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Abstract. Let {S,} be arandom walk on Z¢ and let R, be the number of different points
amongO, Sy, ..., S,_1. Weproveherethatif d > 2,theny(x) :=lim,_ (—1/n) log P{R,
> nx} existsfor x > 0 and establish some convexity and monotonicity properties of v (x).
The one-dimensional case will be treated in a separate paper.

We also prove a similar result for the Wiener sausage (with drift). Let B(z) be a
d-dimensional Brownian motion with constant drift, and for a bounded set A C R’ let
A, = A,(A) bethe d-dimensional Lebesgue measure of the ‘sausage’ | ., (B(s) + A).
Then ¢(x) = lim,_,(—=1/t)log P{A, > tx} exists for x > 0 and has similar properties
as .

1. Introduction

Let X, X1, X», ... bei.i.d. Z4-vaued random variables such that P{X = 0} < 1.
Let So =0, S = Zle X; and let |A| denote the cardinality of the set A. The
range (at time n) of the randomwalk S = {8k} is
Rl‘l = |{07 Sls IR ] Sn—l}|
= number of different pointsamong O, S1, ..., S,—1.
(Note that in this definition we take the last point to be S,,_1 rather than S,,; this

gives asomewhat more convenient subadditivity relation for the range.) It wasfirst
shown by Spitzer in [S3], pp. 38-40 that

(1.2)

R
= 7 :=P{(S, #0fordln > 1} as. (12
n

(cf. [S2], [De] for later references and improvements). Moreover, since

Ry4m < Ry + |{Sna Sntls - Sn+n1—1}|
=R, + |{07 Sn+1 = Sns Spt2 — Sns - o+ Sprm—1 — Su}

. (13
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one easily sees that
P{R,y+m < (n+m)x} > P{R, <nx}P{R,, < mx} 1.9

for x > 0,n, m > 1. It follows from this subadditivity relation (see [PS], problem
1.98) that

-1 .
r(x) = ”Il)rgo - log P{R, < nx} exists. (1.5

Of coursg, it follows from (1.2) that ¢(x) = 0 for x > =. It came as a bit of a
surprise when Donsker and Varadhan (see [DV]) proved that for random walksin
the domain of normal attraction of a symmetric stable law of index «, and A > 0,

nli)rrgon‘d/(d“‘) log Ee **» existsand isfinite.
This shows that the main contributions to E exp[—A R,;] do not come from values
for R, of order n. Perhaps P{R,, < nx} doesnot decreaseexponentially inn for any
x > 0. This can indeed be proven by easy lower bounds on P{|S;| < nf for1 <
i <n}forB < 1/d. Thus, for many randomwalks ¢ (x) = Ofor al x > 0. It turns
out that adifferent normalization for log P{R,, < nx} should be used. Indeed, van
den Berg, Bolthausen, den Hollander ([BBH]) recently evaluated the limit

I(x) = —tirgof(dfz)/d log P{A; < tx}, (1.6)

where A, denotes the volume of the Wiener sausage, which will be defined more
precisely in (1.18) below. They gave a variational characterization of 7(x) and
found some peculiar dimension dependence for the associated variational problem.
One can expect that asimilar situation prevails for

Z(x) = — lim n=¥=2/d10g P{R, < nx}, (1.7)
n—o0

if the random walk {S;} has mean zero and bounded variance, and d > 3.
In this paper we consider large deviationsfor R,, in the upwards direction, that
is, we study

Y(x) = lim _—1 log P{R, > nx}. (1.8
n—-oo n

Since there is no obvious analogue of (1.4) when P{R, < nx} is replaced by
P{R, > nx},itisnot clear that thelimitin (1.8) existsfor x > . Our first theorem
shows that thisisindeed the case for essentialy al random walks. Throughout we
assumethat X hasagenuinely d-dimensional distribution and that the correspond-
ing random walk is aperiodic, that is, we assume that

the group generated by the support of X isall of Z¢ (1.9

(see Section 2 for some discussion of this assumption).
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Theorem 1. Let S,,, R, and = be as above and assume that (1.9) holds. Then
-1
Yx) = Iirrgo —log P{R, > nx} exists (1.10)
n— n

for all x (but v (x) may equal +o00). ¥ (-) has the following properties:

Y(x) =0forx <, (1.112)
O<vy(x)<ooform <x <1, (1.12)
Y(x) = oo forx > 1, (1.13)
x > ¥ (x)iscontinuouson [0, 1], andincased > 2, (1.14)
x — Y (x) isalso convex on [0, 1], '
and
x = Y (x) isstrictly increasing on [, 1]. (1.15)

Remark 1. Our proof also shows convexity of v if d = 1 and | X| does not have an
exponentialy bounded tail. v isalso convex whend = 1 and P{X > O}P{X <
0} = 0, but we were unable to prove convexity for al one-dimensional cases. The
proof of Theorem 1 for d = 1 will be given in a separate paper, though.

Thefollowing isastraightforward consequence of Theorem 1. It givesapartia
large deviation principle for the range of random walks. The proof of this corollary
is given at the end of Section 2.

Corollary 1. Let u, bethe probability distribution of the randomvariable R, /.
In the set-up of Theorem 1, we have that

IimsupE logu,(F) < — in;w(x) (1.16)
xXe

n—oo N

for each closed subset F C [, co) and that
1
liminf —logu,(G) > — inf ¥(x) (2.17)
n—oo n xeG

for each open subset G C [r, 00).

One can consider analogous problems for the cardinality of the set {A, S1 +
A, ..., S, + A} when A is afixed finite susbset of Z¢ (compare [S3], Problem
27.14). We shall not do this, but instead shall go directly to continuous space and
time and consider the Wiener sausage. Let {B(t)} be a d-dimensional Brownian
motion with B(0) = 0. Contrary to the usual convention we allow the Brownian
motion to have aconstant drift i # 0. Further, let A ¢ R? be abounded, Lebesgue
measurable, nonempty set. Theset |y, ., (B(s) + A) iscalled the Wiener sausage
(associated with A). Itsvolumeis

A= A(A) = Ad< U (B(s) + A)), (1.18)

O<s<t
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where A4 ( - ) denotesthe d-dimensional Lebesgue measure. The analogue of (1.2)
is now that

6 = lim existsa.s. (.19

A (A)
t

(cf. [S2], [IM, Problem 7.8.4]). When . = 0

A(A i
lim A4 _ Jeap(d) ifd =3 (1.20)
t—o0o 0 ifd=1or2
as., where
d-dimensional Newtonian capacity of A  ifd > 3
cap(4) = | ¢ CImenSional T pectty = (1.21)
logarithmic capacity of A ifd =2.

