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Abstract. We study the longtime behaviour of interacting systems in a randomly fluctuating
(space–time) medium and focus on models from population genetics. There are two proto-
types of spatial models in population genetics: spatial branching processes and interacting
Fisher–Wright diffusions. Quite a bit is known on spatial branching processes where the
local branching rate is proportional to a random environment (catalytic medium).

Here we introduce a model of interacting Fisher–Wright diffusions where the local
resampling rate (or genetic drift) is proportional to a catalytic medium. For a particular
choice of the medium, we investigate the longtime behaviour in the case of nearest neighbour
migration on the d-dimensional lattice.

While in classical homogeneous systems the longtime behaviour exhibits a dichotomy
along the transience/recurrence properties of the migration, now a more complicated be-
haviour arises. It turns out that resampling models in catalytic media show phenomena that
are new even compared with branching in catalytic medium.

1. Introduction

This paper is concerned with evolutions in disordered media where the medium
fluctuates both in space and time. We focus on spatial models arising in population
genetics.

An object of study in spatial population genetics is a class of stochastic mod-
els where on each site of a certain countable set G there is a population of one
or more types. The mass and/or relative frequency of the types undergoes a lo-
cal stochastic evolution that models effects such as genetic drift due to resam-
pling, population growth with limited/unlimited resources, competition of two types
for limited resources and so on. In addition spatial models comprise a migration
between colonies.

The prototype for a one-type population growth model with unlimited resources
is branching random walk as well as its diffusion limit, the Dawson-Watanabe
process (see, e.g., Dawson [Daw93]). The most widely studied two-type model with
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a fixed population size (at any site) and a genetic drift due to haploid resampling
is that of interacting Fisher–Wright diffusions (see, e.g., Shiga [Shi80], Ethier and
Kurtz [EK86], Fleischmann and Greven [FG96]).

In the last years there has been some interest in models where the local diffusion
mechanism is influenced by a random medium that is itself a realization of a spatial
stochastic process. The best studied model is a spatial branching process where the
local branching rate is proportional to the local abundance of a second type which
performs an autonomous branching process leading to catalytic branching random
walks (see [GKW99]) and catalytic super-Brownian motion (see Dawson and Fleis-
chmann [DF97a] and [DF97b]). Recently also branching models with two types
and with a mutual influence have been studied; this is the so called mutually cat-
alytic branching (Dawson and Perkins [DP98]). For an overview on catalytic spatial
branching processes we refer to the survey article by one of the authors [Kle00b].

In this paper we introduce a model of interacting Fisher–Wright diffusions
where the resampling rate (or strength of the genetic drift) is proportional to a
random medium that varies in time and space. The main goal is the investigation of
the longtime behaviour. To this end we concentrate on the d-dimensional lattice as
site space and on the medium given by the voter model, which is technically better
treatable than a medium of interacting diffusions, but closely resembles interacting
Fisher–Wright diffusions.

Recall the following properties of the longtime behaviour in the classical case
of a space–time homogeneous resampling rate (say for nearest-neighbour migra-
tion). Starting in an i.d.d. (or spatially ergodic) random initial state the system of
interacting Fisher–Wright diffusions (and similarly the voter model) approaches
a non-trivial ergodic equilibrium state as t → ∞ if d ≥ 3. On the other hand,
for d = 1, 2 the system approaches a mixture of δ-masses on the traps 0 and 1
of the system. One way of understanding this is the following. The migration has
a smoothing effect which drives the local frequencies of the types towards their
mean value, whereas the fluctuations caused by the resampling push the compo-
nents towards the traps 0 and 1. For far reaching interaction (transient migration)
the migration wins in this competition, while for short range interaction (recurrent
migration) the fluctuations win.

In the random medium things are different. We shall see that in our model in
low dimension the new phenomenon occurs that both mechanisms can win with
certain probabilities. This is a feature unparallelled by catalytic branching. High
dimensions (d ≥ 3) hide no surprise: as in catalytic branching, the systems behave
qualitatively like their classical homogeneous counterparts.

The low dimensions d = 1 and especially d = 2 are more challenging. In
these dimensions we find as longtime limits of the law of the reactant component
mixtures of laws concentrated on traps and on spatially constant states different
from the traps. We are able to calculate the probabilities of these two possibilities
and to give transparent formulas for the limiting joint law of medium and reactant.
The situation in d = 1 parallels the case of catalytic branching in d = 2 (see
[GKW99]): the limiting state of the reactant is a process with random intensity
where the random factor reflects global properties of the medium and is expressed
in terms of the

√
t-rescaling limit of the model.
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Finally, the type of behaviour in dimension d = 2 is deviant from any known
behaviour of catalytic branching. Like for catalytic branching, in the longtime limit
we see a random multiple of the counting measure. Howeverm, it is not derived
by a rescaling limit of the whole process. It rather arises from a multiple-scale
observation of the catalyst process.

Many results of this paper can be carried over easily to a reactant process
describing multi-type and infinite-type situations, as interacting multi-dimensional
Fisher–Wright diffusions or interacting Fleming-Viot processes.

Some words on the methods used. The starting point is the duality relation
connecting the reactant with coalescing random walk in a fluctuating medium. To
obtain precise results we exploit the cluster analysis of the voter model. In dimension
d = 1 Arratia’s rescaled voter model ([Arr79], [Arr81]) is the key ingredient for
the quantitative description of the longtime behaviour. In d = 2 there is diffusive
clustering of the voter model (see Cox and Griffeath [CG86], and also [Kle96])
and we employ the multiple scale description of this form of cluster formation to
derive an intriguing formula for the longtime limit of our model.

This paper is part of a framework to investigate catalytic spatial models where
the diffusion coefficient (genetic drift) is of a more general type (diploid resam-
pling, e.g.). The corresponding non-catalytic models could be related to models
of the Fisher–Wright type by using a comparison theory (see Cox, Fleischmann
and Greven [CFG96]). This theory will be developed for the catalytic models in a
forthcoming paper.

1.1. The models and basic tools

We want to define the model in some generality first and concentrate on a special
situation later once we come to the longtime behaviour.

Let G be a countable Abelian group and let B be the generator (q-matrix)
of a continuous time random walk on G. Denote by bt = exp(tB) is transition
probabilities at time t ≥ 0. We assume that we are given a bounded measurable
function

κ : G× [0,∞) → [0,∞).

This function serves as the space–time medium of our model. For the moment
it is deterministic but will be chosen to be random later. We need in the sequel the
notion of a standard Fisher–Wright diffusion.

Definition 1.1. A standard Fisher–Wright diffusion is the solution (with values in
[0, 1]) of the following SDE:

dYt =
√
Yt (1 − Yt ) dWt . (1.1)

The following proposition has been proved by Shiga and Shimizu ([SS80],
Remark 2.1 and Theorem 3.2) for κ(g, t) not depending on t .
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Proposition 1.2. There exists a unique strong solution (ξt )t≥0 of the following
system of interacting stochastic differential equations

dξt (g) = (Bξt )(g) dt +
√
κ(g, t)ξt (g)(1 − ξt (g)) dWt(g), g ∈ G, (1.2)

where {(Wt (g))t≥0, g ∈ G} is a family of independent standard Brownian motions.

Proof. The proof of the existence has two components. First we have to show that
there exists a solution of this system for a finite index set. Shiga and Shimizu achieve
this in their setting by referring to a result of Skorokhod. In the time–inhomogeneous
setting, this can be replaced, e.g. by [RW87] Thm. V 23.5, guaranteeing a solution
to the corresponding martingale problem and hence also a weak solution to the SDE
(cf. [RW87] Thm. V 20.1). Based on this result one can use the technique developed
in [SS80] to construct a solution for the system with countably many components.
In addition their proof of strong uniqueness based on Gronwall’s inequality carries
over. Since existence of a weak solution together with strong uniqueness implies
the existence of a strong solution, we obtain the existence and uniqueness results
for time inhomogeneous κ . �
Definition 1.3 (CIFWD). We call the solution (ξt )t≥0 of (1.2) a system of interact-
ing Fisher–Wright diffusions in the catalytic medium κ and with migration kernel
B (and write CIFWD(B, κ) for short). We also refer to (ξt )t≥0 as the reactant.

The main tool in the analysis of CIFWD is a duality to coalescing random
walks with varying rate of coalescence. This kind of duality is well known for the
homogeneous model (κ ≡ 1). We state the duality here and begin with introducing
the dual process. We denote byNf (G) the set of finite, non-negative integer valued
measures on G. For µ ∈ Nf (G) and x ∈ [0,∞)G we define

xµ := exp

(∫
log(x(g)) µ(dg)

)
, (1.3)

where xµ can be zero.

Definition 1.4 (Coalescing random walk in the catalytic medium).Fix T > 0
and let (X̃T

t )t∈[0,T ] be a system of coalescing random walks with local rate of
coalescence κT−t (g) at time t at site g. This is, X̃T is the Markov process that takes
values in Nf (G) with time-dependent infinitesimal generator acting on bounded
functions F : G → � as follows:

GT ,tF (x) =
∑
g,h∈G

x(g)B(g, h)F (x + δh − δg)

+
∑
g∈G

(
x(g)

2

)
κT−t (g)[F(x − δg)− F(x)]. (1.4)

More intuitively, the particles of X̃T perform independent random walks with gen-
erator B and pairs of particles at the same site g at time t coalesce at rate κT−t (g).
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Proposition 1.5 (Duality). For fixed κ , T ≥ 0 and ϕ ∈ Nf (G)

Eξ0 [(ξT )
ϕ] = Eϕ[ξ X̃T0 ]. (1.5)

Proof. For the piecewise (in time) constant medium this follows as in [Shi80],
Lemma 2.3. The general case follows by an approximation. �

The construction of the process works for a broad class of media. However
the longtime behaviour of the model depends in a subtle way on the medium. In
order to obtain precise results we have to make specific choices here. In the sequel
we shall consider the special situation where also κ is random and is generated by
an autonomous Markovian evolution which we call the catalyst. In this case we
consider the process which corresponds to the pair (catalyst, reactant). Precisely

Definition 1.6. Let (κ(·, t))t≥0 be a Markov process and define for given realiza-
tion of (κ(·, t))t≥0 the process (ξt )t≥0 by Definition 1.3. The process (κ(·, t), ξt )t≥0
is called the bivariate process.

