Probab. Theory Relat. Fields 120, 85-117 (2001)
Digital Object Identifier (DOI) 10.1007/s004400000122

Andreas Greven - Achim Klenke - Anton Wakolbinger

Interacting Fisher—Wright diffusions in a
catalytic medium

Received: 15 November 1999 / Revised version: 16 June 2000 /
Published online: 6 April 2001 — © Springer-Verlag 2001

Abstract. Westudy thelongtime behaviour of interacting systemsin arandomly fluctuating
(space-time) medium and focus on models from population genetics. There are two proto-
types of spatial models in population genetics: spatial branching processes and interacting
Fisher—-Wright diffusions. Quite a bit is known on spatial branching processes where the
local branching rateis proportional to a random environment (catalytic medium).

Here we introduce a model of interacting Fisher—Wright diffusions where the local
resampling rate (or genetic drift) is proportiona to a catalytic medium. For a particular
choice of the medium, we investigate the longtime behaviour in the case of nearest neighbour
migration on the d-dimensiona lattice.

Whilein classical homogeneous systems the longtime behaviour exhibits a dichotomy
aong the transience/recurrence properties of the migration, now a more complicated be-
haviour arises. It turns out that resampling modelsin catalytic media show phenomena that
are new even compared with branching in catalytic medium.

1. Introduction

This paper is concerned with evolutions in disordered media where the medium
fluctuates both in space and time. We focus on spatial models arising in population
genetics.

An object of study in spatial population geneticsis a class of stochastic mod-
els where on each site of a certain countable set G there is a population of one
or more types. The mass and/or relative frequency of the types undergoes a lo-
cal stochastic evolution that models effects such as genetic drift due to resam-
pling, population growth with limited/unlimited resources, competition of twotypes
for limited resources and so on. In addition spatial models comprise a migration
between colonies.

The prototypefor aone-type popul ation growth model with unlimited resources
is branching random walk as well as its diffusion limit, the Dawson-Watanabe
process(see, e.g., Dawson [Daw93]). Themost widely studied two-type model with
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afixed population size (at any site) and a genetic drift due to haploid resampling
isthat of interacting Fisher—Wright diffusions (see, e.g., Shiga[Shi80], Ethier and
Kurtz [EK86], Fleischmann and Greven [FG96]).

Inthelast yearsthere hasbeen someinterest in modelswherethelocal diffusion
mechanism isinfluenced by arandom medium that isitself arealization of aspatial
stochastic process. The best studied model isa spatial branching process where the
local branching rate is proportional to the local abundance of a second type which
performs an autonomous branching process leading to catalytic branching random
walks (see[ GKW99]) and catal ytic super-Brownian motion (see Dawson and Fleis-
chmann [DF974] and [DF97h]). Recently also branching models with two types
and with a mutual influence have been studied; thisis the so called mutualy cat-
aytic branching (Dawson and Perkins[DP98]). For an overview on catalytic spatial
branching processes we refer to the survey article by one of the authors [K1e00b].

In this paper we introduce a model of interacting Fisher—Wright diffusions
where the resampling rate (or strength of the genetic drift) is proportional to a
random medium that variesin time and space. The main goal isthe investigation of
the longtime behaviour. To this end we concentrate on the d-dimensional lattice as
site space and on the medium given by the voter model, which istechnically better
treatable than amedium of interacting diffusions, but closely resemblesinteracting
Fisher—Wright diffusions.

Recall the following properties of the longtime behaviour in the classical case
of a space-time homogeneous resampling rate (say for nearest-neighbour migra-
tion). Starting in ani.d.d. (or spatially ergodic) random initial state the system of
interacting Fisher—Wright diffusions (and similarly the voter model) approaches
a non-trivial ergodic equilibrium state ast — oo if d > 3. On the other hand,
for d = 1, 2 the system approaches a mixture of §-masses on the traps 0 and 1
of the system. One way of understanding this is the following. The migration has
a smoothing effect which drives the local frequencies of the types towards their
mean value, whereas the fluctuations caused by the resampling push the compo-
nents towards the traps 0 and 1. For far reaching interaction (transient migration)
the migration winsin this competition, while for short range interaction (recurrent
migration) the fluctuations win.

In the random medium things are different. We shall see that in our model in
low dimension the new phenomenon occurs that both mechanisms can win with
certain probabilities. This is a feature unparallelled by catalytic branching. High
dimensions (d > 3) hide no surprise: asin catalytic branching, the systems behave
qualitatively like their classical homogeneous counterparts.

The low dimensions d = 1 and especially d = 2 are more challenging. In
these dimensions we find as longtime limits of the law of the reactant component
mixtures of laws concentrated on traps and on spatially constant states different
from the traps. We are able to calculate the probabilities of these two possibilities
and to give transparent formulas for the limiting joint law of medium and reactant.
The situation in d = 1 parallels the case of catalytic branching ind = 2 (see
[GKW99]): the limiting state of the reactant is a process with random intensity
where the random factor reflects global properties of the medium and is expressed
in terms of the 4/z-rescaling limit of the model.
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Finally, the type of behaviour in dimension d = 2 is deviant from any known
behaviour of catalytic branching. Likefor catalytic branching, in thelongtimelimit
we see a random multiple of the counting measure. Howeverm, it is not derived
by a rescaling limit of the whole process. It rather arises from a multiple-scale
observation of the catalyst process.

Many results of this paper can be carried over easily to a reactant process
describing multi-type and infinite-type situations, as interacting multi-dimensional
Fisher—Wright diffusions or interacting Fleming-Viot processes.

Some words on the methods used. The starting point is the duality relation
connecting the reactant with coalescing random walk in a fluctuating medium. To
obtain preciseresultsweexploit thecluster analysisof thevoter model. Indimension
d = 1 Arratia's rescaled voter model ([Arr79], [Arr81]) is the key ingredient for
the quantitative description of the longtime behaviour. In d = 2 there is diffusive
clustering of the voter model (see Cox and Griffeath [CG86], and also [K1e96])
and we employ the multiple scale description of this form of cluster formation to
derive an intriguing formulafor the longtime limit of our model.

This paper is part of aframework to investigate catalytic spatial models where
the diffusion coefficient (genetic drift) is of a more general type (diploid resam-
pling, e.g.). The corresponding non-catalytic models could be related to models
of the Fisher—Wright type by using a comparison theory (see Cox, Fleischmann
and Greven [CFG96]). This theory will be developed for the catalytic modelsin a
forthcoming paper.

1.1. The models and basic tools

We want to define the model in some generality first and concentrate on a special
situation later once we come to the longtime behaviour.

Let G be a countable Abelian group and let % be the generator (g-matrix)
of a continuous time random walk on G. Denote by b, = exp(t%) is transition
probabilities at time ¢ > 0. We assume that we are given a bounded measurable
function

kG x[0,00) — [0, 00).

This function serves as the space-time medium of our model. For the moment
it is deterministic but will be chosen to be random later. We need in the sequel the
notion of a standard Fisher—Wright diffusion.

Definition 1.1. A standard Fisher—-Wright diffusion is the solution (with valuesin
[0, 1]) of the following SDE:

dY[:\/Y[(l_Yt)dW[. (11)

The following proposition has been proved by Shiga and Shimizu ([SS80],
Remark 2.1 and Theorem 3.2) for « (g, ¢) not depending on z.
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Proposition 1.2. There exists a unique strong solution (§;),>0 of the following
system of interacting stochastic differential equations

d&(g) = (BE)(9)dt + k(8. DE(Q(L—&(g)dWi(g), g€G, (L2
where{(W:(g)):>0, g € G}isafamily of independent standard Brownian motions.

Proof. The proof of the existence has two components. First we have to show that
thereexistsasolution of thissystemfor afiniteindex set. Shigaand Shimizu achieve
thisintheir setting by referringto aresult of Skorokhod. I nthetime—inhomogeneous
setting, this can be replaced, e.g. by [RW87] Thm. V 23.5, guaranteeing a solution
to the corresponding martingal e problem and hence al so aweak sol ution to the SDE
(cf. [RW87] Thm. V 20.1). Based on thisresult one can use thetechnique devel oped
in [SS80] to construct a solution for the system with countably many components.
In addition their proof of strong uniqueness based on Gronwall’sinequality carries
over. Since existence of a weak solution together with strong uniqueness implies
the existence of a strong solution, we obtain the existence and uniqueness results
for time inhomogeneous « . O

Definition 1.3 (CIFWD). Wecall thesolution (&;),>0 of (1.2) asystemof interact-
ing Fisher—Wright diffusions in the catalytic medium « and with migration kernel
% (and write CIFWD(4, «) for short). We also refer to (§;),>0 asthe reactant.

The main tool in the analysis of CIFWD is a duality to coalescing random
walks with varying rate of coalescence. Thiskind of duality iswell known for the
homogeneous model (x = 1). We state the duality here and begin with introducing
thedual process. Wedenote by 4" ¢ (G) the set of finite, non-negativeinteger valued
measureson G. For u € A" 7(G) and x € [0, 00)¢ we define

x* = exp </ log(x(g)) /L(dg)) , (1.3)

where x* can be zero.

