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Abstract. A crossing estimate is established for symmetric Markov processes on general
state spaces.

1. Introduction

T. Lyons and W.-A. Zheng [17] used the forward-backward martingale decomposi-
tion to prove a crossing estimate for Dirichlet functions along the paths of a station-
ary symmetric diffusion on Rn over the time interval [0, 1]. Recently, A. Ancona,
R. Lyons & Y. Peres [2] established a crossing estimate for Dirichlet functions along
the paths of a transient symmetric discrete-time Markov chain or a transient sym-
metric diffusion on a Riemannian manifold, over the time interval [0,∞), allowing
an arbitrary starting point for the process. In this paper, we show that a crossing es-
timate can be established for general symmetric right Markov processes – transient
or recurrent, over a finite or infinite time interval, for quasi-every starting point. By
averaging the starting point with respect to the symmetrizing measure, we obtain
a crossing estimate that extends and sharpens the work of Lyons & Zheng [17].

Preliminary material is discussed in Section 2. Our main results are stated and
proved in Section 3. To give the reader a taste of these results we now state a special
case of Theorem 3.6. Let X be an irreducible symmetric strong Markov process
with state spaceE and symmetry measurem. For x ∈ E, let Px denote the law ofX
under the initial condition X0 = x. Let f : E → R be an element of the Dirichlet
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space of X. Such a function f admits a “quasi-continuous” m-version f̃ with the
property that s �→ f̃ (Xs) is right-continuous, a.s. Pm. (Here, Pm := ∫

E
Px m(dx).)

Theorem. Fix real numbers a < b, and let Ut be the number of crossings of the
interval [a, b] that are completed by the process s → f̃ (Xs) during the time in-
terval [0, t]. Let µ be a probability distribution on E admitting a bounded density
g with respect to m. Then for any t > 0,

EµUt :=
∫
E

Ex(Ut ) g(x)m(dx) ≤ 2t (b − a)−2E(f, f ) · sup
x∈E

g(x), (1.1)

where E(f, f ) is the “Dirichlet energy” of f .

A variant of this result, more appropriate when X is transient, appears in Cor-
ollary 3.7 (iii). The right side of (1.1) is of the correct order of magnitude (for large
t) when X is positive recurrent. When X is null recurrent, it is not uncommon for
the left side of (1.1) to grow like a slowly varying function of t . An illuminating
discussion, in the case of planar Brownian motion, can be found in [3].

In Section 4 we provide examples for both continuous and discrete-time Markov
chains and diffusions on finite- and infinite-dimensional spaces illustrating how our
results contain those obtained by Ancona, Lyons & Peres in [2] as special cases.

2. Preliminaries

Let E be homeomorphic to a Borel subset of a compact metric space, and let
B(E) denote the Borel σ -algebra on E. Let m be a σ -finite measure on B(E)
with supp[m] = E. Let X = (�,M,Mt , θt , Xt ,Px) be an m-symmetric, irreduc-
ible right Markov process with state space E. In more detail, the right-continuous
process [0,+∞) 
 t �→ Xt is defined on the sample space (�,M), adapted to
the filtration (Mt ), and under the law Px is a strong Markov process with initial
condition X0 = x. The shift operators θt , t ≥ 0, satisfy Xs◦θt = Xs+t identically
for s, t ≥ 0. Adjoined to the state space E is an isolated point ∂ /∈ E; the process
X retires to ∂ at its “lifetime” ζ := inf{t : Xt = ∂}.

