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Abstract. We consider the flow of a stochastic differential equation on d-dimensional Eu-
clidean space. We show that if the Lie algebra generated by its diffusion vector fields is
finite dimensional and solvable, then the flow is conjugate to the flow of a non-autonomous
random differential equation, i.e. one can be transformed into the other via a random diffeo-
morphism of d-dimensional Euclidean space. Viewing a stochastic differential equation in
this form which appears closer to the setting of ergodic theory, can be an advantage when
dealing with asymptotic properties of the system. To illustrate this, we give sufficient criteria
for the existence of global random attractors in terms of the random differential equation,
which are applied in the case of the Duffing-van der Pol oscillator with two independent
sources of noise.

Introduction

In this paper we try to answer the following basic question: when is a stochastic
differential equation cohomologous to a non-autonomous random ordinary differ-
ential equation? In other words: under which conditions can one find a random
coordinate change on the state space which transforms the flow generated by the
stochastic differential equation into the flow of a non-autonomous random one?

Let us first state this problem in a little more precise terms, for systems on Wiener
space (�,F, P ) with an m-dimensional Wiener process W and the canonical shift
θt on � by time t which is P -ergodic for t �= 0. Suppose f0, · · · , fm are smooth
vector fields in Rd and let φ = (φt )t∈R denote the (possibly only local) flow of the
stochastic differential equation

dxt = f0(xt ) dt +
m∑
i=1

fi(xt ) ◦ dWi
t (1)
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A non-autonomous random differential equation is given by a smooth random
vector field g(·, x), x ∈ Rd , through

dxt = g(θt ·, xt ) dt. (2)

Then our question asks for a random diffeomorphism � of the state space Rd such
thatφ and the (local) flowχ generated by (2) are related by the conjugation equation

� ◦ θt χt �
−1 = φt , t ∈ R. (3)

Why could one be interested in having a relationship such as (3)? For our initial
aims, the reason was this. While the framework of the treatment of (1) is stochastic
analysis, (2), describing a motion along a stationary vector field, fits better into the
methodology of ergodic theory. Fortunately, the cohomology relation (3) preserves
asymptotic invariants such as Lyapunov exponents, rotation numbers, or invariant
subspaces such as Oseledets spaces, invariant manifolds, or random attractors (see
Arnold [Arn98]). So, if aspects of ergodic theory are involved in the study of
asymptotic properties of (1), it could be much simpler to look at (2) instead, and
then let � do the rest of the work. In a simpler setting, this concept has already
been used in [Imk98] to study the existence of global random attractors of systems
like the randomly perturbed Duffing-van der Pol oscillator, or the Lorenz equation.
We shall give another illustration of this idea in section 4 below, where we study
the existence of global random attractors, and consider the Duffing-van der Pol
oscillator with two different sources of noise as another example.

The answer we shall give in this paper to the conjugation problem is this:
we show that if the Lie algebra L generated by f1 · · · , fm is solvable and finite
dimensional, then there is a random diffeomorphism � solving (3). This reminds
somewhat the generalization of the well known Doss-Sussmann method of solving a
stochastic differential equation through an associated ordinary differential equation,
given by Yamato [Yam79], Kunita [Kun80] and Krener and Lobry [Kre81]. In fact,
some algebraic aspects of the algorithm to be described, are similar to the ones
used in the literature. This algorithm, which is our principal tool to derive the main
results, reduces gradually the algebraic complexity of the Lie algebra L, and this
way creates a chain of random diffeomorphisms the composition of which yields
�. The algorithm had to be taylor made for the central purposes of ergodic theory,
however. They can be expressed by requiring that the noise terms of the “remainder”
stochastic differential equations updated in each step, have to be made stationary.
To achieve this goal, we use the following simple observation. If X, Y are smooth
stationary semimartingales, then the generally non-stationary process X ◦ dY can
be made stationary by passing to its moving average process

e−t

∫ t

−∞
es Xs ◦ dYs, t ∈ R.

The paper is organized as follows.
In section 1 we collect some auxiliary results concerning stationary semimartin-

gales, and prove some algebraic identities to be used crucially in the reduction al-
gorithm. The latter is first described in the relatively simple framework of nilpotent
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Lie algebra in section 2, and leads to the conjugation theorem (Theorem 2.1). In
section 3 we pass to the case of a solvable Lie algebra L. In this framework the
reduction algorithm turns out to be even formally simpler. Yet, the stochastic dif-
ferential equations to be solved in each step become gradually more involved, and
are much less explicit and transparent. In section 4, we first discuss some general
sufficient conditions for the existence of global random attractors in the situation of
the preceding sections. We finally consider a concrete problem, the Duffing-van der
Pol oscillator with two independent linear sources of noise: multiplicative noise on
both position and velocity. In this simple case the Lie algebra of the linear diffusion
vector fields is solvable, but not nilpotent.

We expect that more asymptotic properties of random differential equations
given by stochastic differential equations become treatable via conjugation. One
example promises to be local linearization of random dynamical systems, as de-
scribed in the theorem by Hartman-Grobman: for non-autonomous random dif-
ferential equations Wanner [Wan93] derived local linearization results, which are
preserved by conjugation.

We restrict our attention to the case of nilpotent resp. linear solvable Lie algebras
in order to see explicitly the dependence of the conjugation in ω, which would be
not so clear in the case of nonlinear solvable Lie algebras. We also remark that it
seems possible to obtain a conjugation result using an implicit technique without
any assumption on the Lie algebra generated by the diffusion vector fields. At the
moment however this implicit technique does not provide enough information about
the nature of the conjugation (e.q. temperedness) to be used for proving existence
of attractors.

Notations and preliminaries

Our basic probability space is the m−dimensional canonical Wiener space (�,F,
P ), enlarged such as to carry an m−dimensional Wiener process indexed by R.

More precisely, � = C(R,Rm) is the set of continuous functions on R with values
in Rm, F the σ−algebra of Borel sets with respect to uniform convergence on
compacts of R, P the probability measure on F for which the canonical Wiener
process Wt = (W 1

t , ...,W
m
t ), t ∈ R, satisfies that both (Wt )t≥0 and (W−t )t≥0 are

usualm−dimensional Brownian motions. The natural filtration {Ft
s = σ(Wu−Wv :

s ≤ u, v ≤ t) : R � s ≤ t ∈ R} of W is assumed to be completed by the
P−completion of F. For t ∈ R, let θt : � → �,ω �→ ω(t + ·) − ω(t), the shift
on � by t. It is well known that θt preserves Wiener measure P for any t ∈ R and
is even ergodic for t �= 0. Hence (�,F, P , (θt )t∈R) is an ergodic metric dynamical
system (see Arnold [Arn98]). As usual, we use a “◦” to denote Stratonovich integrals
with respect to Wiener process.

For a random vector X, we denote by PX the law of X with respect to P . ∇
is used as a symbol for the gradient of vector fields on Rd . Lie brackets between
vector fields will be denoted by the usual symbol [·, ·], scalar products in Rm by
〈., .〉.
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1. Stationary stochastic integrals and some algebra

It is well known that the Wiener process can be made stationary by just adding a
suitable drift. This way one obtains the stationary Ornstein-Uhlenbeck process. To
be more precise, the sde

dzt = dWt − zt dt

has the stationary solution

zt = e−t

∫ t

−∞
esdWs.

