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Abstract. Let {Sn} be a random walk on �d and let Rn be the number of different points
among 0, S1, . . . , Sn−1. We prove here that if d ≥ 2, then ψ(x) := limn→∞(−1/n) log P {Rn

≥ nx} exists for x ≥ 0 and establish some convexity and monotonicity properties of ψ(x).
The one-dimensional case will be treated in a separate paper.

We also prove a similar result for the Wiener sausage (with drift). Let B(t) be a
d-dimensional Brownian motion with constant drift, and for a bounded set A ⊂ �d let
�t = �t(A) be the d-dimensional Lebesgue measure of the ‘sausage’

⋃
0≤s≤t (B(s) + A).

Then φ(x) := limt→∞(−1/t) log P {�t ≥ tx} exists for x ≥ 0 and has similar properties
as ψ .

1. Introduction

Let X,X1, X2, . . . be i.i.d. �d -valued random variables such that P {X = 0} < 1.
Let S0 = 0, Sk =

∑k
i=1 Xi and let |A| denote the cardinality of the set A. The

range (at time n) of the random walk S = {Sk} is

Rn =
∣∣{0, S1, . . . , Sn−1}

∣∣
= number of different points among 0, S1, . . . , Sn−1.

(1.1)

(Note that in this definition we take the last point to be Sn−1 rather than Sn; this
gives a somewhat more convenient subadditivity relation for the range.) It was first
shown by Spitzer in [S3], pp. 38-40 that

Rn

n
→ π := P {Sn 
= 0 for all n ≥ 1} a.s. (1.2)

(cf. [S2], [De] for later references and improvements). Moreover, since

Rn+m ≤ Rn +
∣∣{Sn, Sn+1, . . . , Sn+m−1}

∣∣
= Rn +

∣∣{0, Sn+1 − Sn, Sn+2 − Sn, . . . , Sn+m−1 − Sn}
∣∣, (1.3)

Y. Hamana: Faculty of Mathematics, Kyushu University 36, Fukuoka 812-8581, Japan.
e-mail: hamana@math.kyushu-u.ac.jp

H. Kesten: Department of Mathematics, Malott Hall, Cornell University, Ithaca, NY 14853,
USA. e-mail: kesten@math.cornell.edu

Mathematics Subject Claasification (2000): Primary 60K35; Secondary 82B43

Key words or phrases: Large deviations – Range of random walk – Wiener sausage



184 Y. Hamana, H. Kesten

one easily sees that

P {Rn+m ≤ (n+m)x} ≥ P {Rn ≤ nx}P {Rm ≤ mx} (1.4)

for x ≥ 0, n,m ≥ 1. It follows from this subadditivity relation (see [PS], problem
I.98) that

ζ(x) := lim
n→∞

−1

n
log P {Rn ≤ nx} exists. (1.5)

Of course, it follows from (1.2) that ζ(x) = 0 for x > π . It came as a bit of a
surprise when Donsker and Varadhan (see [DV]) proved that for random walks in
the domain of normal attraction of a symmetric stable law of index α, and λ ≥ 0,

lim
n→∞ n−d/(d+α) log Ee−λRn exists and is finite.

This shows that the main contributions to E exp[−λRn] do not come from values
for Rn of order n. Perhaps P {Rn ≤ nx} does not decrease exponentially in n for any
x > 0. This can indeed be proven by easy lower bounds on P {|Si | ≤ nβ for 1 ≤
i ≤ n} for β ≤ 1/d . Thus, for many random walks ζ(x) = 0 for all x > 0. It turns
out that a different normalization for log P {Rn ≤ nx} should be used. Indeed, van
den Berg, Bolthausen, den Hollander ([BBH]) recently evaluated the limit

I (x) := − lim
t→∞ t−(d−2)/d log P {�t ≤ tx}, (1.6)

where �t denotes the volume of the Wiener sausage, which will be defined more
precisely in (1.18) below. They gave a variational characterization of I (x) and
found some peculiar dimension dependence for the associated variational problem.
One can expect that a similar situation prevails for

ζ̃ (x) := − lim
n→∞ n−(d−2)/d log P {Rn ≤ nx}, (1.7)

if the random walk {Sk} has mean zero and bounded variance, and d ≥ 3.
In this paper we consider large deviations for Rn in the upwards direction, that

is, we study

ψ(x) := lim
n→∞

−1

n
log P {Rn ≥ nx}. (1.8)

Since there is no obvious analogue of (1.4) when P {Rn ≤ nx} is replaced by
P {Rn ≥ nx}, it is not clear that the limit in (1.8) exists for x ≥ π . Our first theorem
shows that this is indeed the case for essentially all random walks. Throughout we
assume that X has a genuinely d-dimensional distribution and that the correspond-
ing random walk is aperiodic, that is, we assume that

the group generated by the support of X is all of �d (1.9)

(see Section 2 for some discussion of this assumption).
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Theorem 1. Let Sn, Rn and π be as above and assume that (1.9) holds. Then

ψ(x) = lim
n→∞

−1

n
log P {Rn ≥ nx} exists (1.10)

for all x (but ψ(x) may equal +∞). ψ(·) has the following properties:

ψ(x) = 0 for x ≤ π, (1.11)

0 < ψ(x) <∞ for π < x ≤ 1, (1.12)

ψ(x) = ∞ for x > 1, (1.13)

x �→ ψ(x) is continuous on [0, 1], and in case d ≥ 2,

x �→ ψ(x) is also convex on [0, 1],
(1.14)

and

x �→ ψ(x) is strictly increasing on [π, 1]. (1.15)

Remark 1. Our proof also shows convexity of ψ if d = 1 and |X| does not have an
exponentially bounded tail. ψ is also convex when d = 1 and P {X > 0}P {X <

0} = 0, but we were unable to prove convexity for all one-dimensional cases. The
proof of Theorem 1 for d = 1 will be given in a separate paper, though.

The following is a straightforward consequence of Theorem 1. It gives a partial
large deviation principle for the range of random walks. The proof of this corollary
is given at the end of Section 2.

Corollary 1. Let µn be the probability distribution of the random variable Rn/n.
In the set-up of Theorem 1, we have that

lim sup
n→∞

1

n
log µn(F ) ≤ − inf

x∈F
ψ(x) (1.16)

for each closed subset F ⊂ [π,∞) and that

lim inf
n→∞

1

n
log µn(G) ≥ − inf

x∈G
ψ(x) (1.17)

for each open subset G ⊂ [π,∞).

One can consider analogous problems for the cardinality of the set {A, S1 +
A, . . . , Sn + A} when A is a fixed finite susbset of �d (compare [S3], Problem
27.14). We shall not do this, but instead shall go directly to continuous space and
time and consider the Wiener sausage. Let {B(t)} be a d-dimensional Brownian
motion with B(0) = 0. Contrary to the usual convention we allow the Brownian
motion to have a constant drift µ 
= 0. Further, let A ⊂ �d be a bounded, Lebesgue
measurable, nonempty set. The set

⋃
0≤s≤t (B(s)+A) is called the Wiener sausage

(associated with A). Its volume is

�t = �t(A) := λd

( ⋃
0≤s≤t

(B(s)+ A)

)
, (1.18)
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where λd( · ) denotes the d-dimensional Lebesgue measure. The analogue of (1.2)
is now that

θ := lim
t→∞

�t(A)

t
exists a.s. (1.19)

(cf. [S2], [IM, Problem 7.8.4]). When µ = 0

lim
t→∞

�t(A)

t
=

{
cap(A) if d ≥ 3

0 if d = 1 or 2
(1.20)

a.s., where

cap(A) =
{
d-dimensional Newtonian capacity of A if d ≥ 3

logarithmic capacity of A if d = 2.
(1.21)

It can also be shown that θ in (1.19) is strictly positive and finite for either d ≥ 3,
cap (A) > 0, or d = 2, cap (A) > 0, µ 
= 0, or d = 1, A 
= ∅, µ 
= 0. (We are
grateful to an anonymous referee for this last remark.)