The transition operators Pt , t ≥ 0, are defined by

Ptf (x) := Ex(f (Xt )) = Ex(f (Xt ); t < ζ ).
(Here and in the sequel, we use the convention that a function defined onE takes the
value 0 at the cemetery point ∂ .) ThePt may be viewed as operators onL2(E,m); as
such they form a strongly continuous semigroup of self-adjoint contractions. (This
is the “m-symmetry” mentioned earlier.) The associated infinitesimal generator L
is defined by

Lf := lim
t↓0
t−1[Ptf − f ] (2.1)

on the domain consisting of those f ∈ L2(E,m) for which the limit in (2.1) exists
in the strong sense. The (typically unbounded) operator −L is self-adjoint and pos-
itive, so it admits a (self-adjoint, positive) square root

√−L. Let F be the domain
of

√−L, and define the bilinear form E on F by

E(u, v) = (
√−Lu, √−Lv)L2(E,m), u, v ∈ F.
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Then (E,F) is the symmetric Dirichlet form on L2(E,m) associated with the
process X.

As was noted in [10], Theorems (16.19) and (16.21) of [12] imply that X is
m-special standard. Therefore, by the fundamental work [1] of S. Albeverio and
Z.-M. Ma, the Dirichlet form (E,F) is quasi-regular. (Conversely, it is shown in
[1] that given a quasi-regular Dirichlet form on L2(E,m), there is an associated
m-special standard symmetric Markov processes.) It is proved in [5] that a Dirichlet
form is quasi-regular if and only if it is quasi-homeomorphic to a regular Dirichlet
form on a locally compact separable metric space. Therefore, any result valid for
regular Dirichlet forms and invariant under quasi-homeomorphisms is applicable
to quasi-regular Dirichlet forms. This “transfer principle” will be used in the sequel
without special mention.

The processX will be the object of study in the rest of the paper. In the remain-
der of this section we recall certain notions that will be particularly important. For
further details and discussion the reader is referred to [11] and [18].

For a closed set F ⊂ E, define

FF := {f ∈ F : f = 0 m-a.e. on E\F },
and recall the following definitions (cf. [1], [5] and [18]).

Definition 2.1.

(i) An increasing sequence {Fn}n≥1 of closed subsets of E is an E-nest provided
∪n≥1FFn is E1-dense in F, where E1 = E+ (·, ·)L2(E,m).

(ii) A set A ⊂ E is said to be quasi-open (resp. quasi-closed) if there is an E-nest
{Fk}k≥1 such that Fk ∩ A is relatively open (resp. relatively closed) in Fk for
each k ≥ 1.

(iii) A function u : E → [−∞,+∞] is quasi-continuous provided there is an
E-nest {Fk} such that u restricted to Fk is real-valued and continuous, for each
k.

(iv) A set N ⊂ E is E-polar provided there is an E-nest {Fk}k≥1 such that N ⊂
∩k(E\Fk).

(v) A statement involving x is said to hold quasi-everywhere (q.e.) onE if the set
of x’s for which the statement fails to hold is E-polar.

Let σN := inf{t ≥ 0 : Xt ∈ N} denote the hitting time of N . It is known that
an increasing sequence {Fn}n≥1 of closed subsets of E is an E-nest if and only if
Pm(limn σE\Fn < ζ) = 0. In particular,N isE-polar if and only if Pm(σN < ζ) = 0.
See [1] and [18]. Notice that an E-polar set is necessarily m-negligible.

Each u ∈ F has a quasi-continuous m-version ũ, for which

ũ(Xt )− ũ(X0) = Mu
t +Nut , t ≥ 0; (2.2)

see Theorem 5.2.2 of [11]. (Recall the convention f (∂) = 0.) The process Mu is
a martingale additive functional of X and Nu is a zero-energy continuous additive
functional (CAF) of X. The above decomposition is unique and is called Fuku-
shima’s decomposition. Mu can be further decomposed as Mu = Mu,c +Mu,d ,
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where Mu,c is the continuous part and Mu,d the purely discontinuous part of Mu.
The quadratic variation 〈Mu,c〉 = [Mu,c] ofMu,c is a positive continuous additive
functional of X, and its Revuz measure is denoted µc〈u〉. A well-known property of
continuous martingales implies that if D is quasi-open and u ∈ F then

µc〈u〉(D) = 0 if and only if ũ is constant q.e. on D. (2.3)

The following proposition records the (first) Beurling–Deny formula for quasi-
regular Dirichlet forms; see [7] or [15]. If µ is a measure onE charging no E-polar
set, then there is a quasi-closed set F carrying µ that is minimal in the sense that
if F ∗ is any other quasi-closed set carrying µ, then F\F ∗ is E-polar; such an F
is unique modulo E-polars, and is called the quasi-support of µ. See (4.6.3) and
(4.6.4) of [11].