Definition 1.4 (Coalescing random walk in the catalytic medium).Fix 7 > 0
and let (X )ielo,7] be a system of coalesci ng random walks with local rate of
coalescencexy_;(g) attimer at siteg. Thisis, X7 isthe Markov processthat takes
valuesin ./ ¢ (G) with time-dependent infinitesimal generator acting on bounded
functions F : G — R asfollows:

GTF(x) = Y x(9)B(g, WF(x + 8, — 8)
g,heG

iy ( (g))w_xg)mx sy - FWl (14

geG

Moreintuitively, the particles of XT performindependent random walks with gen-
erator 7 and pairsof particlesat the samesite g at timer coalesceat ratexr _;(g).
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Proposition 1.5 (Duality). For fixed«, T > 0and ¢ € A" ¢(G)

E®[(¢r)7] = E*[£ 1. (L5)
Proof. For the piecewise (in time) constant medium this follows as in [Shi80],
Lemma 2.3. The general case follows by an approximation. O

The construction of the process works for a broad class of media. However
the longtime behaviour of the model depends in a subtle way on the medium. In
order to obtain precise results we have to make specific choices here. In the sequel
we shall consider the specia situation where aso « israndom and is generated by
an autonomous Markovian evolution which we call the catalyst. In this case we
consider the process which corresponds to the pair (catalyst, reactant). Precisely

Definition 1.6. Let («(-, #));>0 be a Markov process and define for given realiza-
tionof (x (-, 1)),>0 the process (& ),>0 by Definition 1.3. Theprocess (« (-, 1), &):>0
is called the bivariate process.

In order to achieve a concise presentation we will specialisein the sequel and make
the following

Assumption. G = 74 and 4 is the g-matrix of nearest neighbour random walk.
We also assumethat k = n isarealization of a(nearest neighbour) voter model on
74,

Recall that the voter model (1;),>0 isthe Markov processwith valuesin {0, 1}2‘1
where in each coordinate i € 74 aflipto 1 — n,_(i) occurs at arate proportional
to the number of neighbours j with |j — i| = 1 such that n,_ (i) # n,—(j). For
details see [Lig85, Chapter V] or [Dur88, Chapters 2 and 10]. The voter model can
be thought of asthelimit of (homogeneous) IFWD where the resampling rate tends
toinfinity. Its duality is the same as the one for IFWD but now the coal escence of
two walksisinstantly.

Remark 1.7. Todistinguish conceptually between therandom walksunderlying the
reactant and our voter medium, we write .o for the g-matrix of nearest neighbour
random walk on Z¢ whenever it is associated to the voter model 7. We also denote
the transition kernels by a; = exp(z.<7).

The main content of this paper is to investigate the longtime behaviour of the
IFWD inthis medium n. The natura choice for the medium seemsto be (classical)
interacting Fisher—Wright diffusions. The reason for choosing the voter model
instead is that it produces less technical difficulties in places. On the other hand,
in many respects the voter model shows a similar behaviour as IFWD. Hence the
hope seemsjustified that we capture essential features by choosing the voter model
as the medium.

1.2. Results

Weinvestigate the longtime behaviour of the model and give convergence theorems
for the joint distribution of the medium and the reactant. Due to the very different



20 A. Greven et al.

nature of dimension one, twoandd > 3wegivetheresultsin different subsections.
We begin with the case closest to the classical situation and then proceed to the
new features subsequently.

1.2.1. Dimensions three and more

Thelongtimebehaviourind > 3isvery similar to that of space-timehomogeneous
systems. We consider for the process (1;, &;):>0 the following class of initial laws.

Denote by 2(({0, 1} x [0, 1])Z) the space of probability measureson ({0, 1} x
[0, 1])Zd andby 7~ C 2 thesubset of trandlation invariant measures. For (61, 62) €
[0, 1]2 define the class of initial states with asymptotic intensity (61, 62) by

M (0,,6,) = {u S Iitm sup | u(d(n, £))(la;m (i) — 01| + |bE@) — 62]) =0,
i€ zd}. (1.6)

Note that in particular trandation invariant, spatially ergodic configurations
with mean (01, 62) arein thisclass.
The main result in the high dimensiona caseis:

Theorem 1. Assumethat d > 3.

(a) For every intensity (62, 62) < [0, 1]? there exists a unique extremal invariant
measure v, ¢,y Of the bivariate process such that

n(0) 01
d = . 1.
/ oy 6, (d (1, s))(g (0)) (92> (17)

The measure vy, 9, has the following properties

— vg,,6, IStransation invariant and spatially ergodic.

1.8
— Var"1%2[£(0)] > 0 provided 1 > Oand 62 € (0, 1). (18)

(b) lfwechooseu € # , 0,), and if wedenote by P, ¢, thelaw of the stationary
bivariate process with marginal vy, ¢,, then

T
% [(Ut+T7 §z+T)tzo] =5° Pg,.,0,)- (1.9
Thelaw P, ¢, is space-time mixing.

Remark 1.8. The statements of Theorem 1 remain true even in asituation of much
greater generality. Infact, our proof workswithout changesfor acountable Abelian
group G and the case where the (possibly different) migration kernels of catalyst
and reactant have transient symmetrisations. One can even replace the catalyst by
some trandation invariant random medium that follows a Markovian dynamics
on [0, 00)¢ and approaches a non-trivial equilibrium. (In particular, we can take
interacting Fisher—Wright diffusions as the medium, cf. the remark at the end of
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Subsection 1.1) Focusing only on (1.9) we can replace the Markovian process by
a space-time mixing stationary process. We chose the formulation of the special
case in Theorem 1 only to be consistent with the following theorems for the low-
dimensional situation where we have to be more specific.

1.2.2. Dimension two

A principal role in our main result for the two-dimensional case is played by the
solution p(-) of the following Dirichlet problem (for existence and uniqueness see
Lemma 1.13 below):

Definition 1.9. We define the twice continously differentiable map p : [0, 1] —
[0, 1] asthe solution of

d? L p®) - p©)
with the boundary conditions
p0) =0, p() =1 (1.11)

Let Y1 and Y2 be independent standard Fisher—Wright diffusions started at 61 and
62. Denote by 2 the counting measure on 72. We write y for the product measure

on {0, 1}2* and 7, for an arbitrary but fixed product measure on [0, 1]Z with
intensity 6 € [0, 1], respectively. Our main result is:

Theorem 2. Assumed = 2. Then

®T [0 (01,60 1 2
e, 6)) ZF o[k e 0,0 Q12)
Remark 1.10. With msy o, = P2 Y2, ., € olY2 =0] therhs of (1.12)

equals

01(6281,1) + (L = 62)81,0) + (1 —61) / 8(0,6))Mo,0,(d0).

Thismeansthat for thereactant we see both constant statesé withd(g) = 6 € (0, 1)
produced by a dominating migration, and constant states 0 or 1 which are traps
produced by the dominance of fluctuations.

Remark 1.11. Presumably the initial state g, ® 7, could be replaced by more
general elements of .#, ¢, without changing the result; we do not strive for this
generalisation here.

In order to understand why the theorem should be true let us give an idea of
the proof here. We start by explaining the function p(-). To this end we need to
introduce binary branching Fisher—-Wright diffusions first, which alow a proba-
bilistic representation of p(-). Recall also that every element of the set 4" ¢ ([0, 1])
of finite, integer valued measures on [0, 1] can be viewed in an obvious way as
empirical measure of a collection of particles.
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Definition 1.12. Let (Z;) be rate 1 binary branching Fisher—Wright diffusions.
Thisis, (Z,) isthe Markov process with valuesin 4" ¢([0, 1]) where each parti-
cle undergoes a standard Fisher—-Wright diffusion and with rate 1 splits into two
particles at the same location undergoing the same (but independent) dynamics.

The connection of p with Z is given by the following lemma that we prove in
Subsection 3.4.

Lemma 1.13. Equation (1.10) with boundary conditions (1.11) is uniquely solv-
ableand

p®) = lim P¥[Z,({1}) > 0] = lim P¥[Z;((0,1]) > 0].

Thebasisfor thephenomenon describedin thetheoremisthefollowing property
of the medium (voter model). For the medium (n;);>0 it is well known that the
configuration forms big clusters (i.e. connected components) of zeros and ones as
t — oo and it is even possible to determine how these clusters grow. In fact, they
follow a pattern of diffusive clustering, which means that the sizes of clusters of
O'sor I'sare of order */2 with a random exponent «. More precisely, we know
that the block averages converge in the following scaling

o [(t_“nr([O, ta/z]z))ae[o,l]:l [%)f 178 [(Yfmga)ae[o,l]]. (1.13)

For given mediumthereactant hasadual processand wecomputen:-th moments
of the reactant, first for given medium, via this duality (see Proposition 1.5), and
later we average over the medium. Hence we have to start m random walks at time
t and let them run backwards in time through the medium. On alogarithmic scale
with & € [0, 1] as parameter the times * when pairs of the random walks meet
form apoint processwith intensity o ~1d timesthe number of remaining pairs. We
show (Proposition 3.3), that if apair meetsit has a probability ~ p(o) to coalesce,
whereo = 17— ([0, 1*/?]), which is approximated via(1.13) by Y1, . This
means at time r*P(~*), ast — oo, the total rate of codlescence is~ (") p(Y,H
with m; being the number of remaining particles. Hence for large ¢ the number of
surviving particles is distributed approximately as Kingman's coalescent (D?")s>0
started with Dj = m and evaluated at ti mefoOO p(Ysl)ds. (Kingman'scoalescent is
the pure death process on N with rates (') for thetransitionsm — m — 1.) Finally,
Kingman’s coal escent is connected to the Fisher—Wright diffusion by thefollowing
well known dudlity, leading to the time transformed Y2 of Proposition 1.15.