It can also be shown that 6 in (1.19) is strictly positive and finite for either d > 3,
cap (A) > 0,ord =2,cap(A) >0, u #0,0ord =1, A # 0, u # 0. (Weare
grateful to an anonymous referee for this last remark.)

A, intheresult of [BBH] ((1.6) above) standsfor A, (A) with A aball of radius
a, and for this choice of A, (1.6) supplements (1.20). We have, however, no nice
expression for 6 for general drift. Some related results for the case © # 0 arein
[EL].

Here we again consider deviations from (1.19) in the upwards direction. Some
control of theprobabilities P{A; > tx}isprovided by [BB] and[BT]. Thesepapers
show the existence of

1
p(1) = lim - log Ee* for 1 >0, (1.22)
— 00

again under the assumptionsthat A isaball and . = 0. They further derive some
estimatesfor p(A) asA | Oor A 1 oo. Weshall indicate hereaproof of thefollowing
analogue of Theorem 1:

Theorem 2. If A is a bounded, Lebesgue measurable, nonempty set in R?, then
for any constant (possibly zero) drift u

o(x) = ;I—Ifgo _71 log P{A;(A) > tx} exists (.23
for all x € R. ¢(-) satisfies
¢(x)=0 for x <@, (2.29)
where 6 isdefined by (1.19). If d = 1, then

% ifu=0 x>0
$(x) =10 ifO<x <|ul (1.25)
5 ifO < |u| <x.
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Ifd > 2and cap(A) > 0, then ¢ has the following properties:

0<¢(x) <ocoforx >0, (1.26)
x > ¢ (x) isconvex and continuous on [0, co), (2.27)

and
x > ¢ (x) isdtrictly increasing on [0, 00). (1.28)

Remark 2. The cased > 2 with cap(A)= 0 is not interesting, because in that case
P{B(t) € Aforsomet > 0} = 0.

For aBrownian motion without drift thiswas proven by Kakutani in[Ka] ford = 2,
and the higher dimensional case seemsto have been treated first in [Dol]; see aso
Section 2.1X.5 in [Do2]. This statement remains valid even if the drift is nonzero,
because on eachfinitetimeinterval Brownian motionwith drift and without drift are
absolutely continuous with respect to each other (see [KS, Section 3.5, especialy
3.5C]). But then

EA(A) = /Rd P{y e B + A)]dy

s<t

= / P{B(s) € y — Aforsomes < t}dy = 0.
R4
Thus if cap(A) =0, then P{A,;(A) = 0} = 1 for each fixed ¢, and then by the
monotonicity of r — A, P{A,;(A) =O0foral ¢} =1.

Thefollowing corollary isthe analogue of Corollary 1 for the Wiener sausage.
Its proof is entirely analogous to that of Corollary 1 and will be |eft to the reader.

Corollary 2. Let A be a bounded, Lebesgue measureable, nonempty set in R and
let v, bethedistributionof A, (A)/t.1fd > 2 assumethat cap(A) > 0. Theconstant
0 isthesame asin (1.19). Then we have that

Iimsup} logv(F) < — im;¢(x)
xe

t—>oo0 I

for each closed set F C [0, co) and that
liminf 1 logv;(G) > — inf ¢(x)
t—>oo gvi - xeG .

for each openset G C [0, 00).

The principal open question now is to find a manageable expression or char-
acterization for ¥ (x) and ¢ (x).
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1.1. Outline of the proof of (1.10) ford > 2

As we already stated in Remark 1, we only prove Theorem 1 for d > 2 in this
paper. The proof is based on an approximate subaddivity relation. We build a path
of lengthn + m with R, ,, > y + z — E(n, m) for some error term E (n, m) from
two paths, 21 and 25, say. #1(#2) has length n (m) and range greater than or
equal to y (z, respectively). The error term comes from the fact that some points
are counted in the range of both 21 and #». In order to make this overlap small we
do not put the initial point of 2, at the endpoint of 21, but at some nearby point.
We show that we can place the initial point of %, at a distance at most of order
(nm)Y@+D from the endpoint of 21 so asto get an overlap of order (nm)Y/ @+,
The two paths are then connected at not too large a cost in probability. The result
istherelation

P{Ruim =y + 2z — (2d + 2)(nm)Y@+D)}
> Lpdom" VA pyR, > y)P(R, > 2. (1.29)

for some¢ > 0. (Theideaof putting theinitial point of 2, at a point whichisnear,
but not necessarily at, the endpoint of 21, was aso used in [Ke] for estimating
numbers of self-avoiding walks. It is of course not surprising that tools for self-
avoiding walks are useful here, since the event {R, > n} isjust the event that the
initial piece So, ..., S,_1 of therandom walk is selfavoiding.)

Whend > 2, then (nm)Y@+D jssmall withrespect to (nvm). Fromthisonede-
ducesby more or less standard subadditivity argumentsthat lim,,_, .o (—1/n) log P
{R, > nx}existsat al continuity pointsx € (0, 1) of ¢ (x) := liminf,_ - (—1/n)
log P{R, > nx}. It is then easy to obtain from (1.29) that the restriction of
lim,— o (—1/n)log P{R, > nx} to the continuity points of v in (0, 1) is con-
vex (see proof of Lemma 3 for the precise meaning of this statement). This is
enough to conclude that 1 isin fact continuouson (0, 1), just asin the usual proof
of continuity of aconvex function. Hencelim,,_, o(—1/n) log P{R,, > nx} exists
foral x € (0, 1). Theexistence of thislimit for x ¢ (0, 1) iseasily shown directly.