Proposition 2.2. The symmetric quasi-regular Dirichlet form (E,F) can be
uniquely decomposed as

E(u, v) = E(c)(u, v)+ 1

2

∫ ∫
E×E

[̃u(x)− ũ(y)] · [̃v(x)− ṽ(y)]J (dx, dy)

+
∫
E

ũ(x)̃v(x) κ(dx)

for u, v ∈ F, with E(c), J and κ satisfying the following conditions

(i) (E(c),F) is a positive definite symmetric bilinear form with the strong local
property: E(u, v) = 0 for any u, v in F such that ũ is q.e. constant on a
quasi-open superset of the quasi-support of the measure |v| · dm.

(ii) J is a σ -finite symmetric positive measure on (E × E)\d that charges no
subset of (E × E)\d whose marginal projection is E-polar. (Here d denotes
the diagonal of E × E.)

(iii) κ is a σ -finite positive measure on E charging no E-polar set.

In fact, E(c)(u, v) = 1
2µ

(c)
〈u,v〉(E). Furthermore, every normal contraction operates

on the form E(c).

The “jumping measure” J is given by J (dx, dy) = ν(dx)N(x, dy), where
(N,H) is a Lévy system for X and ν is the Revuz measure of the PCAF H . The
“killing measure” is the Revuz measure of the PCAF obtained by taking the dual
predictable projection of the additive functional t �→ 1{ζi≤t}, where ζi is the totally
inaccessible part of ζ . See Section 2 of [4] and Section 4.5 of [11].

The reflected Dirichlet space (Eref ,Fref) associated with (E,F) was intro-
duced (for regular Dirichlet forms) by M. L. Silverstein [22, 23] in 1974, as a tool
in his study of the boundary theory of symmetric Markov processes. The reflected
Dirichlet space can be defined for a quasi-regular Dirichlet form as follows; see
[16]. As in [11], define
•
Floc = {u : ∃ an increasing sequence {Dn} of quasi-open sets with ∪∞

n=1Dn=
E q.e and a sequence {un} ⊂ F such that u = un m-a.e. on Dn, ∀n}.
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Each u ∈ •
Floc has a quasi-continuous m-version ũ on E. By (2.3), µc〈u〉 is well-

defined for u ∈ •
Floc by declaring µc〈u〉 := µc〈un〉 on Dn. For u ∈ •

Floc, define

Eref(u, u) := 1

2
µc〈u〉(E)+

1

2

∫ ∫
E×E

[̃u(x)− ũ(y)]2J (dx, dy)+
∫
E

ũ(x)2 κ(dx).

(2.4)

Definition 2.2. The reflected Dirichlet space (Eref ,Fref) associated with the
quasi-regular Dirichlet space (E,F) is the set

Fref := {u ∈ •
Floc : Eref(u, u) <∞}

equipped with the norm Eref determined by (2.4).
For example, let X be the absorbing Brownian motion on E = (0, 1). In this

context m is Lebesgue measure and each u ∈ F is equal m-a.e to an absolutely
continuous function ũ with ũ(0+) = ũ(1−) = 0 and ũ′ square integrable over
(0, 1). The Dirichlet form is given by E(u, v) = 1

2

∫ 1
0 ũ

′(x) · ṽ′(x)m(dx). One
checks that u ∈ Fref if and only if u admits an absolutely continuous (on (0, 1))
m-version ũ with ũ′ square integrable over (0, 1). Such a function ũ necessarily
has finite limits at the endpoints of (0, 1). Of course, (Eref ,Fref ∩ L2(E,m)) can
be identified as the Dirichlet form of the Brownian motion on [0,1] with reflection
at the endpoints.