Lemma 1.14 (Duality: Fisher—Wright diffusion). Forallm € N, 6 € [0, 1] and
s >0,

E°[(r)"] = E"[6™]. (1.14)

This discussion already suggests that the result can be viewed also as a limit
result for coalescing random walk in random medium. Indeed we will show The-
orem 2 by proving the following rescaling result for the joint law of the medium
and of the reactant’s dual process.
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Proposition 1.15. Fixm,n € Nandx1, ... , Xm, y1, ... yu € Z2. Let (X!)se[0.]
be coalescing random walk in the medium 7, started at time 7 with X{j = &, +
-+ 36y, Foralze{0 1} andk < m,

lim Pl =2, i =1....n X2 = 4]
_ 1 _ 1 pm _
S LR Y -

Note that together with the duality (Proposition 1.5 and Lemma 1.14) thisimplies
immediately Theorem 2.

1.2.3. Dimension one

A key point for the investigation of our processindimensiond = listhatithasa
natural scaling limit. More precisely, if we scaletime by 7' and space by 71/2 we
obtainalimiting process (n;°, £°)>0. Thelaw Z[(n7°, £7°)] will betheingredient
for aquantitative description of the longtime behaviour of the non-rescaled process
in analogy to the previous theorems.

Let us start by considering the medium. The interfaces between the zeros and
ones perform annihilating random walks. On the Brownian scaling they converge
to annihilating Brownian motions. Arratiaseemsto have been thefirst who showed
thisconvergenceinthe senseof aninvarianceprinciple. Moreprecisely, thereshould
exist an entrance law (denoted by #%) for a Markov process (n°),~0 (note the
problem arising at ¢+ = 0O!) where, for each fixed ¢, n{° is piecewise constant (in
space) with values in {0, 1}, the discontinuities of (n{°);~o perform annihilating
Brownian motions, and

(o ([77%])) o) =222 (0@ ). @19)

Since Arratia’s proof is a bit difficult to spot, we give an argument for (1.15) in
Proposition 4.1. We will refer to n°° as“Arratia medium”.

It is reasonable to conjecture that also the rescaled bivariate process converges
and that, given n°°, the limit £°° is the solution of the following formal SPDE

2

d 1ld .
Eé,oo(X) = EW%,OO(X) +00 - P @)VER (X)L — X (x) Wt, x), (L1.16)

where W is space—time white noise. The factor “oo” should be understood in the
sensethat £ isthelimit of £X as K — oo wherethe oo isreplaced by afactor K
(in particular ocon;(x) = 0if n,(x) = 0). Thiswould be an SPDE of the Mueller—
Tribe type [MT95, Thm. 2] in a catalytic medium. However, the existence of a
solution of (1.16) has not been established yet.

What we can show hereisfor given medium the existence of some process £*°
that is given in terms of its mixed (space-time) moments

m i .
E01.00) [H gtfo(xi)|;7°°i| = B [l Math =t e, (1.17)
i=1
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Here the space-time dual process ((Wy(xl'))se[o,n, i =1,...,m) isafamily of
modified coalescing Brownian motions: they are frozen at xifors <1-—4 and a
palrcoaleac&attheflrstmstances > (1—-1;) v (d—1t;) with W, (x;) = W, (x;) and
’71 S (WA (x;)) = 1. If (1.16) does make sense then the moments of its solution are
given by (1.17). In fact, the existence of a process obeying (1.17) follows easily by
the standard Kolmogorov extension theorem, and since thelaw depends measurably
onn, wearrive at:

Remark 1.16. Let6,, 62 € [0, 1]. ThereexistsabivariateMarkov process (n°°, £°°)
with valuesin {0, 1}® x [0, 1]%, where n* is the Arratia medium and where the
moments of £°° given n°° are prescribed by (1.17). If x is a continuity point of
n:°(e), thenthemap x — £°°(x) iscontinuous at x if n°(x) = 0. If n°(x) =1
then & (x) € {0, 1}.

Theorem 3. Let 61,62 € [0,1]. Fixm € Nand (x',7') € R x [0,00), i =
1,...,m. Assume that we are given sequences (x’., t-)7>o such that (7-Y/2xl,
A Toe (x', ). Then

pTo, O, [(nt; (xiT), été (XiT))izl m:|
T—>oo p(61,02) |:(77[, (x! ) Stl (x! )) lmi| . (1.18)

Remark 1.17. Letting mg, g, = Z[£7°(0) € o|n9°(0) = O] we have

L, )] =3 61 (6281 + (1 —602)810) + (1— 91)/ 8(0,0)Mg,0,(d0).
(1.19)

Remark 1.18. Let us mention that also Theorem 3 could be extended to a more
generd class of initia states (as described in Remark 1.11).

Remark 1.19. In [GKW99, Thm. 3] it was shown that the reactant of two-
dimensional catalytic branching random walk (CBRW) converges to a homoge-
neous Poisson point process with random intensity. This randomness could be
described in terms of the density of catalytic super-Brownian motion (see [FK99,
Thm. 1] or [Kle00a, Thm. 1]) which is the scaling limit of CBRW. In this respect
the case of one-dimensional IFWD is similar to that two-dimensional CBRW.

The result of Theorem 3 raises the question whether its statement could be
strengthened such that we could view (7;(~/Te), é7,(~/Te)) as elements of a
function spacelike D([0, c0), {0, 1}) x D([0, 00), [0, 1]) or whether we can show
convergence in path space (in the time variable).

Start with the evolution at a space point in time. Thefirst observation isthat the

maps
t & (Lxﬁj) Ny ) (1.20)
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do not have the same continuity properties: the first is continuous, the second may
have jumps if n7°(x) = 1. Hence pathwise convergence cannot hold in the Sko-
rokhod topology. If, however, we consider the measures on R with density functions
£ (|+/Te]) on R then we conjecture that one has the pathwise convergence.

The problem with considering the system for fixed time aselement of afunction
space is two-fold. First of &l at points where °(-) changes values the random
variable £7°(-) has no regularity properties and is of complicated nature so that
different typefunction spaceshaveto be considered. Secondly itisan open problem
toverify that aclassical one-dimensional system of Fisher—Wright diffusions shows
under the /T -rescaling as arandom function in space the same qualitative limiting
behaviour as a voter model.

Thus here are serious open problems which are intimately connected with the
question which sense can be given to the equation (1.16).

1.3. Extensions

There are two extensions of our results, one concerning the migration mechanism
and the other the state space of the reactant process of a component. We describe
both extensions shortly.

In this paper we consider very special migration kernels (symmetric nearest
neighbour). Oneistempted to believe that the qualitative statements remain true if
one assumes only that the kernels have second moments and vanishing drift. How-
ever, the technical difficultiesin proving such a statement appear to be substantial.
At thisstagewe prefer only to highlight the main features of the longtime behaviour
by analysing the important examples.

However, one interesting case that is simple to discussis that of a kernel with
drift. More precisely, assume that the migration kernel of the reactant has second
moments and a non-zero drift. Clearly, for d > 3 no qualitative change occurs. In
dimensiond = 1andd = 2thesituation changesdrastically. Now al so the reactant
clusters: For u € .4 (4,6,

=0

L[, &)] = (0181 + (1 — 61)80) ® (6281 + (1 — 62)30).

This can be understood easily using the duality given in (1.5). Consider pairs of
particles of the coalescing random walk. The difference of two walks is again a
random walk, but now without drift, henceit isrecurrent. However, dueto the drift,
the two random walks explore the medium with alinear speed. Sinceind = 1the
clusters of the voter model are of order r1/2 only, two coalescing random walks
will finally not only meet but meet also in the presence of the medium and hence
codlesce. In d = 2 the diameter of clusters is 1*/2 with random « € [0, 1] and
hence the same argument applies.

Another scope for generalisation isto modify the reactant, in particular its state
space. Recall that Fisher—Wright diffusions describe the frequency of one typein
a two type population located at the sites of Z¢. Instead we could consider inter-
acting multitype Fisher—-Wright diffusions or Fleming—Viot processes describing
populations with three or more respectively a continuum of types.
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Both these processes have a dual process, which even though it is more com-
plicated, is driven by the coalescing random walk in random medium analysed in
this paper (compare Subsection 3(a) in [DGV95]). Thusit isclear that ind > 3,
i.e. in Theorem 1, nothing changes whilein d = 2, i.e. Theorem 2, we have to
replace Y2 by either amultitype Fisher—Wright diffusion or Fleming-Viot process.
Finally, for d = 1 in Theorem 3 one has to write (1.17) using the duality relation
for the respective one of these processes instead for usual FWD.