�t in the result of [BBH] ((1.6) above) stands for �t(A) with A a ball of radius
a, and for this choice of A, (1.6) supplements (1.20). We have, however, no nice
expression for θ for general drift. Some related results for the case µ 
= 0 are in
[EL].

Here we again consider deviations from (1.19) in the upwards direction. Some
control of the probabilities P {�t ≥ tx} is provided by [BB] and [BT]. These papers
show the existence of

ρ(λ) := lim
t→∞

1

t
log Eeλ�t for λ ≥ 0, (1.22)

again under the assumptions that A is a ball and µ = 0. They further derive some
estimates forρ(λ) asλ ↓ 0 orλ ↑ ∞. We shall indicate here a proof of the following
analogue of Theorem 1:

Theorem 2. If A is a bounded, Lebesgue measurable, nonempty set in �d , then
for any constant (possibly zero) drift µ

φ(x) := lim
t→∞

−1

t
log P {�t(A) ≥ tx} exists (1.23)

for all x ∈ �. φ(·) satisfies

φ(x) = 0 for x ≤ θ, (1.24)

where θ is defined by (1.19). If d = 1, then

φ(x) =


x2

2 if µ = 0, x ≥ 0

0 if 0 ≤ x ≤ |µ|
(x−|µ|)2

2 if 0 < |µ| ≤ x.

(1.25)
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If d ≥ 2 and cap(A) > 0, then φ has the following properties:

0 < φ(x) <∞ for x > θ, (1.26)

x �→ φ(x) is convex and continuous on [0,∞), (1.27)

and

x �→ φ(x) is strictly increasing on [θ,∞). (1.28)

Remark 2. The case d ≥ 2 with cap(A)= 0 is not interesting, because in that case

P {B(t) ∈ A for some t > 0} = 0.

For a Brownian motion without drift this was proven by Kakutani in [Ka] for d = 2,
and the higher dimensional case seems to have been treated first in [Do1]; see also
Section 2.IX.5 in [Do2]. This statement remains valid even if the drift is nonzero,
because on each finite time interval Brownian motion with drift and without drift are
absolutely continuous with respect to each other (see [KS, Section 3.5, especially
3.5C]). But then

E�t(A) =
∫

�d

P
{
y ∈

⋃
s≤t

(B(s)+ A)
}
dy

=
∫

�d

P {B(s) ∈ y − A for some s ≤ t}dy = 0.

Thus if cap(A) = 0, then P {�t(A) = 0} = 1 for each fixed t , and then by the
monotonicity of t �→ �t , P {�t(A) = 0 for all t} = 1.

The following corollary is the analogue of Corollary 1 for the Wiener sausage.
Its proof is entirely analogous to that of Corollary 1 and will be left to the reader.

Corollary 2. Let A be a bounded, Lebesgue measureable, nonempty set in � and
let νt be the distribution of�t(A)/t . If d ≥ 2 assume that cap(A) > 0. The constant
θ is the same as in (1.19). Then we have that

lim sup
t→∞

1

t
log νt (F ) ≤ − inf

x∈F
φ(x)

for each closed set F ⊂ [θ,∞) and that

lim inf
t→∞

1

t
log νt (G) ≥ − inf

x∈G
φ(x)

for each open set G ⊂ [θ,∞).

The principal open question now is to find a manageable expression or char-
acterization for ψ(x) and φ(x).
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1.1. Outline of the proof of (1.10) for d ≥ 2

As we already stated in Remark 1, we only prove Theorem 1 for d ≥ 2 in this
paper. The proof is based on an approximate subaddivity relation. We build a path
of length n+m with Rn+m ≥ y + z−E(n,m) for some error term E(n,m) from
two paths, P1 and P2, say. P1(P2) has length n (m) and range greater than or
equal to y (z, respectively). The error term comes from the fact that some points
are counted in the range of both P1 and P2. In order to make this overlap small we
do not put the initial point of P2 at the endpoint of P1, but at some nearby point.
We show that we can place the initial point of P2 at a distance at most of order
(nm)1/(d+1) from the endpoint of P1 so as to get an overlap of order (nm)1/(d+1).
The two paths are then connected at not too large a cost in probability. The result
is the relation

P {Rn+m ≥ y + z− (2d + 2)(nm)1/(d+1)}
≥ 1

2ζ
d(nm)1/(d+1)+dP {Rn ≥ y}P {Rm ≥ z}. (1.29)

for some ζ > 0. (The idea of putting the initial point of P2 at a point which is near,
but not necessarily at, the endpoint of P1, was also used in [Ke] for estimating
numbers of self-avoiding walks. It is of course not surprising that tools for self-
avoiding walks are useful here, since the event {Rn ≥ n} is just the event that the
initial piece S0, . . . , Sn−1 of the random walk is selfavoiding.)

When d ≥ 2, then (nm)1/(d+1) is small with respect to (n∨m). From this one de-
duces by more or less standard subadditivity arguments that limn→∞(−1/n) log P

{Rn ≥ nx} exists at all continuity points x ∈ (0, 1) of ψ(x) := lim infn→∞(−1/n)
log P {Rn ≥ nx}. It is then easy to obtain from (1.29) that the restriction of
limn→∞(−1/n) log P {Rn ≥ nx} to the continuity points of ψ in (0, 1) is con-
vex (see proof of Lemma 3 for the precise meaning of this statement). This is
enough to conclude that ψ is in fact continuous on (0, 1), just as in the usual proof
of continuity of a convex function. Hence limn→∞(−1/n) log P {Rn ≥ nx} exists
for all x ∈ (0, 1). The existence of this limit for x /∈ (0, 1) is easily shown directly.

We remark that it is also possible to prove Theorem 1 by the methods of Lem-
mas 3 and 6 of [HK], which are used there for the one-dimensional case. For the
higher dimensional case the proof of this paper is more direct.

2. A subadditivity argument; proof of Theorem 1 for d ≥ 2

Throughout this section X,X1, X2, . . . are i.i.d. �d -valued random variables and
Sn, Rn are as in Section 1.

Before we begin any proofs we point out that assumption (1.9) does not entail
any loss of generality. Indeed we can always change coordinates so that (1.9) holds,
by Proposition 7.1 in [S3]. More specifically, if G denotes the subgroup of �d gen-
erated by the support of X, then there exists a d ′ ≤ d and d ′ linearly independent
vectors v1, v2, . . . , vd ′ ∈ G such that the group generated by v1, v2, . . . , vd ′ is equal
to G, and is isomorphic to �d ′ . In particular, there exist unique random variables
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X′ = (X′(1), . . . , X′(d ′)), X′j = (X′j (1), . . . , X
′
j (d

′)) ∈ �d ′ such that

X =
d ′∑

,=1

X′(,)v,, Xj =
d ′∑

,=1

X′j (,)v,,

and the group generated by the support of X′ equals �d ′ Accordingly, we can view
{Sn} as an aperiodic random walk on �d ′ . From now on we therefore drop the
primes from our notation and assume that the problem has been set up from the
beginning so that (1.9) holds.