Note that if (Ê, F̂) is a regular Dirichlet space on L2(Ê, m̂) which is quasi-
homeomorphic to (E,F), then (Êref , F̂ref) is the image space of (Eref ,Fref) under
the same quasi-homeomorphic map j . Thus the results established in [4], [22] and
[23] for reflected Dirichlet spaces remain valid in the current setting. In particular,
it follows from [4] that

(
Eref ,Fref ∩ L2(E, m)

)
is a Dirichlet form on L2(E,m).

An important related object is the extended Dirichlet space (E,Fe). A function
f is in Fe if and only if there is an E-Cauchy sequence {fn}n≥1 in F such that
fn converges to f m-a.e. on E. The sequence {fn}n≥1 is called an approximating
sequence for f . Let E(f, f ) := limn→∞ E(fn, fn), which, by Lemma 1.7 of [23]
(or Theorem 1.5.2 of [11]), does not depend on the choice of the approximating
sequence. By Theorem 2.1.7 of [11], each function u ∈ Fe has a quasi-continuous
m-version ũ, and by Theorem 5.2.2 of [11] the Fukushima decomposition (2.2)
holds for u ∈ Fe. Note that it follows from Theorem 1.9 of [23] (or Theorem 1.6.2
of [11]) that (E,Fe) is a Hilbert space if and only if (E,F) is transient. By Lemma
1.7 of [23] and the assumed irreducibility of (E,F),

if u ∈ Fe has E(u, u) = 0, then u is constant m-a.e. on E. (2.5)

Silverstein ([23], Theorem 16.2) has shown that Fref = Fe when (E,F) is re-
current. When (E,F) is transient, it is known (see [4] and [23]) that the subspace
H ⊂ Fref of harmonic functions of finite Eref -norm is Eref -orthogonal to Fe

and that Fref = Fe ⊕ H. A function h in H can be uniquely expressed as
h(x) = Ex[φ] for x ∈ E, where φ is a terminal random variable for the right
Markov process associated with (E,F). A terminal random variable is an M-
measurable function φ on the sample space � such that (i) Ex |φ| < ∞ for q.e.
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x ∈ E, (ii) φ◦θt = φ on {t < ζ } for all t > 0, and (iii) {φ  = 0} ⊂ {ζp <∞}. (Here
ζp is the predictable part of the lifetime ζ .) Let {Dn}n≥1 be an increasing sequence
of quasi-open sets with ∪n≥1Dn = E q.e.. It follows from Lemma 8.1 of [22] that
for q.e. x ∈ E, {̃h(XτDn )}n≥1 is a Px-uniformly integrable martingale and

φ = lim
n→∞h(XτDn ), Px-a.s. (2.6)

for q.e. x ∈ E. Here τDn := inf{t ≥ 0 : Xt /∈ Dn}. In general, h(Xt ) is not a
martingale. However by (1.16) of [4]

Mh
t := h(Xt )− h(X0)+ φ1{t≥ζ } t ≥ 0, (2.7)

is a martingale additive functional of X having finite energy; in particular, the
Revuz measure of 〈Mh〉 has finite mass. Thus by Theorem 1.4 of [4], Mh is a
square-integrable martingale under Px for q.e. x ∈ E. Conversely, if φ is a terminal
random variable of X and h(x) = Ex[φ], then h ∈ H if and only if the Revuz

measure of 〈Mh〉 has finite mass (see, e.g. [4]). Because Fref ⊂ •
Floc, one can

use Theorem (5.7)(iii) of [10] and an adaptation of Theorem 1.6 of [4] to see that

lim
t→ζ,t<ζ

h(Xt ) = h(Xζ−)1{ζi<∞} + φ, (2.8)

where, as before, ζi is the totally inaccessible part of ζ . (See [10; p. 301] for the
fact that the left limit Xζ− exists in E on {ζi <∞}.) Thus