We remark that it is also possible to prove Theorem 1 by the methods of Lem-
mas 3 and 6 of [HK], which are used there for the one-dimensional case. For the
higher dimensional case the proof of this paper is more direct.

2. A subadditivity argument; proof of Theorem 1for d > 2

Throughout this section X, X1, X», ... arei.i.d. Z¢-valued random variables and
S., R, are asin Section 1.

Before we begin any proofs we point out that assumption (1.9) does not entail
any loss of generality. Indeed we can always change coordinates so that (1.9) holds,
by Proposition 7.1in [S3]. More specifically, if ¢ denotes the subgroup of Z¢ gen-
erated by the support of X, then thereexistsad’ < d and d’ linearly independent
vectorsvy, vo, ..., vy € % suchthat thegroup generated by v1, vo, . .., vy isequa
to ¢, and is isomorphic to Z¢'. In particular, there exist unique random variables
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X'= (X', ... X'd)), Xy = (X}, ..., X/(d")) € 2¥ such that

d d
X=3 X'Ov, Xj=) X;Ouv,

=1 =1

and the group generated by the support of X’ equals Z¢" Accordingly, we can view
{S,} as an aperiodic random walk on 74", From now on we therefore drop the
primes from our notation and assume that the problem has been set up from the
beginning so that (1.9) holds.

We begin with afundamental subadditivity relation.

Lemma 1. If (1.9) holds, then there exists a constant ¢ € (0, 1) such that for all
integersn, m > 0and y, z € [0, 00), it holds that

P{Rysm > y + 2 — (2d 4 2)(nm)"+1)
1
= Sedom TP (R, = )P (Ry = 2). 2.1
Proof. We introduce a number of quantities. The relevance of these quantities
will become clear in a little while. We let X3, X», ... be an independent copy
gj X1, X2, ... In anglogy with our previous notation we define S = {S,,},>0 by
So=0,5,=Y"_1X;. Wedefine

R[a,b] = |{Sa, ..., Sy} and R[a, b] = |{Su, ..., Sp}l.
Notethat R, = R[O, n — 1] in this notation. Next we define for w € 74

Num (W) = Ny m(w, S, S)
=[{uez?:ueiSo, S1,....Su-1)
and ueS,+w+{So, Sl,...,Sm_1}}|.

Thus N, ,, (w) counts the number of pointswhich are visited during the timeinter-
val [0, n — 1] by thewalk S and @ so visited during [0, m — 1] by thewalk S shifted
by S, + w.

For any fixed integers p > 0, n > 0, consider the random walk defined by

Sk fork<n+p

Ty = Tk(p,n) = ~
Snt+p + Sk—n—p fOrk >n+p.
Of course, {Ti}x>0 has the same distribution as { Sk }«>0, and hence also

P{Rutpim = €} = P{R[O,n+ p+m — 1] > ¢}

2.2)
= P{|{T07 ey Tn+p+m—1}| > 6}-

We claim that on the event

{Sn+p =S = w}, (2.3
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it holds that
HTo, ..., Tn+p+m—1}| >R, + ﬁm — Ny (w). (24)

Thisisimmediatefromthefactthat R,, = |{To, ..., T,_1}|,and ﬁm = {Tusp, ...,
Tt p+m—1}], @nd on the event (2.3),

Nn,m(w) = Nn,m(Tn+p —-T,)
= |{TO» cooy Thaln {Tn+p» BRI Tn+p+m—1}| .

At this stage we remind the reader of (1.9). Thisalowsusto pick d linearly inde-

pendent vectors vy, . .., vg € Z¢ for which P{X = v;} > 0. We can then choose
O<¢ <lsuchthat P{X =v;} >¢fori=1,...,d. Weset

8, = {Zd:kivi 10<k gq} cze.
i=1
Forany w = Y%, kjv; € E,, wethen havefor p = p(w) = Y%, k; < dq that
P{Spip— Sp=w} = P{S, =w} >¢P > %, (2.5)
Moreover,
|24 = (number of vectorsw € E,) = (¢ + 1)°.
We take
g =qn,m) = [(m)"/ 7, (26)

where [a] denotesthe smallest integer > a. Asaresult of (2.2) and (2.4) we have
foreachw € g,

l/(d+l)}

P{Ry+dg+m =y +z — 2(nm)
= P{Rn+p(w)+m >y+z— 2(111’1’!
> P{Ry = ¥, R > 2, Sutpaw) — Sn = w, Ny m(w) < 2(nm)/ @Y (2.7)

Theevent (2.3) dependsonly onthe X; withn < i < n+ p, andisthereforein-
dependent of the events {R,, > y}, {R,, > z} and of the random variable N, ,, (w)
(for fixed w). Consequently,

P{Rurdgim > ¥ + 2 — 2(nm)Y/@+D}
> P(Spsp — Sp = wYP{Ry > y, Ry > 2, Ny m(w) < 2(nm)Y/@+D)
> Y P{R, >y, Ry >z, Nym(w) < 2(nm)Y/ @Dy, (2.8)
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Since thisinequality holds for all w € &,, we can take its average over g, to
obtain

P{Rutdgm =y + 7 — 2(nm)Y/ @1

dq .
> 5 Y PNuw(w) < 2m YD R, >y, Ry > 2)
|uq| weEy
;dq ~
2 o [l € B Nu) < 20V IRy 2 WITRy 2 2]
Sq
2.9)
We shall soon show that always
1
‘{w € Byt Nam(w) < 2(nm)1/(d+1)}‘ > S+ (2.10)

Before we do this we show that this will complete the the proof of the lemma
Indeed, {R, > y} and (R > z} ae independent because they depend only on
the X; and X ;, respectively. Their respective probabilities equal P{R, > y} and
P{R,, > z}. Thus, if (2.10) istrue, then (2.9) yields

P{Rusdgim > y + 2 — 2(nm)Y/ @D}
dq

1
2 D72 TV PR 2 31 PIRy = 3} (2.11)

Finally, by removing the last dg stepsfrom So = 0, S, ..., Sytdg+m, We seethat
{Rutag+m = £} implies{R,,, > £ — dq}. Thus, (2.11) shows that

P{Ruim =y + 2 — 2nm)Y @D _ g1 (nm)V/@+D7)