In order to achieve a concise presentation we will specialise in the sequel and make
the following

Assumption. G = �d and B is the q-matrix of nearest neighbour random walk.
We also assume that κ = η is a realization of a (nearest neighbour) voter model on
�d .

Recall that the voter model (ηt )t≥0 is the Markov process with values in {0, 1}�d

where in each coordinate i ∈ �d a flip to 1 − ηt−(i) occurs at a rate proportional
to the number of neighbours j with |j − i| = 1 such that ηt−(i) �= ηt−(j). For
details see [Lig85, Chapter V] or [Dur88, Chapters 2 and 10]. The voter model can
be thought of as the limit of (homogeneous) IFWD where the resampling rate tends
to infinity. Its duality is the same as the one for IFWD but now the coalescence of
two walks is instantly.

Remark 1.7. To distinguish conceptually between the random walks underlying the
reactant and our voter medium, we write A for the q-matrix of nearest neighbour
random walk on �d whenever it is associated to the voter model η. We also denote
the transition kernels by at = exp(tA).

The main content of this paper is to investigate the longtime behaviour of the
IFWD in this medium η. The natural choice for the medium seems to be (classical)
interacting Fisher–Wright diffusions. The reason for choosing the voter model
instead is that it produces less technical difficulties in places. On the other hand,
in many respects the voter model shows a similar behaviour as IFWD. Hence the
hope seems justified that we capture essential features by choosing the voter model
as the medium.

1.2. Results

We investigate the longtime behaviour of the model and give convergence theorems
for the joint distribution of the medium and the reactant. Due to the very different
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nature of dimension one, two and d ≥ 3 we give the results in different subsections.
We begin with the case closest to the classical situation and then proceed to the
new features subsequently.

1.2.1. Dimensions three and more

The longtime behaviour in d ≥ 3 is very similar to that of space–time homogeneous
systems. We consider for the process (ηt , ξt )t≥0 the following class of initial laws.

Denote by P(({0, 1}× [0, 1])�
d
) the space of probability measures on ({0, 1}×

[0, 1])�
d

and by T ⊂ P the subset of translation invariant measures. For (θ1, θ2) ∈
[0, 1]2 define the class of initial states with asymptotic intensity (θ1, θ2) by

M(θ1,θ2) =
{
µ ∈ T : lim sup

t→∞

∫
µ(d(η, ξ))(|atη(i)− θ1| + |bt ξ(i)− θ2|) = 0,

i ∈ �d
}
. (1.6)

Note that in particular translation invariant, spatially ergodic configurations
with mean (θ1, θ2) are in this class.
The main result in the high dimensional case is:

Theorem 1. Assume that d ≥ 3.

(a) For every intensity (θ2, θ2) ∈ [0, 1]2 there exists a unique extremal invariant
measure ν(θ1,θ2) of the bivariate process such that∫

νθ1,θ2(d(η, ξ))

(
η(0)

ξ(0)

)
=

(
θ1

θ2

)
. (1.7)

The measure νθ1,θ2 has the following properties

− νθ1,θ2 is translation invariant and spatially ergodic.

− Var νθ1,θ2 [ξ(0)] > 0 provided θ1 > 0 and θ2 ∈ (0, 1).
(1.8)

(b) If we chooseµ ∈ M(θ1,θ2), and if we denote by P(θ1,θ2) the law of the stationary
bivariate process with marginal νθ1,θ2 , then

Lµ
[
(ηt+T , ξt+T )t≥0

] T→∞�⇒ P(θ1,θ2). (1.9)

The law P(θ1,θ2) is space–time mixing.

Remark 1.8. The statements of Theorem 1 remain true even in a situation of much
greater generality. In fact, our proof works without changes for a countable Abelian
group G and the case where the (possibly different) migration kernels of catalyst
and reactant have transient symmetrisations. One can even replace the catalyst by
some translation invariant random medium that follows a Markovian dynamics
on [0,∞)G and approaches a non-trivial equilibrium. (In particular, we can take
interacting Fisher–Wright diffusions as the medium, cf. the remark at the end of
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Subsection 1.1) Focusing only on (1.9) we can replace the Markovian process by
a space–time mixing stationary process. We chose the formulation of the special
case in Theorem 1 only to be consistent with the following theorems for the low-
dimensional situation where we have to be more specific.

1.2.2. Dimension two

A principal role in our main result for the two-dimensional case is played by the
solution p(·) of the following Dirichlet problem (for existence and uniqueness see
Lemma 1.13 below):

Definition 1.9. We define the twice continously differentiable map p : [0, 1] →
[0, 1] as the solution of

d2

dθ2
p(θ) = −2

p(θ)(1 − p(θ))

θ(1 − θ)
, θ ∈ (0, 1) (1.10)

with the boundary conditions

p(0) = 0, p(1) = 1. (1.11)

Let Y 1 and Y 2 be independent standard Fisher–Wright diffusions started at θ1 and
θ2. Denote by λ the counting measure on �2. We write πθ for the product measure
on {0, 1}�d and π̄θ for an arbitrary but fixed product measure on [0, 1]�d with
intensity θ ∈ [0, 1], respectively. Our main result is:

Theorem 2. Assume d = 2. Then

Lπθ1⊗π̄θ2 [(ηt , ξt )]
t→∞�⇒ Lθ1,θ2

[
(Y 1

∞ · λ, Y 2∫ ∞
0 p(Y 1

s )ds
· λ)

]
. (1.12)

Remark 1.10. With mθ1,θ2 = Pθ1,θ2
[
Y 2∫ ∞

0 p(Y 1
s )ds

∈ •|Y 1
∞ = 0

]
the r.h.s. of (1.12)

equals

θ1(θ2δ(1,1) + (1 − θ2)δ(1,0))+ (1 − θ1)

∫
δ(0,θ))mθ1,θ2(dθ).

This means that for the reactant we see both constant states θ with θ(g) ≡ θ ∈ (0, 1)
produced by a dominating migration, and constant states 0 or 1 which are traps
produced by the dominance of fluctuations.

Remark 1.11. Presumably the initial state πθ1 ⊗ π̄θ2 could be replaced by more
general elements of Mθ1,θ2 without changing the result; we do not strive for this
generalisation here.

In order to understand why the theorem should be true let us give an idea of
the proof here. We start by explaining the function p(·). To this end we need to
introduce binary branching Fisher–Wright diffusions first, which allow a proba-
bilistic representation of p(·). Recall also that every element of the set Nf ([0, 1])
of finite, integer valued measures on [0, 1] can be viewed in an obvious way as
empirical measure of a collection of particles.
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Definition 1.12. Let (Zs) be rate 1 binary branching Fisher–Wright diffusions.
This is, (Zs) is the Markov process with values in Nf ([0, 1]) where each parti-
cle undergoes a standard Fisher–Wright diffusion and with rate 1 splits into two
particles at the same location undergoing the same (but independent) dynamics.

The connection of p with Z is given by the following lemma that we prove in
Subsection 3.4.

Lemma 1.13. Equation (1.10) with boundary conditions (1.11) is uniquely solv-
able and

p(θ) = lim
t→∞ Pδθ [Zt({1}) > 0] = lim

t→∞ Pδθ [Zt((0, 1]) > 0].

The basis for the phenomenon described in the theorem is the following property
of the medium (voter model). For the medium (ηt )t≥0 it is well known that the
configuration forms big clusters (i.e. connected components) of zeros and ones as
t → ∞ and it is even possible to determine how these clusters grow. In fact, they
follow a pattern of diffusive clustering, which means that the sizes of clusters of
0’s or 1’s are of order tα/2 with a random exponent α. More precisely, we know
that the block averages converge in the following scaling

Lπθ
[
(t−αηt ([0, tα/2]2))α∈[0,1]

]
t→∞�⇒

fdd
Lθ

[
(Y 1

− logα)α∈[0,1]

]
. (1.13)

For given medium the reactant has a dual process and we computem-th moments
of the reactant, first for given medium, via this duality (see Proposition 1.5), and
later we average over the medium. Hence we have to start m random walks at time
t and let them run backwards in time through the medium. On a logarithmic scale
with α ∈ [0, 1] as parameter the times tα when pairs of the random walks meet
form a point process with intensity α−1dα times the number of remaining pairs. We
show (Proposition 3.3), that if a pair meets it has a probability ≈ p(() to coalesce,
where ( = t−αηt−tα ([0, tα/2]2), which is approximated via (1.13) by Y 1

− logα . This

means at time texp(−s), as t → ∞, the total rate of coalescence is ≈ (
ms

2

)
p(Y 1

s )

with ms being the number of remaining particles. Hence for large t the number of
surviving particles is distributed approximately as Kingman’s coalescent (Dm

s )s≥0
started withDm

0 = m and evaluated at time
∫ ∞

0 p(Y 1
s )ds. (Kingman’s coalescent is

the pure death process on � with rates
(
m
2

)
for the transitionsm �→ m− 1.) Finally,

Kingman’s coalescent is connected to the Fisher–Wright diffusion by the following
well known duality, leading to the time transformed Y 2 of Proposition 1.15.

Lemma 1.14 (Duality: Fisher–Wright diffusion). For allm ∈ �, θ ∈ [0, 1] and
s ≥ 0,

Eθ [(Ys)
m] = Em[θDs ]. (1.14)

This discussion already suggests that the result can be viewed also as a limit
result for coalescing random walk in random medium. Indeed we will show The-
orem 2 by proving the following rescaling result for the joint law of the medium
and of the reactant’s dual process.
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Proposition 1.15. Fix m, n ∈ � and x1, . . . , xm, y1, . . . , yn ∈ �2. Let (X̃t
s)s∈[0,t]

be coalescing random walk in the medium η, started at time t with X̃t
0 = δx1 +

· · · + δxm . For all z ∈ {0, 1}n and k ≤ m,

lim
t→∞ Pπθ [ηt (yi) = zi, i = 1, . . . , n; X̃t

t (�
2) = k]

= P
[
Y 1

∞ = z1; Dm∫ ∞
0 p(Y 1

s )ds
= k

]
1z1=···=zn .

Note that together with the duality (Proposition 1.5 and Lemma 1.14) this implies
immediately Theorem 2.