Mh
ζ = φ − h(X0) and Mh

ζ− = h(Xζ−)1{ζi<∞} + φ − h(X0). (2.9)

For later reference we record here the analogous statement for f ∈ Fe, now a
direct consequence of Theorem (5.7)(iii) in [10]:

lim
t→ζ,t<ζ

f̃ (Xt ) = 1{ζi<∞}f̃ (Xζ−) Px-a.s. for q.e. x ∈ E. (2.10)

In combination with Fukushima’s decomposition (2.2), this yields

M
f
ζ −Mf

ζ− = −f̃ (Xζ−)1{ζi<∞} (2.11)

3. Crossing Estimate

Throughout this section we use A and B to denote disjoint quasi-closed subsets of
E, neither of which is E-polar. Define

3A,B := {f ∈ Fref : 0 ≤ f̃ ≤ 1, f̃ = 1 q.e. on A and f̃ = 0 q.e. on B},

and notice that 3A,B is convex.

Lemma 3.1. 3A,B is Eref -complete.
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Proof . Suppose first that X is transient. Let {fn} ⊂ 3A,B be an Eref -Cauchy se-
quence. Then fn = gn + hn where gn ∈ Fe and hn ∈ H. Because Fe and H are
Eref -orthogonal, both {gn} and {hn} areEref -Cauchy sequences. As noted just before
(2.5),Fe isEref -complete, so there exists g ∈ Fe with limn E

ref(gn−g, gn−g) =
0. Extracting a subsequence if necessary, we can even assume that

Px
(

lim
n→∞ sup

t≥0
|̃gn(Xt )− g̃(Xt )| = 0

)
= 1 for q.e. x ∈ E;

see Theorem 2.1.4 and Lemma 5.1.2 of [11]. In particular, g̃n(x) → g̃(x) for q.e.
x ∈ E. At the cost of extracting a further subsequence, we can use Theorem 1.4 of
[4] to arrange that

Px(M
hn
t converges uniformly in t ∈ [0,∞) as n→ ∞) = 1 for q.e. x ∈ E.

In view of (2.7) we therefore have

Px(f̃n(Xt )−f̃n(x) converges uniformly in t ∈ [0, ζ ) as n→ ∞)=1 for q.e.x ∈E.
But (E,F) is irreducible, so by Theorem 4.6.6 of [11],

Px(σB < ζ) > 0 for q.e. x ∈ E,
and therefore f (x) := limn f̃n(x) exists for q.e. x ∈ E, because f̃n(XσB ) = 0 on
{σB < ζ }. It follows that limn h̃n(x) = f (x) − g̃(x) for q.e. x ∈ E, and then by
Lemma 3.1 of [4] that h := f − g̃ is an element of H and that {hn} is Eref -conver-
gent to h. Consequently {fn} is Eref -convergent to f , from which it follows that f
is an element of 3A,B . We have shown that every Eref -Cauchy sequence from 3A,B
admits a convergent subsequence; this proves the Eref -completeness of 3A,B in the
transient case.

Now supposeX is recurrent, so that Fref = Fe. Fix a strictly positive bounded
function γ on E with

∫
E
γ dm < ∞, and let Fγ

e denote the extended Dirich-
let space for the transient Dirichlet form (Eγ ,Fγ ) on L2(E,m), where Fγ =
F ∩ L2(E, γ ) and

Eγ (u, v) = E(u, v)+
∫
E

u(x)v(x)γ (x)m(dx) for u, v ∈ Fγ .

