {Ui}i≥1 is a δ–cover of B, if B ⊆ ⋃∞

i=1 Ui and diam(Ui) ≤ δ for
all i = 1, 2, . . . , where diam(Ui) denotes the diameter of the set Ui . Define

Hα
δ (B) = inf{

∞∑
i=1

(diam(Ui))
α : {Ui}i≥1 is a δ–cover of B}
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and let

Hα(B) = lim
δ↓0

Hα
δ (B),

which is called the α–dimensional Hausdorff measure of B. Define the Hausdorff
dimension of B as

dimH(B) = inf{α : Hα(B) = 0}.
Once more, for the sake of simplicity we will consider in this section a

1-dimensional BCA (A,M,N, (Wv)v∈A2N+1 , u), but all results extend easily to
the higher dimensional case (including Lemma 11 by Lyons). Let t be the type
of the letter u0 in u and assume that t is an element of a communicating class
C. Furthermore assume that the Perron–Frobenius eigenvalue λC is strictly larger
than 1. In the following, we will write Kn for Kn(t, C) and Zn for Zn(t, C). By
Theorem 2, the sets K0,K1, . . . converge almost surely to a limit K , which is non–
empty with positive probability by Theorem 1. Define the event ‘non–extinction’
as {Zn > 0 i.o.}.
Lemma 10. Conditioned on non–extinction, dimHK is a constant P–a.s.

Proof. Let

D(s) := dimH(K(s, C))

D := D(t) = dimH(K(t, C))

ds := sup{x : P(D(s) ≤ x) < 1}.
Let d = maxs∈C ds , and let s∗ be such that ds∗ = d. For any s ∈ C a scaled copy
of K(s∗, C) is a subset of K(s, C) with some positive probability, since s → s∗.
But then the probability that D(s) > D(s∗) − δ is positive for all δ > 0. Hence
ds = ds∗ = d for all s ∈ C.

Define for ε > 0 and s ∈ C,

ρs(ε) := P(D(s) ≥ d − ε).

Note that ρs(ε) > 0 for all ε > 0 and for all s ∈ C. So

ρ(ε) := min{ρs(ε) : s ∈ C}
is strictly larger than 0.

Fix ε > 0. Then for all n,

P(D ≥ d − ε|Fn) ≥ ρ(ε)

almost surely on {Zn > 0}. To see this, let ω ∈ {Zn > 0} and note that P(D ≥ d −
ε|Fn)(ω) = P(D ≥ d−ε|σn(u) = v), where v = σn(u)(ω). Sinceω ∈ {Zn > 0},
at least one of the letters v0, . . . , vM−n−1 has a type s ∈ C. Conditioned on σn(u)

being equal to v, K(t, C) contains a copy of K(s, C) scaled by a factor M−n and
so P(D ≥ d − ε|σn(u) = v) ≥ ρs(ε) ≥ ρ(ε).
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Then also on {Zn > 0 for all n} we have

P(D ≥ d − ε|Fn) ≥ ρ(ε)

for all n almost surely. By Lévy’s 0–1 law,

P(D ≥ d − ε|Fn) → 1{D≥d−ε} a.s.

Hence, on {Zn > 0 for all n} we have 1{D≥d−ε} = 1 a.s., which means that

P(D ≥ d − ε|Zn > 0 for all n) = 1.

Letting ε → 0, we see that P(D = d|Zn > 0 for all n) = 1.

In this section we will denote by (A′,M,N, (W ′
v)v∈(A′)2N+1 , u′) ordinary frac-

tal percolation with parameter p (see Example 1). So A′ = {0, 1} and u′ =
(. . . , 0, 1, 0, . . . ) ∈ (A′)Z. All quantities and random variables concerning frac-
tal percolation will be written with a tilde. Recall that K ′

n = K ′
n(t

′, C′) and
K ′ = K ′(t ′, C′), where t ′ is the type of u′0 in u′ and C′ = {s ∈ T ′ : sN+1 = 1}.

The following lemma due to Russell Lyons ([9], p. 933) gives a lower bound
for the Hausdorff dimension of a non-random closed set B in [0, 1].