> %{""P{Rn > y}P{Rn > z}, (2.12)

which will indeed prove the lemma.
We conclude with the promised proof of (2.10). We have

Z Nn,m(w) = Z Nn,m(w)

weky weZd
=Y > IMue{So.51.....5-1)]
uezd wezd
x I[u € Sy +w + {So, S1, - .-, Sp—1]]
=Y I[ue{So. 51, ... Su-1}]

uezd R R R
x [{u— Sy —So,u— Sy —S1,....u— Sy — Sm—1}]

= Z I[u € {So, S1,..., Sn—l}]iz\m
ueZi
= R,R,, < nm.
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It follows that
Hw e By i Nym(w) > 2(nm) @1y
nim _ Lo ey _ 1o
EW—E(HW) §§|uq|,
and hence
- . 1/(d+1) 1.
{w € By : Nym(w) < 2(nm) } = 51841,
asdesired in (2.10). |

Remark 3. Asstated, LemmaZisnot useful whend = 1; theerror factor ¢ ™V
becomestoodominantinthiscase. However,whend = landlimsup,_, . [P{|X| >
k}]Y* = 1wecanstill derivean estimatesimilar to (2.1), by taking adifferent set g,
inthe proof of Lemma 1. Thisreplacement for (2.1) will not be enough by itself to
deduce(1.10), but it will giveusanupper boundonlimsup,_, .. (—1/n)log P{R, >
nx}.

For x € R we now define
-1
¥(x) =liminf — log P{R, > nx}. (2.13)
n—-oo n
Observethat v (x) isnondecreasingin x. Moreover, it isbounded on [0, 1] because
P{R, > n} = P{Sp, ..., S,—1 aredistinct} > [P{X (i) > 0}]", (2.14)
where X (i) denotes the i-th component of X. Hence, forall 1 <i <d,
v(1) < —log P{X (i) > O}. (2.15)
If P{X(i)>0}=0forall<i<d,thenwecanreplace X(i) > 0by X(i) <O
in this estimate. This always gives afinite upper bound for v (x).
We have to provefor (1.10) that the liminf in (2.13) can be replaced by lim. We

first show that thisis permissible for any x € [0, 1) at which ¢ is continuous from
theright.

Proposition 2. If (1.9) holdsand d > 2 and if v isright continuous at a given
x €[0, 1), then

Y(x) = nango _71 log P{R, > nx}. (2.16)

Proof. The proof here will be based only on (2.11) and the fact that P{R, > z} is
increasing in n and decreasing in z. It would be somewhat simpler to use (2.1), but
aproof which only uses (2.11) has the advantage that it can also be used in the next
section for the Wiener sausage.
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For simplicity wewriten = (d —1)/(d + 1) and § = 2/(d + 1). To start with,
we define for any integer N > 1,
0(0) =on(0) =N,
ok+1) =oyk+1) =20k +d[[c(®]], k= 0.
It isimmediate from these definitions that
o(i —1) - 1

s <3 o(i)>2'N, (2.17)

and for some constants c1, Ng < oo and N > N

k .
o (k) _ o(i)
SN T gza(i D

k o(i — D¢ >
= ]‘[[1+ %} < exp[z dlo (i — 1)]’7}
i=1

i=1

o0
< exp[z d(2fN)"} <1+ % <2 (2.18)
j=0

Also, forc; = 25 /(1 — 27"y and N > No,

k—1 k-1
sz—i[o_(i)]s < sz_izs(i+l)Né
i=0 i=0
< 22°N% < coN "o (k). (2.19)

Now let x € [0, 1) be such that v isright continuous at x and let ¢ > 0. Take
8 € (0, 1) such that

Y (x +48) < ¥ (x) +e. (2.20)
Thentakecz = ¢¢/2 < 1 and fix £ > 2 such that
1—2""2)(x +28) > x + 6. (2.21)
Finally, fix N > Ng so that

P{Ry = N(x +48)} = exp[—N (¥ (x + 45) + ¢)]

(2.22)
> exp[—N (¥ (x) + 2¢)],
c1 x + 46
— 2.23
N7 = x+38 (2.23)
) —2¢ 1
-1 inl— =/ _— 2.24
N <mm{cz’czd|Og§’2d}’ ( )

20(3d + 2)(N% +1) < 8N, (2.25)
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and
(0] < €. .
N gC3 & 226

We shall first consider P{R,, > nx} forn € {on(k)}x>0. (2.11) withm =n =
o(k—1) and

k—2
y=2=2"Nx+49) - 22 o)
i=0

now givesfork > 1

k-1
P{Rg(m > 2N (x + 45) — sz‘f[oa)]é}
i=0
k—2

2
> cqg o =DF [P{Ra(kl) > 27N+ 48)- ) 2 o) H - (2.27)
i=0

We a'so have

k—1
AN +48) =) 2 o)
i=0
k—1

> o(k)(x+38) - Y 27 [o@]* (by (218) and (2.23))
i=0
> o (k)(x +25) (by (2.19) and (2.24)).

Combining this with (2.27) we obtain

P{Rsy = o (k)(x 4+ 26)}
k—1
> P{Rm > 2Nx +48) — Y 2 o)) }
i=0
. k=2
2 C3{d[0(k71)] [P{Rﬁ(k—l) Z 2k71N(x + 45) _ Z
i=0

2
2o )] H

2 “ e Z
k
> [ exp[d > 2 ok — IF logc] [P(Ry0) = N(x +45))]%
j=1
> [ea]? ™ exp[c2d2"INF log ¢ | ep [ 2N (x) + 2¢)]
(by (2.19) and (2.22))
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= [Cs]zm exp [—2"N<w(x) + 26 — %csz_” log ;)}
> [ca)? " exp [—2"N(w(x) + 35)] . (2.28)

The last inequality here was obtained from (2.24). With the help of (2.26), the
estimate (2.28) impliesin particular that

Iimsup_(—;) log P{Ro ) = o (k) (x + 25)}

k—>oo O

< () + 36— %|0903 < Y(x) + 4,

but we shall need the explicit bound of (2.28) for the next step.