We begin with a fundamental subadditivity relation.

Lemma 1. If (1.9) holds, then there exists a constant ζ ∈ (0, 1) such that for all
integers n,m ≥ 0 and y, z ∈ [0,∞), it holds that

P {Rn+m ≥ y + z− (2d + 2)(nm)1/(d+1)}
≥ 1

2
ζ d(nm)1/(d+1)+dP {Rn ≥ y}P {Rm ≥ z}. (2.1)

Proof. We introduce a number of quantities. The relevance of these quantities
will become clear in a little while. We let X̂1, X̂2, . . . be an independent copy
of X1, X2, . . . . In analogy with our previous notation we define Ŝ = {Ŝn}n≥0 by
Ŝ0 = 0, Ŝn =

∑n
i=1 X̂i . We define

R[a, b] = |{Sa, . . . , Sb}| and R̂[a, b] = |{Ŝa, . . . , Ŝb}|.
Note that Rn = R[0, n− 1] in this notation. Next we define for w ∈ �d

Nn,m(w) = Nn,m(w, S, Ŝ)

= ∣∣{u ∈ �d : u ∈ {S0, S1, . . . , Sn−1}
and u ∈ Sn + w + {Ŝ0, Ŝ1, . . . , Ŝm−1}

}∣∣.
Thus Nn,m(w) counts the number of points which are visited during the time inter-
val [0, n−1] by the walk S and also visited during [0,m−1] by the walk Ŝ shifted
by Sn + w.

For any fixed integers p ≥ 0, n ≥ 0, consider the random walk defined by

Tk = T
(p,n)
k =

{
Sk for k ≤ n+ p

Sn+p + Ŝk−n−p for k > n+ p.

Of course, {Tk}k≥0 has the same distribution as {Sk}k≥0, and hence also

P {Rn+p+m ≥ ,} = P {R[0, n+ p +m− 1] ≥ ,}
= P {|{T0, . . . , Tn+p+m−1}| ≥ ,}. (2.2)

We claim that on the event

{Sn+p − Sn = w}, (2.3)
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it holds that

|{T0, . . . , Tn+p+m−1}| ≥ Rn + R̂m −Nn,m(w). (2.4)

This is immediate from the fact that Rn = |{T0, . . . , Tn−1}|, and R̂m = |{Tn+p, . . . ,

Tn+p+m−1}|, and on the event (2.3),

Nn,m(w) = Nn,m(Tn+p − Tn)

= ∣∣{T0, . . . , Tn−1} ∩ {Tn+p, . . . , Tn+p+m−1}
∣∣ .

At this stage we remind the reader of (1.9). This allows us to pick d linearly inde-
pendent vectors v1, . . . , vd ∈ �d for which P {X = vi} > 0. We can then choose
0 < ζ < 1 such that P {X = vi} ≥ ζ for i = 1, . . . , d. We set

3q =
{ d∑

i=1

kivi : 0 ≤ ki ≤ q

}
⊂ �d .

For any w =∑d
i=1 kivi ∈ 3q , we then have for p = p(w) =∑d

i=1 ki ≤ dq that

P {Sn+p − Sn = w} = P {Sp = w} ≥ ζp ≥ ζ dq . (2.5)

Moreover,

|3q | = (number of vectors w ∈ 3q) = (q + 1)d .

We take

q = q(n,m) = �(nm)1/(d+1)�, (2.6)

where �a� denotes the smallest integer ≥ a. As a result of (2.2) and (2.4) we have
for each w ∈ 3q ,

P {Rn+dq+m ≥ y + z− 2(nm)1/(d+1)}
≥ P {Rn+p(w)+m ≥ y + z− 2(nm)1/(d+1)}
≥ P {Rn ≥ y, R̂m ≥ z, Sn+p(w) − Sn = w,Nn,m(w) ≤ 2(nm)1/(d+1)}. (2.7)

The event (2.3) depends only on the Xi with n < i ≤ n+p, and is therefore in-
dependent of the events {Rn ≥ y}, {R̂m ≥ z} and of the random variable Nn,m(w)

(for fixed w). Consequently,

P {Rn+dq+m ≥ y + z− 2(nm)1/(d+1)}
≥ P {Sn+p − Sn = w}P {Rn ≥ y, R̂m ≥ z,Nn,m(w) ≤ 2(nm)1/(d+1)}
≥ ζ dqP {Rn ≥ y, R̂m ≥ z, Nn,m(w) ≤ 2(nm)1/(d+1)}. (2.8)
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Since this inequality holds for all w ∈ 3q , we can take its average over 3q to
obtain

P {Rn+dq+m ≥ y + z− 2(nm)1/(d+1)}

≥ ζ dq

|3q |
∑
w∈3q

P {Nn,m(w) ≤ 2(nm)1/(d+1), Rn ≥ y, R̂m ≥ z}

≥ ζ dq

|3q |E
{ ∣∣∣{w ∈ 3q : Nn,m(w) ≤ 2(nm)1/(d+1)}

∣∣∣ I [Rn ≥ y]I [R̂m ≥ z]
}
.

(2.9)

We shall soon show that always∣∣∣{w ∈ 3q : Nn,m(w) ≤ 2(nm)1/(d+1)}
∣∣∣ ≥ 1

2
(q + 1)d . (2.10)

Before we do this we show that this will complete the the proof of the lemma.
Indeed, {Rn ≥ y} and {R̂m ≥ z} are independent because they depend only on
the Xi and X̂j , respectively. Their respective probabilities equal P {Rn ≥ y} and
P {Rm ≥ z}. Thus, if (2.10) is true, then (2.9) yields

P {Rn+dq+m ≥ y + z− 2(nm)1/(d+1)}

≥ ζ dq

(q + 1)d
1

2
(q + 1)dP {Rn ≥ y}P {Rm ≥ z}. (2.11)

Finally, by removing the last dq steps from S0 = 0, S1, . . . , Sn+dq+m, we see that
{Rn+dq+m ≥ ,} implies {Rn+m ≥ ,− dq}. Thus, (2.11) shows that

P {Rn+m ≥ y + z− 2(nm)1/(d+1) − d�(nm)1/(d+1)�}
≥ 1

2
ζ dqP {Rn ≥ y}P {Rm ≥ z}, (2.12)

which will indeed prove the lemma.
We conclude with the promised proof of (2.10). We have∑

w∈3q

Nn,m(w) ≤
∑
w∈�d

Nn,m(w)

=
∑
u∈�d

∑
w∈�d

I [u ∈ {S0, S1, . . . , Sn−1}]

× I [u ∈ Sn + w + {Ŝ0, Ŝ1, . . . , Ŝm−1}]
=

∑
u∈�d

I [u ∈ {S0, S1, . . . , Sn−1}]

× ∣∣{u− Sn − Ŝ0, u− Sn − Ŝ1, . . . , u− Sn − Ŝm−1}
∣∣

=
∑
u∈�d

I [u ∈ {S0, S1, . . . , Sn−1}]R̂m

= RnR̂m ≤ nm.
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It follows that ∣∣{w ∈ 3q : Nn,m(w) > 2(nm)1/(d+1)}∣∣
≤ nm

2(nm)1/(d+1)
= 1

2
(nm)d/(d+1) ≤ 1

2
|3q |,

and hence ∣∣{w ∈ 3q : Nn,m(w) ≤ 2(nm)1/(d+1)}∣∣ ≥ 1

2
|3q |,

as desired in (2.10). ��

Remark 3. As stated, Lemma 1 is not useful when d = 1; the error factor ζ (nm)1/(d+1)

becomes too dominant in this case. However, whend = 1 and lim supk→∞[P {|X| ≥
k}]1/k = 1 we can still derive an estimate similar to (2.1), by taking a different set3q

in the proof of Lemma 1. This replacement for (2.1) will not be enough by itself to
deduce (1.10), but it will give us an upper bound on lim supn→∞(−1/n) log P {Rn ≥
nx}.