Now suppose thatX andY are stationary semimartingales of the Brownian filtration.
Then the stochastic integralY ◦dX need not be stationary, just as the Wiener process.
By passing to the same moving average process as above, we may add a drift to the
stochastic integral to make it stationary. We will briefly elaborate on this, and then
consider particular cases of semimartingales of this type, generated by multiple
integrals of the Ornstein-Uhlenbeck process.

Forp > 1, x ≥ 0 letFp(x) = [ln(x+1)]p.ThenFp is a moderate function (see
for example Revuz, Yor [Rev99]). Denote by S the set of continuous semimartin-
gales X of the Brownian filtration with decomposition dXt = 〈at , dWt 〉 + btdt

such that X, a, b are stationary, and such that

E(Fp( sup
0≤t≤1

|at |)) < ∞, E(Fp( sup
0≤t≤1

|bt |)) < ∞, E(Fp( sup
0≤t≤1

|Xt |)) < ∞

for all p > 1. Clearly, an Ornstein-Uhlenbeck process belongs to the class S.

Lemma 1.1. Let X, Y ∈ S with canonical (forward) decomposition dX =
〈a, dW 〉 + b dt, dY = 〈c, dW 〉 + d dt ,

Zt = e−t

∫ t

−∞
es Ys ◦ dXs,

t ∈ R. Then Z ∈ S, satisfies

E(Fp( sup
0≤t≤1

|Zt |)) < ∞, p > 1,

the sde

dZt = Yt ◦ dXt − Ztdt,

and has the (forward) decomposition

dZt = 〈Ytat , dWt 〉 + (
1

2
〈at , ct 〉 + Ytbt − Zt) dt.
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Proof . In the following C will denote a constant varying from line to line and
depending only on p unless stated explicitely.

Once we know that Z0 is well defined, stationarity of Z is automatic from the
following equation, which is a consequence of the stationarity of X and Y

Z0 ◦ θt =
∫ 0

−∞
esYs+t ◦ dXs+t = e−t

∫ t

−∞
esYs ◦ dXs = Zt .

Let us first show that

E(Fp(|
∫ 1

0
es Ys ◦ dXs |)) < ∞. (4)

First of all, we have the decomposition∫ 1

0
es Ys ◦ dXs =

∫ 1

0
es Ys〈as, dWs〉 +

∫ 1

0
es[Ysbs + 1

2
〈as, cs〉]ds.

Hence, using the inequality of Burkholder, Davis and Gundy for the moderate
function Fp (see Revuz, Yor [Rev99], p. 170) we have

E(Fp(|
∫ 1

0
es Ys ◦ dXs |))

≤ C(E(Fp(|
∫ 1

0
es Ys〈as, dWs〉|)) + E(Fp(|

∫ 1

0
es[Ysbs + 1

2
〈as, cs〉]ds|)))

≤ C (E(Fp([
∫ 1

0
|Ys |2|as |2ds]

1
2 )) + E(Fp(|

∫ 1

0
es[Ysbs + 1

2
〈as, cs〉]ds|)))

≤ C(E(Fp( sup
0≤t≤1

|Yt |)) + E(Fp( sup
0≤t≤1

|at |)) + E(Fp( sup
0≤t≤1

|bt |)) + E(Fp( sup
0≤t≤1

|ct |))).

Now we are able to prove (4). To see next that Z0 is well defined, note that

|Z0| ≤
∞∑
n=1

e−n |
∫ 1

0
es Ys ◦ dXs | ◦ θ−(n+1).

So by the lemma of Borel-Cantelli, Z0 will be well defined, if we can show that

∞∑
n=1

P(|
∫ 1

0
es Ys ◦ dXs | > eαn) < ∞

for some 0 < α < 1. By definition of Fp, this amounts to show

∞∑
n=1

P(Fp(|
∫ 1

0
es Ys ◦ dXs |) > n) < ∞.

This in turn is an obvious consequence of (4). Now the SDE valid for Z as well as
the semimartingale decomposition of Z are obvious. Moreover, since Fp(xy) ≤
2p max(Fp(x), Fp(y)) for x, y ≥ 0, we may restrict to the verification of

E(Fp( sup
0≤t≤1

|Zt |)) < ∞, p > 1. (5)



214 P. Imkeller, C. Lederer

Indeed, we have

E(Fp( sup
0≤t≤1

|Zt |)) (6)

≤ C
{
E(Fp(Z0)) + E(Fp( sup

0≤t≤1
|
∫ t

−∞
es Ys〈as, dWs〉|))

+ E(Fp(

∫ 1

−∞
es |[Ysbs + 1

2
〈as, cs〉]|ds))

}
(7)

≤ C{E(Fp(Z0)) + E(Fp([
∫ 1

−∞
e2s |Ys |2|as |2ds]

1
2 ))

+ E(Fp(

∫ 1

−∞
es |[Ysbs + 1

2
〈as, cs〉]|ds))

}
. (8)

We proceed to estimate the first term in the last line of (6), the second one being
treated similarly. We have with some 0 < α < 1, a constant C(α) varying from
line to line and q > p

E(Fp([
∫ 1

−∞
e2s |Ys |2|as |2ds]

1
2 ))

= E(Fp(

∞∑
n=0

e−n [
∫ 1

0
e2s |Ys |2|as |2ds]

1
2 ◦ θ−(n+1)))

≤ 1 +
∞∑
l=1

P(Fp(

∞∑
n=0

e−n [
∫ 1

0
e2s |Ys |2|as |2ds]

1
2 ◦ θ−(n+1)) > l)

≤ 1 +
∞∑
l=1

P(

∞∑
n=0

e−n [
∫ 1

0
e2s |Ys |2|as |2ds]

1
2 ◦ θ−(n+1) > el

1
p − 1)

≤ 1 + C(α)

∞∑
l=1

∞∑
n=0

P([
∫ 1

0
e2s |Ys |2|as |2ds]

1
2 > C eαn+l

1
p
)

≤ 1 + C(α)

∞∑
l=1

∞∑
n=0

1

(αn + l
1
p )q

E(Fq([
∫ 1

0
e2s |Ys |2|as |2ds]

1
2 ))

≤ 1 + C(α)E(Fq([
∫ 1

0
e2s |Ys |2|as |2ds]

1
2 )).

Now, finally, the same arguments as used for (4) yield (5). This finishes the proof.
��

In the construction of stationary diffeomorphisms which describe the conjuga-
tion of the flows in the following section, a recursively defined family of processes
of the above type will play an essential role. To describe them, we use the following
notation. Let

+0 = {1, · · · ,m},
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and recursively for n ∈ N

+n =
⋃
k≥2

+k
n−1.

Let then for i ∈ +0, t ∈ R

z0
i (t) = e−t

∫ t

−∞
es dWi

s .

To set up the recursion, suppose for i ∈ +n stationary processes zni have been
defined. Let i = (i1, · · · , ik) ∈ +n+1 be given, with i1, · · · , ik ∈ +n. In this case
we also denote |i| = k. Then we define for t ∈ R

zn+1
i (t) = e−t

∫ t

−∞
es

k−1∏
j=1

znij (s) ◦ dznik (s).