1.2.3. Dimension one

A key point for the investigation of our process in dimension d = 1 is that it has a
natural scaling limit. More precisely, if we scale time by T and space by T 1/2 we
obtain a limiting process (η∞

t , ξ
∞
t )t≥0. The lawL[(η∞

1 , ξ∞
1 )] will be the ingredient

for a quantitative description of the longtime behaviour of the non-rescaled process
in analogy to the previous theorems.

Let us start by considering the medium. The interfaces between the zeros and
ones perform annihilating random walks. On the Brownian scaling they converge
to annihilating Brownian motions. Arratia seems to have been the first who showed
this convergence in the sense of an invariance principle. More precisely, there should
exist an entrance law (denoted by Lθ1 ) for a Markov process (η∞

t )t>0 (note the
problem arising at t = 0!) where, for each fixed t , η∞

t is piecewise constant (in
space) with values in {0, 1}, the discontinuities of (η∞

t )t>0 perform annihilating
Brownian motions, and

Lπθ1

[((
ηT t

(⌊
T 1/2•

⌋)))
t>0

]
T→∞�⇒ Lθ1

[(
η∞
t (•)

)
t>0

]
. (1.15)

Since Arratia’s proof is a bit difficult to spot, we give an argument for (1.15) in
Proposition 4.1. We will refer to η∞ as “Arratia medium”.

It is reasonable to conjecture that also the rescaled bivariate process converges
and that, given η∞, the limit ξ∞ is the solution of the following formal SPDE

d

dt
ξ∞
t (x) = 1

2

d2

dx2
ξ∞
t (x)+ ∞ · η∞

t (x)
√
ξ∞
t (x)(1 − ξ∞

t (x))
•
W(t, x), (1.16)

where
•
W is space–time white noise. The factor “∞” should be understood in the

sense that ξ∞ is the limit of ξK as K → ∞ where the ∞ is replaced by a factor K
(in particular ∞ηt (x) = 0 if ηt (x) = 0). This would be an SPDE of the Mueller–
Tribe type [MT95, Thm. 2] in a catalytic medium. However, the existence of a
solution of (1.16) has not been established yet.

What we can show here is for given medium the existence of some process ξ∞
that is given in terms of its mixed (space–time) moments

E(θ1,θ2)

[
m∏
i=1

ξ∞
ti
(xi)

∣∣η∞
]

= Eθ1
[
θ

|{W̃1(xi ), i=1,... ,m}|
2

∣∣∣ η∞
]
. (1.17)
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Here the space–time dual process ((W̃s(xi))s∈[0,1], i = 1, . . . , m) is a family of
modified coalescing Brownian motions: they are frozen at xi for s ≤ 1 − ti and a
pair coalesces at the first instance s ≥ (1− ti )∨(1− tj )with W̃s(xi) = W̃s(xj ) and
η∞

1−s(W̃s(xi)) = 1. If (1.16) does make sense then the moments of its solution are
given by (1.17). In fact, the existence of a process obeying (1.17) follows easily by
the standard Kolmogorov extension theorem, and since the law depends measurably
on η, we arrive at:

Remark 1.16. Let θ1, θ2 ∈ [0, 1]. There exists a bivariate Markov process (η∞, ξ∞)
with values in {0, 1}� × [0, 1]�, where η∞ is the Arratia medium and where the
moments of ξ∞ given η∞ are prescribed by (1.17). If x is a continuity point of
η∞
t (•), then the map x �→ ξ∞

t (x) is continuous at x if η∞
t (x) = 0. If η∞

t (x) = 1
then ξt (x) ∈ {0, 1}.
Theorem 3. Let θ1, θ2 ∈ [0, 1]. Fix m ∈ � and (xi, t i) ∈ � × [0,∞), i =
1, . . . , m. Assume that we are given sequences (xiT , t

i
T )T≥0 such that (T −1/2xiT ,

T −1t iT )
T→∞−→ (xi, t i). Then

Lπθ1⊗π̄θ2
[(
ηtiT

(xiT ), ξtiT
(xiT )

)
i=1,... ,m

]
T→∞�⇒ L(θ1,θ2)

[(
η∞
t i
(xi), ξ∞

t i
(xi)

)
i=1,... ,m

]
. (1.18)

Remark 1.17. Letting mθ1,θ2 = L[ξ∞
1 (0) ∈ •|η∞

1 (0) = 0] we have

L[(ηt , ξt )]
t→∞�⇒ θ1

(
θ2δ(1,1) + (1 − θ2)δ(1,0)

) + (1 − θ1)

∫ 1

0
δ(0,θ)mθ1,θ2(dθ).

(1.19)

Remark 1.18. Let us mention that also Theorem 3 could be extended to a more
general class of initial states (as described in Remark 1.11).

Remark 1.19. In [GKW99, Thm. 3] it was shown that the reactant of two-
dimensional catalytic branching random walk (CBRW) converges to a homoge-
neous Poisson point process with random intensity. This randomness could be
described in terms of the density of catalytic super-Brownian motion (see [FK99,
Thm. 1] or [Kle00a, Thm. 1]) which is the scaling limit of CBRW. In this respect
the case of one-dimensional IFWD is similar to that two-dimensional CBRW.

The result of Theorem 3 raises the question whether its statement could be
strengthened such that we could view (ηT t (

√
T •), ξT t (

√
T •)) as elements of a

function space like D([0,∞), {0, 1})×D([0,∞), [0, 1]) or whether we can show
convergence in path space (in the time variable).

Start with the evolution at a space point in time. The first observation is that the
maps

t �→ ξt

(⌊
x
√
T
⌋)

, t �→ ξ∞
t (x) (1.20)
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do not have the same continuity properties: the first is continuous, the second may
have jumps if η∞

t (x) = 1. Hence pathwise convergence cannot hold in the Sko-
rokhod topology. If, however, we consider the measures on � with density functions
ξt (�

√
T •�) on � then we conjecture that one has the pathwise convergence.

The problem with considering the system for fixed time as element of a function
space is two-fold. First of all at points where η∞

t (·) changes values the random
variable ξ∞

t (·) has no regularity properties and is of complicated nature so that
different type function spaces have to be considered. Secondly it is an open problem
to verify that a classical one-dimensional system of Fisher–Wright diffusions shows
under the

√
T -rescaling as a random function in space the same qualitative limiting

behaviour as a voter model.
Thus here are serious open problems which are intimately connected with the

question which sense can be given to the equation (1.16).

1.3. Extensions

There are two extensions of our results, one concerning the migration mechanism
and the other the state space of the reactant process of a component. We describe
both extensions shortly.

In this paper we consider very special migration kernels (symmetric nearest
neighbour). One is tempted to believe that the qualitative statements remain true if
one assumes only that the kernels have second moments and vanishing drift. How-
ever, the technical difficulties in proving such a statement appear to be substantial.
At this stage we prefer only to highlight the main features of the longtime behaviour
by analysing the important examples.

However, one interesting case that is simple to discuss is that of a kernel with
drift. More precisely, assume that the migration kernel of the reactant has second
moments and a non-zero drift. Clearly, for d ≥ 3 no qualitative change occurs. In
dimension d = 1 and d = 2 the situation changes drastically. Now also the reactant
clusters: For µ ∈ M(θ1,θ2),

Lµ [(ηt , ξt )]
t→∞�⇒ (

θ1δ1 + (1 − θ1)δ0
) ⊗ (θ2δ1 + (1 − θ2)δ0).

This can be understood easily using the duality given in (1.5). Consider pairs of
particles of the coalescing random walk. The difference of two walks is again a
random walk, but now without drift, hence it is recurrent. However, due to the drift,
the two random walks explore the medium with a linear speed. Since in d = 1 the
clusters of the voter model are of order t1/2 only, two coalescing random walks
will finally not only meet but meet also in the presence of the medium and hence
coalesce. In d = 2 the diameter of clusters is tα/2 with random α ∈ [0, 1] and
hence the same argument applies.

Another scope for generalisation is to modify the reactant, in particular its state
space. Recall that Fisher–Wright diffusions describe the frequency of one type in
a two type population located at the sites of �d . Instead we could consider inter-
acting multitype Fisher–Wright diffusions or Fleming–Viot processes describing
populations with three or more respectively a continuum of types.
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Both these processes have a dual process, which even though it is more com-
plicated, is driven by the coalescing random walk in random medium analysed in
this paper (compare Subsection 3(a) in [DGV95]). Thus it is clear that in d ≥ 3,
i.e. in Theorem 1, nothing changes while in d = 2, i.e. Theorem 2, we have to
replace Y 2 by either a multitype Fisher–Wright diffusion or Fleming–Viot process.
Finally, for d = 1 in Theorem 3 one has to write (1.17) using the duality relation
for the respective one of these processes instead for usual FWD.

2. Proof of Theorem 1 (d ≥ 3)

We give here a proof whose method works for far more general situations than
for the special structure of our present model. Indeed, the behaviour in d ≥ 3 as
described here occurs in many other situations. In particular we could replace, in our
choice for the medium, the voter model by interacting Fisher–Wright diffusions.

The main idea is to use the fact that the medium evolves autonomously towards
an ergodic equilibrium state, which allows to treat it first and then consider the
evolution of (ξt )t≥0 for given medium consisting of realizations of the stationary
process (ηt )t∈(−∞,∞). We proceed in steps: after recalling some basic facts about
the medium we consider first convergence results on the bivariate law for special
initial states and then later for general ones. With these we construct in Step 4 the
extremal invariant measures, prove the convergence statement (1.9) and conclude
in Step 5 by showing the claimed mixing properties.