For x ∈ � we now define

ψ(x) = lim inf
n→∞

−1

n
log P {Rn ≥ nx}. (2.13)

Observe that ψ(x) is nondecreasing in x. Moreover, it is bounded on [0, 1] because

P {Rn ≥ n} = P {S0, . . . , Sn−1 are distinct} ≥ [P {X(i) > 0}]n, (2.14)

where X(i) denotes the i-th component of X. Hence, for all 1 ≤ i ≤ d,

ψ(1) ≤ − log P {X(i) > 0}. (2.15)

If P {X(i) > 0} = 0 for all 1 ≤ i ≤ d , then we can replace X(i) > 0 by X(i) < 0
in this estimate. This always gives a finite upper bound for ψ(x).

We have to prove for (1.10) that the liminf in (2.13) can be replaced by lim. We
first show that this is permissible for any x ∈ [0, 1) at which ψ is continuous from
the right.

Proposition 2. If (1.9) holds and d ≥ 2 and if ψ is right continuous at a given
x ∈ [0, 1), then

ψ(x) = lim
n→∞

−1

n
log P {Rn ≥ nx}. (2.16)

Proof. The proof here will be based only on (2.11) and the fact that P {Rn ≥ z} is
increasing in n and decreasing in z. It would be somewhat simpler to use (2.1), but
a proof which only uses (2.11) has the advantage that it can also be used in the next
section for the Wiener sausage.
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For simplicity we write η = (d − 1)/(d + 1) and ξ = 2/(d + 1). To start with,
we define for any integer N ≥ 1,

σ(0) = σN(0) = N,

σ(k + 1) = σN(k + 1) = 2σ(k)+ d
⌈

[σ(k)]ξ
⌉
, k ≥ 0.

It is immediate from these definitions that

σ(i − 1)

σ (i)
≤ 1

2
, σ (i) ≥ 2iN, (2.17)

and for some constants c1, N0 <∞ and N ≥ N0

1 ≤ σ(k)

2kN
=

k∏
i=1

σ(i)

2σ(i − 1)

=
k∏

i=1

[
1+ d

⌈
[σ(i − 1)]ξ

⌉
2σ(i − 1)

]
≤ exp

[ ∞∑
i=1

d[σ(i − 1)]−η

]

≤ exp

[ ∞∑
j=0

d(2jN)−η

]
≤ 1+ c1

Nη
≤ 2. (2.18)

Also, for c2 = 2ξ /(1− 2−η) and N ≥ N0,

k−1∑
i=0

2k−i[σ(i)]ξ ≤
k−1∑
i=0

2k−i2ξ(i+1)Nξ

≤ c22kNξ ≤ c2N
−ησ (k). (2.19)

Now let x ∈ [0, 1) be such that ψ is right continuous at x and let ε > 0. Take
δ ∈ (0, 1) such that

ψ(x + 4δ) ≤ ψ(x)+ ε. (2.20)

Then take c3 = ζ d/2 < 1 and fix , ≥ 2 such that

(1− 2−,+2)(x + 2δ) ≥ x + δ. (2.21)

Finally, fix N ≥ N0 so that

P {RN ≥ N(x + 4δ)} ≥ exp[−N(ψ(x + 4δ)+ ε)]

≥ exp[−N(ψ(x)+ 2ε)],
(2.22)

1+ c1

Nη
≤ x + 4δ

x + 3δ
, (2.23)

N−η < min

{
δ

c2
,
−2ε

c2d log ζ
,

1

2d

}
, (2.24)

2,(3d + 2)(Nξ + 1) < δN, (2.25)
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and

2

N
| log c3| < ε. (2.26)

We shall first consider P {Rn ≥ nx} for n ∈ {σN(k)}k≥0 . (2.11) with m = n =
σ(k − 1) and

y = z = 2k−1N(x + 4δ)−
k−2∑
i=0

2k−1−i[σ(i)]ξ

now gives for k ≥ 1

P

{
Rσ(k) ≥ 2kN(x + 4δ)−

k−1∑
i=0

2k−i[σ(i)]ξ
}

≥ c3ζ
d[σ(k−1)]ξ

[
P

{
Rσ(k−1) ≥ 2k−1N(x + 4δ)−

k−2∑
i=0

2k−1−i[σ(i)]ξ
}]2

. (2.27)

We also have

2kN(x + 4δ)−
k−1∑
i=0

2k−i[σ(i)]ξ

≥ σ(k)(x + 3δ)−
k−1∑
i=0

2k−i[σ(i)]ξ (by (2.18) and (2.23))

≥ σ(k)(x + 2δ) (by (2.19) and (2.24)).

Combining this with (2.27) we obtain

P {Rσ(k) ≥ σ(k)(x + 2δ)}

≥ P

{
Rσ(k) ≥ 2kN(x + 4δ)−

k−1∑
i=0

2k−i[σ(i)]ξ
}

≥ c3ζ
d[σ(k−1)]ξ

[
P

{
Rσ(k−1) ≥ 2k−1N(x + 4δ)−

k−2∑
i=0

2k−1−i[σ(i)]ξ
}]2

≥ · · · ≥

≥ [c3]2k+1
exp

[
d

k∑
j=1

2j−1[σ(k − j)]ξ log ζ

] [
P {Rσ(0) ≥ N(x + 4δ)}]2k

≥ [c3]2k+1
exp

[
c2d2k−1Nξ log ζ

]
exp

[
−2kN(ψ(x)+ 2ε)

]
(by (2.19) and (2.22))
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= [c3]2k+1
exp

[
−2kN

(
ψ(x)+ 2ε − 1

2
c2dN

−η log ζ

)]
≥ [c3]2k+1

exp
[
−2kN(ψ(x)+ 3ε)

]
. (2.28)

The last inequality here was obtained from (2.24). With the help of (2.26), the
estimate (2.28) implies in particular that

lim sup
k→∞

−1

σ(k)
log P {Rσ(k) ≥ σ(k)(x + 2δ)}

≤ ψ(x)+ 3ε − 2

N
log c3 ≤ ψ(x)+ 4ε,

but we shall need the explicit bound of (2.28) for the next step.
In order to deal with general n, we “expand n (approximately) into a linear

combination of the σN(k).” More precisely, recall that we fixed , in (2.21). Now
let n ≥ σN(2,). Take

n̂ = n− 2d,�nξ �,
and choose ki, αi recursively in the following manner (σ = σN again here): k1 is
determined by

σ(k1) ≤ n̂ < σ(k1 + 1),

and

α1 =
{

1 if σ(k1) ≤ n̂ < 2σ(k1)

2 if 2σ(k1) ≤ n̂ < σ(k1 + 1);
then kr and αr for r ≥ 2 are determined by

σ(kr) ≤ n̂−
r−1∑
i=1

αiσ (ki) < σ(kr + 1) (2.29)

and

αr =
{

1 if σ(kr) ≤ n̂−∑r−1
i=1 αiσ (ki) < 2σ(kr)

2 if 2σ(kr) ≤ n̂−∑r−1
i=1 αiσ (ki) < σ(kr + 1).