For obvious reasons we call these integrals stationary multiple Ornstein-Uhlenbeck
integrals. According to Lemma 1.1 and by induction on n, they are elements of the
class S.

For the algorithm of reduction of algebraic complexity to be discussed in the
following section, we shall need some identities concerning the Lie algebra gen-
erated by the diffusion vector fields of a stochastic system. It is the aim of the
following considerations to provide them.
To this end we have to introduce some more notation. A vector field A : Rd → Rd

is called complete if it generates a global flow (�A
t )t∈R. In this case we set

exp(tA) := �A
t .

(This notation is consistent since �tA
1 = �A

t .) For smooth complete vector fields
A,B the Lie bracket [A,B] is defined by

[A,B](x) = d

dt

∣∣∣∣
t=0

(
exp(tA)′(x)

)−1
B ◦ exp(tA)(x).

We define recursively the n-fold Lie brackets [A,B]n by

[A,B]n =
{

B, n = 0,
[A, [A,B]n−1], n ∈ N.

Let us briefly recall the notion of nilpotence. If (L, [·, ·]) is a Lie algebra, let

L1 = [L,L] = {[A,B] : A,B ∈ L},
Ln+1 = [L,Ln],

n ∈ N. Then L is called nilpotent if there exists n such that Ln = 0.
Suppose now that L is generated by finitely many smooth complete vector fields
A1, . . . , Am. If L is nilpotent then L is obviously finite dimensional. In this case
it is well known that every element of L is complete (see e.g. [Pal57]).
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Lemma 1.2. Let A,B : Rd → Rd be smooth complete vector fields and assume
that the Lie algebra generated by A and B is nilpotent. Let (�t )t∈R denote the flow
generated by A. Then we have

�′
t
−1

B ◦ �t =
∞∑
n=0

tn

n!
[A,B]n, t ∈ R.

Proof . Let

U(t, x) = �′
t
−1

(x) B
(
�t(x)

)
,

V (t, x) =
∞∑
n=0

tn

n!
[A,B]n(x) (t ∈ R, x ∈ Rd).

Then we have U(0, ·) = B = V (0, ·) and furthermore

∂

∂t
U(t, x) = ∂

∂s

∣∣∣∣
s=0

�′
t+s(x)

−1 B(�t+s(x))

= ∂

∂s

∣∣∣∣
s=0

�′
s(x)

−1 �′
t (�s(x))

−1B (�t(�s(x)))

= ∂

∂s

∣∣∣∣
s=0

φ′
s(x)

−1 U(t,�s(x))

= [A,U(t, ·)](x)
and

∂

∂t
V (t, x) =

∞∑
n=0

tn

n!
[A,B]n+1(x) = [A,V (t, ·)](x).

This implies U = V . ��

Lemma 1.3. Let A,B : Rd → Rd be smooth complete vector fields and assume
that the Lie algebra generated by A,B is nilpotent. Then we have

∂

∂λ
exp(A + λB) = B ◦ exp(A + λB) + exp(A + λB)′

∞∑
n=1

cn [A,B]n

where cn = 1
(n+1)! − 1

n! , n ∈ N.

Proof . For λ ∈ R let �λ denote the flow of ẋ = A(x)+ λB(x). Fix x ∈ Rd . Then

d

dt

∂

∂λ
�λ

t (x) = ∂

∂λ

(
A(�λ

t (x)) + λB(�λ
t (x))

)
= (

A′(�λ
t (x)) + λB ′(�λ

t (x))
) ∂

∂λ
�λ

t (x) + B(�λ
t (x))

and ∂
∂λ
�λ

t (x)
∣∣
t=0 = 0.
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Since the fundamental solution of

Ż = (
A′(�λ

t (x)) + λB ′(�λ
t (x))

)
Z

is given by t �→ �λ
t
′
(x), the variations of constants formula and the above lemma

give us

∂

∂λ
�λ

t (x) = �λ
t

′
(x)

∫ t

0
�λ

s

′
(x)−1B(�λ

s (x)) ds

= �λ
t

′
(x)

∫ t

0

∞∑
n=0

sn

n!
[A,B]n(x) ds.

According to the above lemma we have furthermore

B(�λ
t (x)) = �λ

t

′
(x)B(x) + �λ

t

′
(x)

∞∑
n=1

tn

n!
[A,B]n(x).

Hence

∂

∂λ
exp(A + λB)(x)

= ∂

∂λ
�λ

1(x)

= �λ
1
′
(x)B(x) + �λ

1
′
(x)

∞∑
n=1

1

(n + 1)!
[A,B]n(x)

= B(�λ
1(x)) − �λ

1
′
(x)

∞∑
n=1

1

n!
[A,B]n(x) + �λ

1
′
(x)

∞∑
n=1

1

(n + 1)!
[A,B]n(x)

= B (exp(A + λB)(x)) + exp(A + λB)′(x)
∞∑
n=1

(
1

(n + 1)!
− 1

n!

)
[A,B]n(x).

��

2. The case of diffusion vector fields with nilpotent Lie algebra

Let A0, . . . , Am be smooth vector fields on Rd . We consider the stochastic differ-
ential equation

dxt = A0(xt ) dt +
m∑
i=1

Ai(xt ) ◦ dWi
t . (9)

The aim of the following considerations is to construct a random diffeomorphism
� and a random vector field g : � × Rd → Rd such that the flow (χt )t∈R of the
random differential equation

dyt = g(θt ·, yt ) dt (10)
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is conjugate to the flow (φt )t∈R of (9) by virtue of �, i.e. we have for t ∈ R

φt = �(θt , ·) ◦ χt ◦ �−1 (11)

In this section we suppose in addition that the diffusion vector fields A1, . . . , Am

are complete and that the Lie algebra generated by these vector fields is nilpotent.
This will allow for a rather explicit construction of a natural finite family of random
diffeomorphisms which compose to yield the desired�. In the next section we shall
work under the weaker assumption of solvability of the Lie algebra. Our algorithm
will then yield � as a finite composition of diffeomorphisms as well, but with less
transparent structure.

We shall now describe an algorithm by which the complexity of the Lie alge-
bra of the diffusion vector fields is gradually reduced. In this algorithm we shall
encounter the stationary multiple Ornstein-Uhlenbeck integrals of the preceding
section, and an analogous family of Lie brackets of the diffusion vector fields.

To define it, we use the notation of the preceding section. For i ∈ +0, A0
i = Ai

is just the diffusion vector field appearing in the ith diffusion term of (9). If for
i ∈ +n, A

n
i is defined, and we pick i = (i1, · · · , ik) ∈ +n+1, we let

An+1
i = [An

i1
, . . . , [Aik−1 , Aik ] . . .].

We begin by rewriting (9) with stationary drift and driving processes. Let z0
i

be the stationary Ornstein-Uhlenbeck processes corresponding to Wi , 1 ≤ i ≤ m.

Defining

B0
t = A0 +

m∑
i=1

Ai z
0
i (t) t ∈ R, (12)

we may write (9) as

dxt = B0
t (xt ) dt +

∑
i∈+0

A0
i (xt ) ◦ dz0

i (t). (13)

Note that the vector field B0 is stationary in t .
Now let

�0 = exp(
∑
i∈+0

z0
i (0) A

0
i ).