2. Proof of Theorem 1 @ > 3)

We give here a proof whose method works for far more genera situations than
for the specia structure of our present model. Indeed, the behaviour ind > 3 as
described here occursin many other situations. In particular we could replace, in our
choice for the medium, the voter model by interacting Fisher—Wright diffusions.

Themainideaisto usethe fact that the medium evolves autonomously towards
an ergodic equilibrium state, which allows to treat it first and then consider the
evolution of (£;);>0 for given medium consisting of reslizations of the stationary
Process (1) e (—o0,00)- YWe proceed in steps: after recalling some basic facts about
the medium we consider first convergence results on the bivariate law for special
initial states and then later for general ones. With these we construct in Step 4 the
extremal invariant measures, prove the convergence statement (1.9) and conclude
in Step 5 by showing the claimed mixing properties.

Sep 1. Observe first that for initial states v e .# 4,6, Using the projection vy
on the medium component as initial state of a voter model leads to the following
property ([HL75, Thm. 1.9(c)]) for d > 3:

L] =3 ey 2.1)

where up, isthe unique extremal invariant measure with intensity 61. This measure
is spatially mixing. Using the Markov and Feller property it is straightforward to
prove the following strengthening of the ergodic theorem above:

Denote by (7;);>0 the stationary process with marginal 1.g,. Then

" [(UH—T)tzO] T;(;O < [(ﬁz)tzo] . (22)

Sep 2. We begin by considering the bivariate process starting in the following
special initial state v € # g,,0,) With v = v1 @ 7, and v1 = pp,. We start the
process in this state at time —r and denote the configuration arising at time O by
(o h EO_ "). We can construct this process as follows. Realize the stationary process
(M1)re(—c0,00)- FiX @aversion of this process and an initial state for the &-process,
called &, which is independently sampled from 7g,. Then we can (simultaneously
for all #) construct the distribution of gg ! for fixed medium 7 through a coalescing
randomwalk ()Nfs)szo with coalescencerate_(x) at sitex at timess. Consider the
coalescing randomwalk (X;) starting with k particles placed at the (not necessarily
different) sitesxy, ... , x; € Z¢. Notefirst that due to the monotonicity of the total
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number of particles X, (2% convergesto arandom variable ¢, whose law depends
only on k and 7. Hence (recall (1.3))

E[& " (x0)... & 0)|(i)s<0] = E [?’?f 7)x<0]

= Z(esz” Flw=4l. (23

j=1

Notethat from 7 only thepart (775 )5 <o entersin ther.h.s. above, and viewing this part
of the process as element of D((—o0, 0], {0, 1}Zd) ther.h.s. of (2.3) isacontinuous
function of 7, since the difference random walks (X! — X7 ),>0 starting at x; and
x; aretransient and since the dual process reads the medlum backwards. (In fact,
think of X as bei ng constructed from k free random walks X1, ... , X*. If wefix
aredization of X1, ..., X¥ itiseasy to seethat the probablllty of having j free
particles in the end is a continuous function of 7. Furthermore, for T > 0 and

R > Oontheevent A7 g = (,.; (X # X/ if t > T or [ X{||l2 > R} itiseven
uniformly (intherealizationsof X1, ... , X¥) continuousin 7. However dueto the
transience of the (difference) walks, P[Ar g] — 1asT, R — o0.)
As a consequence we can define for every fixed 7 = (75)s<0 € D((—00, 0],
{0, %)
ve, (i) = lim g5 (2.4)
As shown above, the map
1 > g, (1) (2.9)

from the path space D((—oo, 0], {0, 1}2*) into ([0, 1]2) is continuous. Put
o = [ (85, ) Q1. where O = Z[(Gccl: (26
By construction we have for our special choice of v that
2160 = [ (30 ® 235D Q1) ZF v @)
Note that relation (2.3) impliesthat (with x; = x2 = 0)
Var's2[£0)] = [ Q" AMP ¢ = b1~ 62) > 0

if 62 € (0, 1). Hence together with the observation of the previous step we have
proved the assertion (1.8) as far as the assertion for the variance goes.
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Step 3. Wewant to show inthisstep that for all initial lawsv € .4, 4, thebivariate
process converges ast — oo to vy, g, i.€.,

v € Mgy, implies L[, £)] =3 vy 6. (2.8)

Denote again by v the projection of v on the medium. It suffices according to Step
2 to show that the following pairs of initial distributions (i) v1 ® 7, and ps, ® 7o,
as well as (ii) v and v1 ® 7, l€ad to the same bivariate limits in distribution as
t — oo. Next we give these two arguments.

(i) Sincev € .#y, p,, themeasure vy hastheintensity #1. Denoteby Q;* (d7) the
distribution of the medium started at time — with distribution v and set = 0 for
timesearlier than —¢. With thisnotation (2.2) becomes Q,* =% 0% Recallingthe
discussion following (2.3) it is clear that the convergence in (2.3) is even uniform
in 77. Thus we can interchange limits and replace in (2.7) Q% by Q;*. In total we
get for u = v1 ® 7y, that:

" [(nls ‘i:t)] t;o>o V61,00 (29)

(ii) Herewehavetocomparetwoinitial measureswhich havethe same projection
on the medium component, so that it sufficesto compare the two reactant processes
evolving in one given medium. We construct the two processes (&1),>0 and (¢2),>0
on one probability space by using for both the same realization of the medium and
the same driving Brownian motions. The initial states are realized by choosing 501
according to v conditioned on the medium and gg according to g, independently
of everything else. If we can show that

fi(x) = E[JE}(x) — £2(x)|] tendstoOas t — oo, (2.10)

we are done.
Using Itd-calculus we can derive for the collection { f; (x), x € Z¢} asystem of
differential equations (recall that .7 isthe ¢g-matrix of simple random walk)

d .
TR = o fi(x) = 2 ) E[I6/0) — 2001 SgnE10) — 7))
y

# sign(e(x) — £20) | (2.11)

By the trandation invariance of the law #[&], the first term vanishes. Therefore
we see immediately that f;(x) is monotone decreasing. The system of eguations
is derived and analysed in [CG94], Subsection 3, a paper dealing with interacting
diffusions with time-homogeneous diffusion coefficients. However, we get in our
case exactly the same system of equations due to the trandation invariance of the
distribution of &, averaged over the medium. Thereason that f; converges actually
to O isdueto theirreducibility of the migration and the fact that the diffusion term
is mean preserving. The argument is roughly as follows. One shows that equation
(2.12) implies that (£%, £2) must become ordered in the limit 1 — oo. If they
would, however, become at a site strictly ordered with positive probability, this
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would contradict the fact that the intensities are preserved in the limit 1 — oo
(which follows from a second moment estimate) and are equal for both of the
two coupled systems. The details of the argument can be found in the reference
mentioned above and the quoted result ssimply carries over to the inhomogeneous
evolution.

Step 4. Now we need to show that v, g, is an invariant measure of the bivariate
process. A straightforward cal cul ation showsthat i, and &; areboth mean preserving
and since the components are bounded this means

/n(x)vel,ez(d(nv ‘i:)) = 911 /é(x)vel,ez(d(nv g5-)) = 923 X € Zd' (212)

A simple second moment calculation (recall (1.6)), separately for », and for &
given (ns)szo shows that

V61,6, € gﬂ(gl,gz). (2.13)

Since the bivariate process has the Feller property we can now argue as usual.
Denote by (S;):>0 the semigroup of the bivariate process. Then

(Vey,6,) 8 = (lﬂ[go(ﬂel ® 7_[92)Su> S = lim (770, ® 76,) Sivu = Voy,0,- (2.14)

This invariant measure vy, g, is obviously translation invariant. Since vg, 6, has
intensity (61, 62) one can use the convergence property given in (2.8) to conclude
that vy, 4, isan extremal invariant measure.

The Markov property of the bivariate process together with the Feller property
allow immediately to conclude from (2.8) the convergencein (1.9).

Sep 5. We finally use the duality for & and the graphical representation for 5 to
show that vy, ¢, is spatially mixing (which is stronger than (2.13)). Start with the
first assertion. It suffices to show

\y||i21m<v01’02’ f1y8) = (Vor.605 [)(Vor.0, Ty 8) (2.15)
for functions f, g : ({0, 1} x [O, 1])Zd — [0, 0co0) that are monomials and that
depend only the coordinates from a finite set A ¢ 7¢. By 7,8 we denote the
function g shifted by y € 7. We use the representation (2.7) for vy, g, that allows
us to condition on 7 first and use the duality for £ ~7. In fact,

E[ £ Gio. & tygGio. & D[] — E[ £ Gio. & D[7] - E [eyg Gio. &5 ) [7]

can be bounded in terms of the probability that two random walks, started in A
respectively in y 4+ A, ever meet. Due to the transience of the difference walk, this
probability vanishes as |y| — oo. Now use that 114, is mixing to conclude (2.15).

