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Abstract. We consider the flow of a stochastic differential equation on d-dimensional Eu-
clidean space. We show that if the Lie algebra generated by its diffusion vector fields is
finite dimensional and solvable, then the flow is conjugate to the flow of a non-autonomous
random differential equation, i.e. one can be transformed into the other viaarandom diffeo-
morphism of d-dimensiona Euclidean space. Viewing a stochastic differential equation in
this form which appears closer to the setting of ergodic theory, can be an advantage when
dealing with asymptotic properties of the system. To illustrate this, we give sufficient criteria
for the existence of global random attractors in terms of the random differential equation,
which are applied in the case of the Duffing-van der Pol oscillator with two independent
sources of noise.

Introduction

In this paper we try to answer the following basic question: when is a stochastic
differential equation cohomologous to a non-autonomous random ordinary differ-
ential equation? In other words: under which conditions can one find a random
coordinate change on the state space which transforms the flow generated by the
stochastic differential equation into the flow of a non-autonomous random one?

Let usfirst statethisprobleminalittlemore preciseterms, for systemson Wiener
space (2, 7, P) with an m-dimensional Wiener process W and the canonical shift
0; on by time ¢ which is P-ergodic for ¢+ # 0. Suppose fo, - - -, f are smooth
vector fieldsin R? and let ¢ = (¢,);er denote the (possibly only local) flow of the
stochastic differential equation

dx; = fo(x)dt + ) fi(x)) o dW] (6N

i=1
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A non-autonomous random differential equation is given by a smooth random
vector field g(-, x), x € R?, through

dx; = g0+, x;) dt. 2

Then our question asks for arandom diffeomorphism & of the state space R such
that ¢ andthe (local) flow x generated by (2) arerelated by the conjugation equation

Dol x, @ T=¢, teR. ©)

Why could one beinterested in having arelationship such as (3)? For our initial
aims, the reason was this. While the framework of the treatment of (1) is stochastic
analysis, (2), describing a motion along a stationary vector field, fits better into the
methodol ogy of ergodic theory. Fortunately, the cohnomology relation (3) preserves
asymptotic invariants such as Lyapunov exponents, rotation numbers, or invariant
subspaces such as Osel edets spaces, invariant manifolds, or random attractors (see
Arnold [Arn98]). So, if aspects of ergodic theory are involved in the study of
asymptotic properties of (1), it could be much simpler to look at (2) instead, and
then let & do the rest of the work. In a simpler setting, this concept has aready
been used in [Imk98] to study the existence of global random attractors of systems
like the randomly perturbed Duffing-van der Pol oscillator, or the Lorenz equation.
We shall give another illustration of this ideain section 4 below, where we study
the existence of globa random attractors, and consider the Duffing-van der Pol
oscillator with two different sources of noise as another example.

The answer we shall give in this paper to the conjugation problem is this:
we show that if the Lie algebra ¥ generated by f1---, f,, is solvable and finite
dimensional, then there is a random diffeomorphism @ solving (3). This reminds
somewhat the generalization of thewell known Doss-Sussmann method of solving a
stochastic differential equation through an associated ordinary differential equation,
given by Yamato [ Yam79], Kunita[Kun80] and Krener and Lobry [Kre81]. In fact,
some algebraic aspects of the algorithm to be described, are similar to the ones
used in theliterature. Thisagorithm, whichisour principal tool to derivethe main
results, reduces gradually the algebraic complexity of the Lie algebra .#, and this
way creates a chain of random diffeomorphisms the composition of which yields
®. The agorithm had to be taylor made for the central purposes of ergodic theory,
however. They can be expressed by requiring that the noisetermsof the“ remainder”
stochastic differential equations updated in each step, have to be made stationary.
To achieve this goal, we use the following simple observation. If X, Y are smooth
stationary semimartingales, then the generally non-stationary process X o dY can
be made stationary by passing to its moving average process

t
e’ f e’ Xy o0dY,, teR.
—0o0
The paper is organized as follows.
In section 1 wecollect someauxiliary results concerning stationary semimartin-
gales, and prove some algebraic identities to be used crucially in the reduction al-
gorithm. Thelatter isfirst described in therelatively simple framework of nilpotent
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Lie algebrain section 2, and leads to the conjugation theorem (Theorem 2.1). In
section 3 we pass to the case of a solvable Lie algebra .. In this framework the
reduction algorithm turns out to be even formally simpler. Yet, the stochastic dif-
ferential equationsto be solved in each step become gradually more involved, and
are much less explicit and transparent. In section 4, we first discuss some general
sufficient conditionsfor the existence of global random attractorsin the situation of
the preceding sections. Wefinally consider aconcrete problem, the Duffing-van der
Pol oscillator with two independent linear sources of noise: multiplicative noise on
both position and velocity. Inthissimple casethe Lie algebraof thelinear diffusion
vector fields is solvable, but not nilpotent.

We expect that more asymptotic properties of random differential egquations
given by stochastic differential equations become treatable via conjugation. One
example promises to be local linearization of random dynamical systems, as de-
scribed in the theorem by Hartman-Grobman: for non-autonomous random dif-
ferential equations Wanner [Wan93] derived local linearization results, which are
preserved by conjugation.

Werestrict our attentionto the case of nilpotent resp. linear solvable Liealgebras
in order to see explicitly the dependence of the conjugation in w, which would be
not so clear in the case of nonlinear solvable Lie algebras. We also remark that it
seems possible to obtain a conjugation result using an implicit technique without
any assumption on the Lie algebra generated by the diffusion vector fields. At the
moment however thisimplicit technique does not provide enough information about
the nature of the conjugation (e.q. temperedness) to be used for proving existence
of attractors.