Then �0
t = � ◦ θt , t ∈ R is a stationary process of random diffeomorphisms of

Rd . Lemma 1.3 allows us to compute the generator of the flow �0. The formally
infinite sums we shall write in the sequel are in fact finite, due to the hypothesis of
nilpotence for the Lie algebra of the diffusion vector fields. We have for x ∈ Rd

d�0
t (x) (14)

=
∑
i∈+0

∂

∂ti
exp

( ∑
j∈+0

tjA
0
j

)
(x)

∣∣∣∣∣∣
tj=z0

j (t), j∈+0

◦ dz0
i (t)
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=
∑
i∈+0

{
A0
i ◦ exp

( ∑
j∈+0

z0
j (t)A

0
j

)
(x)

+ exp
( ∑
j∈+0

z0
j (t)A

0
j

)′
(x)

∞∑
n=1

cn [
∑
j∈+0

z0
j (t)A

0
j , A

0
i ]n(x)

}
◦ dz0

i (t)

=
∑
i∈+0

A0
i (�

0
t (x)) ◦ dz0

i (t)

+ (�0
t )

′(x)
∑
i∈+0

∞∑
n=1

cn [
∑
j∈+0

z0
j (t)A

0
j , A

0
i ]n(x) ◦ dz0

i (t).

Now recall the definition of iterated Lie brackets, and note that they match the
notation +1. Recall also the Definition of the stationary processes z1

j , j ∈ +1, and
note that

z0
j1
(t) . . . z0

jk−1
(t) ◦ dz0

jk
(t) = ◦ dz1

j (t) + z1
j (t)dt,

(j1, . . . , jk ∈ +0, j = (j1, . . . , jk) ∈ +1).

Hence we have for n ≥ 1∑
i∈+0

[
∑
j∈+0

z0
j (t)A

0
j , A

0
i ]n(x) ◦ dz0

i (t)

=
∑
i∈+0

∑
j1,...,jn∈+0

[A0
j1
, . . . , [A0

jn
, A0

i ] . . .](x) z0
j1
(t) . . . z0

jn
(t) ◦ dz0

i (t)

=
∑

j∈+1,|j |=n+1

A1
j (x) ◦ (dz1

j (t) + z1
j (t)dt).

So we can rewrite (14) as

d�0
t (x) =

∑
i∈+0

A0
i (�

0
t (x)) ◦ dz0

i (t) (15)

+ (�0
t )

′(x)
∑
i∈+1

c|i| A1
i (x) ◦ (dz1

i (t) + z1
i (t)dt).

In order to solve (13) we use the ansatz

xt = �0
t (yt ),

where y is an unknown (forward) semimartingale. This yields

dxt = ( ◦ d�0
t )(yt ) + (�0

t )
′(yt ) ◦ dyt (16)

=
∑
i∈+0

A0
i (�

0
t (yt )) ◦ dz0

i (t)

+(�0
t )

′(yt )
∑
i∈+1

c|i| A1
i (yt ) ◦ (dz1

i (t) + z1
i (t)dt) + (�0

t )
′(yt ) ◦ dyt
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=
∑
i∈+0

A0
i (xt ) ◦ dz0

i (t)

+(�0
t )

′(yt )
{ ∑
i∈+1

c|i| A1
i (yt ) ◦ (dz1

i (t) + z1
i (t)dt) + dyt

}
.

Comparing this equation with (13) we see that x is a solution of (13) iff y is a
solution of

B0
t ◦�0

t (yt ) dt = (�0
t )

′(yt )
{ ∑
i∈+1

c|i| A1
i (yt ) ◦ (dz1

i (t)+ z1
i (t)dt)+ dyt

}
. (17)

This equation is equivalent with

dyt = B1
t (yt )dt −

∑
i∈+1

c|i|A1
i (yt ) ◦ dz1

i (t), (18)

where the stationary vector field B1 is defined by

B1
t (y) = (�0

t )
′(y)−1B0

t ◦ �0
t (y) −

∑
i∈+1

c|i|A1
i (y)z

1
i (t).

Now let φ0 be the flow of (13) and denote the flow of (18) by φ1. Suppose that
x0 = ξ ∈ Rd . Then we have

φ0
t (ξ ) = xt = �0

t (yt ) = �0
t ◦ φ1

t (y0) = �0
t ◦ φ1

t ◦ (�0
0)

−1(ξ)

Since �0 is stationary this means that φ1 is conjugate to φ0 via �0
0, i.e.

φ0
t = (�0 ◦ θt ) ◦ φ1

t ◦ (�0)−1, t ∈ R. (19)

Note that equation (18) has the same structure as the original equation (13). In
particular the Lie algebra generated by A1

i , i ∈ +1, is again nilpotent since the
vector fields A1

i lie in L1 = [L,L], where L denotes the Lie algebra generated
by A0

i , i ∈ +0.
So, if L is nilpotent of degree n (i.e. Ln+1 = {0}) it is clear that we have just to

repeat this reduction algorithm n times to arrive at a stationary random differential
equation whose flow is conjugate to the flow φ0 of the original sde (13).

For the sake of completeness we summarize the general reduction step. In the
nth step we consider a flow φn which has the generator

dφn
t (x) = Bn

t [φn
t (x)] dt −

∑
i∈+n

ani A
n
i [φn

t (x)] ◦ dzni (t) (20)

where Bn is a stationary vector field and ani , i ∈ +n, are given real numbers (for
n = 0 we have a0

i = 1 andB0 is given by (12)). Define the (n+1)st diffeomorphism
�n of Rd by the formula

�n = exp(
∑
i∈+n

ani A
n
i z

n
i (0)).
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Define the real numbers an+1
i , i ∈ +n+1, by

an+1
i = −c|i|

|i|∏
j=1

anij , i = (i1, . . . , i|i|) ∈ +n+1

and the stationary vector field Bn+1 by

Bn+1
t (x) = (�n)′(θt ·, x)−1Bn

t ◦ �n(θt ·, x)
∑
i∈+1

an+1
i An+1

i (x)zn+1
i (t).

Then the flow φn+1 of

dφn+1
t (x) = Bn+1

t [φn+1
t (x)] dt +

∑
i∈+n+1

an+1
i An+1

i [φn+1
t (x)] ◦ dzn+1

i (t) (21)

is conjugate to φn by virtue of the diffeomorphism �n, i.e. we have

φn
t = (�n ◦ θt ) ◦ φn+1

t ◦ (�n)−1, t ∈ R.

If the Lie algebra generated by the vector fields A0
i , i ∈ +0, is nilpotent of degree n

then the vector fieldsAn+1
i in (21) vanish, i.e. (21) is a stationary random differential

equation. Our main result is therefore proved.

Theorem 2.1. Let A0, . . . , Am be smooth vector fields on Rd . Let (φt )t∈R be the
(possibly local) flow associated with the stochastic differential equation

dxt = A0(xt ) dt +
m∑
i=1

Ai xt ◦ dWi
t

Assume that the diffusion vector fields A1, . . . , Am are complete and that the Lie
algebra generated by these vector fields is nilpotent. Then there is a random vector
field g and a random diffeomorphism � such that φ and the flow (χt )t∈R of the
random differential equation

dyt = g(θt ·, yt ) dt

are conjugate, i.e. for any t ∈ R we have

φt = �(θt , ·) ◦ χt ◦ �−1.