We argue similarly for the space-time mixing property of the corresponding
stationary process. Here we use space-time observation points A € R x 74, |A| <
oo and (¢, y) + A andwelet |(, y)| — oco. Weleave the straightforward detailsto
the reader.
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3. Proof of Theorem 2 = 2)

The proof of Theorem 2 isquite involved and uses elaborate techniques such asthe
multiple scale analysis of the diffusive clustering of the voter model.

In Subsection 3.1 we fix some notation and formulate a version of the well-
known multiple scale cluster description of the voter model. With a view to the
duality of the reactant to coalescing random walk in the medium n we give in
Subsection 3.2 the asymptotics for the probability that two random walks coal esce.
This is the technical core of the proof of Theorem 2. The generalisation to more
than two random walksis carried out in Subsection 3.3 where we proof a statement
(Proposition 3.14) that is dlightly stronger than Proposition 1.15, which, in turn,
implies Theorem 2. In Subsection 3.4 we establish that p(-) isuniquely defined by
the boundary value problem (1.10), (1.11).

3.1. Multiple-scale analysis of the voter model

Recall that for ng arandom initial configuration with intensity 61, the process (;)
satisfies in d = 2 the convergence %[n;] = 6161 + (1 — 61)éo. In fact, the
order of magnitude of acluster of 0'sor 1's due to one ancestral voter (see [CG86,
Thm. 5]) isknown: the cluster-sizein spaceis of the order 1%/2 where « isarandom
variable with uniform distribution in [0, 1]. The age of such acluster is of order ¢*
(see [FG96, Thm. 7]). We need here afiner analysis, in particular, we will have to
investigate the behaviour of the voter-model observed in collections of time-space
points which spread at possibly different polynomial scales. Next we make this
precise.

Denote by Ty the set of all sequences e with valuesin {1, 2} of length £(e) €
{0, ..., N}. Ty carriesthenatural tree structureand we usethe usual notatione A f
for the greatest common ancestor of ¢ and f aswell as ‘e for the predecessor of
e and <" for the n-th predecessor of e. Finaly, we write @ for the root which by
convention corresponds to the empty sequence.

Now we analyse the configuration of the voter model in different time—space
points which spread with ¢ (age of the system) on various different scales. We
specify next the needed time—space configurations.

Fix Ty and {o : e € Ty}, wherea® € [0, 1]. Define g =[], a/. Assume
that for these parameters for each e € Ty we are given families (7?),>o of time
points 7;¢ ~ ¢, and families (x¢)>o of pointsin Z2 such that

log(|T¢ — T,
IimsupM < g/, e # f, (3.1
t—>00 log?
and
- log(lxg —x/) _ perS
I = . 2
Jim log: > eF S (3.2
Further choose mass scaling functions (Sy) such that

i log S¢
r—oo logt

= ,38.
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Next we need the objectsto describethe behaviour of thevoter model ast — oo
viewed on thegrid described above. Let ((Y{)s>0, ¢ € Twy) beaT y-indexed family
of Fisher—-Wright diffusions with the following dependence structure

ve =v{ fors < —log(ge/)

(Y$) s> log(gent) and (Yf)sz_|og(ﬁeAf») are independent, given Yf|og<;3mf)‘

(3.3)

The following proposition (or rather a slightly weaker version of it) iswell known
for the hierarchical group instead of 7?2 as the site space (see [FG94, Thm. 3]) and
followseasily asin [FG94] from results on random walksin Z2 which can befound
in [CG86, Sec. 5 and Thm. 6].

Proposition 3.1 (Diffusive clustering).
7 (S e (xf + (SHY2@) ] 25 0 [V g - 0] (39)

where 2 denotes the two-dimensional Lebesgue measure, and the configurations
ns are also viewed as point measures on R?.

We focus in the sequel on the situation where S7 = 1#* (logr)* and denote by
B¢ theball in Z? of (Euclidean) radius ,/S{ centred at x¢.

The next goal isto strengthen the above statement by showing that asymptotic
averages which are 0 or 1 can be replaced by pure configurations. More precisely,
we want to show that the cases where the Fisher—Wright diffusion (Y;);>o isinits
boundary points 0 or 1 reflect in the voter model the cases where the corresponding
balls are completely empty or filled. Denote

Y = |Bf| " nge (BY).
Proposition 3.2 (“Empty boxes are really empty”). For every z € {0, 1}'~,

lim P [7¢ =2¢, e € Ty] =P/ [¥e o =2 e € Tw ] (35)

t—0o0
Proof. By the previous proposition (and the Portmanteau theorem) it suffices to
show that

liminf P™ [V¢ = z°, e € Ty] > P/ [Yf,ogﬁe — 7 ec TTN] . (36)

—0o0

To avoid a blow up of notation, we show thisonly for N = 0 and z = 0, leaving
the obvious generalisations to the reader.

Abbreviate « = o, ¥ := Y” and w.l.o.g. assume that T = ¢. We have to
show that (with B; the centred ball in Z2 with radius */2(log 1)?)

”tminf P™[n,(B;) = 0] > |:)Q[Y—Iogoz =0]. (37
—> 00
Tothisendfix e > 0and§ > Osuchthat,« +6 < 1 and

P [Y_10ga = 0] < P/[Y_ioga+s) = O] +&. (38)



102 A. Greven et al.

Let {(X{)s>0, x € B}, PX) be a (t-dependent) family of coalescing random
walks each of which is started at X = x. By the duality of the voter model with
coalescing random walk applied between the time points — r*+9 and r:

P™ [n:(B;) = 0] = P" ® P [’7[—:‘”5 (Xfoms) =0, Vxe Bt] . (39

Now by [BCG86, Theorem 1] (for applications to the voter model see [CG90]),
D' = |{X;‘M:x € B,}|isarandomvariablewhich convergesinlawto Dﬁfg(lﬂa/a)),

where ((D°)s>0, PP) isKingman's coalescent started with infinitely many parti-
clesat timeO.

Furthermore, given D', the D’ remaining components have positionswhich are,
ast — oo, asymptotically independent and distributed as a,«+s, where a, denotes
the transition kernel of simple random walk on Z2.

Return to the proof of (3.7). Express the I.h.s. of this equation using (3.10).
Employing the two facts above we obtain with the previous proposition together
with the central limit theorem for a, from (3.8) that

liminf P™[1,_« (B;) = 0] = liminf E*EX [(1 — (s n,_ta+s)(0))D’]
11— o0 11—
= E?EP [(1 — Y_|og(a+5))0%<1+(a/a>>]

> P’[Y_oga-+s) = O]
> P[Y_joge = 0] —&. (3.10)

Since ¢ > 0 was arbitrary, the claim (3.7) follows. |

3.2. Coalescing randomwalk in a voter medium: two-particle case

Fix the time rlorizon t. Let p;(0, x1, x2) be the probability that the coalescing
random walk X7 in the medium, started with two particles at positions x1 and x»,

has coalesced by time ¢. In this subsection we show that p; (0, x1, x2) il g p9),
where p(0) isthe function introduced in Definition 1.9.

Let (X!)s>0, i = 1, 2 be two independent random walks, started at x1and x2,
and define the events

B2 = Ifé N—s(XDIx1_x2 ds > 0} ; 311
B2(K) = {fé ﬂt—‘r(XéL)ﬂx}:XSZ ds > K} K >0. o
Furthermore let
pi (0, xt, x?) == P [Bfl’xz] . (312
Clearly

inf liminf P™[B;12(K)] < liminf p, (0, x1, x2), (3.13)
K>0 t—>o t—00
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and
limsup p; (6, x1, x2) > limsup p, (9, x1, x2). (3.14)
— o0 11—
We can show
limsupP™ B2\ By*"?2(K)] =0, K >0. (3.15)
11— 00

Indeed, this follows from the recurrence of X — X2 together with the fact that the
medium has the property that for 7 < oo, C < o0, x € 7

Jim P™[nsu(y) =1 Yu<T. Vysuchthat|lx —yll2<C
Ins(x) =1] = 1. (3.16)
Hence we have
Nim (5,0, x1. x2) = pi(6, x1. x2)) = 0 (3.17)

and we can work in the sequel with the function p, instead of p;.
The key technical result of this subsection is:

Proposition 3.3.
lim p, 0. x%, x%) = p(®).
—>00

Proof. Since the medium coversast — oo arbitrarily large (finite) blocks with
either all O or all 1, it sufficesto consider p;(9) instead of p, (6, x*, x?) wherewe
used the abbreviation p;(0) = p;(0,0,0). WedsowriteB; =B ?’0.

The proof consists of severa steps. We have to analyse first the structure of
the sets of time pointsin [0, 1] where the two random walks meet, this happensin
the first two steps. In the third step we bring the properties of the medium given
in Subsection 3.1 into play and in the fourth step we show that the probabilistic
representations for p(0) given in Lemma 1.13 are asymptotic lower and upper
bounds respectively for p,(6).

Sep 1. Notethat oncethetwo walksmeet, therewill bemany collisionsbeforethey
separatefor alonger timeagain. This behaviour can be captured best by performing
ahierarchically structured multiple-scale analysis.