We only choose these ki, αi as long as ki ≥ 0. Note that n ≥ σ(2,) implies
k1 ≥ 2,− 1. Also, by virtue of (2.24),

σ(k + 1)

σ (k)
≤ 2+ 2d[σ(k)]−η ≤ 2+ 2dN−η < 3,

so that we obtain from our choice of kr , αr that

0 ≤ n̂−
r∑

i=1

αiσ (ki) < σ(kr).
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As a consequence k1 > k2 > · · · . Let p be such that kp > k1 − , ≥ kp+1. By
(2.29), the monotonicity of σ(i) in i, and (2.18) we then have that

0 ≤ n̂−
p∑

i=1

αiσ (ki) < σ(kp+1 + 1) ≤ σ(k1 − ,+ 1)

< 2k1−,+2N ≤ 2−,+2σ(k1) ≤ 2−,+2n. (2.30)

Of course we also have p ≤ ,.
We set β :=∑p

i=1 αi and let n1 < n2 < · · · < nβ be the numbers of the form∑j

i=1 αiσ (ki) or
∑j

i=1 αiσ (ki)−σ(kj ); the latter form is included only if αj = 2.
If nγ has the first form for some 1 ≤ j ≤ p− 1, then nγ+1 = nγ + σ(kj+1). If nγ

has the second form for some 1 ≤ j ≤ p − 1, then nγ+1 = nγ + σ(kj ). We now
apply (2.11), with n replaced by nγ + dγ �nξ � and m = nγ+1 − nγ . We further
take y = nγ (x + 2δ) − 2γ nξ and z = (nγ+1 − nγ )(x + 2δ) = m(x + 2δ). Note
that

β ≤ 2p ≤ 2,, (2.31)

and for γ ≤ β − 1,

(nγ + dγ �nξ �)(nγ+1 − nγ ) ≤ (̂n+ dβ�nξ �)̂n ≤ n2.

Using the monotonicity properties of P {Rr ≥ z} we then find

P {Rnγ+1+d(γ+1)�nξ � ≥ nγ+1(x + 2δ)− 2(γ + 1)nξ }
≥ 1

2
ζ dnξ+dP {Rnγ+dγ �nξ � ≥ nγ (x + 2δ)− 2γ nξ }

× P {Rnγ+1−nγ ≥ (nγ+1 − nγ )(x + 2δ)}.

We use this inequality successively for γ = β − 1, β − 2, . . . , 1 (with n0 = 0) to
obtain finally

P {Rnβ+dβ�nξ � ≥ nβ(x + 2δ)− 2βnξ }

≥ [c3]βζ βdnξ
β−1∏
γ=0

P {Rnγ+1−nγ ≥ (nγ+1 − nγ )(x + 2δ)}

≥ [c3]2,ζ 2,dnξ
p∏

j=1

[
P {Rσ(kj ) ≥ σ(kj )(x + 2δ)}]αj

(by (2.31) and the definition of nγ )

≥ [c3]2,+∑p
j=1 αj 2kj+1

ζ 2,dnξ

exp

[
−

p∑
j=1

αj2kj N(ψ(x)+ 3ε)

]
(by (2.28)).

(2.32)
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Now observe that by (2.30) and (2.31)

nβ(x + 2δ)− 2βnξ =
p∑

i=1

αiσ (ki)(x + 2δ)− 2βnξ

≥ (̂n− 2−,+2n)(x + 2δ)− 2βnξ

≥ (1− 2−,+2)n(x + 2δ)− 2d,(x + 2δ)�nξ � − 4,nξ

≥ n(x + δ)− 2,(3d + 2)�nξ � (by (2.21)).

Then, by (2.25), we have that nβ(x + 2δ) − 2βnξ ≥ nx for all n ≥ N . Note also
that

nβ + dβ�nξ � ≤ n̂+ dβ�nξ � ≤ n,

and that

p∑
j=1

αj2kj N ≤
p∑

j=1

αjσ (kj ) ≤ n̂ ≤ n.

Thus, P {Rn ≥ nx} is at least as large as the left hand side of (2.32), and we have

− 1

n
log P {Rn ≥ nx}

≤ −
(

2,

n
+ 2

N

)
log c3 − 2,d

nη
log ζ + ψ(x)+ 3ε

≤ −2,

n
log c3 − 2,d

nη
log ζ + ψ(x)+ 4ε.

The proposition follows by taking the limits n→∞, and then ε ↓ 0. ��
Lemma 3. If (1.9) holds and d ≥ 2, then ψ is convex and continuous on (0, 1).

Proof. We first show that ψ is convex at its continuity points in [0, 1), that
is, for x, y, z ∈ [0, 1), all of which are continuity points of ψ and such that
x = αy + (1− α)z for some 0 < α < 1 it holds that

ψ(x) = ψ(αy + (1− α)z) ≤ αψ(y)+ (1− α)ψ(z). (2.33)

To see this we use Lemma 1 and the obvious monotonicity in w of P {Rn ≥ w}.
Recall that ξ = 2/(d + 1) and take m = mn = n − d�nξ � for large n. Since
�αm� · �(1−α)m� ≤ n2, and �αm�(y+ ε)+�(1−α)m�z− 2�nξ � ≥ nx for large
n, we obtain from (2.11) for ε ∈ (0, 1) and n large that

1

2
ζ dnξ+dP {R�αm� ≥ �αm�(y + ε)}P {R�(1−α)m� ≥ �(1− α)m�z}
≤ P {R�αm�+�(1−α)m�+d�nξ � ≥ �αm�(y + ε)+ �(1− α)m�z− 2�nξ �}
≤ P {Rn ≥ nx},

where �a� denotes the largest integer ≤ a.
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Now restrict ε > 0 to such ε for which y + ε is a continuity point of ψ . As we
already observed, ψ is nondecreasing so that this holds for all but at most countably
many ε. If we now take the logarithm and divide by n and let n → ∞, then we
obtain from Proposition 2 that

ψ(x) ≤ αψ(y + ε)+ (1− α)ψ(z).

The required (2.33) now follows by letting ε ↓ 0 such that y+ ε runs only through
continuity points of ψ .

Now assume, to derive a contradiction, that ψ is not continuous at some
x ∈ (0, 1). Since ψ is nondecreasing, this means that ψ has an upwards jump
at x. There therefore exist xn ↓ x and yn ↑ x such that xn, yn are continuity points
of ψ and such that

lim
n→∞

ψ(xn)− ψ(yn)

xn − yn

= ∞.