In order to deal with general n, we “expand n (approximately) into a linear
combination of the oy (k).” More precisely, recall that we fixed ¢ in (2.21). Now
letn > oy (20). Take

n=n—2de[n%],

and choose k;, «; recursively in the following manner (o = oy again here): k; is
determined by

o(k)) <n <o(ki+1),
and
B {1 if o(ky) <7 < 20 (ky)
2 if20(k) <7m<o(ky+ 1)
then k, and «, for r > 2 are determined by

r—1
olky) <7 — Za,-o(k,-) <ok +1) (2.29)
i=1

and

1 ifotk) <i— Y taiok) < 20 k)
oy =
"2 if2otkh) < - YIfaio (k) < ok + 1)

We only choose these k;, o; aslong as k; > 0. Note that n > o (2¢) implies
k1 > 2¢ — 1. Also, by virtue of (2.24),

ok+1)
o (k)

<24+ 2d[ck)] " <24+2dN7" <3,

s0 that we obtain from our choice of k,, o, that

O<n-— Zaia(ki) < o (k).
i=1
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Asaconsequence ky > kp > ---. Let p besuchthat k, > ky — £ > kp11. By
(2.29), the monotonicity of o (i) ini, and (2.18) we then have that

P
0<i—) o) <olkpri+1) <oky—L+1)
i=1
< 2N < 2725 (kq) < 276H2y, (2.30)

Of coursewe also have p < ¢.

Weset 8 .= Z{’Zlai andletny < np < --- < ng bethe numbers of the form
Y _jaio (ki) or Y/_; aio (ki) — o (k;); thelatter formisincluded only if o = 2.
If n,, hasthefirstformforsomel < j < p— 1, thenn, 1 =n, +o(k;11).fn,,
has the second form for somel < j < p — 1, thenn, 11 = n, + o (k;). We now
apply (2.11), with n replaced by n, +dy[n®]1 andm = ny41 — n,. We further
teke y = n, (x + 268) — 2ynf and z = (ny41—ny)(x + 26) = m(x + 26). Note
that

B<2p<2t, (2.31)
andfory < g —1,
(ny +dy[n*1)(ny41—ny) < (0 +dBIn DA < n?,
Using the monotonicity propertiesof P{R, > z} wethen find

P{R, . ra(r+mé] = My +1(x +28) = 2(y + Dn®)

1 ¢
> SE PR, vy 2 ny (x4 28) = 2ynf)

X P(Ru, 1on, = (11— ny)(x + 25)).

We use thisinequality successively fory = g8 —1,8—2,...,1(withng = 0) to
obtain finaly

P(R,, yapraé1 = np(x + 28) — 2Bn°)
p-1
né
> [ea] PP T PARnysyon, = (1y41 — ) (x + 26))
y=0

p
> [cal¢ 24 [T [P{Row)) = 0 (k) (x + 28))]
j=1
(by (2.31) and the definition of n,,)

(2.32)

» + P
> [63]2Z+Zj=10tj2kj 14_2&1ns eXp|:— Zajzk,N(w(x) + 38):|
j=1
(by (2.28)).
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Now observe that by (2.30) and (2.31)

P
np(x +28) — 2pn° =Y aio (ki) (x + 28) — 2pn°
i=1
> @ — 27 2n) (x 4 28) — 2Bn®
> (1— 272)n(x + 28) — 2de(x + 28)[nf] — 4ent
> n(x 4 8) — 20(3d + 2)[n*] (by (2.21)).

Then, by (2.25), we have that n? (x + 28) — 28n% > nx forall n > N. Note also
that

ng +dpm*1 < +dpnsl <n,
and that

p p
ZajZka < Zaja(kj) <n<n.
j=1 j=1

Thus, P{R, > nx} isat least aslarge as the left hand side of (2.32), and we have

1
— —log P{R, > nx}
n

2t 2 20d
< _<— + —) logcz — —log¢ + ¥ (x) + 3¢
n N n

2¢ 2¢d
<——1logezs— —log¢ + ¥(x) + 4e.
n n

The proposition follows by taking the limitsrn — oo, andthen e |, 0. ]
Lemma 3. If (1.9) holdsand d > 2, then v is convex and continuouson (0, 1).

Proof. We first show that ¢ is convex at its continuity points in [0, 1), that
is, for x,y,z € [0, 1), al of which are continuity points of ¥ and such that
x=ay+ (1—a)zforsome0 < « < 1it holdsthat

vx)=ylay+Q-w)z) <ap(y) + A -a)y (). (2.33)

To see this we use Lemma 1 and the obvious monotonicity in w of P{R,, > w}.
Recall that & = 2/(d + 1) and take m = m, = n — d[nf] for large n. Since
lam] - [(1—a)m] < n?, and |am|(y +¢€) + [(1—a)m |z — 2[né] > nx for large
n, we obtain from (2.11) for ¢ € (0, 1) and n large that

1
SeM PRy > Lam](y + &)} P(R|@-am) > L1 — a)m]z)

2
< P{R )t [Aaymramné] = Llom](y + &) + (1 — e)m]z — 2[n* 1}
< P{R, > nx},

where |a] denotes the largest integer < a.
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Now restrict ¢ > 0 to such ¢ for which y + ¢ isacontinuity point of . Aswe
already observed, ¥ isnondecreasing so that thisholdsfor all but at most countably
many ¢. If we now take the logarithm and divide by n and let n — oo, then we
obtain from Proposition 2 that

vx) <ay(y+e)+1A-a)y(2).

Therequired (2.33) now follows by letting ¢ | 0 suchthat y + ¢ runsonly through
continuity points of .

Now assume, to derive a contradiction, that  is not continuous at some
x € (0,1). Since ¢ is nondecreasing, this means that v has an upwards jump
at x. Therethereforeexist x,, | x and y, 1 x suchthat x,, y, are continuity points
of ¢ and such that

lim L&) Z¥On)
n— 00 Xn — Yn

However, if z € (x, 1) isalso acontinuity point of ¢, then (2.33) implies

V@) =Y Y Oa) = ¥(n)

Z— Xp Xn — Yn

assoonasO < y, < x, < z. Thus (¥ (2) — ¥ (x,))/(z — x,) — oo, which contra-
dicts the boundedness of  on [0,1] (see (2.14), (2.15)). This proves the continuity
of ¥ on (0, 1). O

Proposition 4. If (1.9) holdsand d > 2, then v has the properties (1.10)—<1.15),
so that Theorem 1 holdswhen d > 2.