Recall that we consider the p; (8) = p; (8, 0, 0), thuswe let X1 and X2 be two
independent random walksthat are both started in 0. We have to define thelast time
before ¢+ where the random walks meet and put it on alogarithmic scale:

_ logsup{s <1: xt=x2

Ay
log ¢

. (3.18)

Note that
PlA; > ] = P[x} = X? for somes € (1%, 1)].

Denote by %[0, 1] the uniform distribution on [0, 1]. The following lemmais one
basic ingredient for the proof of Proposition 3.3.
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Lemma 3.4.

—>0

YAl = %[0, 1].
Proof. Fix o € (0,1) and let ¢ > O be arbitrary. We show that limsup |[P[A; >

11— 00
o] — (1 — a)| < &. Tothisend we localise the most likely relative position of the
random walks at time ¢*. It follows via the CLT that we can pick ¢, C € (0, co)
such that

liminf P [||X,1a — X% € (cr*/2, c;“/z)] >1- g (3.19)
—00

For therelative positionsin the aboveinterval we can usethe Erdds-Taylor theorem
for simple random walk (X,),=0 in Z2, started in r-dependent locations x; € Z?
(see [ET60, Eq. (2.16)] or [KIe€96, Proposition 2.4]):

tlirgo P[ X, hitsOfor somes € [0,r — t“]] = 1 — a, (3.20)

uniformly in all sequences (x;) in Z2 with ||x/||2 € (ct*/2, Ct*/2). Now combine
(3.19) and (3.20) to get the conclusion of the lemma. ]

Sep 2. In the sequel we condition on A; = « for some o € (0, 1). Having fixed
A,, thedifferencewalk (X! — X2)o<<« isarandom walk bridge from 0 to O with
rate 2.

Consider the two random walks with new time horizon [0, %] viewed forward
respectively viewed backwards from 0 and ¢*. Proceeding similarly as above we
define for the two endpoints of the bridge from Step 1:

Al = logsup{s€[0,1%/log]: X 1=x?2)
t = alogt ’ 3.21
o logsup{se[0,:*/logr]: X}, =X3 } (3.21)
Af = «log? :
The key to our construction is the following independence property:
Lemma 3.5.
7 [(A,l, A?) A, = a] "~ [0, 1] ® [0, 1]. (3.22)

Proof. Thepoint isthat the random variables A%, A2 depend on atime span which
is small compared to the time span defining the bridge of the difference random
walk. We |leave the details of the argument to the reader. |

By the procedure preceding (3.21) the bridge hasbeen split into two independent
(given A! = o and A? = 2 asymptotically ast — oo) bridges

1 2
(XS X )xe[O,t"'“l] (323
and
xl_x? ) 3.24
( s S)se[z"fr“‘az,t“] (329
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22

Fig. 1. Sketch of the difference of two random walks.

This construction has the property:
limsupP[ X! = X2 for some's e [1*®", 1% — %] |A, = a,
11— 00

Al=ol A2 =0a%] =0 (3.25)

Indeed by definition X1 = X2fors e [t 1%/ log]U[t* — 1%/ logt, t —t2°°].
Since by Lemma 3.5 the limiting distributions of A} and A,2 (ast - o0) do not
have atoms at 1, we may assume at, o2 < 1, thus (¢*/logr) — 1*® ~ t%/logt,
i =1, 2. Thisimpliesthat

1 2
HXt“/Iogt - Xt"‘/logt

"~ (t*/log1)*/2.

The Erdos-Taylor lemma now yields that with high probability also X! # Xs2 for
s €[t*/logt, t* —t*/logt].

Next iterate this procedure N times, to obtain thereby 2V (asymptotically as
t — oo) independent bridges. We index these bridges by e € {1, 2}". The bridges
of “generations’ < N arethen indexed by thetree Ty. The bridge e startsat atime
tgat @Nd ends at atime ¢ . The lifetime ¢, equals ¢, — tgat- Analogously to
(3.21) we write

o _ logiy,

" logr ¥ life’
Iterating the argument of Lemma 3.5 we get
Lemma 3.6. Z[(A¢, e € Ty)] = [0, 1]®V.

In the arguments later on we condition on {A{ = ¢ : e € Ty} for some numbers
af € (0, 1) and we write

=[]/, eecTy. (3.26)
f<e
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Thusf,, = 1, e € Ty. Note that we havefor e, f € Ty:

|t§art — ts]t(art| ~ "), enf dle f), (3.27)
and
’X%m‘xfg‘t ~ R en g e f). (328)

Step 3. In order to handle the influence of the medium on all of the 2V bridges
simultaneously we have to appeal to the corresponding multiple scale analysis of
the two-dimensional voter model combined with properties of the range of random
walk.

Denote by Ef the ball of radius /¢, logt centred at X llsgt - With probability
tending to one the bridge e staysin E," during its lifetime. What we show next is
that with high probability the mediumis O (respectively 1) for all time-space points
IN [fgarts Teng) % B giventhat e (x) = Oforal x € B (respectively 1). Recall
that B¢ hasradius v/t#° (logr)>2.

Lemma 3.7. For z € {0, 1},

Jim P [Us(x) # 2 for somex € BY and's € [t&an. tq] [1e,, =z ON B’e] =0
(3.29)

Proof. W.l.0.g. we may assume z = 0. We use the duality of the voter model (see
the description below Definition 1.6). In fact we need an extended version of this
duality for the time-space process. Consider a collection {(Xj"s)te[zgan,s], X €
Ef . 8 € [t&an tengl) Of (instantly) coalescing random walks running backwards
intime. The walk X*-* is started at time s in x. The extended duality saysin our
context that

P[P {1605 € [tk o] x € B} 0] g,

=P [S‘in’?féan (st;) s € [tqats toa] » X € Ef} £0 ”téan]' (3.30)

See [CG83] for a derivation. The uncountably many random walks coalesce im-
mediately to afinite random number of particles. Furthermore this random number
(by scaling) is of order O(t;o| Bf 1) = O((t{e log)?). It suffices therefore to show
that the probability for one of these particlesto bein (Bf)€ at time g, isuniformly
0@t3).

Note that for simple random walk (X;) on Z we have

E [e)‘x‘v] =cosh(A)®, A>0,s >0.

Choose A = s~1/2 and use Chebyshev’s inequality to get for > O:
P[X, > r] = P[*® > V]
< ¢ " cosh(n)*
< e Y215, (3.31)
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Coming back to our problem we see that (choosing r = /5S¢ = (t;,)Y/?(logt)?
and s = r¢life) for any of the random walks the probability to be at time g, in
(Bf)C issmaller than 4 exp(—(logt)?). Thus we have established Lemma3.7. O

Combining Lemma 3.7 with Proposition 3.2 we get the following statement:
Corollary 3.8. For every z € {0, 1}
liminf P [ns(x) =z for all x € Bf and s € [tgart: fong]]
= P [YE g = 2] (3.32)

Since two walks coal esce with very high probability if they meet in a cluster of
1's of the medium that is of size B we easily derive the following proposition.

Lemma 3.9. For every fixed N e N the following estimates hold:
limsupP™ [B,|Af = a°, e € Ty]
—>00

<1-p [Yfmg,ge =0 forallee{l, 2}N] -

liminf P™ [B,|A = o, e € Ty]

t—>0o0

> p? [Yf,ogﬁe = 1for somee € {1, 2}N].

Sep 4. Finally, we derive the formulafor tlim P™[B,].
—>00

Recall Definition 1.12 of the process Z, started with one particle at 6. We stop
the evolution of each particle once the N-th generation is reached. Denote by ZV
the random population of these 2V particles. From Lemma 3.9 we get, letting the
A¢ be random again, the following lemma.

Lemma 3.10.
PU[ZN({1) > 0] < liminf P™[B,]
—00

<limsupP™[B,] < P*[ZY((0,1]) > 0]. (3.34)

—>00

Proof. Assumethat (A¢, e € Ty) isani.i.d. family of %[0, 1] random variables.
Define

B =]]A (3.35)
fe

Hence — log B¢ is a sum of i.i.d. exp(1) random variables. It follows that (recall
3.3

5/{ > 3@6} = #%[Zx]. (3.36)

ec{0, 1}V
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Now recall that (A¢, e € Ty) is asymptoticaly i.i.d. [0, 1] (see Lemma 3.6).
Since the r.h.s. (3.33) depends continuously on {«¢, e € T}, we can in (3.33)
integrate over {A¢, e¢ € Ty} and pass to the limiting distribution of the latter
random variables to get (3.34) from (3.33). ]

Let usreturn to the proof of Proposition 3.3. Note that
lim P% [ZN({l}) > o] — lim P* [Z,({1}) > O] (3.37)
N—o00 t—00

and
Jim P [ZN({l}) > o] = lim PY[Z,(0,1)) > 0. (3.39)

Hence by Lemma 1.13 both sides in (3.34) coincide with p(9). This finishes the
proof of Proposition 3.3. ]