Notations and preliminaries

Our basic probability space is the m —dimensional canonical Wiener space (2, F,
P), enlarged such as to carry an m—dimensional Wiener process indexed by R.
Moreprecisaly, @ = C(R, R™) isthe set of continuous functionson R with values
in R™, F the o —algebra of Borel sets with respect to uniform convergence on
compacts of R, P the probability measure on F for which the canonical Wener
process W, = (W2, ..., W), t € R, satisfies that both (W;);>0 and (W_,),>0 are
usual m —dimensional Brownian motions. Thenatural filtration {F. = o (W, —W, :
s <u,v<1t):R>s <t e R}of Wisassumed to be completed by the
P—completionof F. Forr e R, let6, : Q@ — Q,w — w(t + ) — w(t), the shift
on by ¢. It iswell known that 6, preserves Wiener measure P for any ¢+ € R and
isevenergodicfor ¢ # 0. Hence (2, F, P, (6;);er) isan ergodic metric dynamical
system(see Arnold[Arn98]). Asusual, weusea“ o” to denote Stratonovichintegrals
with respect to Wiener process.

For arandom vector X, we denote by Py the law of X with respect to P. V
is used as a symbol for the gradient of vector fields on RY. Lie brackets between
vector fields will be denoted by the usual symbol [, -], scalar productsin R™ by

(...
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1. Stationary stochastic integrals and some algebra

It iswell known that the Wiener process can be made stationary by just adding a
suitable drift. Thisway one obtains the stationary Ornstein-Uhlenbeck process. To
be more precise, the sde

dz; =dW; — z; dt

has the stationary solution

t
7 = e_’/ e dWs.

—00

Now supposethat X and Y arestationary semimartingal esof theBrownianfiltration.
Thenthestochasticintegral Y od X need not be stationary, just asthe Wiener process.
By passing to the same moving average process as above, we may add a drift to the
stochastic integral to make it stationary. We will briefly elaborate on this, and then
consider particular cases of semimartingales of this type, generated by multiple
integrals of the Ornstein-Uhlenbeck process.

Forp > 1,x > Olet F,(x) = [In(x+1)]”. Then F,, isamoderatefunction (see
for example Revuz, Yor [Rev99]). Denote by .# the set of continuous semimartin-
gales X of the Brownian filtration with decomposition dX; = (a;, dW;) + b,dt
such that X, a, b are stationary, and such that

E(Fp(sup |a;])) < oo, EF,(sup |b])) <oo, EF,(sup X)) <oo
O=<t=<1 0<t<1 0<t<1

for al p > 1. Clearly, an Ornstein-Uhlenbeck process belongs to the class ..
Lemmall Let X,Y € & with canonical (forward) decomposition dX =

(@, dW)+bdt,dY = (c,dW) +d dt,

t
Z; = e—f/ &Y, odX;,

—0o0

t € R. Then Z € &, satisfies

E(Fp(OSUP 1Zi])) <00, p>1,

<r<1

the sde
le = Y[ QdX[ — Z[dt,

and has the (forward) decomposition

1
dZ; = (Yia;, dW;) + (E(at’ ¢t) +Yiby — Zy) dt.
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Proof . In the following C will denote a constant varying from line to line and
depending only on p unless stated explicitely.

Once we know that Zg iswell defined, stationarity of Z is automatic from the
following equation, which is a consequence of the stationarity of X and Y

0 t
ZoOQl:/ esYXthodXSH:e_t/ eSYS OdX_y:Z[.

—0o0 —00

Let usfirst show that

1
E(Fp(|/ e’ Yy 0dXg|)) < oo. 4
0

First of al, we have the decomposition
1 1 1 1
/ e’ YsodX, = / e’ Yylag, dWy) +/ e’ [Ysbs + E(as, cs)]ds.
0 0 0

Hence, using the inequality of Burkholder, Davis and Gundy for the moderate
function F, (see Revuz, Yor [Rev99], p. 170) we have

1
E(F,( /O &Y, 0dX,)))

1 1
1
= C(E(Fp(|/ ' Yy(ay, dW,))) + E(Fp(\/ e'[Y;by + E(as,CQ]dSI)))
0 0

' 20,127,135 ! s 1
< C(E(Fp([f0 1Y, 1%as|°ds]2)) + E(Fp(lf0 e’[Yb, + §<a.v,cx)]dSI)))
< C(E(F,(sup |Y,])) + E(F,(sup |a/)) + E(F,,(OSJD 1b:1)) + E(F,(sup |c:])))-

O<r<1 O<r<1 <r<1 O<r<1

Now we are able to prove (4). To see next that Zg iswell defined, note that

o 1
1Zol <) e |/ ¢ Yy 0dX,| 00_(ns1).
0
n=1

So by the lemma of Borel-Cantelli, Zo will be well defined, if we can show that

o 1
ZP(l/ &Y, 0dXs| > ™) < 00
0

n=1

for some 0 < « < 1. By definition of F,, this amounts to show

00 1
ZP(FP(|/ e’ Yy 0dX,]) > n) < 00.
0

n=1

Thisin turnis an obvious consequence of (4). Now the SDE valid for Z aswell as
the semimartingale decomposition of Z are obvious. Moreover, since F,(xy) <
2P max(F,(x), F,(y)) for x, y > 0, we may restrict to the verification of

E(Fp(sup |Z:])) <00, p>1 ©)

0<t<1
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Indeed, we have

E(Fp( sup |Z:]))
O<t<1
t

= c{EF, @)+ EFy(sip | | e YVilas aWi)D))

O<t<1l J—
1 1
FEE[ b+ Slacelids)|

1
< C{E(F,(Zo)) + E(Fp([/ e Y, [?|ay|2ds] 2))

1 1
+ E(Fp(f e'I[¥sbs + 5 las. c)]ids) |.

(6)

@)

®

We proceed to estimate the first term in the last line of (6), the second one being
treated similarly. We have with some 0 < o < 1, aconstant C(«) varying from

linetolineandg > p
! 25 1y 121, 12,705
E(F}(R/ e” [Ys|%las|*ds]?))
—0o0

0 1
1
=E(F,()_ e[ /0 e Y;|Pla|?ds]2 0 6_(u41)))
n=0

00 00 1
1
<143 PF, (D e [fo ¢ 1Y, 2lay Pds)E 0 0_us1) > 1)
=1 n=0

'S} 00 1 1

1 1

<1+ Z P(Z e [/(.) e |Y_;|2|as|2ds]? °0_(t1) > e’
=1 n=0

S1+C@ Y ) P([/ ¢ 1Y, 2la,ds)? > C e+
=1 n=0 0
o0 o

1
<1+C@ Y. Y. %E(qufo ¢ 1Y, lay[2ds] )
)4

1=1n=0 (an + 17

1
<14 C(a) E(Fq([f e Y, 12|y |%ds] 2)).
0

Now, finally, the same arguments as used for (4) yield (5). This finishes the proof.