Proof. We first note that v is continuous at 0. Indeed, we clearly have P{R,, >
nx}=1land ¢ (x) = 0forx < O, whilefor s € (0, 1),

P{R, > 8n} > P{So, ..., S|s,) aredistinct} > [P{X (i) > 0}]°",

exactly as in (2.14). It follows that v (§) < —8log P{X (i) > 0}, asin (2.15).
Hence also lims 0 v/ (8) = 0.

This result, together with Lemma 3 and Proposition 2 shows that (1.10) holds
foral x < 1. Moreover, lim,_. o.(—1/n) P{R, > n} exists by subadditivity, since
{R, > n}={So, S1, ..., Sp—1, aredistinct}, so that

P{Rn+m >n+m} < P{R, > n}P{R,, > m}.

In addition P{R, > n} = 0, so that (1.10) holds for al x and also (1.13) holds.

Next we show that ¥ (x) isleft continuousat x = 1. Assumethat thisisnot the
case. Since we aready know that v (1) isfinite, there must then exist some 8 > 0
such that

v =vA-)+28 = Lﬂ ¥ (x) + 28. (2.34)



Large-deviations for range and for Wiener sausage 199

By (1.10) we also know that there exists a constant ¢4 > 1 such that
P{R, = n} < caexp[—n(y (1) — B)], n = 0. (2.35)

Now if R, > nx, then there are at most | (1 — x)n] indices0 < k < n — 1 for
which S, = S; for some0 < i < k (compare the proof of Theorem 4.1 in [S3]).
Let theseindicesbeO < ky <k <--- <k, <n—1,(withp < (1 —x)n). The
number of ways in which these indices can be chosen isfor 3/4 < x < 1 at most

[(1—x)n] n
(7) 2 cor - oom,
0

p=0

for some constant cs, independent of x, n. All times j ¢ {kq, ..., k,} must be“first
visit times’, that is, times j with S; # S; for 0 <i < j, sothat R[k;, ki1 — 1] =
kiv1 —ki, 0 <i < p, wherewetake ko = 0 and k,+1 = n. We conclude from
thisthat

P{Ryznx} <) > HP{R[k,,k,+1—1]>(kl+1—k>}

0 kiyekp i=0
P
<> Z [c4]*’+1exp[ Z(kiﬂ—ki)(x/f(l)—ﬂ)]
P ki,.. i=0
=) Z [c4]*’+1exp[—n(w<1> — P
P oki,....kp

< [ea] " e T (L — )T expl—n(y (1) — B)].
It follows that
Y(x) > —(1—-x)logca+ xlogx + (1 —x)log(1 —x) + ¥ (1) — B.
By taking the limit x 1 1, we seethat
|xlpl1 Y(x) > ¥ —B.

This contradicts (2.34) unless 8 = 0, and the left continuity of ¥ at x = 1 follows.
Now that we have continuity of i on [0, 1] we obtain the convexity of ¥ on

[0, 1] from Lemma 3. We a so have continuity at rr, so that also (1.11) holds.
Next, we prove (1.12). By Markov'sineguality,

P{R, > n( + &)} < e "L ARy
for any A > 0. Consequently,
.o =1 — .
lim —log P{R, > n(w + &)} > (m +&)A+ lim —logEe

The last limit exists by subadditivity, because Ee*Rntm < Ee*Rn Ee*Rm for ) > 0.
Moreover, it is proven in [H] that the right derivative at » = 0 of thislimit equals
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—. (This reference only considers simple random walk, but the proof applies to
any random walk on Z4). Thus for sufficiently small 1 > 0,

.o —1 .o -1
lim — log Ee*®* > lim —loge® R — <n + E)A = —(n + E)A

n—o0o n n—oo n 2 2

and

o —1 £
lim —log P{R, > n(r +¢&)} > =A.
n—-oo n 2
This establishes (1.12).

Finaly, (1.12) also implies (1.15). Indeed, convexity of ¢ implies that for
h>0,x>monehasy(x +h) —Y(x) > Y@ +h) —Y(r). O

The proof of Theorem 1 for d = 1 will be given in a separate paper.
We conclude this section with the proof of Corollary 1.

Proof of Corollary 1. The upper bound (1.16) for u,(F) can easily be obtained
from astandard large deviation estimate with the help of (1.15) (compare the proof
of Theorem 2.2.3 in [DZ]). We therefore concentrate on proving the lower bound
(1.27) for w,, (G).

Let G be an open set contained in the interval [, oo). If inf G > 1, then the
infimum of ¥ on G isinfinity by (1.13) since x > 1for al x € G. Therefore the
lower bound istrivial in this case. In the case that inf G < 1, we can find for each
x € GN[m,1) someconstant § = §(x) > 0 such that [x, x + &) iscontained in
(7, 1). Noting that

wn(G) = P{R;, = x} — P{R, > (x + d)n},

and using (1.15), we easily obtain for eachx € G N [x, 1) that

o1
liminf —logu,(G) > —y(x).
n—-oo n

Thisimplies that

liminf 1Io (G) = inf y((x)

n—oo n 9 in ~ xeGN[m,D) -
Inview of (1.13), theright hand side hereisunchanged even if wetake theinfimum
over al of G instead of G N [, 1). |

3. TheWiener sausage

We indicate here how to prove Theorem 2. We shall first dea with the one-dimen-
sional case of Theorem 2. Because of the continuity of Brownian motion one can
moreor lesswrite down thedistribution of A; andfind ¢ (x) explicitly whend = 1.
For d > 2 there are only some technical differences with the proof of Theorem 1
and we shall skip some details.
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Lemmabs. Ifd = 1and A C R isany bounded, Lebesgue measurable, nonempty
set, thenfor x > 0

2

1 > ifu=0
o(x) = tl—IHJOT log P{A;(A) >tx} =10 , ifo<x<pu (3.1
% if0<u<x.