(This is the Dirichlet form for X killed at rate γ .) Because u ∈ F implies
(u ∨ 0) ∧ 1 ∈ F, it is easy to check that Fe ∩ L∞(E,m) ⊂ F

γ
e . Of course,

3A,B ⊂ Fe ∩ L∞(E,m). Let {fn} ⊂ 3A,B be an Eref -Cauchy sequence. Clear-
ly supn E

γ (fn, fn) < ∞, so by the Banach-Saks theorem there is a subsequence
{fn(k)} of {fn} whose Cesàro means gk := k−1 ∑k

j=1 fn(j) are Eγ -convergent

(hence also E-convergent) to some g ∈ F
γ
e . Because (Eγ ,Fγ ) is transient, the

sequence {gk} admits a further subsequence along which the quasi-continuous m-
versions g̃k := k−1 ∑k

j=1 f̃n(k) converge Eγ -q.e. (= E-q.e.) to g̃. It follows that

g ∈ 3A,B . Now let f denote the limit of {fn} in the abstract completion 3A,B of
3A,B (endowed with the metric associated with Eref ). Then gk → f in 3A,B as
well, so f = g ∈ 3A,B . Thus 3A,B is Eref -complete in the recurrent case. #$
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For Theorems 3.2 and 3.3 below, we assume that 3A,B is non-empty. Since
3A,B is also convex and Eref -complete, it admits a unique element F = FA,B of
minimal Eref -norm; this follows by standard arguments because of (2.5). If (E,F)
is transient, then F = f +h, where f ∈ Fe and h ∈ H; we setMF := Mf +Mh

where Mf and Mh are defined by (2.2) and (2.7). If (E,F) is recurrent, then
F ∈ Fref = Fe, in which case we letMF be the martingale additive functional in
the Fukushima decomposition (2.2) for F ∈ Fe. In either case,MF is a Px-square
integrable martingale for q.e. x ∈ E, and we have the “Fukushima decomposition”

F̃ (Xt )− F̃ (X0) = MF
t +NFt − φ1{ζ≤t}, t ≥ 0, (3.1)

where NF is a CAF of zero energy and φ := 1{ζp<∞} limt↑ζ F̃ (Xt ) is the terminal
variable associated with the harmonic part of F if X is transient, and simply 0 if
X is recurrent; cf. (2.8) and (2.10). Let [MF ] denote the quadratic variation ofMF

and let 〈MF 〉 denote the dual predictable projection of [MF ].

Theorem 3.2. Let S and T be finite stopping times with S ≤ T < ζp. Then for
quasi-every x ∈ E,

Ex([F̃ (XT )− 1]2 − [F̃ (XS)− 1]2) ≤ Ex(〈MF 〉T − 〈MF 〉S) (3.2)

and
Ex(F̃ (XT )2 − F̃ (XS)2) ≤ Ex(〈MF 〉T − 〈MF 〉S). (3.3)

Proof . Using arguments found on pp. 322–323 of [20], one sees that F̃ is equal
q.e. to the “condenser potential”

G(x) := Px(σA < σB), x ∈ E.

The function G defined above is quasi-continuous. Moreover, G is an excessive
function of the part process XE\B (X killed at σB ); in fact, G is the equilibrium
potential of A relative to XE\B . It follows that NF in (3.1) is non-increasing on
the interval [0, σB ] and decreases only when X is in A, Px-a.s. for q.e. x ∈ E. The
additivity of NF now implies that NF is non-increasing throughout the random
time set {t ≥ 0 : Xt /∈ B}, decreasing only on {t ≥ 0 : Xt ∈ A}.