O

In the construction of stationary diffeomorphisms which describe the conjuga-
tion of the flows in the following section, arecursively defined family of processes
of the abovetypewill play an essential role. To describe them, we use the following

notation. Let
AOZ{l,"',m}»
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and recursively for n € N

An= Ak
k>2

Letthenfori € Ag,t € R

t
D) =e! / e dW!.
—00
To set up the recursion, suppose for i € A, stationary processes z' have been
defined. Leti = (i1, ---,ix) € A,t1 begiven, withiq, ---,ip € A,. Inthiscase
we also denote |i| = k. Thenwedefinefort e R

. k-1
Z;¢+l(t) =e! / s l—[ Zzy‘l/- (s)o dz;lk (s).
—0 ]:1 E

For obviousreasonswe call theseintegral s stationary multiple Ornstein-Uhlenbeck
integrals. According to Lemma 1.1 and by induction on n, they are elements of the
class 7.

For the agorithm of reduction of algebraic complexity to be discussed in the
following section, we shall need some identities concerning the Lie algebra gen-
erated by the diffusion vector fields of a stochastic system. It is the aim of the
following considerations to provide them.

To this end we have to introduce some more notation. A vector field A : RY — R¢
iscalled completeif it generates a global flow (d>,A);eR- In this case we set

exp(tA) = o8

(This notation is consistent since <I>’1A = ®A.) For smooth complete vector fields
A, B theLiebracket [A, B] isdefined by

d , -1
(A Blw) = —|  (eprA) () BoepA) ).

=0
We define recursively the n-fold Lie brackets[A, B], by

B, n =0,
[A, B], = {[A, [A, B],-1], n € N.

Let us briefly recall the notion of nilpotence. If (¢, [, -]) isaLiealgebra, let

Pr=[L L1 ={[A,B]: A, Be %),
gn—&—l — [$7 ;.(fn],

n € N. Then & iscalled nilpotent if there existsn such that " = 0.

Suppose now that % is generated by finitely many smooth complete vector fields
A1, ..., Ay If Zisnilpotent then % isobvioudly finite dimensional. In this case
it iswell known that every element of . is complete (see e.g. [Pal57]).
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Lemmal.2. Let A, B : RY — R? be smooth complete vector fields and assume
that the Lie algebra generated by A and B isnilpotent. Let (®,),;r denotethe flow
generated by A. Then we have

X n

1 t

; Bod, = E E[A,B]n’ t e R.
n=0

P

Proof. Let

U, x) = &) (@),
Vit x) = Z ;—HI[A, Bl.(x)  (r€R,x eR%).
n=0 "

Thenwehave U (0, -) = B = V (0, -) and furthermore

9
as
_ 0 1 -1 5/ -1
= oo DT PP () TB (Pr(D5(x))
S ls=0
0 / -1
= 55| H@TUE s(0)
S 1s=0

=[A, U, )](x)

@) ()7 B(®y ()

s=0

9
LU x) =
5 %)

and
o0

0 t"
S Vi) = ;)H[A,B]nﬂ(x) = [A, V(t, )](x).

ThisimpliesU = V. O

Lemmal.3. Let A, B : R? — R be smooth complete vector fields and assume
that the Lie algebra generated by A, B is nilpotent. Then we have

P 00
o5 DA +1B) = Boe(A+LB)+exp(A+iB) > en[A. B,
n=1

1

1
wior — A €N

wherec, =

Proof. For A € R let ®* denotetheflow of x = A(x) +AB(x). Fixx € R%. Then

d o 9
T @) = o (A} () + 1B(®] ()

0
= (A/(D}(x)) + 1B/ (D} (x))) 5@?@) + B(®F(x))

and 5@} (x)|,_, =0.
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Since the fundamental solution of
Z = (A(@}(x) + 1B (P} (x)) Z

isgivenby r — CID?‘/(x), the variations of constants formula and the above lemma
give us

t
S0l = o) / ¥ (1) LB (®F (x)) ds
= }'(x) / Z [A B, (x) ds.

nO

According to the above lemma we have furthermore

B(®}(x) = @} (x)B(x) + @ (x) Z  [A, Bla(x0).

n= l
Hence
% exp(A + AB)(x)
—<I>ﬁ(x>
= @} ()B(x) + 4 (x) Z [A, Blu(x)

+ 1)

= B(®}(x)) — @ (x)Z [A, Blu(x) + ®f (x )Z [A, B].(x)

= (+1)'
1

= B (exp(A + AB)(x)) + exp(A + AB)’(x) Z ((n + 1!
n=1 )

1
- —,) [4, B, (o).
n:

O

2. Thecase of diffusion vector fieldswith nilpotent Lie algebra

Let Ag, ..., A,, be smooth vector fields on R¢. We consider the stochastic differ-
ential equation

m
dx; = Ao(x))dt + Y Ai(x,) o dW]. (9)
i=1
The aim of the following considerations is to construct a random diffeomorphism

@ and arandom vector field g : 2 x R? — R such that the flow (x;);cr Of the
random differential equation

dy; = g0, y,) dt (10)
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is conjugate to the flow (¢,);cr Of (9) by virtue of @, i.e. wehavefors € R
¢ = D, 0 xr 0 P (11)

In this section we suppose in addition that the diffusion vector fields A4, ..., A,
are complete and that the Lie algebra generated by these vector fieldsis nilpotent.
Thiswill alow for arather explicit construction of anatura finite family of random
diffeomorphismswhich composetoyield thedesired ®. In the next section we shall
work under the weaker assumption of solvability of the Lie algebra. Our algorithm
will thenyield @ as afinite composition of diffeomorphisms aswell, but with less
transparent structure.

We shall now describe an algorithm by which the complexity of the Lie alge-
bra of the diffusion vector fields is gradually reduced. In this algorithm we shall
encounter the stationary multiple Ornstein-Uhlenbeck integrals of the preceding
section, and an analogous family of Lie brackets of the diffusion vector fields.