Proof. Since Brownian motion is continuous, it is easy to see that for any A C
[_Ks K]

max B(s) —min B(s) < A;(A) < 2K + max B(s) — min B(s).
s<t S<t <t S<t

For the purposes of (3.1) wemay thereforereplace A, (A) by A= maXs<; B(s) —
mins<; B(s). The density of this quantity when n = 0 is explicitly given in [F1],
and this immediately gives the result for © = 0. When u > O it is still possible to
derive an infinite series for the density of A, asin [F1], but it is easier to use the
following crude estimates.

~ 1 o0 2 2
P{A, > tx} > P{B(t) > tx} = / e~ OTI@D gy,
tx

N2t

When x < u, theintegral in the right hand side is at least 1/2, and when x > u,
then thisintegral behaves asymptotically like

1
(x — p)/2mt exp[

(see[F2], LemmaV11.1.2). To prove (3.1) weonly need an upper bound for P{A; >
tx} when x > p. For thiswe can use

— (x — w?/2] 32

PR,z 1x) ) P max [B(s) = B()| = 7%
k<t -
+ ) PUBGK) = BO)| = tx — 2%/,
k,0<t

Thefirst sumintheright hand side hereisby thefamiliar reflection principle ([IM],
Section 1.7) O(t exp[—(t¥* — 11)?/2]). The summand in the second sum equals

2" 2y = 0 (exp[_ (t(x =) — Zts/A)ZD’

21 k=02 1x— 2034kt ] 2t
(3.3)
(by virtue of [F2], lemmaV11.1.2 again). (3.1) now follows easily. |

For the remainder of this section wetaked > 2 and A ¢ R? afixed bound-
ed, Lebesgue measurable set with cap(A) > 0, where cap(A) isasin (1.21). We
usually abbreviate A;(A) to A,. The constants ¢; which appear in the proof do
not necessarily have the same value as in the previous sections. Without loss of
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generality we assumethat A iscontainedin & := {x € R : |x| < 1}, the unit ball
centered at the origin. Unless otherwise indicated the initial point B(0) equals 0.
We shall write B(z; i) for the i-th coordinate of B(z). Finaly, we define

Vla, b] = U (B(s) + A).

a<s<b
In this notation,
Ay = 2q(V[O, 2]).

Before we can give the analogue of Lemma 1 we need some crude a priori
bounds on the distribution of A,. Thefollowing lemmaisfrom [ABP].

Lemma6. Letd > 2andlet A beaLebesgue measurable set containedin ., and
with cap(A) > 0. Then

P{A1/2(A) > x} >0 forall x>0. (3.4

Proof. Thisisprovenin[ABP] for aBrownian motion without drift. For aBrown-
ian motion with drift this then follows from the fact that on any finitetime interval
Brownian motions with and without drift are absolutely continuous with respect to
each other. |

Lemma?. For all x > Othereexistsan Ly = L1(x, A, d) < oo such that
P{A > tx} = et r>1 (3.5)
Proof. Clearly, forr > 1
P{A; > tx} > P{A|;) = 2[t]x > tx}.

Thus, at the cost of replacing x by 2x we may restrict ourselves to ¢ an integer.
Now, by Lemma 6, for any x > 0, P{A1/2> > x} > 0. There then exists a constant
¢1 such that even

P{Al/z >x, sup |B(s;1)| < cl} > 0. (3.6)
0<s<1/2
Now let & = &x.1 N Ex.2 N Ex.3, Where

1
Gr1={Bk+ ;D) = Blk: 1) > ca+ 1k

1 3
Eroi= {Ad(V[k + k) =

IA
=)
IA
Al w
-

1
and |B(k+s;1) — Bk + 7 D] <e1 for

N

3
éx3={Bk+11) — Bk+ 7 1) > 2c1+2}.
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Thentheevents&y, k =0, 1... areindependent and all have the sameprobability.
This probability equals

1 1
P{B(Z, 1) >e1+ 1}P{B(Z, 1) > 2c1+2}
x P{A1/2 > x, sup |B(s;1)| < c1}.
0<s<1/2
L et us denote this probability by «. Then @ > 0 by virtue of (3.6), and
P{ N gk} >d. (3.7)
O<k<t-1

Finally, note that if & and &, occur for somek < ¢, then

1 3 1 3
V[k+z,k+z]mv[£+z,£+z]=®, (3.8)

becausethepointsin V[k+1/4, k+3/4] liewithindistance1 of {B(s) : k+1/4 <
s < k + 3/4}, and therefore have their first coordinatein

1 1
[B(k+Z;l)—61—1,B(k+Z;1)+61+1]
C (B(k; 1), B(k + 1; 1)).
In addition,

3
B(k+1;1)>B(k+Z)+261+2
1
zB(k+Z;1)+c1+2>B(k;l)+2c1+3,

so that the intervals (B(k; 1), B(k + 1; 1)) for different k are digoint. Thus (3.8)
indeed holds, and on the event No<x<;—1E one has

r—1 1 3
A > Z,\d(v[k+ Z’k+ ZD > 1x.
k=0

The lemma now follows from (3.7), by taking L1 = —loge. O

Lemma8. Forall 0 < L < oo, thereexistaconstant x1 = x1(L, A, d) < oo such
that

P{A,>txi)<e™, 1>1 (3.9)

Proof. When . =0thisisessentially containedin Theorem 1 of [BT]. When it £ 0
we cannot use the scaling property of Brownian motion, but we can still get our
estimate (evenfor u = 0) by following part of the proof in [BT]. We do not attempt
to get sharp estimates such as given in [BB]. Probably thisis still possible even if
u # 0, but crude estimates are good enough for our purposes.
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Since A, isincreasing in A, it is sufficient to restrict ourselvesto A = . We
define
6o =0, Opy1 =inf{s > 6, I ||B(s) — B, > 1},

T, =0, — 61, n>1
and
v(t) = max{n : 6, <t}.