However, if z ∈ (x, 1) is also a continuity point of ψ , then (2.33) implies

ψ(z)− ψ(xn)

z− xn

≥ ψ(xn)− ψ(yn)

xn − yn

as soon as 0 < yn < xn < z. Thus (ψ(z)−ψ(xn))/(z− xn)→∞, which contra-
dicts the boundedness of ψ on [0,1] (see (2.14), (2.15)). This proves the continuity
of ψ on (0, 1). ��
Proposition 4. If (1.9) holds and d ≥ 2, then ψ has the properties (1.10)–(1.15),
so that Theorem 1 holds when d ≥ 2.

Proof. We first note that ψ is continuous at 0. Indeed, we clearly have P {Rn ≥
nx} = 1 and ψ(x) = 0 for x ≤ 0, while for δ ∈ (0, 1),

P {Rn ≥ δn} ≥ P {S0, . . . , S�δn� are distinct} ≥ [P {X(i) > 0}]δn,
exactly as in (2.14). It follows that ψ(δ) ≤ −δ log P {X(i) > 0}, as in (2.15).
Hence also limδ↓0 ψ(δ) = 0.

This result, together with Lemma 3 and Proposition 2 shows that (1.10) holds
for all x < 1. Moreover, limn→∞(−1/n)P {Rn ≥ n} exists by subadditivity, since
{Rn ≥ n} = {S0, S1, . . . , Sn−1, are distinct}, so that

P {Rn+m ≥ n+m} ≤ P {Rn ≥ n}P {Rm ≥ m}.
In addition P {Rn > n} = 0, so that (1.10) holds for all x and also (1.13) holds.

Next we show that ψ(x) is left continuous at x = 1. Assume that this is not the
case. Since we already know that ψ(1) is finite, there must then exist some β > 0
such that

ψ(1) = ψ(1−)+ 2β = lim
x↑1

ψ(x)+ 2β. (2.34)
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By (1.10) we also know that there exists a constant c4 ≥ 1 such that

P {Rn ≥ n} ≤ c4 exp[−n(ψ(1)− β)], n ≥ 0. (2.35)

Now if Rn ≥ nx, then there are at most �(1 − x)n� indices 0 ≤ k ≤ n − 1 for
which Sk = Si for some 0 ≤ i < k (compare the proof of Theorem 4.1 in [S3]).
Let these indices be 0 ≤ k1 < k2 < · · · < kρ ≤ n− 1, (with ρ ≤ (1− x)n). The
number of ways in which these indices can be chosen is for 3/4 ≤ x ≤ 1 at most

�(1−x)n�∑
ρ=0

(
n

ρ

)
≤ c5x

−xn(1− x)−(1−x)n,

for some constant c5, independent of x, n. All times j /∈ {k1, . . . , kρ}must be “first
visit times", that is, times j with Sj 
= Si for 0 ≤ i < j , so that R[ki, ki+1 − 1] =
ki+1 − ki, 0 ≤ i ≤ ρ, where we take k0 = 0 and kρ+1 = n. We conclude from
this that

P {Rn ≥ nx} ≤
∑
ρ

∑
k1,...,kρ

ρ∏
i=0

P {R[ki, ki+1 − 1] ≥ (ki+1 − ki)}

≤
∑
ρ

∑
k1,...,kρ

[c4]ρ+1 exp

[
−

ρ∑
i=0

(ki+1 − ki)(ψ(1)− β)

]
=

∑
ρ

∑
k1,...,kρ

[c4]ρ+1 exp[−n(ψ(1)− β)]

≤ [c4](1−x)n+1c5x
−xn(1− x)−(1−x)n exp[−n(ψ(1)− β)].

It follows that

ψ(x) ≥ −(1− x) log c4 + x log x + (1− x) log(1− x)+ ψ(1)− β.

By taking the limit x ↑ 1, we see that

lim
x↑1

ψ(x) ≥ ψ(1)− β.

This contradicts (2.34) unless β = 0, and the left continuity of ψ at x = 1 follows.
Now that we have continuity of ψ on [0, 1] we obtain the convexity of ψ on

[0, 1] from Lemma 3. We also have continuity at π , so that also (1.11) holds.
Next, we prove (1.12). By Markov’s inequality,

P {Rn ≥ n(π + ε)} ≤ e−n(π+ε)λEeλRn

for any λ ≥ 0. Consequently,

lim
n→∞

−1

n
log P {Rn ≥ n(π + ε)} ≥ (π + ε)λ+ lim

n→∞
−1

n
log EeλRn.

The last limit exists by subadditivity, because EeλRn+m ≤ EeλRnEeλRm for λ ≥ 0.
Moreover, it is proven in [H] that the right derivative at λ = 0 of this limit equals
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−π . (This reference only considers simple random walk, but the proof applies to
any random walk on �d ). Thus for sufficiently small λ > 0,

lim
n→∞

−1

n
log EeλRn ≥ lim

n→∞
−1

n
log e0·Rn −

(
π + ε

2

)
λ = −

(
π + ε

2

)
λ

and

lim
n→∞

−1

n
log P {Rn ≥ n(π + ε)} ≥ ε

2
λ.

This establishes (1.12).
Finally, (1.12) also implies (1.15). Indeed, convexity of ψ implies that for

h > 0, x ≥ π one has ψ(x + h)− ψ(x) ≥ ψ(π + h)− ψ(π). ��
The proof of Theorem 1 for d = 1 will be given in a separate paper.
We conclude this section with the proof of Corollary 1.

Proof of Corollary 1. The upper bound (1.16) for µn(F ) can easily be obtained
from a standard large deviation estimate with the help of (1.15) (compare the proof
of Theorem 2.2.3 in [DZ]). We therefore concentrate on proving the lower bound
(1.17) for µn(G).

Let G be an open set contained in the interval [π,∞). If inf G ≥ 1, then the
infimum of ψ on G is infinity by (1.13) since x > 1 for all x ∈ G. Therefore the
lower bound is trivial in this case. In the case that inf G < 1, we can find for each
x ∈ G ∩ [π, 1) some constant δ = δ(x) > 0 such that [x, x + δ) is contained in
(π, 1). Noting that

µn(G) ≥ P {Rn ≥ x} − P {Rn ≥ (x + δ)n},
and using (1.15), we easily obtain for each x ∈ G ∩ [π, 1) that

lim inf
n→∞

1

n
log µn(G) ≥ −ψ(x).

This implies that

lim inf
n→∞

1

n
log µn(G) ≥ − inf

x∈G∩[π,1)
ψ(x).

In view of (1.13), the right hand side here is unchanged even if we take the infimum
over all of G instead of G ∩ [π, 1). ��

3. The Wiener sausage

We indicate here how to prove Theorem 2. We shall first deal with the one-dimen-
sional case of Theorem 2. Because of the continuity of Brownian motion one can
more or less write down the distribution of �t and find φ(x) explicitly when d = 1.
For d ≥ 2 there are only some technical differences with the proof of Theorem 1
and we shall skip some details.
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Lemma 5. If d = 1 and A ⊂ � is any bounded, Lebesgue measurable, nonempty
set, then for x ≥ 0

φ(x) = lim
t→∞

−1

t
log P {�t(A) ≥ tx} =


x2

2 if µ = 0

0 if 0 ≤ x ≤ µ
(x−µ)2

2 if 0 < µ ≤ x.

(3.1)

Proof. Since Brownian motion is continuous, it is easy to see that for any A ⊂
[−K,K]

max
s≤t

B(s)−min
s≤t

B(s) ≤ �t(A) ≤ 2K +max
s≤t

B(s)−min
s≤t

B(s).