Lemma 11 (Lyons). Let B be a closed set in [0, 1]. If P′
p(B ∩K ′ �= ∅) > 0, then

dimHB ≥ − logp
logM .

Consider the product BCA (Â,M,N, (Ŵv)v∈Â2N+1 , û) of our initial BCA with

fractal percolation with parameter p. So Â = A× A′ = A× {0, 1} and û(1) = u,
û(2) = u′. All quantities and random variables concerning the product BCA will
be written with a hat. We will write K̂n = K̂n(t̂ , Ĉ) and K̂ = K̂(t̂ , Ĉ), where t̂ is
the type of û0 in û and Ĉ is the communicating class in T̂ which contains t̂ .

Define

Ŝ = {s ∈ T̂ : s(1) ∈ C, s(2) ∈ C′}.

Note that Ŝ does not need to be a communicating class. We have Ĉ ⊆ Ŝ and from
each s ∈ Ŝ we can reach t̂ . This implies that if s is a type in Ŝ\Ĉ, then t̂ � s and
therefore Kn(t̂, Ŝ) = Kn(t̂, Ĉ) for all n ≥ 0 almost surely.

Let M̂p = (m̂st )s,t∈T̂ be the mean offspring matrix of the product BCA.

Lemma 12. For the Perron–Frobenius eigenvalue λ̂p of M̂p restricted to Ĉ we
have

λ̂p = p λ,

where λ = λC is the Perron–Frobenius eigenvalue of M restricted to the commu-
nicating class C.



Fractal percolation and branching cellular automata 305

For the proof we need the following proposition due to Furstenberg (cf. [11]).

Proposition 2 (Furstenberg). Let A = (aij )1≤i,j≤n be a non–negative, irre-
ducible n×n–matrix and letB = (bij )1≤i,j≤r be a non–negative, irreducible r×r–
matrix, where 1 ≤ r ≤ n. Let I1, . . . , Ir be a partition of the index set {1, . . . , n},
where all sets Ik are non–empty. Assume that for A, B and {Ik : k = 1, . . . , r} the
following relation holds. For all 1 ≤ i, j ≤ r we have

for all l ∈ Ii
∑
k∈Ij

alk = bij .

Then the Perron–Frobenius eigenvalues of the matrices A and B are the same.

Proof. Let λA and λB be the Perron–Frobenius eigenvalues of A and B and let vA
and vB be associated left eigenvectors with all entries strictly positive. Furthermore,
let wT

B be a right eigenvector associated with λB having all entries strictly positive.
Define

R = (rij )1≤i≤n, 1≤j≤r

by

rij =
{

1 if i ∈ Ij
0 else.

Then AR = RB. Define x ∈ Rr as x = vAR. Since {I1, . . . , Ir} is a partition, all
entries of x are strictly positive. Then

xB = vARB = vAAR = λAvAR = λAx,

and therefore λA is an eigenvalue of B.
Furthermore, we have

λAxw
T
B = xBwT

B = λBxw
T
B.

Since both x and wB have all entries strictly positive, we conclude that λA = λB .

Proof (of Lemma 12). Consider the partition {Is}s∈C of Ĉ, where

Is = {v ∈ Ĉ : v(1) = s}.
Then we claim that for all s, t ∈ C and for all v ∈ Is∑

w∈It
m̂vw = pmst .

To see this define for t̂ ∈ T̂ , S ⊆ T and S′ ⊆ T ′

Ĵ (t̂ , S, S′) = {k : 0 ≤ k < M, the type v of (σ̂ (û))k
has v(1) ∈ S and v(2) ∈ S′},
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where the type of û0 in û is t̂ . So we have

Ĵ (t̂ , S, S′) = Ĵ (t̂ , S, T ′) ∩ Ĵ (t̂ , T , S′).

Recall that for t ∈ T and S ⊆ T

Jn(t, S) = {k : 0 ≤ k ≤ Mn − 1, the type of (σ (u)n)k is an element of S},
where the type of u0 in u is t .