These arethe definitions of Section 4 of [BT] with y = 1. Asin (4.5) of [BT], there
then exist constants ¢ and i such that A; < ¢ + hv(t). Sincethet,, n > 1, are
i.i.d. wethereforeobtainfor r > 1, x > 2c¢»,

1
P{A; = tx} < Plhv(t) > Etx}
ltx/(2h)]

=P{ Z Tgft}

i=1
< [E exp(—rl)]’x/(Zh).
Clearly E exp(—t1) < 1, sothat (3.9) is satisfied for
2h(L + 1)
X122 ————
—log E exp(—11)
We can now prove the following analogue of Lemma 1:

Lemma 9. For any fixed xo > 0, there exist constants c3, ¢4 € (0, co) such that
fors,t > 1,y < sxp,z < txp, it holdsthat

P{A oy =y + 2 — ca(s)/ @D}

3.10
> caexp[—d(sH) TV P{Ay > y}P{A, > 2). (310

Proof. To prove this we bring in an additional Brownian motion B = {§(tﬁ,20
which isindependent of B = {B(")}i=0, but has the same distribution as B. A; is
defined by (1.18) with B replaced by B. We further define for w € R?

My (w) = My (w, B, B)
=1a(UJBe + 00 JBE) + B +w+ 4)),

r<s r<t

and for p, r > 0 we define

B(r) ifr<s+p

— 7P () =
T(r)—T (r)—{B(s+p)+§(r_S—p) |fr>S+p

Finally we define

By =[-q.4q]°
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and take
q=q(s, 1) = (st @D,
Analogously to the proof of Lemma 1 we now have for any c3, 8 > 0,
P{Asti+g = y +2—c3q}
> / E/ P{B(s + p) — B(s) e dw}dp
weg, 4 Jo<p<q

XP{AS Z )7» K[ Z Zs MS,T(w3 Bv §) S qu}

1
> / —/ P{B(s + p) — B(s) € dw}dp
weg, 4 Jo<p=q
xP{y < Ay <sB.z < A; <18, M ,;(w, B, B) <c3q}. (3.11)

Of course
1
P{B(s + p) — B(s) e dw} = 2n )d/2 exp[—|lw]| /(2p)]dw
and for some constant ¢cs > O and all w € &,
1

L ex 2
q 97 n)d/2 - 2p)ld
/(;Spfq (2 p)d/2 pl—llwl“/(2p)]dp

q
q
= W //2 exp[_dqz/Q]dP > qu—d/z exp[—dq].
q

Thus, the right hand side of (3.11) is at least

csq 2 exp[—dq)E{I[y < A, < sBlI[z < A, < 18] (312)
X kd({w € By M, (w, B, §) = 6361})}- .

Moreover, for fixed redizations of B and B with Ag < 5B, K, < t8 we have

M, (w, B, B)dw

Sg

/Rd dw /Rd dbl b el + A)] [b e JBr) + Bs) +w + A)]

r<s r=<t

_ /Rd abifb e | B + )3,

r<s

= AyA, < BPst.

Thus, if Ay < sB, A, < 1B, and if we choose c3 > B2 (for a8 to be chosen later),
then

- . ~ ,32st
ra({w € B @ My (w, B, B) < c3q}) = ha(Ey) — o
‘32
=29g7 — —q > ¢4
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In this situation the expression in (3.12) is at least

ceq ™2 expl—dglq’ P{y < As < sB}P{z = A, < 1B}
> ceexp[—dq]P{y < Ay < sB}P{z < A, <1B}.

Finaly,
Ply = Ay < sB} = P{A; > y} — P{As > sB}.
Butif y < sx2, then
P{As > y} = P{A; = sx} = 71,

for L1 = L1(x2, A, d) asin Lemma7. By Lemma 8 we can therefore first choose
B = c7(x2, A, d) (and then ¢3 > B2) such that for s > 1,

1
P{Ay > sc7} < e”rtDs < SPAs =),
and
1
P{y < As <sc7} > EP{AS > y}.
Similarly
—~ 1
P{z < A <tc7} > EP{A[ > z}.
Combining al these estimates we find that for ¢4 = ¢g/4,

P{Asitrg >y +2z—c3q} > caexp[—dq] P{As > y}P{A; > z}. a

We now define
-1
¢(x) =liminf — log P{A, (A) > nx}.
n—-oo n

This ¢ (x) is finite for al x, by virtue of Lemma 7. We can repeat the proof of
Proposition 2 with (3.10) taking the role of (2.11) to obtain that

Tim 1o P(A,(4) = 1) = 9(2)

at each x > 0 at which ¢ isright continuous. Thisfurther impliesthat if x ¢ > 0
are continuity points of ¢, then

Iimsup_—1 log P{A,(A) > tx} < Iimsup_—1 IogP{AL,J(A) > LtJLx}
t—o0 I t—00 11 [z]

< lim — log P{A,(A) > n(x + &)}
n—o00 n

= (x + o),
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aswell as
liminf _—1 log P{A;(A) > tx} > liminf _—1 log P{AM(A) > [t] Lx}
1—>oo 1—>oo [t]
> lim _71 log P{An(A) = n(x — &)}
=¢(x —e¢).

Thus, at any continuity point x > 0 of ¢,
-1
tI—IHJo - log P{A;(A) > tx} = ¢ (x). (3.13)

Further, one can show exactly asin Lemma 3 that

p(x) =ap(y) + (1 —-a)9(2),

when x, y, z are continuity points of ¢ such that x,y,z > 0,0 < « < 1, and
x = ay + (1 — a)z. From this convexity property and the finiteness of ¢ we then
concludethat ¢ isconvex, continuous and finitefor al x > 0, and that (3.13) holds
for al x > 0 (compare Lemma 3). Moreover, wetrivialy have

-1
¢(x) = lim —log P{A;(A) > tx}
t—o0 tl
= lim —log P{A,(A) >0} =0 for x <O.
t—oo
Also, analogously to the proof of Proposition 4, for 0 < § < 1,
P{A;(A) = 18} > P{As(A) = 18} = e 11

forL1 = L1(1, A,d), by Lemma7. Thus¢(8) < L18, and ¢ isalso continuous at
0. Thus (3.13) holds for all x € R. This proves (1.23) and (1.27). Relation (1.24)
followstrivially from (1.19). Finally, (1.26) and (1.28) can be proven in exactly the
sameway as (1.12) and (1.15).
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