Now we can summarise the content of this subsection in the following proposi-
tion, which describes the asymptotic of two walks and the relevant statistics of the
medium. Recall that B, isthe event that two random walks meet in the presence of
the medium provided they run backwards from time ¢, evolve independently of the
medium and start both at site 0. Consider (Z;, Y;) where Y; isthe positionin [0, 1]
of atagged particle from Z,. Therefore, (Y;) is again a Fisher—Wright diffusion.
With this object we can describe the block-averages of the medium together with
the properties of the coalescent as follows:

Proposition 3.11.

o [((ron ([ acton).,)]

—>0

= K [((Y-10ga), @ € [0, 1D, 12, (0.1)>0))] - (3:39)

Proof. Note that the convergence of the second component is an immediate con-
sequence of Lemma 3.9 and 3.10. The convergence of thefirst component isjust a
special case of Proposition 3.1. The point is, of course, to show that the dependence
structure between the two components is given correctly. To this end go back to
Lemma 3.9. From the fact that | X% — X2 |2 ~ t%/? and Proposition 3.1 we get

P [((%F“m <[—t“/2, t”‘/z]z) ,
%fan, (X,lu + [—t“/z, t“/z]z)) a €0, 1])]

=5 g [((Y_”loga, Y ioge) - @ € [0, 1])] :
Thuswecan add ontheleft hand sidesin (3.33) conditionson ¢ ~%n, ([—1%/2, 1%/2]?)
at finitely many points « and have to impose the same conditions at the right hand
side of (3.33) —now for Y¥ (or any other fixed Y¢). The sameistruein (3.34) when
we replace Y by one tagged particle of ZV. Now argue as in (3.37)ff in order to
replace ZV first by Z; and then let t — oo. m
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3.3. Coalescing randomwalk in a voter medium: m-particle case

Recall that we want to study the asymptotic number of particles of a coalescing
random walk in the voter-medium. We did this in the previous subsection for start-
ing with two particles. Now we generalise to m particles. Our strategy is, as in
Subsection 3.2, to obtain aresult on the times when free particles meet first. Then
we use the information on the clusters of the voter model (medium) to compute
how many particle really coalesce. _ _

The usual way that coalescing random walk (X!)sefo,,] With X5(Z?) = m is
generated from independent randomwalk(Xé)szo,i =1,...,misasfollows. Two
free particlesi and j at the same position Xi = X] attimes induce acoalescence
in X’ at rate nl,S(Xg), if the particles have not coalesced before (in X?).

If we areinterested only in the distribution of i; (instead of in the whole path)
then we can reverse the order in which the particles coalesce: i and j coaesce at
rate n,_ (X;')ﬂ Xi=xi® where s runs backwards from ¢ to 0. This fact simplifies the

investigation considerably sincein thelimit 7 — oo thetimess when two particles

: - lo
meet accumulate at 0, when seen in the logarithmic scale oy = %.

3.3.1. Freerandom walks

Let (Xf;)szo, i = 1,...,m, be independent simple random walks on 72. We
introduce marked coal escence times. Whenever two random walks meet they stay
“close” together and keep recolliding for a while until they have again a distance
comparableto themutual distancesof the other random walks. These meeting times
form asymptotically ast — oo adiscrete point process of times and labels (which
indicate which pair has met). We formalise thisidea here and prove adistributional
limit result for t — oo.
Define random variables«, ; and B, ;, n € N, > 0by o = Bo, = 1 and

Iogsup{s < P11 10gr 1 X1 = X{ for somei # j}
ﬂn—l,tl()gt

whereg, ; = ]_[kSn ai,:- Denoteby ¢, ; thetwoindicesof apair of particleschosen
at random from those that meet at time A+, so that we have

, (340)

Opt =

b = Eas(D. @) € {6 Pl < jand XLy, =X, L (34)

[ﬂn,t

Fll’la“y, let Al’l,t = (an’[, En’t), n e N.
The key which alows us to reduce everything to the constructions used in the
two particle case is the following:

Lemma 3.12. (i) Let(A,) = (au, £,), n € Nani.i.d. family of randomvariables
with

Pla, < x,2, = (i, j)] :(1—x)(”21)/<’;l), xe€[0,1], 1<i<j<m.
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Then
g[(An,t)neN] I;)g g[(An)neN] (342)

(if) For any n € N the definition of ¢, ; leads asymptotically (ast — oo) to a
unique pair:

IimsupP[X§ — X/ for somes [tPn /10gt, tPr1] and (i, j) # En,,] =0.
11— 00
(3.43)

Proof. Thefirst part followsfrom [CG86, Sec. 5] who showed that asymptotically
the different pairs of random walks act independently. Then by Lemma 3.6 together
with the exchangeability of the random walks the claim follows.

The second part is obvious since the pairs of particles that do not meet at time
tPr.t have adistance of order t#r1/2 (see [CG86, Lemma 1 on page 363]) and hence
do not meet in the time interval of length A~ / log s (see (3.20)). |

3.3.2. Codescence in the medium

We bring the medium back into the picture. Define the event that the pair ¢, ; of
walks meeting at time ¢#»* experiences the catalyst within the time they spend
together at thisinstance. Let

tﬁ)l,t

£yt (1

B,:= {/ Ni—s (XS € )> ﬂX/””(l)fX{”"(z) ds > 0} . (3.44)
tPn.t /1ogt s Tas

Lemma 3.13. Asymptotically ast — oo : Conditioned on the path of

St 1 =S e ™S /2 e ™S /2 2
Y! = 2 TN, s ([—t‘ /2 e/ ] ) s >0 (3.45)
(B 1.¢)nen isan independent sequence and
lim E HE [B,.|7"] - p (?ilogﬁw)u —0 (3.46)

Proof. Theproof isarefinement of the arguments used in showing Proposition 3.3.
It sufficesto show the statement for fixed N € Nand{B,, ;, n < N}. Asalfirst step
one notes that given the 8, ; and (1), 4. tlogr b M = N, We have indepen-
dence of the B, ;. In order to computet e con |t|oned probabilities one proceeds

asin Step 2 and 3in Section 3.2: onesplits (X" — x{" ’(2))%[#;"’,/ logt,¢fn.r] INEO
finitely many bridges and applies Lemma 3.7 to reduce the condition on the path
of n to acondition on small spatial windows at finitely many time points. To al of
these windows (also for al n < N) one applies the multiple scale analysis of the
clusters of the voter model (Proposition 3.1) to conclude asin Step 4 of Section 3.2

that the conditional probability of B, ; isasymptotically (ast — 00) ourp(l?iﬂn -

Thisyields both, asymptotic independence given Y’ aswell asformula (3.46). We
omit the tedious details. O
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3.3.3. Rescaling limit of the marked coal escence times

We combine Lemma 3.12 and Lemma 3.13 with the proposition on the diffusive
clustering of the voter model (Proposition 3.1) to the following statement whichiis
stronger than Proposition 1.15. This proposition in turn implies Theorem 2. Hence
with the next proposition we finish the proof of Theorem 2.

Proposition 3.14.

oo
3779 [(?SZ)S>0 ? Z ﬂBn,ta(IOQﬂn.tyzn,t)] t;):d}o 30 I:(YS)XEO’ nY:I ’ (347)
n=1

where 7Y is a Poisson point process on Rt x {(i, j) : 1 <i < j < m} with
intensity (A isthe counting measure) p(Y;)dsA(d(, j)).

Proof of Proposition 1.15. Consider (3.47). The meaning of a point 8, ;) in
the expression on the |.h.s. of (3.47) is that the particlesi and j coalesce by time
¢ if they have not coalesced before (recall (3.11) — (3.17)). In particular, by
the exchangeability of the particles, the total rate of coalescence is, in the limit
t — 00, (”5) p(Y,) if there are m, uncoalesced particles at time ¢ . Furthermore
7Y depends continuously on Y. This proves the convergence of the coalescent in
the voter medium to the time-transformed Kingman coalescent. Since the voter
model convergesin law to 6181 + (1 — 61)8g we have proved Proposition 1.15. O

3.4. Harmonic functions of branching Fisher—Wright diffusions

In this subsection we give the

Proof of Lemma 1.13. Existence of a solution of the Dirichlet problem is easy. In
fact, for any @ : A7¢([0,1]) — [0, 1] which is multiplicative in the sense that
D(z1+22) = P(z1) - D(z2), u(t, 0) := E¥[D(Z,)] solvesthe backward equation

1
du = E.9(1—9)u”+u2—u. (3.48)

(Notethat the anal ogue of (3.48) with Su” instead of 16 (1—6)u” isthewell-known
KPP eguation (cf. [McK75]).)
In this case

v(t,0) ;== E¥[1— ®(Z)] =1—u(t,0)
solves the backward equation
1
Bv = 50(1— " — v +v. (3.49)
Putting ®(z) := 110 (z({1})) and ®(z) := 10y (z((0, 1])), respectively, we see that

both probabilistic expressionsin Lemma1.13 are stationary solutions of (3.49) and
therefore solve (1.10). Also, they clearly satisfy the boundary conditions (1.11).
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We are thus left with showing uniqueness. Assume that p; and p, are two
solutions of (1.10) and (1.11). Note that due to concavity we must have p; (x) > x,
xe€[0,1],i =1,2. Let f = p1 — p2. Thenifx € (0,1) and f(x) #0

f'x)  pi(x) — pz(x)

f)y f(x)
_ 2 1-pi(x) = p2(x)
T 1—x
— (3.50)
X

Since by assumption f(0) = f(1) = 0, Lemma3.15 below (with e = 1) implies
f=0. O

Let J1 theBessel function of thefirst kind with parameter 1 and let zg itssmallest
non-trivial zero. It iswell known that zg ~ 3.832, hence z3/8 ~ 1.836.