Step 1. Observe first that for initial states ν ∈ M(θ1,θ2) using the projection ν1
on the medium component as initial state of a voter model leads to the following
property ([HL75, Thm. 1.9(c)]) for d ≥ 3:

Lν1 [ηt ]
t→∞�⇒ µθ1 , (2.1)

whereµθ1 is the unique extremal invariant measure with intensity θ1. This measure
is spatially mixing. Using the Markov and Feller property it is straightforward to
prove the following strengthening of the ergodic theorem above:
Denote by (̃ηt )t≥0 the stationary process with marginal µθ1 . Then

Lν1
[
(ηt+T )t≥0

] T→∞�⇒ L
[
(̃ηt )t≥0

]
. (2.2)

Step 2. We begin by considering the bivariate process starting in the following
special initial state ν ∈ M(θ1,θ2) with ν = ν1 ⊗ π̄θ2 and ν1 := µθ1 . We start the
process in this state at time −t and denote the configuration arising at time 0 by
(̃η−t

0 , ξ̃−t
0 ). We can construct this process as follows. Realize the stationary process

(̃ηt )t∈(−∞,∞). Fix a version of this process and an initial state for the ξ -process,
called ξ̂ , which is independently sampled from π̄θ2 . Then we can (simultaneously
for all t) construct the distribution of ξ̃−t

0 for fixed medium η̃ through a coalescing
random walk (X̃s)s≥0 with coalescence rate η̃−s(x) at site x at times s. Consider the
coalescing random walk (X̃s) starting with k particles placed at the (not necessarily
different) sites x1, . . . , xk ∈ �d . Note first that due to the monotonicity of the total
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number of particles X̃t (�
d) converges to a random variable ζ∞ whose law depends

only on k and η̃. Hence (recall (1.3))

E
[̃
ξ−t

0 (x1) . . . ξ̃
−t
0 (xk)|(̃ηs)s≤0

] = Eν
[̂
ξ X̃t

∣∣∣(̃ηs)s≤0

]
t→∞−→

k∑
j=1

(θ2)
jPη̃,k [ζ∞ = j ] . (2.3)

Note that from η̃ only the part (̃ηs)s≤0 enters in the r.h.s. above, and viewing this part
of the process as element ofD((−∞, 0], {0, 1}�d ) the r.h.s. of (2.3) is a continuous
function of η̃, since the difference random walks (Xi

t − X
j
t )t≥0 starting at xi and

xj are transient and since the dual process reads the medium backwards. (In fact,
think of X̃ as being constructed from k free random walks X1, . . . , Xk . If we fix
a realization of X1, . . . , Xk it is easy to see that the probability of having j free
particles in the end is a continuous function of η̃. Furthermore, for T > 0 and
R > 0 on the event AT,R := ⋂

i �=j {Xi
t �= X

j
t if t > T or ‖Xi

t‖2 > R} it is even

uniformly (in the realizations of X1, . . . , Xk) continuous in η̃. However due to the
transience of the (difference) walks, P[AT,R] → 1 as T ,R → ∞.)

As a consequence we can define for every fixed η̃ = (̃ηs)s≤0 ∈ D((−∞, 0],
{0, 1}�d )

νθ2 (̃η) = lim
t→∞Lη̃ [̃ξ−t

0 ]. (2.4)

As shown above, the map

η̃ �→ νθ2 (̃η) (2.5)

from the path space D((−∞, 0], {0, 1}�d ) into ˙([0, 1]�d ) is continuous. Put

νθ1,θ2 :=
∫ (

δη̃0 ⊗ νθ2 (̃η)
)
Qθ1(dη̃), where Qθ1 = L[(̃ηs)s≤0]. (2.6)

By construction we have for our special choice of ν that

Lν [(ηt , ξt )] =
∫ (

δη̃0 ⊗ Lη̃ [̃ξ−t
0 ]

)
Qθ1(dη̃)

t→∞�⇒ νθ1,θ2 . (2.7)

Note that relation (2.3) implies that (with x1 = x2 = 0)

Var νθ1,θ2 [ξ(0)] =
∫
Qθ1(dη̃)Pη̃,2[ζ∞ = 1]θ2(1 − θ2) > 0

if θ2 ∈ (0, 1). Hence together with the observation of the previous step we have
proved the assertion (1.8) as far as the assertion for the variance goes.
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Step 3. We want to show in this step that for all initial laws ν ∈ Mθ1,θ2 the bivariate
process converges as t → ∞ to νθ1,θ2 , i.e.,

ν ∈ M(θ1,θ2) implies Lν[(ηt , ξt )]
t→∞�⇒ νθ1,θ2 . (2.8)

Denote again by ν1 the projection of ν on the medium. It suffices according to Step
2 to show that the following pairs of initial distributions (i) ν1 ⊗ π̄θ2 and µθ1 ⊗ π̄θ2

as well as (ii) ν and ν1 ⊗ π̄θ2 lead to the same bivariate limits in distribution as
t → ∞. Next we give these two arguments.
(i) Since ν ∈ Mθ1,θ2 , the measure ν1 has the intensity θ1. Denote byQν1

t (dη̃) the
distribution of the medium started at time −t with distribution ν1 and set ≡ 0 for
times earlier than −t . With this notation (2.2) becomesQν1

t
t→∞�⇒ Qθ1 . Recalling the

discussion following (2.3) it is clear that the convergence in (2.3) is even uniform
in η̃. Thus we can interchange limits and replace in (2.7) Qθ1 by Qν1

t . In total we
get for µ = ν1 ⊗ π̄θ2 that:

Lµ [(ηt , ξt )]
t→∞�⇒ νθ1,θ2 . (2.9)

(ii) Here we have to compare two initial measures which have the same projection
on the medium component, so that it suffices to compare the two reactant processes
evolving in one given medium. We construct the two processes (ξ1

t )t≥0 and (ξ2
t )t≥0

on one probability space by using for both the same realization of the medium and
the same driving Brownian motions. The initial states are realized by choosing ξ1

0
according to ν conditioned on the medium and ξ2

0 according to π̄θ2 independently
of everything else. If we can show that

ft (x) = E[|ξ1
t (x)− ξ2

t (x)|] tends to 0 as t → ∞, (2.10)

we are done.
Using Itô-calculus we can derive for the collection {ft (x), x ∈ �d} a system of

differential equations (recall that A is the q-matrix of simple random walk)

d

dt
ft (x) = Aft (x)− 2

∑
y

E
[
|ξ1
t (y)− ξ2

t (y)|; sign(ξ1
t (y)− ξ2

t (y))

�= sign(ξ1
t (x)− ξ2

t (x))
]

(2.11)

By the translation invariance of the law L[ξt ], the first term vanishes. Therefore
we see immediately that ft (x) is monotone decreasing. The system of equations
is derived and analysed in [CG94], Subsection 3, a paper dealing with interacting
diffusions with time–homogeneous diffusion coefficients. However, we get in our
case exactly the same system of equations due to the translation invariance of the
distribution of ξt averaged over the medium. The reason that ft converges actually
to 0 is due to the irreducibility of the migration and the fact that the diffusion term
is mean preserving. The argument is roughly as follows. One shows that equation
(2.11) implies that (ξ1

t , ξ
2
t ) must become ordered in the limit t → ∞. If they

would, however, become at a site strictly ordered with positive probability, this
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would contradict the fact that the intensities are preserved in the limit t → ∞
(which follows from a second moment estimate) and are equal for both of the
two coupled systems. The details of the argument can be found in the reference
mentioned above and the quoted result simply carries over to the inhomogeneous
evolution.

Step 4. Now we need to show that νθ1,θ2 is an invariant measure of the bivariate
process. A straightforward calculation shows thatηt and ξt are both mean preserving
and since the components are bounded this means∫

η(x)νθ1,θ2(d(η, ξ)) = θ1,

∫
ξ(x)νθ1,θ2(d(η, ξ)) = θ2, x ∈ �d . (2.12)

A simple second moment calculation (recall (1.6)), separately for ηt and for ξt
given (ηs)s≥0 shows that

νθ1,θ2 ∈ M(θ1,θ2). (2.13)

Since the bivariate process has the Feller property we can now argue as usual.
Denote by (St )t≥0 the semigroup of the bivariate process. Then

(νθ1,θ2)St =
(

lim
u→∞(πθ1 ⊗ π̄θ2)Su

)
St = lim

u→∞
(
πθ1 ⊗ π̄θ2

)
St+u = νθ1,θ2 . (2.14)

This invariant measure νθ1,θ2 is obviously translation invariant. Since νθ1,θ2 has
intensity (θ1, θ2) one can use the convergence property given in (2.8) to conclude
that νθ1,θ2 is an extremal invariant measure.

The Markov property of the bivariate process together with the Feller property
allow immediately to conclude from (2.8) the convergence in (1.9).

Step 5. We finally use the duality for ξ and the graphical representation for η to
show that νθ1,θ2 is spatially mixing (which is stronger than (2.13)). Start with the
first assertion. It suffices to show

lim
|y|→∞

〈νθ1,θ2 , f τyg〉 = 〈νθ1,θ2 , f 〉〈νθ1,θ2 , τyg〉 (2.15)

for functions f, g : ({0, 1} × [0, 1])�
d → [0,∞) that are monomials and that

depend only the coordinates from a finite set A ⊂ �d . By τyg we denote the
function g shifted by y ∈ �d . We use the representation (2.7) for νθ1,θ2 that allows
us to condition on η̃ first and use the duality for ξ̃−t . In fact,

E
[
f (̃η0, ξ̃

−t
0 )τyg(̃η0, ξ̃

−t
0 )

∣∣̃η] − E
[
f (̃η0, ξ̃

−t
0 )

∣∣̃η] · E
[
τyg(̃η0, ξ̃

−t
0 )

∣∣̃η]
can be bounded in terms of the probability that two random walks, started in A

respectively in y +A, ever meet. Due to the transience of the difference walk, this
probability vanishes as |y| → ∞. Now use that µθ1 is mixing to conclude (2.15).

We argue similarly for the space–time mixing property of the corresponding
stationary process. Here we use space–time observation pointsA ⊆ � × �d , |A| <
∞ and (t, y)+A and we let |(t, y)| → ∞. We leave the straightforward details to
the reader.
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3. Proof of Theorem 2 (d = 2)

The proof of Theorem 2 is quite involved and uses elaborate techniques such as the
multiple scale analysis of the diffusive clustering of the voter model.

In Subsection 3.1 we fix some notation and formulate a version of the well-
known multiple scale cluster description of the voter model. With a view to the
duality of the reactant to coalescing random walk in the medium η we give in
Subsection 3.2 the asymptotics for the probability that two random walks coalesce.
This is the technical core of the proof of Theorem 2. The generalisation to more
than two random walks is carried out in Subsection 3.3 where we proof a statement
(Proposition 3.14) that is slightly stronger than Proposition 1.15, which, in turn,
implies Theorem 2. In Subsection 3.4 we establish that p(·) is uniquely defined by
the boundary value problem (1.10), (1.11).