Proof . Just take n as in the remark above, let g = Bn+1
0 , and � = �0 ◦ . . . ◦ �n.

��
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3. The case of linear diffusion vector fields with solvable Lie algebra

In this section we consider the stochastic differential equation

dxt = f0(xt )dt +
m∑

j=1

Ajxt ◦ dW
j
t (22)

where f0 is a smooth vector field on Rd and A1, . . . , Am ∈ Rd×d . So we restrict
ourselves to the case of linear diffusion vector fields. In return the condition we
impose on the Lie algebra generated by the diffusion vector fields is weakened:
we shall suppose that it is solvable. We briefly recall this notion. For a Lie algebra
(L, [·, ·]), we let

L1 = [L,L],

Ln+1 = [Ln,Ln],

n ∈ N. Then L is called solvable if there exists n ∈ N such that Ln = 0. Note
that nilpotence implies solvability. Note also that the Lie algebra generated by two
vector fields is always solvable.

In our case, solvability has more consequences, which help us to regain the
framework of nilpotent Lie algebras after a modification of our reduction algorithm.
In fact, our Lie algebra L generated by the diffusion vector fields A1, · · · , Am is
finite dimensional. Hence, due to the theorem of Lie there exists a basis B1, · · · , Bn

of L such that, if
Ki = span{Bi, · · · , Bn},

then [L,Ki] ⊂ Ki+1, 1 ≤ i ≤ n. Since L = K1, we have [L,L] ⊂ K2, and
hence [L,L] is nilpotent.

We shall now modify the reduction algorithm presented in the previous section,
so that it fits the given situation. We will in fact see that it is ready made for the
solvable case.

We start again by introducing stationary drifts and driving noises in (22), so
that our flow φ0 is generated by the sde

dxt = B0
t (xt )dt +

∑
i∈+0

A0
i xt ◦ dz0

i (t), (23)

where the stationary vector field B0 is defined by

B0
t (x) = f0(x) +

m∑
j=1

A0
i x z0

j (t). (24)

Define the linear stationary vector field

C0
t =

∑
i∈+0

z0
i (t) A

0
i , t ∈ R. (25)
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Let
�0

t = exp(−C0
t )

and define the flow φ1 by

φ1
t = �0

t φ
0
t (�

0
0)

−1. (26)

In order to compute the generator of the flow φ1 we need a modification of lemma
1.3. In the sequel [A,B] denotes the commutator of the matrices A,B instead of
the Lie brackets which will cause a change of the signs at some places (note that
[A,B]commutator = −[A,B]Lie bracket).

Lemma 3.1. SupposeA : R → Rd×d is continuously differentiable. Then we have

d

dλ
eA(λ) = eA(λ)A′(λ) −

∫ 1

0
s esA(λ)[A(λ),A′(λ)] e−sA(λ) ds eA(λ)

= eA(λ)A′(λ) +
∞∑
n=1

cn [A(λ),A′(λ)]n eA(λ).

where (as before) cn = 1
(n+1)! − 1

n! .

Proof . The variation of constants formula for d
dλ
etA(λ) gives us

d

dλ
eA(λ) =

∫ 1

0
B(s) ds

where
B(s) = e(1−s)A(λ)A′(λ)esA(λ).

Since
B ′(s) = −e(1−s)A(λ)[A(λ),A′(λ)]esA(λ)

we have

d

dλ
eA(λ) =

∫ 1

0
B(s) ds =

∫ 1

0

(
B(0) +

∫ s

0
B ′(u) du

)
ds

= eA(λ) A′(λ) −
∫ 1

0

∫ s

0
e(1−u)A(λ)[A(λ),A′(λ)]euA(λ) du ds

= eA(λ)A′(λ) −
∫ 1

0
(1 − u) e(1−u)A(λ)[A(λ),A′(λ)]euA(λ) du

= eA(λ)A′(λ) −
∫ 1

0
s esA(λ)[A(λ),A′(λ)] e−sA(λ) ds eA(λ).

The proof of the second equation is similar to the proof of lemma 1.3. ��

Using the first equation of lemma 3.1 and noting that we can rewrite (23) as

dφ0
t (x) = B0

t [φ0
t (x)]dt + ◦dC0

t φ
0
t (x)
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we get for x ∈ Rd

dφ1
t (x) = ◦d�0

t φ
0
t (�0

0)
−1(x) + �0

t ◦ dφ0
t (�0

0)
−1(x) (27)

=
[
−�0

t ◦ dC0
t −

∫ 1

0
s e−sC0

t [C0
t , ◦dC0

t ]esC
0
t ds �0

t

]
φ0
t (�0

0)
−1(x)

+ �0
t

[
B0
t φ

0
t dt + ◦dC0

t φ0
t

]
(�0

0)
−1(x)

= −
∫ 1

0
s e−sC0

t [C0
t , ◦dC0

t ]esC
0
t ds φ1

t + �0
t B

0
t φ

0
t (�

0
0)

−1 dt

= −
∫ 1

0
s e−sC0

t [C0
t , ◦dC0

t ]esC
0
t ds φ1

t + �0
t B

0
t (�

0
t )

−1 φ1
t dt.

Next define the process 61 by the following Stratonovich differential

◦d61
t = −

∫ 1

0
s e−sC0

t [C0
t , ◦dC0

t ]esC
0
t ds (28)

Note that by definition the semimartingale 61 possesses stationary characteristics,
but need not be stationary itself. In order to see that we may apply Lemma 1.1
to pass to a stationary moving average of 61, let us fix p > 1 and compute the
characteristics of 61. Indeed, we have

◦d61
t = −

m∑
j,k=1,j<k

∫ 1

0
s e−sC0

t [A0
j , A

0
k] esC

0
t ds dajk(t),

where

dajk(t) = z0
j (t) dz

0
k(t)−z0

k(t) dz
0
j (t) = z0

j (t)◦dz0
k(t)−z0

k(t)◦dz0
j (t) = ◦dajk(t),

is the differential of the Ornstein-Uhlenbeck area process. Note that we even have

dajk(t) = z0
j (t) dW

k
t − z0

k(t) dW
j
t , 1 ≤ j < k ≤ m.

Hence we have to prove that

E(Fp( sup
0≤t≤1

|vt |)) < ∞ (29)

for p > 1, where for t ∈ [0, 1], 1 ≤ l ≤ m

vlt = −
m∑

j,k=1,j<k

∫ 1

0
s e−sC0

t [A0
j , A

0
k] esC

0
t ds [z0

j (t) 1{l}(k) − z0
k(t) 1{l}(j)].

The property

Fp(x + y) ≤ cp [Fp(x) + Fp(y)],
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x, y ≥ 0, shows that (29) will be a consequence of

E(Fp( sup
0≤t≤1

|
∫ 1

0
s e−sC0

t [Aj ,Ak] esC
0
t ds z0

j (t)|)) < ∞ (30)

for j < k fixed. But, again due to the properties of the function Fp, this is a
consequence of the inequalities

E(Fp( sup
0≤t≤1

|z0
j (t)|)) < ∞, E( sup

0≤t≤1
|C0

t |p) < ∞

for any p > 1, which follow easily from the properties of the Ornstein-Uhlenbeck
process. So Lemma 1.1 applies, and we my define

C1
t = e−t

∫ t

−∞
es ◦ d61

s , t ∈ R, (31)

which is a stationary semimartingale belonging to the class S. The equation

◦d61
t = ◦dC1

t + C1
t dt,

which is valid due to Lemma 1.1, allows us then to rewrite (27) in the following
form

dφ1
t (x) = ◦dC1

t φ
1
t + C1

t φ
1
t dt (32)

+�0
t B

0
t (�

0
t )

−1 φ1
t (x) dt.