Lemma 3.15. Leta € (O, zg/za) and f : [0, a] — R be twice continuously differ-
entiable and subject to the differential inequality

f(x)
>
fx)

If £(0) = f(a) = 0, then f = 0.

—%, if x € (0,a) and f(x) # 0. (351

Proof. Assume that there exists an xg € (0, a) with f(xg) # 0. W.l.0.g. we may
assume f (xo) > 0 (otherwise consider — f). For §, y > 0 definethefunction H; ,,

by
Hy.p (x) = 8% (y]l («/8_) Y («/8_)> : (3.52)

where N; is the Bessel function of the second kind (or Neumann function) with
parameter 1. It is well known that Hj ,, is the general solution of the differential
equation

2H;s , (x)

Hy, (x) = — X

x > 0, (3.53)
with Hs,,, (0) = §/7.

It iswell known that J1(0) = O and J1(x) > Ofor al x € (0, zo). Now fix a
yo > O suchthat Hy ,,(x) > Ofor &l x € [0, a] and define

So=inf {8 >0: Hs,(x) > f(x), x €[0,a]}. (3.54)

By assumption on f, 8o € (0, 00). Since Hj, ,,(0) > f(0) and Hs, ,q(a) >
f(a), thereexistsar € (0, a) suchthat Hs, ., (t) = f(¢), henceH(goqyo(t) = f'(1).
However, by (3.51) and (3.53), " (1) > Hj 4o (1) Which contradicts (3.54). |
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4. Proof of Theorem3 @ = 1)

The key point here is that medium and reactant have distributions which can be
determined via duality in terms of systems of coalescing random walks with and
without medium. For such objects we will obtain scaling limits in the classical
Brownian scaling. Some technical effort is needed to make the proof rigorous.

In the first subsection we show convergence of the medium in the sense of an
invariance principlefor theinterfaces between the zerosand ones, away from¢ = 0.

In the second subsection we rescale the dual process in the medium. To this
end we first replace the dual process by instantaneously coalescing random walk
in the medium. Then we show that we can forget the small times and that it is
enough to have the invariance principle away from = 0. Afterwards we construct
instantaneously coalescing random walks in the medium in a deterministic way
from objects for which the invariance principle applies directly, and finally we
combine the two just mentioned results to obtain the theorem.

4.1. Rescaling the medium

Here we show that the rescaled voter model converges to a process that has the
form of an entrance law on (0, co) and is given in terms of annihilating Brownian
motions. We begin by deriving the limit law for a positive small time.

Let

A'={ieZ: n@)#n + D)},

andfixe > 0. Itiseasy toshow (cf. [Dur88], page 242) that 1.7 (| T1/?e ) converges
asT — oo to astationary piecewise constant process {:°(x), x € R} with values
in {0, 1} and with isolated discontinuities D, c R. Hence T-Y2A¢T converges
in distribution to D, as T — oo. Furthermore it is clear that as ¢ evolves, the
discontinuities of n,(|e]) form annihilating random walks.

Let ((X;(i))r>0, i € Z) beafamily of independent random walks from which
the annihilating walks are generated. For definiteness we assume that two walks
jump to acemetery state 9 immediately when they meet. Denote by (()A(tT’S (@))>0,
i € A®T) the system of annihilating random walks started from A¢T. Fort > T
andi € 7 define j1¢ (i) by

ileG) = inf Hj e AT X8 (j) = i]. (4.2)
Itiseasily verified that

(ner (i) . i e 2)
t>eT
isavoter model on Z.

Now consider afamily of independent Brownian motions {(W; (x));>0, x € R},
where Wo(x) = x. Clearly (T~Y2X,7(xT%?), x € T~Y2A%T) _ convergesto
(Wi (x), x € D), inthesenseof aﬂinvarianceprinciple. Thesameistruefor X
and annihilating Brownian motion (W7 (x), x € A®);>o.
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Now we are ready to define thelimiting process n°° of the rescal ed voter model.
Define

gx)=inf{yeD,: Wf_g(y) >x}, (4.2
and
N (x) =g/ (x), t>¢ xeR. (4.3)

Then we have proved above the following invariance principle.

Proposition 4.1. For every ¢ > O':

oo (ra]) ] = olome] s

in the sense of an invariance principle. By taking now the projective limit (¢ — 0)
we can define (77°),~0 and can then conclude that

7 [(n’T (Tl/z.)>t>0:| = [(15°),~0] - (4.5)

4.2. Rescaling the dual process of the reactant
4.2.1. Instantaneous coalescence

Consider the coa escing random walk in voter medium, which was denoted by 35~ T,
The first step is to change from (the usual delayed) coalescing random walk X7
to instantaneously coalescing random walk (X IT )ielo,7] 9enerated from the same
realization of the walks (X,) but with instantaneous coalescence of a pair a, b a
thefirst time they meet in the presence of the catalyst.

Lemma 4.2. For A C R finite
lim P [5(; (LTl/ZaJ) £ X7 (Lrl/ZaJ) for some a € A] —0. (46

Proof. Fix afiniteset A Cc Randletm = |A|.Fora,b e A,a < b let

7@ = inf {t ~0: X, (LTl/ZaJ) = X, (LTl/ZbD’
() -1] @

Lettg <--- < A be the order statistic of {r}“’b) ca,be A, a <b}. Writea(l)

and b(1) for the ¢ and b such that t}“’b) =1.
For K > 0 define the event

EﬂK):{Hle{l,...,(’;)—l}: g <T.

Ti+1
/ nT—S(Xt(LTl/Za(Z)J))1]X,(LTl/Za([)J):X,(LTl/Zb([)J)d[ < K} .
]

(4.8)
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Using the recurrence of the difference walk and distributional convergence of 7, to
6181 + (1 — 01)do, it is easy to check that

lim P[E7(K)]=0, K >0. 4.9
T—o00
This concludes the proof of Lemma4.2. |

4.2.2. Rescaling the coalescent

Now we prepare for using the invariance principle for the medium and the dual
process of the reactant. Since the rescaled medium is very irregular for r — 0 we
first show that we can neglect the effect of very small times.

For ¢ > 0 define ()_(,T’S) as above but with coalescence allowed only if ¢+ <
(1—¢)T. Hence (f(t”) isindependent of the medium at times before ¢T'.

Lemma 4.3. Fix A C R finite.

lim limsup sup P[X§~8(LT1/2aJ) £ XT(LTY2a]) for somea € A] —0.
To—~oo g0 T>To

(4.10)

Proof. The probability on the I.h.s. can be bounded by (5') times the probability
that arandom walk started at O isat O at sometimer € [2(1 — ¢)T, 2T]. However
this probability converges (uniformly in 7 > Tp) toOase — 0. O

Let (W;)re[o,1] be coalescing Brownian motions in the medium »°. Define
(W¢) similarly as (X/ ) by prohibiting coalescence after time 1 — . Clearly we
have the anal ogous statement to Lemma 4.3.

Lemma4.4. Fix A C R finite.

limsupP [W} (a) # Wi(a) for somea € A] = 0. (4.12)

e—0

4.2.3. Conclusion

With a view to the proceeding two lemmas and the duality for the reactant, it is
enough to show for every ¢ > 0 and A C R finite that

Nim 2 (ra(LTY2e), 1X7° )] = 2 [ Wi )))]. (412)
in order to conclude that in the sense of f.d.d.:
2 [ (1720, 60 (1720 20| 25 2 [0, 6%0-0] . (413)

We establish this invariance principle (4.12) for the medium and the dual pro-
cess. Fix A C Rfiniteand ¢ > 0. Let ((X,(i));>0, i € Z) beafamily of random
walks from which the approximate dual process (()_(tT’s(LTl/ZaJ))te[o,T], acA)
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is built. Further let (W/(x));>0, x € R) be an independent family of Brownian
motions from which (W¢ (a)):e[0.1—¢], @ € A) isbuilt.

Note that |Wf(A)| isadeterministic function F4 . of n2°(0), A?, W, and W'.
Furthermore F is amost everywhere locally constant. In particular, it is almost
everywhere continuous.

Note &l so that the same function F appliesto |)_(;’€(A)|:

IX7P(A)| = Fa (e (0), T~Y2AT T=Y2X7,(|TY?)),
772X (LTY?e))). (4.14)

Note that also the pair (| X7 (A)], n7+(LT*?e])) is a continuous function of
thevariables on theright hand side of (4.14). Hencetheinvariance principle and the
continuous mapping theorem yield (4.12). This finishes the proof of Theorem 3.

O
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