For the purposes of (3.1) we may therefore replace �t(A) by �̃t := maxs≤t B(s)−
mins≤t B(s). The density of this quantity when µ = 0 is explicitly given in [F1],
and this immediately gives the result for µ = 0. When µ > 0 it is still possible to
derive an infinite series for the density of �̃t as in [F1], but it is easier to use the
following crude estimates.

P {�̃t ≥ tx} ≥ P {B(t) ≥ tx} = 1√
2πt

∫ ∞

tx

e−(y−tµ)2/(2t)dy.

When x ≤ µ, the integral in the right hand side is at least 1/2, and when x > µ,
then this integral behaves asymptotically like

1

(x − µ)
√

2πt
exp

[− (x − µ)2t/2
]

(3.2)

(see [F2], Lemma VII.1.2). To prove (3.1) we only need an upper bound for P {�̃t ≥
tx} when x > µ. For this we can use

P {�̃t ≥ tx} ≤
∑
k≤t

P { max
k≤s≤k+1

|B(s)− B(k)| ≥ t3/4}

+
∑
k,,≤t

P {|B(k)− B(,)| ≥ tx − 2t3/4}.

The first sum in the right hand side here is by the familiar reflection principle ([IM],
Section 1.7) O

(
t exp[−(t3/4 − µ)2/2]

)
. The summand in the second sum equals

2√
2π

∫ ∞

|k−,|−1/2[tx−2t3/4−|k−,|µ]
e−y2/2dy = O

(
exp

[
− (t (x − µ)− 2t3/4)2

2t

])
,

(3.3)

(by virtue of [F2], lemma VII.1.2 again). (3.1) now follows easily. ��
For the remainder of this section we take d ≥ 2 and A ⊂ �d a fixed bound-

ed, Lebesgue measurable set with cap(A) > 0, where cap(A) is as in (1.21). We
usually abbreviate �t(A) to �t . The constants ci which appear in the proof do
not necessarily have the same value as in the previous sections. Without loss of
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generality we assume that A is contained in S := {x ∈ �d : |x| ≤ 1}, the unit ball
centered at the origin. Unless otherwise indicated the initial point B(0) equals 0.
We shall write B(t; i) for the i-th coordinate of B(t). Finally, we define

V [a, b] =
⋃

a≤s≤b

(B(s)+ A).

In this notation,

�t = λd(V [0, t]).

Before we can give the analogue of Lemma 1 we need some crude a priori
bounds on the distribution of �t . The following lemma is from [ABP].

Lemma 6. Let d ≥ 2 and let A be a Lebesgue measurable set contained in S, and
with cap(A) > 0. Then

P {�1/2(A) ≥ x} > 0 for all x ≥ 0. (3.4)

Proof. This is proven in [ABP] for a Brownian motion without drift. For a Brown-
ian motion with drift this then follows from the fact that on any finite time interval
Brownian motions with and without drift are absolutely continuous with respect to
each other. ��
Lemma 7. For all x ≥ 0 there exists an L1 = L1(x,A, d) <∞ such that

P {�t ≥ tx} ≥ e−L1t , t ≥ 1. (3.5)

Proof. Clearly, for t ≥ 1

P {�t ≥ tx} ≥ P {��t� ≥ 2�t�x ≥ tx}.
Thus, at the cost of replacing x by 2x we may restrict ourselves to t an integer.
Now, by Lemma 6, for any x ≥ 0, P {�1/2 ≥ x} > 0. There then exists a constant
c1 such that even

P
{
�1/2 ≥ x, sup

0≤s≤1/2
|B(s; 1)| ≤ c1

}
> 0. (3.6)

Now let Ek = Ek,1 ∩ Ek,2 ∩ Ek,3, where

Ek,1 := {B(k + 1

4
; 1)− B(k; 1) > c1 + 1};

Ek,2 :=
{
λd

(
V [k + 1

4
, k + 3

4
]
) ≥ x

and
∣∣B(k + s; 1)− B(k + 1

4
; 1)

∣∣ ≤ c1 for
1

4
≤ s ≤ 3

4

}
;

Ek,3 := {
B(k + 1; 1)− B(k + 3

4
; 1) > 2c1 + 2

}
.
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Then the eventsEk, k = 0, 1 . . . are independent and all have the same probability.
This probability equals

P
{
B
(1

4
; 1

)
>c1 + 1

}
P
{
B
(1

4
; 1

)
> 2c1 + 2

}
× P {�1/2 ≥ x, sup

0≤s≤1/2
|B(s; 1)| ≤ c1}.

Let us denote this probability by α. Then α > 0 by virtue of (3.6), and

P
{ ⋂

0≤k≤t−1

Ek

}
≥ αt . (3.7)

Finally, note that if Ek and E, occur for some k < ,, then

V
[
k + 1

4
, k + 3

4

] ∩ V
[
,+ 1

4
, ,+ 3

4

] = ∅, (3.8)

because the points in V [k+1/4, k+3/4] lie within distance 1 of {B(s) : k+1/4 ≤
s ≤ k + 3/4}, and therefore have their first coordinate in[

B(k + 1

4
; 1)− c1 − 1, B(k + 1

4
; 1)+ c1 + 1

]
⊂ (

B(k; 1), B(k + 1; 1)
)
.

In addition,

B(k + 1; 1) > B(k + 3

4
)+ 2c1 + 2

≥ B(k + 1

4
; 1)+ c1 + 2 > B(k; 1)+ 2c1 + 3,

so that the intervals (B(k; 1), B(k + 1; 1)) for different k are disjoint. Thus (3.8)
indeed holds, and on the event ∩0≤k≤t−1Ek one has

�t ≥
t−1∑
k=0

λd

(
V
[
k + 1

4
, k + 3

4

]) ≥ tx.

The lemma now follows from (3.7), by taking L1 = − log α. ��
Lemma 8. For all 0 ≤ L <∞, there exist a constant x1 = x1(L,A, d) <∞ such
that

P {�t ≥ tx1} ≤ e−Lt , t ≥ 1. (3.9)

Proof. When µ = 0 this is essentially contained in Theorem 1 of [BT]. When µ 
= 0
we cannot use the scaling property of Brownian motion, but we can still get our
estimate (even for µ = 0) by following part of the proof in [BT]. We do not attempt
to get sharp estimates such as given in [BB]. Probably this is still possible even if
µ 
= 0, but crude estimates are good enough for our purposes.
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Since �t is increasing in A, it is sufficient to restrict ourselves to A = S. We
define

θ0 = 0, θn+1 = inf{s > θn : ‖B(s)− B(θn)‖ > 1},
τn = θn − θn−1, n ≥ 1,

and

ν(t) = max{n : θn ≤ t}.
These are the definitions of Section 4 of [BT] with y = 1. As in (4.5) of [BT], there
then exist constants c2 and h such that �t ≤ c2 + hν(t). Since the τn, n ≥ 1, are
i.i.d. we therefore obtain for t ≥ 1, x ≥ 2c2,

P {�t ≥ tx} ≤ P {hν(t) ≥ 1

2
tx}

= P
{ �tx/(2h)�∑

i=1

τi ≤ t
}

≤ et
[
E exp(−τ1)

]tx/(2h)
.