3.1. Multiple-scale analysis of the voter model

Recall that for η0 a random initial configuration with intensity θ1, the process (ηt )

satisfies in d = 2 the convergence L[ηt ]
t→∞�⇒ θ1δ1 + (1 − θ1)δ0. In fact, the

order of magnitude of a cluster of 0’s or 1’s due to one ancestral voter (see [CG86,
Thm. 5]) is known: the cluster-size in space is of the order tα/2 where α is a random
variable with uniform distribution in [0, 1]. The age of such a cluster is of order tα

(see [FG96, Thm. 7]). We need here a finer analysis, in particular, we will have to
investigate the behaviour of the voter-model observed in collections of time–space
points which spread at possibly different polynomial scales. Next we make this
precise.

Denote by �N the set of all sequences e with values in {1, 2} of length 9(e) ∈
{0, . . . , N}. �N carries the natural tree structure and we use the usual notation e∧f
for the greatest common ancestor of e and f as well as ←−e for the predecessor of
e and e←n for the n-th predecessor of e. Finally, we write ∅ for the root which by
convention corresponds to the empty sequence.

Now we analyse the configuration of the voter model in different time–space
points which spread with t (age of the system) on various different scales. We
specify next the needed time–space configurations.

Fix �N and {αe : e ∈ �N }, where αe ∈ [0, 1]. Define βe = ∏
f≤e αf . Assume

that for these parameters for each e ∈ �N we are given families (T et )t≥0 of time
points T et ∼ t , and families (xet )t≥0 of points in �2 such that

lim sup
t→∞

log(|T et − T
f
t |)

log t
≤ βe∧f , e �= f, (3.1)

and

lim
t→∞

log(|xet − x
f
t |)

log t
= βe∧f

2
, e �= f. (3.2)

Further choose mass scaling functions (Set ) such that

lim
t→∞

log Set
log t

= βe.
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Next we need the objects to describe the behaviour of the voter model as t → ∞
viewed on the grid described above. Let ((Y es )s≥0, e ∈ �N) be a �N -indexed family
of Fisher–Wright diffusions with the following dependence structure

Y es = Y
f
s for s ≤ − log(βe∧f )

(Y es )s≥− log(βe∧f ) and (Y fs )s≥− log(βe∧f ) are independent, given Y e− log(βe∧f ).

(3.3)

The following proposition (or rather a slightly weaker version of it) is well known
for the hierarchical group instead of �2 as the site space (see [FG94, Thm. 3]) and
follows easily as in [FG94] from results on random walks in �2 which can be found
in [CG86, Sec. 5 and Thm. 6].

Proposition 3.1 (Diffusive clustering).

Lπθ
[
((Set )

−1ηT et (x
e
t + (Set )

1/2(•))e∈�N
]
t→∞�⇒ Lθ

[
(Y e− logβe · λ)e∈�N

]
, (3.4)

where λ denotes the two-dimensional Lebesgue measure, and the configurations
ηs are also viewed as point measures on �2.

We focus in the sequel on the situation where Set = tβ
e
(log t)4 and denote by

Be
t the ball in �2 of (Euclidean) radius

√
Set centred at xet .

The next goal is to strengthen the above statement by showing that asymptotic
averages which are 0 or 1 can be replaced by pure configurations. More precisely,
we want to show that the cases where the Fisher–Wright diffusion (Yt )t≥0 is in its
boundary points 0 or 1 reflect in the voter model the cases where the corresponding
balls are completely empty or filled. Denote

Ỹ et = |Be
t |−1ηT et (B

e
t ).

Proposition 3.2 (“Empty boxes are really empty”). For every z ∈ {0, 1}�N ,

lim
t→∞ Pπθ

[
Ỹ et = ze, e ∈ �N

] = Pθ
[
Y e− logβe = ze, e ∈ �N

]
. (3.5)

Proof. By the previous proposition (and the Portmanteau theorem) it suffices to
show that

lim inf
t→∞ Pπθ

[
Ỹ et = ze, e ∈ �N

] ≥ Pθ
[
Y e− logβe = ze, e ∈ �N

]
. (3.6)

To avoid a blow up of notation, we show this only for N = 0 and z = 0, leaving
the obvious generalisations to the reader.

Abbreviate α = α∅, Y := Y ∅ and w.l.o.g. assume that T ∅
t = t . We have to

show that (with Bt the centred ball in �2 with radius tα/2(log t)2)

lim inf
t→∞ Pπθ [ηt (Bt ) = 0] ≥ Pθ [Y− logα = 0]. (3.7)

To this end fix ε > 0 and δ > 0 such that, α + δ < 1 and

Pθ [Y− logα = 0] ≤ Pθ [Y− log(α+δ) = 0] + ε. (3.8)
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Let ({(Xx
s )s≥0, x ∈ Bt },PX) be a (t-dependent) family of coalescing random

walks each of which is started at Xx
0 = x. By the duality of the voter model with

coalescing random walk applied between the time points t − tα+δ and t :

Pπθ [ηt (Bt ) = 0] = Pπθ ⊗ PX
[
ηt−tα+δ

(
Xx
tα+δ

) = 0, ∀ x ∈ Bt
]
. (3.9)

Now by [BCG86, Theorem 1] (for applications to the voter model see [CG90]),
Dt := |{Xx

tα+δ :x ∈ Bt }| is a random variable which converges in law toD∞
log(1+(δ/α)),

where ((D∞
s )s≥0,PD) is Kingman’s coalescent started with infinitely many parti-

cles at time 0.
Furthermore, givenDt , theDt remaining components have positions which are,

as t → ∞, asymptotically independent and distributed as atα+δ , where at denotes
the transition kernel of simple random walk on �2.

Return to the proof of (3.7). Express the l.h.s. of this equation using (3.10).
Employing the two facts above we obtain with the previous proposition together
with the central limit theorem for at from (3.8) that

lim inf
t→∞ Pπθ [ηt−tα (Bt ) = 0] = lim inf

t→∞ EπθEX
[
(1 − (atα+δ ηt−tα+δ )(0))D

t
]

= EθED
[
(1 − Y− log(α+δ))

D∞
log(1+(δ/α))

]
≥ Pθ [Y− log(α+δ) = 0]

≥ Pθ [Y− logα = 0] − ε. (3.10)

Since ε > 0 was arbitrary, the claim (3.7) follows. �

3.2. Coalescing random walk in a voter medium: two-particle case

Fix the time horizon t . Let p̄t (θ, x1, x2) be the probability that the coalescing
random walk X̃T in the medium, started with two particles at positions x1 and x2,

has coalesced by time t . In this subsection we show that p̄t (θ, x1, x2)
t→∞−→ p(θ),

where p(θ) is the function introduced in Definition 1.9.
Let (Xi

s)s≥0, i = 1, 2 be two independent random walks, started at x1 and x2,
and define the events

�
x1,x2
t =

{∫ t
0 ηt−s(X

1
s )1X1

s=X2
s
ds > 0

}
,

�
x1,x2
t (K) =

{∫ t
0 ηt−s(X

1
s )1X1

s=X2
s
ds > K

}
, K > 0.

(3.11)

Furthermore let

pt (θ, x
1, x2) := Pπθ

[
�
x1,x2

t

]
. (3.12)

Clearly

inf
K>0

lim inf
t→∞ Pπθ [� x1,x2

t (K)] ≤ lim inf
t→∞ p̄t (θ, x1, x2), (3.13)
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and

lim sup
t→∞

pt (θ, x1, x2) ≥ lim sup
t→∞

p̄t (θ, x1, x2). (3.14)

We can show

lim sup
t→∞

Pπθ [� x1,x2
t \ �

x1,x2
t (K)] = 0, K > 0. (3.15)

Indeed, this follows from the recurrence of X1
t −X2

t together with the fact that the
medium has the property that for T < ∞, C < ∞, x ∈ �2:

lim
s→∞ Pπθ

[
ηs−u(y) = 1 ∀u ≤ T , ∀ y such that ||x − y||2 ≤ C

|ηs(x) = 1
] = 1. (3.16)

Hence we have

lim
t→∞ (p̄t (θ, x1, x2)− pt (θ, x1, x2)) = 0 (3.17)

and we can work in the sequel with the function pt instead of p̄t .
The key technical result of this subsection is:

Proposition 3.3.

lim
t→∞pt (θ, x

1, x2) = p(θ).

Proof. Since the medium covers as t → ∞ arbitrarily large (finite) blocks with
either all 0 or all 1, it suffices to consider pt (θ) instead of pt (θ, x1, x2) where we
used the abbreviation pt (θ) = pt (θ, 0, 0). We also write � t = �

0,0
t .

The proof consists of several steps. We have to analyse first the structure of
the sets of time points in [0, t] where the two random walks meet, this happens in
the first two steps. In the third step we bring the properties of the medium given
in Subsection 3.1 into play and in the fourth step we show that the probabilistic
representations for p(θ) given in Lemma 1.13 are asymptotic lower and upper
bounds respectively for pt (θ).

Step 1. Note that once the two walks meet, there will be many collisions before they
separate for a longer time again. This behaviour can be captured best by performing
a hierarchically structured multiple-scale analysis.

Recall that we consider the pt (θ) = pt (θ, 0, 0), thus we let X1 and X2 be two
independent random walks that are both started in 0. We have to define the last time
before t where the random walks meet and put it on a logarithmic scale:

At := log sup{s < t : X1
s = X2

s }
log t

. (3.18)

Note that

P[At > α] = P[X1
s = X2

s for some s ∈ (tα, t)].

Denote by U[0, 1] the uniform distribution on [0, 1]. The following lemma is one
basic ingredient for the proof of Proposition 3.3.
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Lemma 3.4.

L[At ]
t→∞�⇒ U[0, 1].