To defineit, we use the notation of the preceding section. Fori € Ao, A? = A;
is just the diffusion vector field appearing in the i** diffusion term of (9). If for
i € Ay, Al isdefined, andwepick i = (i1, -- -, ix) € Ayt1, Welet

AL = AL [A L Al

We begin by rewriting (9) with stationary drift and driving processes. Let zf.)
be the stationary Ornstein-Uhlenbeck processes correspondingto Wi, 1 < i < m.
Defining

m

BY=Ao+ ) Aiz)() teR, (12)
i=1
we may write (9) as
dx, = BP(x)dr + Y A(x;) 0dz{(1). (13)
ieAg

Note that the vector field BC is stationary in .
Now let
@ = exp( > 22(0) AD).
i€Ao
Then d)? = dob,t € Risadstationary process of random diffeomorphisms of
R“. Lemma 1.3 alows us to compute the generator of the flow ®°. The formally

infinite sums we shall writein the sequel arein fact finite, due to the hypothesis of
nilpotence for the Lie algebra of the diffusion vector fields. We have for x € R?

ddO(x) (14)

= —Iexp( Z tjA?)(x) o dz9(1)

i€Ao JEAQ ,j:z?(t), jeAo
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=Y {A? o exp( > z?(t)A?)(X)

i€Ag J€AQ
rep( X D049 @ 3 arl Y 04k 4l w| o d:lw
jeAo n=1 J€No
=Y AX@(x)) 0d20(r)
i€Ao

+ (@)@ Y Y el AT, AL x) 0 dz)(0).

ieAg n=1 jeAo

Now recall the definition of iterated Lie brackets, and note that they match the
notation A1. Recall also the Definition of the stationary procass&zjl.,j € A1,and
note that
0 0 0y _ 1 1
Zjl(t) .. .sz(t) o dzjk (t)= o dzj(t) + zj(t)dt,
(1,5 Jk € Mo, =01, ---, JK) € AD).

Hencewe haveforn > 1

1Y DAY AL (x) 0 dz)(t)

ieAg jeAg

=Y > 1A% 1A%, A% @) 9@ .20 (1) 0 d2l()

I€AQ Jj1,---sJn€AO

= Y Awow@do) +twan.
JjeA,|jl=n+1

So we can rewrite (14) as
dod(x) = Y AA@I(x)) 0 dz0(1) (15)
i€l

+(@Y)'(x) Y ey AF(x) o (dz} (1) + 2} (t)dr).

ieAq
In order to solve (13) we use the ansatz

Xr = q’?()’t),
where y is an unknown (forward) semimartingale. Thisyields

dx; = (0 d®%)(y;) + (%) () o dy, o
= Y AN@(y)) 0dZ) ()

ieAg

HOD (30 Y el AFG) o (dzf (1) + 2 (1)d) + (D) (31) o dyy
ieA1
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= > AX(x)) 0 dz2(t)

ieAo
+@ (0] D e AFo0 o @2ty + 2o + dyi .
ieNy
Comparing this equation with (13) we see that x is a solution of (13) iff y isa
solution of
B0 ®0(y) dr = (@) (0] D e AL 0 @zH0) + 2H0dn) +dyi . (a7)
ieA1

This equation is equivalent with

dy, = Bl(y)dt — Y At () 0 dzi (1), (18)

ieA1
where the stationary vector field B! is defined by

Bl(y) = (@) (M 'BY o ®P(y) — Y Atz (0).

ieAg

Now let ¢0 be the flow of (13) and denote the flow of (18) by ¢1. Suppose that
xo = £ € R%. Then we have

$E) = x = O = Do d/ (o) = PP oy o (PYTE)
Since @0 is stationary this means that ¢ is conjugate to ¢° via @3, i.e.
¢0 = (@%06)) o ¢plo (@)L, reR. (19)

Note that equation (18) has the same structure as the original equation (13). In
particular the Lie algebra generated by Al.l, i € A1, isagan nilpotent since the
vector fields Al.1 liein 21 = [#, #], where £ denotes the Lie algebra generated
by A, i € Ao.

So, if & isnilpotent of degreen (i.e. "1 = {0}) itisclear that we havejust to
repeat this reduction algorithm » timesto arrive at a stationary random differential
equation whose flow is conjugate to the flow ¢° of the original sde (13).

For the sake of completeness we summarize the general reduction step. In the
nth step we consider aflow ¢" which has the generator

Al (x) = B¢} ()] di — Y aj A}[¢] (x)] o dz} (1) (20)
ieA,

where B" is a stationary vector field and a}',i € A,, are given real numbers (for
n= OwehaveaiO = 1and B%isgivenby (12)). Definethe (n+1)* diffeomorphism
" of R by the formula

" = exp()_ aj Az} (0)).

ieN,
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n+1
i

Definethereal numbersa’ ™, i € Aj,41, by

il

n+1 . . .
a; = _C\ill_[a?j, i=(1,...,0i]) € Apg1
Jj=1

and the stationary vector field B”+1 by

B (x) = (@M (0 x) Bl 0 " (6, x) D al T AT ) ).

ieA1
Then the flow ¢"*1 of

dgy ) = Bl dr + ) a AT W] 0 d2i T (20)

i€An+1
is conjugate to ¢" by virtue of the diffeomorphism @, i.e. we have
Pt = (@"06) o ¢"tlo (@)L, reR.

If the Lie algebragenerated by the vector fieldsA?, i € Ao, isnilpotent of degreen

thenthevector fields A;.““l in(21) vanish,i.e. (21) isastationary randomdifferential
equation. Our main result is therefore proved.