Clearly E exp(−τ1) < 1, so that (3.9) is satisfied for

x1 ≥ 2h(L+ 1)

− log E exp(−τ1)
+ 2c2. ��

We can now prove the following analogue of Lemma 1:

Lemma 9. For any fixed x2 ≥ 0, there exist constants c3, c4 ∈ (0,∞) such that
for s, t ≥ 1, y ≤ sx2, z ≤ tx2, it holds that

P {�s+t+(st)1/(d+1) ≥ y + z− c3(st)
1/(d+1)}

≥ c4 exp[−d(st)1/(d+1)]P {�s ≥ y}P {�t ≥ z}.
(3.10)

Proof. To prove this we bring in an additional Brownian motion B̂ = {B̂(t)}t≥0
which is independent of B = {B(t)}t≥0, but has the same distribution as B. �̂t is
defined by (1.18) with B replaced by B̂. We further define for w ∈ �d

Ms,t (w) = Ms,t (w,B, B̂)

= λd

(⋃
r≤s

(B(r)+ A) ∩
⋃
r≤t

(B̂(r)+ B(s)+ w + A)
)
,

and for p, r ≥ 0 we define

T (r) = T (p,s)(r) =
{
B(r) if r ≤ s + p

B(s + p)+ B̂(r − s − p) if r > s + p.

Finally we define

3q = [−q, q]d
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and take

q = q(s, t) = (st)1/(d+1).

Analogously to the proof of Lemma 1 we now have for any c3, β ≥ 0,

P {�s+t+q ≥ y + z− c3q}
≥

∫
w∈3q

1

q

∫
0≤p≤q

P {B(s + p)− B(s) ∈ dw}dp

×P {�s ≥ y, �̂t ≥ z, Ms,t (w,B, B̂) ≤ c3q}
≥

∫
w∈3q

1

q

∫
0≤p≤q

P {B(s + p)− B(s) ∈ dw}dp

×P {y ≤ �s ≤ sβ, z ≤ �̂t ≤ tβ, Ms,t (w,B, B̂) ≤ c3q}. (3.11)

Of course

P {B(s + p)− B(s) ∈ dw} = 1

(2πp)d/2
exp[−‖w‖2/(2p)]dw,

and for some constant c5 > 0 and all w ∈ 3q ,

1

q

∫
0≤p≤q

1

(2πp)d/2
exp[−‖w‖2/(2p)]dp

≥ 1

q(2πq)d/2

∫ q

q/2
exp[−dq2/q]dp ≥ c5q

−d/2 exp[−dq].

Thus, the right hand side of (3.11) is at least

c5q
−d/2 exp[−dq]E

{
I [y ≤ �s ≤ sβ]I [z ≤ �̂t ≤ tβ]

× λd

({w ∈ 3q : Ms,t (w,B, B̂) ≤ c3q}
)}

.
(3.12)

Moreover, for fixed realizations of B and B̂ with �s ≤ sβ, �̂t ≤ tβ we have∫
3q

Ms,t (w,B, B̂)dw

≤
∫

�d

dw

∫
�d

dbI
[
b ∈

⋃
r≤s

(B(r)+ A)
]
I
[
b ∈

⋃
r≤t

(B̂(r)+ B(s)+ w + A)
]

=
∫

�d

dbI
[
b ∈

⋃
r≤s

(B(r)+ A)
]
�̂t

= �s�̂t ≤ β2st.

Thus, if �s ≤ sβ, �̂t ≤ tβ, and if we choose c3 ≥ β2 (for a β to be chosen later),
then

λd

({w ∈ 3q : Ms,t (w,B, B̂) ≤ c3q}
) ≥ λd(3q)− β2st

c3q

= 2dqd − β2

c3
qd ≥ qd.
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In this situation the expression in (3.12) is at least

c6q
−d/2 exp[−dq]qdP {y ≤ �s ≤ sβ}P {z ≤ �̂t ≤ tβ}
≥ c6 exp[−dq]P {y ≤ �s ≤ sβ}P {z ≤ �̂t ≤ tβ}.

Finally,

P {y ≤ �s ≤ sβ} = P {�s ≥ y} − P {�s > sβ}.
But if y ≤ sx2, then

P {�s ≥ y} ≥ P {�s ≥ sx2} ≥ e−L1s ,

for L1 = L1(x2, A, d) as in Lemma 7. By Lemma 8 we can therefore first choose
β = c7(x2, A, d) (and then c3 ≥ β2) such that for s ≥ 1,

P {�s > sc7} ≤ e−(L1+1)s ≤ 1

2
P {�s ≥ y},

and

P {y ≤ �s ≤ sc7} ≥ 1

2
P {�s ≥ y}.

Similarly

P {z ≤ �̂t ≤ tc7} ≥ 1

2
P {�t ≥ z}.

Combining all these estimates we find that for c4 = c6/4,

P {�s+t+q ≥ y + z− c3q} ≥ c4 exp[−dq]P {�s ≥ y}P {�t ≥ z}. ��
We now define

φ(x) = lim inf
n→∞

−1

n
log P {�n(A) ≥ nx}.

This φ(x) is finite for all x, by virtue of Lemma 7. We can repeat the proof of
Proposition 2 with (3.10) taking the role of (2.11) to obtain that

lim
n→∞

−1

n
log P {�n(A) ≥ nx} = φ(x)

at each x ≥ 0 at which φ is right continuous. This further implies that if x ± ε ≥ 0
are continuity points of φ, then

lim sup
t→∞

−1

t
log P {�t(A) ≥ tx} ≤ lim sup

t→∞
−1

t
log P

{
��t�(A) ≥ �t� t

�t�x
}

≤ lim
n→∞

−1

n
log P {�n(A) ≥ n(x + ε)}

= φ(x + ε),
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as well as

lim inf
t→∞

−1

t
log P {�t(A) ≥ tx} ≥ lim inf

t→∞
−1

t
log P

{
��t�(A) ≥ �t� t

�t�x
}

≥ lim
n→∞

−1

n
log P {�n(A) ≥ n(x − ε)}

= φ(x − ε).

Thus, at any continuity point x > 0 of φ,

lim
t→∞

−1

t
log P {�t(A) ≥ tx} = φ(x). (3.13)

Further, one can show exactly as in Lemma 3 that

φ(x) ≤ αφ(y)+ (1− α)φ(z),

when x, y, z are continuity points of φ such that x, y, z > 0, 0 < α < 1, and
x = αy + (1− α)z. From this convexity property and the finiteness of φ we then
conclude that φ is convex, continuous and finite for all x > 0, and that (3.13) holds
for all x > 0 (compare Lemma 3). Moreover, we trivially have

φ(x) = lim
t→∞

−1

t
log P {�t(A) ≥ tx}

= lim
t→∞

−1

t
log P {�t(A) ≥ 0} = 0 for x ≤ 0.

Also, analogously to the proof of Proposition 4, for 0 < δ < 1,

P {�t(A) ≥ tδ} ≥ P {�tδ(A) ≥ tδ} ≥ e−L1tδ

for L1 = L1(1, A, d), by Lemma 7. Thus φ(δ) ≤ L1δ, and φ is also continuous at
0. Thus (3.13) holds for all x ∈ �. This proves (1.23) and (1.27). Relation (1.24)
follows trivially from (1.19). Finally, (1.26) and (1.28) can be proven in exactly the
same way as (1.12) and (1.15).
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