We next define the stationary vector field

B1
t = �0

t B
0
t (�

0
t )

−1 + C1
t ,

t ∈ R. So we may rewrite (32) in the final form

dφ1
t (x) = B1

t φ
1
t (x) dt + ◦dC1

t φ
1
t (x). (33)

We now use the fact stated above that [L,L] is nilpotent, to start a modification
of the algorithm of the preceding section. Let

�1 = exp(−C1
0), �1

t = �1 ◦ θt , t ∈ R,

and set
φ2
t = �1

t φ
1
t (�

1)−1, t ∈ R. (34)

We now argue with the second part of Lemma 3.1 to find the generator of φ2. For
x ∈ Rd we can write

dφ2
t (x) = ◦d�1

t φ
1
t (�

1)−1(x) + �1
t ◦ dφ1

t (�
1)−1(x) (35)

=
[

− �1
t ◦ dC1

t +
∞∑
n=1

(−1)n+1cn[C1
t , ◦dC1

t ]n �1
t

]
φ1
t (�

1)−1(x)

+ �1
t ◦ dC1

t φ
1
t (�

1)−1(x) + �1
t B

1
t φ

1
t (�

1)−1(x) dt

=
∞∑
n=1

(−1)n+1cn[C1
t , ◦dC1

t ]n φ2
t (x) + �1

t B
1
t (�

1
t )

−1 φ2
t (x) dt.
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Since C1 is a process in [L,L], the sum in (35) is in fact finite. Let

C2
t = e−t

∞∑
n=1

(−1)n+1cn

∫ t

−∞
es [C1

s , ◦dC1
s ]n, t ∈ R.

Then, Lemma 1.1 applies again to show that C2 ∈ S. So, if we set

B2
t = �1

t B
1
t (�

1)−1 + C2
t ,

we may write
dφ2

t (x) = ◦dC2
t φ2

t (x) + B2
t φ

2
t (x) dt. (36)

We turn to the recursion step of our algorithm. Let k ≥ 2, and suppose that a
flow φk on Rd , a stationary vector field Bk, and a stationary vector field Ck ∈ S
are given such that

dφk
t (x) = ◦dCk

t φ
k
t (x) + Bk

t φ
k
t (x) dt. (37)

We define the diffeomorphism of step k by

�k = exp(−Ck
t ), (38)

and let �k
t = �k ◦ θt , t ∈ R. Then we may set

φk+1
t = �k

t φ
k
t (�

k)−1, t ∈ R. (39)

Then the same computation as above gives us the generator of φk+1. For x ∈ Rd

we have

dφk+1
t (x) =

∞∑
n=1

(−1)n+1cn[Ck
t , ◦dCk

t ]n φk+1
t (x) + �k

t B
k
t (�

k
t )

−1 φk+1
t (x) dt,

(40)
where again the sum is finite. To obtain a stationary SDE we again define

Ck+1(t) = e−t
∞∑
n=1

(−1)n+1cn

∫ t

−∞
es[Ck

s , ◦dCk
s ]n, t ∈ R. (41)

According to lemma 1.1, Ck+1 ∈ S. So, finally setting

Bk+1
t = �k

t B
k
t (�

k)−1 + Ck+1
t ,

t ∈ R, we obtain the asserted stochastic differential equation

dφk+1
t (x) = ◦dCk+1

t φk+1
t (x) + Bk+1

t φk+1
t (x). (42)

This completes the recursion step.
Since [L, L] is nilpotent, we know that our algorithm stops after finitely many

steps. So we obtain our second main result
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Theorem 3.1. Let f0 be a smooth vector field on Rd ,A1, · · · , Am ∈ Rd×d . Letφ =
(φt )t∈R denote the (possibly local) flow associated with the stochastic differential
equation

dxt = f0(xt ) dt +
m∑
i=1

Ai xt ◦ dWi
t .

Assume that the Lie algebra generated by A1, · · · , Am is solvable. Then the asser-
tions of Theorem 2.1 hold true.

4. An application: the existence of random attractors

Let us first recall the notion of a random attractor. For more details consult Crauel,
Debussche, Flandoli [Cra97] or Keller, Schmalfuss [Kel98]. Note first that un-
der the smoothness conditions assumed from section 1 on for the vector fields,
the completion result of Arnold, Scheutzow [Arn95] implies that the flows of dif-
feomorphisms generated by our stochastic differential equations in fact generate
random dynamical systems (see Arnold [Arn98]). More precisely, the flow (φt )t≥0
of diffeomorphisms on Rd generated by a stochastic differential equation is called
random dynamical system on the metric dynamical system (�,F, P , (θt )t∈R) if the
following cocycle property is satisfied:

φs+t (ω) = φt (θsω) ◦ φs(ω), φ0(ω) = idRd ,

for ω ∈ �, s, t ≥ 0. An obvious modification gives the notion of a random dynam-
ical system for flows with parameter space R instead of R+. Whenever we speak
of a flow, we shall, as our hypotheses on the vector fields allow, tacitly assume that
it is a random dynamical system.

A family (A(ω), ω ∈ �) of closed subsets of Rd is called measurable if for any
x ∈ Rd the function ω �→ d(A(ω), x) = inf{|x − y| : y ∈ A(ω)} is measurable.
Motivated by the needs of section 4.2, we shall define random attractors for more
general systems of attracted sets. Let D be a system of measurable closed and
nonempty sets ω �→ D(ω). In addition we suppose that D fulfills the following
filtering property: if D′ is a measurable set with closed and nonempty images and
D′(ω) ⊂ D(ω) for ω ∈ � and D ∈ D then D′ ∈ D. Such a system is briefly
named universe. We hasten to emphasize that the system of compact random sets
uniformly bounded in ω is a universe, the one the reader may imagine if we speak
of universes. We call it universe of compact sets. As we shall see in section 4.2, it
is however not the only one which matters for us.

For a given universe D a measurable set A ∈ D with compact images is called
a random attractor for the random dynamical system (φt )t≥0 if A is φ-invariant,
i.e. for ω ∈ � we have

φt (ω)A(ω) = A(θtω),

and absorbs sets from D, i.e.

lim
t→∞ dist(φ(θ−tω)D(θ−tω), A(ω)) = 0
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for any D ∈ D, see Flandoli, Schmalfuss [Fla96], where dist denotes the semi-
Hausdorff distance

dist(A,B) = sup
x∈A

inf
y∈B

|x − y|.

Note that a random attractor is unique. We remark that the more intuitive relationship

lim
t→∞ dist(φt (ω)B,A(θt (ω)) = 0

holds only for convergence in probability.
The following theorem is a version of Crauel, Flandoli [Cra94], Flandoli,

Schmalfuss [Fla96] or Schmalfuss [Sch97]:

Theorem 4.1. Let D be a universe of measurable sets. Suppose that x → φt (ω)x

is continuous. In addition we suppose that there exists a compact measurable set
B ∈ D such that

φt (θ−tω)D(θ−tω) ⊂ B(ω)

for t ≥ t (ω,D) and any D ∈ D. Then there exists a random attractor with respect
to D.