Writing Z(s, t) for Z1(s, {t}) and J (s, t) for J1(s, {t}), we have for all v ∈ Is∑
w∈It

m̂vw =
∑
w∈It

Êp(Ẑ(v,w))

= Êp(Ẑ(v, It ))

= Êp(

M−1∑
k=0

1
Ĵ (v,t,C′)(k))

=
M−1∑
k=0

Êp(1Ĵ (v,t,T ′)(k)1Ĵ (v,T ,C′)(k))

=
M−1∑
k=0

E(1J (v(1),t)(k))E′
p(1J ′(v(2),C′)(k))

= pE(Z(s, t))

= pmst .

By Proposition 2, the Perron–Frobenius eigenvalues of M̂p restricted to Ĉ and
pM restricted to C are the same. Therefore, λ̂p = p λ.

Lemma 13. If p > 1
λ

, then

P × P′
p (K ∩K ′ �= ∅) > 0.

Proof. By Lemma 9 we have

P̂p(K̂n = ∅) = P̂p(K̂n(t̂ , Ĉ) = ∅)
= P̂p(K̂n(t̂ , Ŝ) = ∅)
= P × P′

p(Kn(t, C) ∩K ′
n(t

′, C′) = ∅)
= P × P′

p(Kn ∩K ′
n = ∅)

for all n = 0, 1, . . . . Since {K̂n = ∅} ↓ {K̂ = ∅} and similarly {Kn ∩K ′
n = ∅} ↓

{K ∩K ′ = ∅}, we have

P̂p(K̂ = ∅) = P × P′
p(K ∩K ′ = ∅).

If p > 1
λ

, then the Perron–Frobenius eigenvalue λ̂p = pλ is strictly larger than 1.
So by Theorem 1,

P̂p(K̂ �= ∅) = P × P′
p(K ∩K ′ �= ∅) > 0.
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Our main theorem specifies the Hausdorff dimension of the limit set K of our
BCA.

Theorem 4. Let K = K(t, C) be a set generated by a BCA with t ∈ C and C a
communicating class with λC > 1. Conditioned on non–extinction, we have

dimHK = log λ

logM
P–a.s.

Proof. The easy part of the proof is showing that dimHK ≤ log λ
logM a.s. Fix ε > 0.

By Theorem 1 we can find a constant c such that

P(Zn ≤ c λn for all n) ≥ 1 − ε.

Hence

P(Kn can be covered with less than c λn

nth-level M-adic intervals, for all n ) > 1 − ε.

This implies that

P(Hα(K) < ∞) > 1 − ε,

where α = log λ
logM and Hα(K) is the α-dimensional Hausdorff measure of K . Since

this holds for all ε, we conclude that dimHK ≤ log λ
logM a.s.

To prove the converse, dimHK ≥ log λ
logM a.s., we will use the previous lemma’s.

Let ε > 0 andp = p(ε) = 1
λ
+ε. By Lemma 13 we have P×P′

p (K∩K ′ �= ∅) > 0.
This implies by Fubini’s theorem that the set

B = {ω : P′
p(K(ω) ∩K ′ �= ∅) > 0}

has positive P–measure.
By Lemma 11, dimHK ≥ − logp

logM with positive probability. Since conditioned
on non-extinction dimHK is a constant a.s. (Lemma 10), we have in this case
that dimHK ≥ − logp

logM a.s. If we let ε → 0, then p(ε) → 1
λ

and so we have

dimHK ≥ log λ
logM a.s., conditioned on non-extinction.

Example 4. Consider fractal percolation with parameter p in dimension 2 (Exam-
ple 1). Recall that Kn := Kn(t, C), where

C = {s ∈ T : s00 = 1}
and t is the type with a 1 in the middle and 0’s elsewhere. By Proposition 2, the
largest eigenvalue of Mp is equal to pM2. Hence by Theorem 4, we have that
conditioned on non–extinction

dimHK = 2 + logp

logM
a.s.
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Example 5. Consider the BCA described in Example 3, parametrised by p. Recall
that

S = {s ∈ T : s00 = 1}
and

D2 = {s ∈ T : s00 = 1 and there are i, j ∈ {−1, 0, 1} such that sij = 0}.
Conditioned on K(t, S) being non-empty and having an empty intersection with
∂[0, 1]2, we have almost surely

dimHK(t, S) = 2

dimH ∂K(t, S) = log λp
logM

,

where λp is the Perron–Frobenius eigenvalue associated with D2.
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