Proof. Fix α ∈ (0, 1) and let ε > 0 be arbitrary. We show that lim sup
t→∞

|P[At >

α] − (1 − α)| ≤ ε. To this end we localise the most likely relative position of the
random walks at time tα . It follows via the CLT that we can pick c, C ∈ (0,∞)

such that

lim inf
t→∞ P

[
‖X1

tα −X2
tα‖2 ∈ (ctα/2, Ctα/2)

]
≥ 1 − ε

2
. (3.19)

For the relative positions in the above interval we can use the Erdös–Taylor theorem
for simple random walk (Xs)s≥0 in �2, started in t-dependent locations xt ∈ �2

(see [ET60, Eq. (2.16)] or [Kle96, Proposition 2.4]):

lim
t→∞ Pxt [Xs hits 0 for some s ∈ [0, t − tα]] = 1 − α, (3.20)

uniformly in all sequences (xt ) in �2 with ‖xt‖2 ∈ (ctα/2, Ctα/2). Now combine
(3.19) and (3.20) to get the conclusion of the lemma. �
Step 2. In the sequel we condition on At = α for some α ∈ (0, 1). Having fixed
At , the difference walk (X1

s −X2
s )0≤s≤tα is a random walk bridge from 0 to 0 with

rate 2.
Consider the two random walks with new time horizon [0, tα] viewed forward

respectively viewed backwards from 0 and tα . Proceeding similarly as above we
define for the two endpoints of the bridge from Step 1:

A1
t = log sup{s∈[0,tα/ log t]:X1

s=X2
s }

α log t ,

A2
t = log sup{s∈[0,tα/ log t]:X1

tα−s=X2
tα−s }

α log t .
(3.21)

The key to our construction is the following independence property:

Lemma 3.5.

L
[(
A1
t , A

2
t

)
|At = α

]
t→∞�⇒ U[0, 1] ⊗ U[0, 1]. (3.22)

Proof. The point is that the random variablesA1
t , A

2
t depend on a time span which

is small compared to the time span defining the bridge of the difference random
walk. We leave the details of the argument to the reader. �

By the procedure preceding (3.21) the bridge has been split into two independent
(given A1

t = α1 and A2
t = α2 asymptotically as t → ∞) bridges(

X1
s −X2

s

)
s∈[0,tα·α1 ]

(3.23)

and (
X1
s −X2

s

)
s∈[tα−tα·α2

,tα]
. (3.24)
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Fig. 1. Sketch of the difference of two random walks.

This construction has the property:

lim sup
t→∞

P[X1
s = X2

s for some s ∈ [tα·α1
, tα − tα·α2

]
∣∣At = α,

A1
t = α1, A2

t = α2] = 0. (3.25)

Indeed by definitionX1
s �= X2

s for s ∈ [tαα
1
, tα/ log t]∪[tα−tα/ log t, t−tαα2

].
Since by Lemma 3.5 the limiting distributions of A1

t and A2
t (as t → ∞) do not

have atoms at 1, we may assume α1, α2 < 1, thus (tα/ log t) − tαα
i ∼ tα/ log t ,

i = 1, 2. This implies that∥∥∥X1
tα/ log t −X2

tα/ log t

∥∥∥
2

∼ (tα/ log t)1/2.

The Erdös–Taylor lemma now yields that with high probability also X1
s �= X2

s for
s ∈ [tα/ log t, tα − tα/ log t].

Next iterate this procedure N times, to obtain thereby 2N (asymptotically as
t → ∞) independent bridges. We index these bridges by e ∈ {1, 2}N . The bridges
of “generations” ≤ N are then indexed by the tree �N . The bridge e starts at a time
testart and ends at a time teend. The lifetime telife equals teend − testart. Analogously to
(3.21) we write

Aet = log telife
log t←−e life

.

Iterating the argument of Lemma 3.5 we get

Lemma 3.6. L[(Aet , e ∈ �N)]
t→∞�⇒ U[0, 1]⊗�N .

In the arguments later on we condition on {Aet = αe : e ∈ �N } for some numbers
αe ∈ (0, 1) and we write

βe =
∏
f≤e

αf , e ∈ �N. (3.26)
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Thus telife = tβ
e
, e ∈ �N . Note that we have for e, f ∈ �N :∣∣testart − t

f
start

∣∣ ∼ (tβ
e∧f
), e ∧ f �∈ {e, f }, (3.27)

and ∣∣∣∣X1
testart

−X1
t
f
start

∣∣∣∣ ∼ tβ
e∧f /2, e ∧ f �∈ {e, f }. (3.28)

Step 3. In order to handle the influence of the medium on all of the 2N bridges
simultaneously we have to appeal to the corresponding multiple scale analysis of
the two-dimensional voter model combined with properties of the range of random
walk.

Denote by B̃e
t the ball of radius

√
telife log t centred at X1

testart
. With probability

tending to one the bridge e stays in B̃e
t during its lifetime. What we show next is

that with high probability the medium is 0 (respectively 1) for all time–space points
in [testart, t

e
end] × B̃e

t given that ηtestart
(x) = 0 for all x ∈ Be

t (respectively 1). Recall

that Be
t has radius

√
tβ

e
(log t)2.

Lemma 3.7. For z ∈ {0, 1},
lim
t→∞ Pπθ

[
ηs(x) �= z for some x ∈ B̃e

t and s ∈ [
testart, t

e
end

] ∣∣ηtestart
≡ z on Be

t

]
= 0.

(3.29)

Proof. W.l.o.g. we may assume z = 0. We use the duality of the voter model (see
the description below Definition 1.6). In fact we need an extended version of this
duality for the time–space process. Consider a collection {(Xx,s

t )t∈[testart,s], x ∈
B̃e
t , s ∈ [testart, t

e
end]} of (instantly) coalescing random walks running backwards

in time. The walk Xx,s is started at time s in x. The extended duality says in our
context that

P
[

sup
{
ηs(x), s ∈ [

testart, t
e
end

]
, x ∈ B̃e

t

} �= 0
∣∣ ηtestart

]
= P

[
sup

{
ηtestart

(
X
s,x

testart

)
, s ∈ [

testart, t
e
end

]
, x ∈ B̃e

t

}
�= 0

∣∣∣ ηtestart

]
. (3.30)

See [CG83] for a derivation. The uncountably many random walks coalesce im-
mediately to a finite random number of particles. Furthermore this random number
(by scaling) is of order O(telife|B̃e

t |) = O((telife log t)2). It suffices therefore to show
that the probability for one of these particles to be in (Be

t )
c at time testart is uniformly

O(t−3).
Note that for simple random walk (Xs) on � we have

E
[
eλXs

]
= cosh(λ)s, λ > 0, s > 0.

Choose λ = s−1/2 and use Chebyshev’s inequality to get for r > 0:

P[Xs ≥ r] = P[eλXs ≥ eλr ]

≤ e−λr cosh(λ)s

≤ e−1/2e−r/
√
s . (3.31)
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Coming back to our problem we see that (choosing r = √
Set = (telife)

1/2(log t)2

and s = telife) for any of the random walks the probability to be at time testart in
(Be

t )
c is smaller than 4 exp(−(log t)2). Thus we have established Lemma 3.7. �

Combining Lemma 3.7 with Proposition 3.2 we get the following statement:

Corollary 3.8. For every z ∈ {0, 1}�n

lim inf
t→∞ Pπθ

[
ηs(x) = ze for all x ∈ B̃e

t and s ∈ [
testart, t

e
end

]]
≥ Pθ

[
Y e− logβe = ze

]
. (3.32)

Since two walks coalesce with very high probability if they meet in a cluster of
1’s of the medium that is of size Be

t we easily derive the following proposition.

Lemma 3.9. For every fixed N ∈ � the following estimates hold:

lim sup
t→∞

Pπθ
[
� t

∣∣Aet = αe, e ∈ �N
]

≤ 1 − Pθ
[
Y e− logβe = 0 for all e ∈ {1, 2}N

]
(3.33)

lim inf
t→∞ Pπθ

[
� t

∣∣Aet = αe, e ∈ �N
]

≥ Pθ
[
Y e− logβe = 1 for some e ∈ {1, 2}N

]
.

Step 4. Finally, we derive the formula for lim
t→∞ Pπθ [� t ].

Recall Definition 1.12 of the process Zt started with one particle at θ . We stop
the evolution of each particle once the N -th generation is reached. Denote by ZN

the random population of these 2N particles. From Lemma 3.9 we get, letting the
Aet be random again, the following lemma.

Lemma 3.10.

Pδθ [ZN({1}) > 0] ≤ lim inf
t→∞ Pπθ [� t ]

≤ lim sup
t→∞

Pπθ [� t ] ≤ Pδθ [ZN((0, 1]) > 0]. (3.34)

Proof. Assume that (Ae, e ∈ �N) is an i.i.d. family of U[0, 1] random variables.
Define

Be =
∏
f≤e

Af . (3.35)

Hence − logBe is a sum of i.i.d. exp(1) random variables. It follows that (recall
3.3)

Lθ

 ∑
e∈{0,1}N

δY e
Be

 = Lδθ [ZN ]. (3.36)
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Now recall that (Aet , e ∈ �N) is asymptotically i.i.d. U[0, 1] (see Lemma 3.6).
Since the r.h.s. (3.33) depends continuously on {αe, e ∈ �}, we can in (3.33)
integrate over {Aet , e ∈ �N } and pass to the limiting distribution of the latter
random variables to get (3.34) from (3.33). �

Let us return to the proof of Proposition 3.3. Note that

lim
N→∞

Pδθ
[
ZN({1}) > 0

]
= lim

t→∞ Pδθ [Zt({1}) > 0] (3.37)

and

lim
N→∞

Pδθ
[
ZN({1}) > 0

]
= lim

t→∞ Pδθ [Zt((0, 1]) > 0]. (3.38)

Hence by Lemma 1.13 both sides in (3.34) coincide with p(θ). This finishes the
proof of Proposition 3.3. �
Now we can summarise the content of this subsection in the following proposi-
tion, which describes the asymptotic of two walks and the relevant statistics of the
medium. Recall that �t is the event that two random walks meet in the presence of
the medium provided they run backwards from time t , evolve independently of the
medium and start both at site 0. Consider (Zt , Yt ) where Yt is the position in [0, 1]
of a tagged particle from Zt . Therefore, (Yt ) is again a Fisher–Wright diffusion.
With this object we can describe the block-averages of the medium together with
the properties of the coalescent as follows:

Proposition 3.11.