The other important example of universes is given by the tempered random sets.
A random variable R > 0 is tempered if

lim
t→±∞

1

|t | log+ R(θtω) = 0 (43)

for ω ∈ �, see Arnold [Arn98], p.164. Note that (43) is equivalent to

lim
t→±∞ e−c|t |R(θtω) = 0 for any c > 0.

A measurable set D is called tempered if D(ω) is contained in a ball with cen-
ter zero and tempered radius R(ω), ω ∈ �. Then the system of measurable sets
with compact and nonempty tempered images forms the universe of tempered sets.
The universe which matters in section 4.2 consists of tempered sets with a simple
additional condition and will be described precisely later on.

Of course, the universe of compact sets is contained in the tempered one. Let
us briefly point out that the difference is not very big from the point of view of
random dynamical systems, however. Temperedness of R may be paraphrased by
stating that the Lyapunov exponent of the stationary process t �→ R(θtω) is zero.
But if it is not zero, then we automatically have

lim sup
t→±∞

1

|t | log+ R(θtω) = +∞.
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4.1. Sufficient criteria for existence

In this section we shall give an application of the main result of the previous section
to the problem of existence of global attractors for flows generated by stochastic
differential equations. Let f0 be a C∞ vector field on Rd . We consider a stochastic
perturbation of the dynamical system described by the differential equation

dxt = f0(xt ) dt. (44)

More precisely, let A1, · · · , Am ∈ Rd×d and consider the sde

dxt = f0(xt ) dt +
m∑
i=1

Ai xt ◦ dWi
t . (45)

We assume that the flow φ generated by (45) is forward complete. Following the
ideas of our prototypical approach of random attractors in [Imk98], we assume that
(44) has a Lyapunov function V , so that the system has an attractor. The problem of
existence of a random attractor for (45) will be approached in the following form.
We ask whether V is still a Lyapunov function for the perturbed system. As such it
will then provide a random attractor.

Assume from now on that the Lie algebra generated by A1, · · · , Am is solvable.
Fix n ∈ N such that Cn+1 = 0, let C0, · · · , Cn,�0, · · · ,�n be defined as in the
preceding section, and let

g(., y) = �n ◦ · · · ◦ �0 f0( (�
n ◦ · · · ◦ �0)−1y)

+
n∑

k=0

�n ◦ · · · ◦ �k Ck (�n ◦ · · · ◦ �k)−1y.

Then the main result of the preceding section states that the flow χ generated by
the random differential equation

dyt = g(θt ·, yt ) dt (46)

and φ are conjugate. It is very easy to deduce from the definition of �i and Lemma
1.1 that the random diffeomorphisms are tempered (i.e. that the random variables
‖�i‖ are tempered). The following Theorem describes the natural relation between
random attractors in the different coordinates.

Theorem 4.2. Let � = �n ◦ · · · ◦�0. Then there is a one-to-one correspondence
between random attractors of φ and χ . If (A(ω), ω ∈ �) is a random attractor of
χ , then (�(ω)A(ω), ω ∈ �) is a random attractor of φ attracting tempered sets.
If (B(ω), ω ∈ �) is a random attractor of φ, then (�−1(ω)B(ω), ω ∈ �) is a
random attractor of χ attracting tempered sets.

Proof . We know that φ and χ are conjugate by the tempered diffeomorphism �.

Hence the proof is the same as in [Imk98]. ��
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We next introduce the function

h(c0, · · · , cn, y) = e−cn ◦ · · · ◦ e−c0
f0( (e

−cn ◦ · · · ◦ e−c0
)−1y)

+
n∑

k=0

e−cn ◦ · · · ◦ e−ck ck (e−cn ◦ · · · ◦ e−ck )−1y,

c0, · · · , cn ∈ Rd×d , y ∈ Rd . Note that h and g are related by the formula

g(., y) = h(C0
0 , · · · , Cn

0 , y), y ∈ Rd .

We shall subsequently use the abbreviations c for a vector (c0, · · · , cn) and C for
the vector of processes (C0, · · · , Cn). The following result is basic for the existence
of attractors and generalizes Theorem 2.2 of [Imk98] to our situation.

Theorem 4.3. LetU : Rd → R+ be aC1-function such that lim|x|→∞ U(x) = ∞.
Suppose that for any M > 0

lM(c) = sup
|y|≤M

|h(c, y)|, c ∈ (Rd×d)n+1

we have
EPC

(lM) < ∞ (47)

wherePC is the law ofC. Suppose there exists a measurable function k : (Rd×d)n+1

→ R such that we have

E( sup
0≤s≤1

|k(C ◦ θs)|) < ∞, (48)

lim sup
|y|→∞

sup
c∈supp(PC)

〈∇ lnU(y), h(c, y)〉
k(c)

≤ 1, (49)

EPC
(k) < 0. (50)

Then χ has a random attractor which attracts compact sets. If U preserves tem-
peredness, then χ has a random attractor for tempered sets.

Proof . The proof is essentially the same as for Theorem 2.2 in [Imk98]. The hy-
pothesis of subexponential growth there is replaced by the two hypotheses (47) for
lM and (48) for k. (48) is needed to justify the application of Birkhoff’s ergodic
theorem, (47) for verifying the finiteness of the random variable

Y =
∫ 0

−∞
exp(

∫ 0

v

k(C0 ◦ θu) du) lM(C0 ◦ θv) dv

from which a random attractor is constructed. ��

Also the perturbation result of [Imk98] generalizes to our setting of solvable
Lie algebras for the diffusion vector fields.
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Theorem 4.4. Let V be a Lyapunov function of

dyt = f0(yt ) dt,

i.e. suppose there exists α > 0 such that

lim sup
|y|→∞

〈∇ lnV (y), f0(y)〉 ≤ −α.

Suppose that there exists a measurable function k : (Rd×d)n+1 → R+ such that
(47) and (48) are fulfilled, as well as

lim sup
|y|→∞

sup
c∈supp(PC)

|〈∇ lnV (y), f0(y) − h(c, y)〉|
|〈∇ lnV (y), f0(y)〉| k(c) ≤ 1, (51)

EPC
(k) < α. (52)

Then χ has a global random attractor for the compact sets. If V preserves tem-
peredness, then χ has a random attractor for the tempered sets.

Proof . By a suitable modification of k, (51) and (52) are seen to imply (49) and
(50). ��
4.2. An example

We shall now give an example for a situation in which the Lie algebra generated
by the diffusion vector fields is solvable, but not nilpotent. This situation occurs if
we consider the well known noisy Duffing-van der Pol oscillator with independent
noise sources coupled to the position and velocity components. Formally, the system
is given by the second order sde

ÿt − β ẏt + y3
t + y2

t ẏt + yt − σ yt ◦ Ẇ 1
t − ρ ẏt ◦ Ẇ 2

t = 0,

where β ∈ R, σ, ρ �= 0.We pass in the usual way to a two-dimensional system of
first order equations by putting y1 = y, y2 = ẏ. With the matrices

A1 =
[

0 0
σ 0

]
, A2 =

[
0 0
0 ρ

]
,

and the nonlinear vector field

g0(y) =
[

y2

−y1 + βy2 − y3
1 − y2

1y2

]
, y ∈ R,

we obtain the following sde

dyt = g0(yt ) dt + A1 yt ◦ dW 1
t + A2 yt ◦ dW 2

t .