Theorem 2.1. Let Ao, ..., A, be smooth vector fields on R?. Let (¢,);cr be the
(possibly local) flow associated with the stochastic differential equation

m
dx; = Ao(x)dt + ) Aix odW]
i=1
Assume that the diffusion vector fields Ay, ..., A,, are complete and that the Lie
algebra generated by these vector fieldsis nilpotent. Then thereisa random vector

field ¢ and a random diffeomorphism @ such that ¢ and the flow (x;);cr Of the
random differential equation

dy, = g(6;-, y) dt
are conjugate, i.e. for any + € R we have
¢ = DO, 0y 0 O

Proof . Just taken asin the remark above, let g = By ™, and & = ®%0 ... 0 @".
0
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3. Thecase of linear diffusion vector fieldswith solvable Lie algebra

In this section we consider the stochastic differential equation

m
dx; = foGx)dt + Y Ajx, 0 dW/ (22)
=1
where fo is a smooth vector field on R? and A1, ..., A, € R?*¢. So we restrict

ourselves to the case of linear diffusion vector fields. In return the condition we
impose on the Lie algebra generated by the diffusion vector fields is weakened:
we shall supposethat it is solvable. We briefly recall this notion. For aLie agebra
(&, [ D, welet

7 =[2,2],
gn—&-l: [gnv gﬂ]v

n € N. Then % is called solvable if there existsn € N such that .#,, = 0. Note
that nilpotence implies solvability. Note also that the Lie algebra generated by two
vector fields is always solvable.

In our case, solvability has more consequences, which help us to regain the
framework of nilpotent Liealgebrasafter amodification of our reduction al gorithm.
In fact, our Lie algebra ¥ generated by the diffusion vector fields A, ---, A, IS
finitedimensional. Hence, dueto thetheorem of Liethereexistsabasis By, - - -, B,
of ¥ such that, if

Hi = span{B;, ---, By},
then[Z, A1 C A'i41,1<i <n.Since¥ = A1, wehave[ &, ¥] C A 5, and
hence [.#, ] isnilpotent.

We shall now modify the reduction algorithm presented in the previous section,
so that it fits the given situation. We will in fact see that it is ready made for the
solvable case.

We start again by introducing stationary drifts and driving noisesin (22), so
that our flow ¢° is generated by the sde

dx; = B2(x))drt + Z A%; 0dZ2(), (23)

ieAg
where the stationary vector field B is defined by
BXx) = folx)+ Y A% (). (24)
j=1
Define the linear stationary vector field

P => A}, reRr (25)

ieAo



On the cohomology of flows of stochastic and random differential equations 223

Let
o) = exp(—C))

and define the flow ¢ by
¢ = O (PP (26)

In order to compute the generator of the flow ¢! we need a modification of lemma
1.3. In the sequel [A, B] denotes the commutator of the matrices A, B instead of
the Lie brackets which will cause a change of the signs at some places (note that

[A, B]commutator = _[Av B]Liebracket)-

Lemma 3.1. Suppose A : R — R4*4 jscontinuously differentiable. Then we have

d 1
d_)LeA(A) — AN A _/ s e AD[AG), A )] AP ds AP
0

=AM A ) + ch [A(L), A'(M)]n AP,

n=1

where (as before) ¢, = (,,Tll)l -

nl*

Proof. The variation of constants formulafor 4-¢4®) gives us

d 1
—eAM = / B(s) ds
0

di
where
B(S) — e(l—S)A()L)A/()L)eSA()»).
Since
B'(s) = _e(l—s)A(A)[A()L)’A/(A)]esA(A)
we have

d 1 ! s
£ AW :/ B(s)ds = / (B(O)+/ B'(u) du) ds
di 0 0 0

1 ps
AN A — / / eIWAMIAN), A/ (W)]e“AP) du ds
0 JO

1
=eAMA (L) — / (1 — u) e 1AD[A), A’ (V)] AP du
0

1
=eAMA (L) - / s AP[AM), A/ (V)] e AP ds A,
0
The proof of the second equation is similar to the proof of lemma1.3. |

Using thefirst equation of lemma 3.1 and noting that we can rewrite (23) as

dgP(x) = B¢ (x)]dt 4 0dCO ¢0(x)
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we get for x € R?
dp(x) = od®) ¢ (D)~ (x) + D 0 dg? (PG~ (x) (27)
1
- [_cb?odc,o - / 5 =6 [0, 0dCO1esC ds @?} ¢° (@9 1(x)
0
+@? [B,Oqs,o dt + 0dC® ¢>,°] (@~ 1(x)
1
__ f 5 e [0, 0dCO1esC! ds ¢t + dOBOP2(@Q) L dr
0
1
= f 5 e [0, 0dCO1esC! ds gt + dOBO(@0) L ¢t dr.
0
Next define the process I' by the following Stratonovich differential
1 ! O ~0 07,,sC?
odl! = — /0 5 e [C0, 0dCOle Y dis 29)

Note that by definition the semimartingale I'! possesses stationary characteristics,
but need not be stationary itself. In order to see that we may apply Lemma 1.1
to pass to a stationary moving average of I'!, let us fix p > 1 and compute the
characteristics of I'%. Indeed, we have

odl't = — i fls eC1AY, AN & ds daju (1),
jk=1,j<k?0
where
daji(t) = z?(t) dz,?(t)—z,?(t)dz?(t) = Z?(t)OdZ,?(t)—Z,?(t)odz?(t) = odaji (1),
isthe differential of the Ornstein-Uhlenbeck area process. Note that we even have
daj(t) = %) dWf —J0)dw/, 1<j<k<m.
Hence we have to prove that

E(Fp( sup |v])) < o0 (29)

0<r<1
for p > 1, wherefort € [0,1],1 <! <m
" 1 0 0
=— Y /0 se A9, AR T ds [29(0) 1y (k) — 22(0) 1y ().
jok=1,j<k

The property
Fy(x+y) <cp [Fp(x) + Fp()’)],
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x,y > 0, showsthat (29) will be a consequence of

1

E(Fp(sup | [ se7 A}, A @S ds20)D) < 00 (30)

Ky
0<t<1l JO

for j < k fixed. But, again due to the properties of the function F,, thisis a
consequence of the inequalities