Lπθ

[((
1

4
t−αηt

([
−tα/2, tα/2

]2
)
, α ∈ [0, 1]

)
, 1� t

)]
,

t→∞�⇒
fdd

Lδθ
[(
((Y− logα), α ∈ [0, 1]), 1Z∞((0,1])>0)

)]
. (3.39)

Proof. Note that the convergence of the second component is an immediate con-
sequence of Lemma 3.9 and 3.10. The convergence of the first component is just a
special case of Proposition 3.1. The point is, of course, to show that the dependence
structure between the two components is given correctly. To this end go back to
Lemma 3.9. From the fact that ‖X1

tα −X2
tα‖2 ∼ tα/2 and Proposition 3.1 we get

Lπθ

[((
1

4
t−αηt

([
−tα/2, tα/2

]2
)
,

1

4
t−αηt

(
X1
tα +

[
−tα/2, tα/2

]2
))

α ∈ [0, 1]

)]
t→∞�⇒

fdd
Lδθ

[((
Y ∅

− logα, Y
∅
− logα

)
, α ∈ [0, 1]

)]
.

Thus we can add on the left hand sides in (3.33) conditions on 1
4 t

−αηt ([−tα/2, tα/2]2)

at finitely many points α and have to impose the same conditions at the right hand
side of (3.33) – now for Y ∅ (or any other fixed Y e). The same is true in (3.34) when
we replace Y ∅ by one tagged particle of ZN . Now argue as in (3.37)ff in order to
replace ZN first by Zt and then let t → ∞. �
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3.3. Coalescing random walk in a voter medium: m-particle case

Recall that we want to study the asymptotic number of particles of a coalescing
random walk in the voter-medium. We did this in the previous subsection for start-
ing with two particles. Now we generalise to m particles. Our strategy is, as in
Subsection 3.2, to obtain a result on the times when free particles meet first. Then
we use the information on the clusters of the voter model (medium) to compute
how many particle really coalesce.

The usual way that coalescing random walk (X̃t
s)s∈[0,t] with X̃t

0(�
2) = m is

generated from independent random walk (Xi
s)s≥0, i = 1, . . . , m is as follows. Two

free particles i and j at the same position Xi
s = X

j
s at time s induce a coalescence

in X̃t at rate ηt−s(Xi
s), if the particles have not coalesced before (in X̃t ).

If we are interested only in the distribution of X̃t
t (instead of in the whole path)

then we can reverse the order in which the particles coalesce: i and j coalesce at
rate ηt−s(Xi

s)1Xi
s=Xj

s
, where s runs backwards from t to 0. This fact simplifies the

investigation considerably since in the limit t → ∞ the times s when two particles

meet accumulate at 0, when seen in the logarithmic scale αs = log s

log t
.

3.3.1. Free random walks

Let (Xi
s)s≥0, i = 1, . . . , m, be independent simple random walks on �2. We

introduce marked coalescence times. Whenever two random walks meet they stay
“close” together and keep recolliding for a while until they have again a distance
comparable to the mutual distances of the other random walks. These meeting times
form asymptotically as t → ∞ a discrete point process of times and labels (which
indicate which pair has met). We formalise this idea here and prove a distributional
limit result for t → ∞.

Define random variables αn,t and βn,t , n ∈ �, t ≥ 0 by α0,t = β0,t = 1 and

αn,t =
log sup

{
s < tβn−1,t / log t : Xi

s = X
j
s for some i �= j

}
βn−1,t log t

, (3.40)

where βn,t = ∏
k≤n αk,t . Denote by 9n,t the two indices of a pair of particles chosen

at random from those that meet at time tβn,t , so that we have

9n,t = (9n,t (1), 9n,t (2)) ∈
{
(i, j)|i < j and Xi

tβn,t
= X

j

tβn,t

}
. (3.41)

Finally, let An,t = (αn,t , 9n,t ), n ∈ �.
The key which allows us to reduce everything to the constructions used in the

two particle case is the following:

Lemma 3.12. (i) Let (An) = (αn, 9n), n ∈ � an i.i.d. family of random variables
with

P [αn < x, 9n = (i, j)] = (1 − x)(
m
2)
/(m

2

)
, x ∈ [0, 1], 1 ≤ i < j ≤ m.
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Then

L
[
(An,t )n∈�

] t→∞�⇒ L [(An)n∈�] , (3.42)

(ii) For any n ∈ � the definition of 9n,t leads asymptotically (as t → ∞) to a
unique pair:

lim sup
t→∞

P
[
Xi
s = X

j
s for some s ∈ [

tβn,t / log t, tβn,t
]

and (i, j) �= 9n,t

]
= 0.

(3.43)

Proof. The first part follows from [CG86, Sec. 5] who showed that asymptotically
the different pairs of random walks act independently. Then by Lemma 3.6 together
with the exchangeability of the random walks the claim follows.

The second part is obvious since the pairs of particles that do not meet at time
tβn,t have a distance of order tβn,t /2 (see [CG86, Lemma 1 on page 363]) and hence
do not meet in the time interval of length tβn,t / log t (see (3.20)). �

3.3.2. Coalescence in the medium

We bring the medium back into the picture. Define the event that the pair 9n,t of
walks meeting at time tβn,t experiences the catalyst within the time they spend
together at this instance. Let

� n,t =
{∫ tβn,t

tβn,t / log t
ηt−s

(
X
9n,t (1)
s

)
1
X
9n,t (1)
s =X9n,t (2)

s
ds > 0

}
. (3.44)

Lemma 3.13. Asymptotically as t → ∞ : Conditioned on the path of

Ȳ ts := 1

4
t−e

−s
η
t−te−s

([
−te−s/2, te

−s/2
]2
)
, s ≥ 0 (3.45)

(� n,t )n∈� is an independent sequence and

lim
t→∞ E

[∣∣∣E [
� n,t

∣∣Ȳ t ] − p
(
Ȳ t− logβn,t

)∣∣∣] = 0. (3.46)

Proof. The proof is a refinement of the arguments used in showing Proposition 3.3.
It suffices to show the statement for fixedN ∈ � and {Bn,t , n ≤ N}. As a first step
one notes that given the βn,t and (ηs)s∈[tβn,t / log t,tβn,t ], n ≤ N , we have indepen-
dence of the Bn,t . In order to compute the conditioned probabilities one proceeds

as in Step 2 and 3 in Section 3.2: one splits (X
9n,t (1)
s −X

9n,t (2)
s )s∈[tβn,t / log t,tβn,t ] into

finitely many bridges and applies Lemma 3.7 to reduce the condition on the path
of η to a condition on small spatial windows at finitely many time points. To all of
these windows (also for all n ≤ N ) one applies the multiple scale analysis of the
clusters of the voter model (Proposition 3.1) to conclude as in Step 4 of Section 3.2
that the conditional probability ofBn,t is asymptotically (as t → ∞) our p(Ȳ t−βn,t ).
This yields both, asymptotic independence given Ȳ t as well as formula (3.46). We
omit the tedious details. �
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3.3.3. Rescaling limit of the marked coalescence times

We combine Lemma 3.12 and Lemma 3.13 with the proposition on the diffusive
clustering of the voter model (Proposition 3.1) to the following statement which is
stronger than Proposition 1.15. This proposition in turn implies Theorem 2. Hence
with the next proposition we finish the proof of Theorem 2.

Proposition 3.14.

Lπθ

[(
Ȳ ts

)
s≥0 ,

∞∑
n=1

1� n,t δ(− logβn,t ,9n,t )

]
t→∞�⇒

fdd
Lθ

[
(Ys)s≥0, π

Y
]
, (3.47)

where πY is a Poisson point process on �+ × {(i, j) : 1 ≤ i < j ≤ m} with
intensity (λ is the counting measure) p(Ys)dsλ(d(i, j)).

Proof of Proposition 1.15. Consider (3.47). The meaning of a point δ(s,(i,j)) in
the expression on the l.h.s. of (3.47) is that the particles i and j coalesce by time
te

−s
if they have not coalesced before (recall (3.11) – (3.17)). In particular, by

the exchangeability of the particles, the total rate of coalescence is, in the limit
t → ∞,

(
ms

2

)
p(Ys) if there are ms uncoalesced particles at time te

−s
. Furthermore

πY depends continuously on Y . This proves the convergence of the coalescent in
the voter medium to the time-transformed Kingman coalescent. Since the voter
model converges in law to θ1δ1 + (1 − θ1)δ0 we have proved Proposition 1.15. �

3.4. Harmonic functions of branching Fisher–Wright diffusions

In this subsection we give the
Proof of Lemma 1.13. Existence of a solution of the Dirichlet problem is easy. In
fact, for any @ : Nf ([0, 1]) → [0, 1] which is multiplicative in the sense that
@(z1 + z2) = @(z1) ·@(z2), u(t, θ) := Eδθ [@(Zt)] solves the backward equation

∂tu = 1

2
θ(1 − θ)u′′ + u2 − u. (3.48)

(Note that the analogue of (3.48) with 1
2u

′′ instead of 1
2θ(1−θ)u′′ is the well-known

KPP equation (cf. [McK75]).)
In this case

v(t, θ) := Eδθ [1 −@(Zt)] = 1 − u(t, θ)

solves the backward equation

∂tv = 1

2
θ(1 − θ)v′′ − v2 + v. (3.49)

Putting @(z) := 1{0}(z({1})) and @(z) := 1{0}(z((0, 1])), respectively, we see that
both probabilistic expressions in Lemma 1.13 are stationary solutions of (3.49) and
therefore solve (1.10). Also, they clearly satisfy the boundary conditions (1.11).
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We are thus left with showing uniqueness. Assume that p1 and p2 are two
solutions of (1.10) and (1.11). Note that due to concavity we must have pi(x) ≥ x,
x ∈ [0, 1], i = 1, 2. Let f = p1 − p2. Then if x ∈ (0, 1) and f (x) �= 0

f ′′(x)
f (x)

= p′′
1(x)− p′′

2(x)

f (x)

= − 2

x
· 1 − p1(x)− p2(x)

1 − x

> − 2

x
. (3.50)

Since by assumption f (0) = f (1) = 0, Lemma 3.15 below (with a = 1) implies
f ≡ 0. �

Let J1 the Bessel function of the first kind with parameter 1 and let z0 its smallest
non-trivial zero. It is well known that z0 ≈ 3.832, hence z2

0/8 ≈ 1.836.