Since

[A2, A1]n =
[

0 0
σ ρn 0

]
= ρn A1,
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we have for the Lie algebra L generated by A1, A2

L = span{A1, A2}, L1 = [L,L] = span{A1}, L2 = 0.

So L is solvable, but not nilpotent.
Let us compute the conjugation diffeomorphisms, starting with the processes

C0, C1. We have
C0
t = z0

1(t) A1 + z0
2(t) A2, t ∈ R,

and therefore by an elementary computation

�0 = e−C0
0 =

[
1 0
v2 v1

]
,

where

v1 = e−ρ z0
2(0), v2 = −σ z0

1(0)

ρ z0
2(0)

(1 − e−ρ z0
2(0)).

To compute C1, let us start with the following special case of (28) and (31)

C1
t = −e−t

∫ t

−∞
eu

∫ 1

0
s e−sC0

u [C0
u, ◦dC0

u]esC
0
u ds (53)

= −
m∑

j,k=1,j<k

e−t

∫ t

−∞
eu

∫ 1

0
s e−s

∑m
l=1 z

0
l (u)Al [Aj ,Ak]es

∑m
l=1 z

0
l (u)Al ds

◦ dajk(u),

where

◦dajk(u) = z0
j (u) ◦ dz0

k(u) − z0
k(u) ◦ dz0

j (u) = z0
j (u)dz

0
k(u) − z0

k(u)dz
0
j (u)

is the differential of the Ornstein-Uhlenbeck area process corresponding to z0
j

and z0
k, for 1 ≤ j < k ≤ m. Note that in this differential, Itô and Stratonovich

integration yields identical results. Returning to our special case, we obtain

∫ 1

0
s e−s

∑2
l=1 z

0
l (u)Al [A1, A2]es

∑2
l=1 z

0
l (u)Al ds

= −ρ

∫ 1

0
s

[
1 0

v2(s) v1(s)

]
A1

[
1 0

− v2(s)
v1(s)

1
v1(s)

]
ds

= − 1

ρ

1

z0
2(u)

2
[1 − e−ρ z0

2(u) − z0
2(u) e

−ρ z0
2(u)]A1.

Here v1(s) = e−s ρ z0
2(u), v2(s) = σ z0

1(u)

ρ z0
2(u)

(1 − e−s ρ z0
2(0)). Consequently, setting

v3 = −σ

ρ

∫ 0

−∞
eu

1

z0
2(u)

2
[1 − e−ρ z0

2(u) − ρ z0
2(u) e

−ρ z0
2(u)] ◦ da12(u),



On the cohomology of flows of stochastic and random differential equations 233

we arrive at the equations

C1
0 =

[
0 0

−v3 0

]
, �1 = e−C1

0 =
[

1 0
v3 1

]
.

So the conjugation diffeomorphism is given by

� = �1 ◦ �0 =
[

1 0
v2 + v3 v1

]
.

Let

h(c, y) = e−c1 ◦ e−c0
g0(e

c0 ◦ ec
1
y) + C1 y + e−c1

c0 ec
1
y,

c = (c0, c1) ∈ (R2×2)2, y ∈ R2.To prove that for small enough coupling constants
σ, ρ the system has a global random attractor, our main task will consist in verifying
the conditions of Theorem 4.3. Now we know from [Imk98] that the Lyapunov
function is most easily given in the Lienard coordinates. We denote them by the
symbol x. The transformations are given by

t (y) =
[

y1

y2 − β y1 + 1
3y

3
1

]
, t−1(x) =

[
x1

x2 + β x1 − 1
3x

3
1

]
,

x, y ∈ R2. The Lyapunov function in the Lienard coordinates is then given by the
formula

V (x) = 7

24
x4

1 + 1

2
x2

1 + 1

4
x2

2 + 1

2
(x1 − x2)

2,

x ∈ R2, the Lyapunov function in the y−coordinates by

U(y) = V (t (y)), y ∈ R2.

First note that due to the integrability properties of the Ornstein-Uhlenbeck
processes z0

1, z
0
2, and the fact that the quadratic variation of the area process a12 is

bounded by ∫ t

0
[(z0

1(s))
2 + (z0

2(s))
2]ds, t ≥ 0,

we have

v1,
1

v1
, v2, v3 ∈ Lp for any p ≥ 1. (54)

This in particular implies that �0,�1 are tempered. As another consequence of
(54) and the fact that g0 has polynomial components, we can note that (47) is valid.

For the remainder of the hypotheses of Theorem 4.3, we may concentrate on
treating the nonlinear part of g0 − h, which comes from the nonlinear part of g0.
The arguments for the linear part are simple (see [Imk98]. Recall first the formula
for g0 in Lienard coordinates. We have

f0(x) = Dt(t−1(x)) g0(t
−1(x)) =

[
x2 + β x1 − 1

3x
3
1

−x1 − x3
1

]
.
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Let us denote its nonlinear part by

n(x) =
[− 1

3x
3
1

−x3
1

]
,

x ∈ R2. Then we have on supp(PC), writing

e−c0 =
[

1 0
u2 u1

]
, e−c1 =

[
1 0
u3 1

]
,

n(x) − e−c1 ◦ e−c0
n(ec

0 ◦ ec
1
x) =

[
0

[1 − 1
3 (u2 + u3) − u1] x3

1

]
.

This in turn implies the equation

〈∇xV (x), n(x)−e−c1 ◦e−c0
n(ec

0 ◦ec1
x)〉 = (

3

2
x2 x

3
1 −x4

1) [1− 1

3
(u2 +u3)−u1].

We next use the simple estimate

|x2x
3
1 | ≤ 1

2
(x6

1 + x2
2 ) = κ(x), x ∈ R2,

and remember (see [Imk98]) that κ and |〈∇xV , f0〉| are asymptotically equivalent,
define k on the above mentioned linear subspace of (R2×2)2 by

k(c0, c1) = [1 − 1

3
(u2 + u3) − u1]

and by 0 outside, to arrive at the estimate

lim sup
|x|→∞

sup
c∈supp(PC)

|〈∇ lnV (x), n(x) − e−c1 ◦ e−c0
n(ec

0 ◦ ec
1
x)〉|

|〈∇ lnV (x), f0(x)〉| k(c) ≤ γ, (55)

for some constant γ, which may be normalized by multiplying it to k. This gives
(51) for the nonlinear part. It remains to verify (48) and (52) for k. Now (48) is a
consequence of the standard martingale inequalities and the integrability properties
(54). Next, note that as c → 0 on the linear subspace on which k does not vanish, we
have u2, u3 → 0, whereas u1 → 1, hence k(c) → 0. But the random variables vi
have just this asymptotic behavior as ρ → 0. Indeed, v1 → 1, and both v2, v3 → 0
as ρ → 0, for any σ �= 0. So dominated convergence implies that, if σ �= 0 is
fixed, by choosing ρ small enough, we may get EPC

(k) < α. Hence our system
possesses a global random attractor for any σ �= 0, and small enough ρ.
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