E(Fp(owpl|z9(r>|)) <00, E(sup |CPIP) < o0

<t< O<r<1
for any p > 1, which follow easily from the properties of the Ornstein-Uhlenbeck
process. So Lemma 1.1 applies, and we my define
t
Cl=e¢"" / e odl'l, 1eR, (3D
—0o0

which is a stationary semimartingale belonging to the class . The equation
odT} = odC} + C}ar,

which is valid due to Lemma 1.1, allows us then to rewrite (27) in the following
form

dey (x) = odC} ¢} + C1¢} dt (32)
+02 B (0971 pl(x) dr.
We next define the stationary vector field
Bl = o9 B2 (0914 Cl,
t € R. Sowe may rewrite (32) in the final form
dol(x) = Bl ot(x)dt 4+ odCll(x). (33)

Wenow usethefact stated abovethat [ ., #] isnilpotent, to start amodification
of the algorithm of the preceding section. Let

ol =exp(—Cd), ol=aloh, reR,

and set
p? =l (@hH7t, reRr. (34)

We now argue with the second part of Lemma 3.1 to find the generator of ¢2. For
x € R? we can write

de?(x) = od®! ¢ (@Y L(x) + L o dg? (PY) L (x) (35)

o0
[ — ol 0dCH+ Y (~1y" e [CE, 0dCH, cp,l] oL (@Y 1(x)
n=1

+ @} odClet (@H T (x) + @F Bl ¢} (@1 H(x) dr

=) (1", [Cl odCHy ¢7(x) + OF BE (@) T ¢P (x) dt.
n=1
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Since Clisaprocessin [, #], thesumin (35) isin fact finite. Let

0 t
Cl=e¢" > (D", / e [CL0dCY,, 1eR.
n=1

—00
Then, Lemma 1.1 applies again to show that C? € .. So, if we set
B? = ®} BL(@Y) "t + C?,

we may write
dg? (x) = 0dC? ¢f(x) + Bl{ (x) dt. (36)

We turn to the recursion step of our algorithm. Let k > 2, and suppose that a
flow ¢* on R¢, astationary vector field B, and a stationary vector field C* € .
are given such that

dg} (x) = odCf ¢f (x) + B ¢} (x) dt. (37)
We define the diffeomorphism of step k by
o* = exp(—C)), (38)
and let % = ®* 0 6,1 € R. Then we may set
1= ok gk (@)1 reR. (39)

Then the same computation as above gives us the generator of ¢**1. For x € R¢
we have

o
def ™ (x) = Y (=" he[CFL 0dCfln ¢FTHx) + ©F B (@) T o TH(x) dt,
n=1
(40)
where again the sum isfinite. To obtain a stationary SDE we again define

Cip1(t) = e™! i(—l)"“cn / l e’[Ck, 0dCh,, teR. (41)
n=1 -
According to lemma 1.1, C¥*t1 € . So, finally setting
BMHL — ok BR(ok)~1 4 CFHL,
t € R, we obtain the asserted stochastic differential equation
dpf 1 (x) = odCF ek (x) 4+ BFF 1k +i(x). (42)

This compl etes the recursion step.
Since[.Z, L] isnilpotent, we know that our algorithm stops after finitely many
steps. So we obtain our second main result
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Theorem 3.1. Let fobeasmoothvector fieldonRY, A1, - - -, A,y € R¥*4 Letgp =
(¢¢):er denote the (possibly local) flow associated with the stochastic differential
equation

m
dx; = folx)dt + Z Aix odW,.
i=1
Assumethat the Lie algebra generated by Ay, - - -, A,, issolvable. Then the asser-
tions of Theorem 2.1 hold true.

4. An application: the existence of random attractors

Let usfirst recall the notion of arandom attractor. For more details consult Crauel,
Debussche, Flandoli [Cra97] or Keller, Schmalfuss [Kel98]. Note first that un-
der the smoothness conditions assumed from section 1 on for the vector fields,
the completion result of Arnold, Scheutzow [Arn95] implies that the flows of dif-
feomorphisms generated by our stochastic differential equations in fact generate
random dynamical systems (see Arnold [Arn98]). More precisely, theflow (¢;):>0
of diffeomorphisms on R? generated by a stochastic differential equation is called
randomdynamical systemon the metric dynamical system (22, F, P, (6;);cRr) if the
following cocycle property is satisfied:

Ps+1(@) = ¢ (Bsw) 0 ds(w),  Po(w) = idRa,

forw € @, s, > 0. An obvious maodification gives the notion of arandom dynam-
ical system for flows with parameter space R instead of R,.. Whenever we speak
of aflow, we shall, as our hypotheses on the vector fields allow, tacitly assume that
it isarandom dynamical system.

A family (A(w), w € ) of closed subsets of R? is called measurableif for any
x € R thefunction w > d(A(w), x) = inf{lx — y| : y € A(w)} is measurable.
Motivated by the needs of section 4.2, we shall define random attractors for more
general systems of attracted sets. Let & be a system of measurable closed and
nonempty sets w — D(w). In addition we suppose that D fulfills the following
filtering property: if D’ isameasurable set with closed and nonempty images and
D'(w) C D(w) forw € Q and D € & then D' € . Such a system is briefly
named universe. We hasten to emphasize that the system of compact random sets
uniformly bounded in w is a universe, the one the reader may imagine if we speak
of universes. We call it universe of compact sets. Aswe shall seein section 4.2, it
is however not the only one which matters for us.

For agiven universe & ameasurable set A € & with compact imagesiscalled
arandom attractor for the random dynamical system (¢;)>o if A is ¢-invariant,
i.e.for w € Q wehave

¢1(w)A(w) = A(G; ),

and absorbs sets from 2, i.e.

Jim dist(¢(0—:0)D(0—;w), A(w)) =0
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for any D € 9, see Flandoli, Schmalfuss [FIa96], where dist denotes the semi-
Hausdorff distance
dist(A, B) = sup iml‘9 lx — .

XeAYE

Notethat arandom attractor isunique. Weremark that themoreintuitiverel ationship
t”@@ dist(¢(w) B, A(6;(w)) =0

holds only for convergence in probability.
The following theorem is a version of Crauel, Flandoli [Cra94], Flandoli,
Schmalfuss [FIa96] or Schmalfuss [Sch97]:

Theorem 4.1. Let & be a universe of measurable sets. Supposethat x — ¢, (w)x
is continuous. In addition we suppose that there exists a compact measurable set
B € & such that

¢1(0—10)D(0—;0) C B(w)

fort > t(w, D) andany D € Z. Then there exists a random attractor with respect
t0 2.