Lemma 3.15. Let a ∈ (0, z2
0/8) and f : [0, a] → � be twice continuously differ-

entiable and subject to the differential inequality

f ′′(x)
f (x)

> − 2

x
, if x ∈ (0, a) and f (x) �= 0. (3.51)

If f (0) = f (a) = 0, then f ≡ 0.

Proof. Assume that there exists an x0 ∈ (0, a) with f (x0) �= 0. W.l.o.g. we may
assume f (x0) > 0 (otherwise consider −f ). For δ, γ > 0 define the functionHδ,γ

by

Hδ,γ (x) = δ
√
x
(
γ J1

(√
8x

)
−N1

(√
8x

))
, (3.52)

where N1 is the Bessel function of the second kind (or Neumann function) with
parameter 1. It is well known that Hδ,γ is the general solution of the differential
equation

H ′′
δ,γ (x) = −2Hδ,γ (x)

x
, x > 0, (3.53)

with Hδ,γ (0) = δ/π .
It is well known that J1(0) = 0 and J1(x) > 0 for all x ∈ (0, z0). Now fix a

γ0 > 0 such that H1,γ0(x) > 0 for all x ∈ [0, a] and define

δ0 = inf
{
δ > 0 : Hδ,γ0(x) ≥ f (x), x ∈ [0, a]

}
. (3.54)

By assumption on f , δ0 ∈ (0,∞). Since Hδ0,γ0(0) > f (0) and Hδ0,γ0(a) >

f (a), there exists a t ∈ (0, a) such that Hδ0,γ0(t) = f (t), hence H ′
δ0,γ0

(t) = f ′(t).
However, by (3.51) and (3.53), f ′′(t) > H ′′

δ0,γ0
(t) which contradicts (3.54). �
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4. Proof of Theorem 3 (d = 1)

The key point here is that medium and reactant have distributions which can be
determined via duality in terms of systems of coalescing random walks with and
without medium. For such objects we will obtain scaling limits in the classical
Brownian scaling. Some technical effort is needed to make the proof rigorous.

In the first subsection we show convergence of the medium in the sense of an
invariance principle for the interfaces between the zeros and ones, away from t = 0.

In the second subsection we rescale the dual process in the medium. To this
end we first replace the dual process by instantaneously coalescing random walk
in the medium. Then we show that we can forget the small times and that it is
enough to have the invariance principle away from t = 0. Afterwards we construct
instantaneously coalescing random walks in the medium in a deterministic way
from objects for which the invariance principle applies directly, and finally we
combine the two just mentioned results to obtain the theorem.

4.1. Rescaling the medium

Here we show that the rescaled voter model converges to a process that has the
form of an entrance law on (0,∞) and is given in terms of annihilating Brownian
motions. We begin by deriving the limit law for a positive small time.
Let

Ft = {i ∈ � : ηt (i) �= ηt (i + 1)},
and fix ε > 0. It is easy to show (cf. [Dur88], page 242) thatηεT (�T 1/2•�) converges
as T → ∞ to a stationary piecewise constant process {η∞

ε (x), x ∈ �} with values
in {0, 1} and with isolated discontinuities Dε ⊂ �. Hence T −1/2FεT converges
in distribution to Dε as T → ∞. Furthermore it is clear that as t evolves, the
discontinuities of ηt (�•�) form annihilating random walks.

Let ((Xt (i))t≥0, i ∈ �) be a family of independent random walks from which
the annihilating walks are generated. For definiteness we assume that two walks
jump to a cemetery state ∂ immediately when they meet. Denote by ((X̂T ,ε

t (i))t≥0,

i ∈ FεT ) the system of annihilating random walks started from FεT . For t ≥ εT

and i ∈ � define jT ,εt (i) by

j
T ,ε
t (i) = inf

{
j ∈ FεT : X̂

T ,ε
t−εT (j) ≥ i

}
. (4.1)

It is easily verified that (
ηεT

(
j
T ,ε
t (i)

)
, i ∈ �

)
t≥εT

is a voter model on �.
Now consider a family of independent Brownian motions {(Wt (x))t≥0, x ∈ �},

where W0(x) = x. Clearly
(
T −1/2XtT (xT

1/2), x ∈ T −1/2FεT
)
t≥0 converges to

(Wt (x), x ∈ Dε)t≥0 in the sense of an invariance principle. The same is true for X̂
and annihilating Brownian motion (Ŵ ε

t (x), x ∈ Fε)t≥0.
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Now we are ready to define the limiting process η∞ of the rescaled voter model.
Define

gεt (x) = inf
{
y ∈ Dε : Ŵ ε

t−ε(y) ≥ x
}
, (4.2)

and

η∞
t (x) = η∞

ε (g
ε
t (x)), t ≥ ε, x ∈ �. (4.3)

Then we have proved above the following invariance principle.

Proposition 4.1. For every ε > 0 :

L

[(
ηtT

(⌊
T 1/2•

⌋))
t≥ε

]
T→∞�⇒ L

[(
η∞
t

)
t≥ε

]
(4.4)

in the sense of an invariance principle. By taking now the projective limit (ε → 0)
we can define (η∞

t )t>0 and can then conclude that

L
[(
ηtT

(
T 1/2•

))
t>0

]
T→∞�⇒ L

[(
η∞
t

)
t>0

]
. (4.5)

4.2. Rescaling the dual process of the reactant

4.2.1. Instantaneous coalescence

Consider the coalescing random walk in voter medium, which was denoted by X̃T .
The first step is to change from (the usual delayed) coalescing random walk X̃T

to instantaneously coalescing random walk (X̄T
t )t∈[0,T ] generated from the same

realization of the walks (Xt ) but with instantaneous coalescence of a pair a, b at
the first time they meet in the presence of the catalyst.

Lemma 4.2. For A ⊂ � finite

lim
T→∞

P
[
X̄T
T

(⌊
T 1/2a

⌋)
�= X̃T

T

(⌊
T 1/2a

⌋)
for some a ∈ A

]
= 0. (4.6)

Proof. Fix a finite set A ⊂ � and let m = |A|. For a, b ∈ A, a < b let

τ
(a,b)
T = inf

{
t > 0 : Xt

(⌊
T 1/2a

⌋)
= Xt

(⌊
T 1/2b

⌋)
,

ηT−t
(
Xt

(⌊
T 1/2a

⌋))
= 1

}
. (4.7)

Let τ1 ≤ · · · ≤ τ(m2)
be the order statistic of {τ (a,b)T : a, b ∈ A, a < b}. Write a(l)

and b(l) for the a and b such that τ (a,b)T = τl .
For K > 0 define the event

ET (K) =
{
∃l ∈ {1, . . . ,

(
m

2

)
− 1} : τl < T ,∫ τl+1

τl

ηT−s(Xt (�T 1/2a(l)�))1Xt (�T 1/2a(l)�)=Xt (�T 1/2b(l)�)dt < K

}
.

(4.8)
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Using the recurrence of the difference walk and distributional convergence of ηt to
θ1δ1 + (1 − θ1)δ0, it is easy to check that

lim
T→∞

P[ET (K)] = 0, K > 0. (4.9)

This concludes the proof of Lemma 4.2. �

4.2.2. Rescaling the coalescent

Now we prepare for using the invariance principle for the medium and the dual
process of the reactant. Since the rescaled medium is very irregular for t → 0 we
first show that we can neglect the effect of very small times.

For ε > 0 define (X̄T ,ε
t ) as above but with coalescence allowed only if t ≤

(1 − ε)T . Hence (X̄T ,ε
t ) is independent of the medium at times before εT .

Lemma 4.3. Fix A ⊂ � finite.

lim
T0→∞

lim sup
ε→0

sup
T≥T0

P
[
X̄
T ,ε
T (�T 1/2a�) �= X̄T

T (�T 1/2a�) for some a ∈ A
]

= 0.

(4.10)

Proof. The probability on the l.h.s. can be bounded by
(|A|

2

)
times the probability

that a random walk started at 0 is at 0 at some time t ∈ [2(1 − ε)T , 2T ]. However
this probability converges (uniformly in T ≥ T0) to 0 as ε → 0. �

Let (W̄t )t∈[0,1] be coalescing Brownian motions in the medium η∞. Define
(W̄ ε

t ) similarly as (X̄T ,ε
t ) by prohibiting coalescence after time 1 − ε. Clearly we

have the analogous statement to Lemma 4.3.

Lemma 4.4. Fix A ⊂ � finite.

lim sup
ε→0

P
[
W̄ ε

1 (a) �= W̄1(a) for some a ∈ A
] = 0. (4.11)

4.2.3. Conclusion

With a view to the proceeding two lemmas and the duality for the reactant, it is
enough to show for every ε > 0 and A ⊂ � finite that

lim
T→∞

L
[(
ηT •(�T 1/2•�), |X̄T ,ε

T (A)|)] = L
[(
η∞, |W̄ ε

1 (A)|
)]
, (4.12)

in order to conclude that in the sense of f.d.d.:

L
[
(ηtT (T

−1/2•), ξtT (T −1/2•))t>0

]
t→∞�⇒ L

[
(η∞
t , ξ

∞
t )t>0

]
. (4.13)

We establish this invariance principle (4.12) for the medium and the dual pro-
cess. Fix A ⊂ � finite and ε > 0. Let ((X′

t (i))t≥0, i ∈ �) be a family of random
walks from which the approximate dual process

(
(X̄

T ,ε
t (�T 1/2a�))t∈[0,T ], a ∈ A

)
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is built. Further let ((W ′
t (x))t≥0, x ∈ �) be an independent family of Brownian

motions from which ((W̄ ε
t (a))t∈[0,1−ε], a ∈ A) is built.

Note that |W̄ ε
1 (A)| is a deterministic function FA,ε of η∞

ε (0), F
ε, W , and W ′.

Furthermore F is almost everywhere locally constant. In particular, it is almost
everywhere continuous.

Note also that the same function F applies to |X̄T ,ε
T (A)|:

|X̄T ,ε
T (A)| = FA,ε(ηεT (0), T

−1/2FεT , T −1/2XT •(�T 1/2•�),
T −1/2X′

T •(�T 1/2•�)). (4.14)

Note that also the pair (|X̄T ,ε
T (A)|, ηT •(�T 1/2•�)) is a continuous function of

the variables on the right hand side of (4.14). Hence the invariance principle and the
continuous mapping theorem yield (4.12). This finishes the proof of Theorem 3.

�
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