The other important example of universes is given by the tempered random sets.
A random variable R > 0 istempered if

lim 1 logt R(A;w) =0 (43)

t—oo |f|
for w € 2, see Arnold [Arn98], p.164. Note that (43) is equivalent to

lim ¢ “""R@,w) =0 forany ¢ > 0.
t—=+o0

A measurable set D is called tempered if D(w) is contained in a ball with cen-
ter zero and tempered radius R(w), @ € 2. Then the system of measurable sets
with compact and nonempty tempered images forms the universe of tempered sets.
The universe which matters in section 4.2 consists of tempered sets with asimple
additional condition and will be described precisely later on.

Of course, the universe of compact sets is contained in the tempered one. Let
us briefly point out that the difference is not very big from the point of view of
random dynamical systems, however. Temperedness of R may be paraphrased by
stating that the Lyapunov exponent of the stationary processt — R(6;w) is zero.
But if it is not zero, then we automatically have

1
Iimsupl— log™ R(A;w) = +00.

t—=+00 |
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4.1. Sufficient criteria for existence

In thissection we shall give an application of the main result of the previous section
to the problem of existence of global attractors for flows generated by stochastic
differential equations. Let fo be aC> vector field on RY. We consider a stochastic
perturbation of the dynamical system described by the differential equation

dx; = fo(x,) dt. (44)

More precisely, let Ay, - - -, A, € R4 and consider the sde

m
dx; = fo(xy) dt + ZA,- x;0dW/. (45)
i=1

We assume that the flow ¢ generated by (45) is forward complete. Following the
ideas of our prototypical approach of random attractorsin [Imk98], we assume that
(44) has aLyapunov function V, so that the system has an attractor. The problem of
existence of arandom attractor for (45) will be approached in the following form.
We ask whether V is still aLyapunov function for the perturbed system. Assuch it
will then provide a random attractor.

Assume from now onthat the Lie algebragenerated by A4, - - -, A,, issolvable.
Fix n € N suchthat "1 =0, let €0, ..., C", @O, ..., ®" bedefined asin the
preceding section, and let

g, ) =" 0 0@ fo((®"0---0d%)7Ly)

n
+) o0 CH (@00 0b)Thy,
k=0

Then the main result of the preceding section states that the flow x generated by
the random differential equation

dy; = g0, y,) dt (46)

and ¢ are conjugate. It isvery easy to deduce from the definition of & and Lemma
1.1 that the random diffeomorphisms are tempered (i.e. that the random variables
| @' || aretempered). Thefollowing Theorem describes the natural relation between
random attractors in the different coordinates.

Theorem 4.2. Let ® = " o - -- o . Then there is a one-to-one correspondence
between random attractors of ¢ and x. If (A(w), @ € Q) isarandom attractor of
X, then (®(w) A(w), w € Q) isarandom attractor of ¢ attracting tempered sets.
If (B(w), w € Q) isa random attractor of ¢, then (& 1(w) B(w), w € Q) isa
random attractor of x attracting tempered sets.

Proof. We know that ¢ and x are conjugate by the tempered diffeomorphism .
Hence the proof isthe same asin [Imk98]. ]
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We next introduce the function
RO,y = o0e™ fo((e or0e)y)

_.n _ Lk _.n ok —
—}—Ze Coiiioe ™ K o0 e™ )Ty,

0, ..., " e R4 y e R Notethat h and g are related by the formula
g(.y) =h(CQ.---,Cq.y), yeRL

We shall subsequently use the abbreviations ¢ for avector (¢, - - -, ¢") and C for
thevector of proceﬁs%(co, .-+, C™). Thefollowing result isbasic for the existence
of attractors and generalizes Theorem 2.2 of [Imk98] to our situation.

Theorem 4.3. LetU : RY — R, beaCl-functionsuchthatIimm_m Ux) = 0.
Suppose that for any M > 0

Iu(c) = sup |h(c,y)l, ¢ e (RPXd)yn+l
ly|l=M

we have
Ep.(ly) < 00 (47)

where Pc isthelaw of C. Supposethereexistsameasurablefunctionk : (R?*4)n+1
— R such that we have

E(OSUPl |k(C o 9s)|) < 00, (48)

limsup  sup (VInU®), h(c, y)) <1 49)
ly|—>00 cesupp(Pc) k(c)

EPC (k) < 0. (50)

Then x has a random attractor which attracts compact sets. If U preserves tem-
peredness, then x has a random attractor for tempered sets.

Proof. The proof is essentially the same as for Theorem 2.2 in [Imk98]. The hy-
pothesis of subexponential growth there is replaced by the two hypotheses (47) for
Iy and (48) for k. (48) is needed to justify the application of Birkhoff’s ergodic
theorem, (47) for verifying the finiteness of the random variable

0 0
Y =/ exp(f k(Coo6,)du)ly(Cooby,)dv
—0o0 v
from which arandom attractor is constructed. O

Also the perturbation result of [Imk98] generalizes to our setting of solvable
Lie algebras for the diffusion vector fields.
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Theorem 4.4. Let V be a Lyapunov function of

dy; = fo(y,)dt,

i.e. suppose there exists o > 0 such that

limsup(VInV(y), fo(y) < —a.

[y[—00

Suppose that there exists a measurable function k : (R4*4)"*+1 — R, such that
(47) and (48) arefulfilled, aswell as

limsup  sup |(V|nV(y),fo(y)—h(c,y)HE
lylsoo cesuppPe) (VY INV (), fo(y))k(c)

1, (51)

Ep.(k) < a. (52

Then x has a global random attractor for the compact sets. If V preserves tem-
peredness, then x has a random attractor for the tempered sets.

Proof. By a suitable modification of &, (51) and (52) are seen to imply (49) and
(50). |
4.2. An example

We shall now give an example for a situation in which the Lie algebra generated
by the diffusion vector fields is solvable, but not nilpotent. This situation occurs if
we consider the well known noisy Duffing-van der Pol oscillator with independent
noi se sources coupled to the position and vel ocity components. Formally, thesystem
is given by the second order sde

Vi =By Ay V2 —oy o W —py o W2 =0,

where 8 € R, 0, p # 0.We pass in the usual way to atwo-dimensional system of
first order equations by putting y1 = y, y2 = y. With the matrices

00 00
w=[70] s=[37]
and the nonlinear vector field

2
o(y) = , eR,
8oL [—y1+ﬁyz—yf—yfyz] Y

we obtain the following sde
dy, = go(y1)dt + A1y, 0o dW; + Az y 0 AW/

Since
00
op"0

[A2, A1), = [ ] = p" A1,
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we have for the Lie algebra ¥ generated by A1, A>
L =gpan{A1, Ay}, L1=[%, %] =9span{A1}, L2=0.

So ¢ issolvable, but not nilpotent.

Let us compute the conjugation diffeomorphisms, starting with the processes
C°, ct. Wehave

Cl=20() A1+ 23(1) Az, teER,

and therefore by an elementary computation

CI)Ozg_Cg: 1 O
v2v1 |’

o zg(O)
p23(0)

To compute C1, let us start with the following special case of (28) and (31)

where

vy = e P50 - _ (1— e P50

t 1
0 0
Cl1 = _—e ! / e / s e 5Cu [C,?, odCl?]eSCu ds (53)
—00 0
m 1 1 m 0 m 0
— Z et / ot / se~s Ytz w) A [Aj, Agle’ i1z () A ds
k=1, j<k —oo  JO
odaji(u),
where

odaji(u) = 29u) o dzf(u) — z§(w) 0 dz0u) = 20)dzd(u) — 2)(u)dz9(w)

is the differential of the Ornstein-Uhlenbeck area process corresponding to z?

and zg, for 1 < j < k < m. Note that in this differential, 1t6 and Stratonovich
integration yields identical results. Returning to our special case, we obtain

1 2 0 2 0
/ se=s Y1) A [A1, Ag]e* Doim1z (W) A ds
0

T /ls[ . O}A[ : Oi|ds
7 Lo mo | -t

1 1 0 0
=2 = [1-eP2®W _ Dwye" 2] A4.
P z(u)? 2
0
Here vi(s) = 5P 2@, yy(s) = Zzggj; (1— =222 Consequently, setting
2

0

o 1 0 0

V3= —— f e 5 2[1 —e PR _ zg(u) e 2] o daro(u),
P oo  z5(u)
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we arrive at the equations

1 00 1 —ct 10
C0_|:—v301|’ T =e O_|:v31 ’

So the conjugation diffeomorphism is given by

q>=c1>loc1>°=[ 1 O]
v2 +v3 v1

Let

1
Oec v,

hic,y) = e o go(ec0 oe y) + Cly + e
c= (% b e (R¥?)?2, y e R2 Toprovethat for small enough coupling constants
o, p thesystem hasaglobal random attractor, our main task will consistin verifying
the conditions of Theorem 4.3. Now we know from [Imk98] that the Lyapunov
function is most easily given in the Lienard coordinates. We denote them by the
symbol x. The transformations are given by

yi -1 X1
t == 3 t X) = )
) [yz—ﬁ)’1+%,yf] 2 [XZ+/3X1—%X3}

x, y € R2. The Lyapunov function in the Lienard coordinates is then given by the
formula

Vix) = 221 + 5% + 2% + E(xl —x2)%,

x € R?, the Lyapunov function in the y —coordinates by

Uy)=V@(y), yeR%

First note that due to the integrability properties of the Ornstein-Uhlenbeck
processes 9, z9, and the fact that the quadratic variation of the area process az, is
bounded by

t
/ [96))% + (23(s))ds, >0,
0

we have
1
vy, —,v2,v3€ L? forany p>1 (54)
v1

This in particular implies that ®°, ®1 are tempered. As another consequence of
(54) and thefact that gg has polynomial components, we can note that (47) isvalid.

For the remainder of the hypotheses of Theorem 4.3, we may concentrate on
treating the nonlinear part of gg — &, which comes from the nonlinear part of gg.
The arguments for the linear part are simple (see [Imk98]. Recall first the formula
for go in Lienard coordinates. We have

1
x2+ Bx1— §xf
—xl—xio’ ’

fo(x) = Dt(t7(x)) got 7 (x)) = [
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Let us denote its nonlinear part by

1.3
n(x) = [__éx);l]

1

x € R2. Then we have on supp(Pc), writing
6—6‘0:|:1 O]’ 6_61=|:10i|,
Uz U1 uz 1l

L . R SN 0
n(x)—e “ oe “n(e oe x)—[[l_%(u2+u3)—u1]xf]'

Thisin turn implies the equation
S R S B 3 3 4 1
(ViV(x),n(x)—e “ oce” “ n(e ce X))=(éxle—xl)[1—§(u2+u3)—u1].
We next use the simple estimate
3, _1 6, 2 2
|X2X1| =< E(-xl +x2) ZK(-X)v xeR )

and remember (see [Imk98]) that « and |(V. V, fo)| are asymptotically equivalent,
define k on the above mentioned linear subspace of (R%*2)2 by

1
k(e ) = [1= Z(uz +ug) — u1]
and by 0 outside, to arrive at the estimate

O L
limsup  sup (VINV(x),n(x) —e e “n(e e x))|
lx|—00 cesupp(Pc) (VINV(x), fo(x))k(c)

<y, (55

for some constant y, which may be normalized by multiplying it to k. This gives
(51) for the nonlinear part. It remains to verify (48) and (52) for k. Now (48) isa
consequence of the standard martingal e inequalities and theintegrability properties
(54). Next, notethat asc — 0onthelinear subspace onwhich k doesnot vanish, we
have uy, u3 — 0, whereasuq1 — 1, hence k(c) — 0. But the random variables v;
havejust thisasymptotic behavior asp — 0. Indeed, v1 — 1, and both va, v3 — 0
asp — 0, forany o # 0. So dominated convergence implies that, if o # 0 is
fixed, by choosing p small enough, we may get Ep.(k) < «. Hence our system
possesses a global random attractor for any o # 0, and small enough p.
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