Because the quasi-closed sets A and B are disjoint, the quasi-left continuity of
X implies that Px(σA = σB < ζ) = 0 for q.e. x ∈ E. Consequently, 1 − F(x) is
equal for q.e. x to the complementary condenser potential H(x) := Px(σB < σA).
But clearly

H(Xt)−H(X0) = −MF
t −NFt + φ1{ζ≤t}, t ≥ 0,

Px-a.s. for q.e. x, so the preceding argument allows us to deduce that NF is non-
decreasing on {t ≥ 0 : Xt /∈ A}, increasing only on {t ≥ 0 : Xt ∈ B}. It follows
that there are positive continuous additive functionals (PCAFs) CA and CB such
that CA increases only when X is in A, CB increases only when X is in B, and

F̃ (Xt )− F̃ (X0) = MF
t − CAt + CBt − φ1{ζ≤t}, t ≥ 0, (3.4)
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By Itô’s formula (see, e.g., Théorème VIII.27 in [6]),

F̃ (Xt )
2 − F̃ (X0)

2 = Kt − 2
∫ t

0
F̃ (Xs) [dCAs − dCBs ] − φ21{ζ≤t} + 〈MF 〉t ,

= Kt − 2CAt − φ21{ζ≤t} + 〈MF 〉t , (3.5)

whereK is a Px-uniformly integrable martingale for q.e. x ∈ E. The second equal-
ity in (3.5) follows because F̃ = 1 q.e. onA and F̃ = 0 q.e. on B. Combining (3.4)
and (3.5) we find that

[F̃ (Xt )−1]2−[F̃ (X0)−1]2 = K ′
t+〈MF 〉t−2CBt +(2φ−φ2)1{ζ≤t}, t ≥ 0,

Px-a.s. for q.e. x ∈ E, where K ′ is another uniformly integrable martingale.
Consequently, if S ≤ T < ζp are stopping times,

[F̃ (XT )− 1]2 − [F̃ (XS)− 1]2 = K ′
T −K ′

S + 〈MF 〉T − 〈MF 〉S − 2(CBT − CBS ),
from which (3.2) follows upon taking expectations. Likewise, (3.5) implies

F̃ (XT )
2 − F̃ (XS)2 = KT −KS − 2(CAT − CAS )+ 〈MF 〉T − 〈MF 〉S,

from which (3.3) follows upon taking expectations. #$
LetUt be the number of crossings betweenA andB that the processX completes

by time t . More precisely, define stopping timesS1, S2, . . . , T1, T2, . . .byS1 := σA,
T1 := S1+σB◦θS1 , and inductively, Sn := Tn−1+σA◦θTn−1 , Tn := Sn+σB◦θSn . Let
the sequences Ŝ1, Ŝ2, . . . , T̂1, T̂2, . . . be defined analogously with the roles ofA and
B interchanged. Now put UA→B

t := sup{n : Tn ≤ t} , UB→A
t := sup{n : T̂n ≤ t},

and finally Ut := UA→B
t + UB→A

t . (Convention: sup∅ = 0.)

Theorem 3.3. If T is a stopping time, then

Ex(UT ) ≤ Ex〈MF 〉T
for q.e. x ∈ E.

Proof . Assume, for the moment, that T < ζp. Observe that F̃ (XSn) = 1 on
{Sn <∞} and F̃ (XTn) = 0 on {Tn <∞}, Px-a.s. for q.e. x ∈ E. Thus, by (3.2),

Px(UA→B
T ≥ n) = Px(Tn ≤ T )

= Ex([F̃ (XTn∧T )− 1]2 − [F̃ (XSn∧T )− 1]2; Tn ≤ T )
≤ Ex([F̃ (XTn∧T )− 1]2 − [F̃ (XSn∧T )− 1]2)

≤ Ex(〈MF 〉Tn∧T − 〈MF 〉Sn∧T ) (3.6)

for q.e. x ∈ E. In the same way, (3.3) leads to

Px(UB→A
T ≥ k) ≤ Ex(〈MF 〉

T̂k∧T − 〈MF 〉
Ŝk∧T ) (3.7)

The desired inequality follows by combining (3.6) with (3.7) after summing as n
and k vary over the positive integers – the intervals [Sn∧T , Tn∧T ], [Ŝk∧T , T̂k∧T ]
(n, k ≥ 1) have no interior points in common and their union is contained in [0, T ].
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Turning to the general case, let {σk} be an increasing sequence of bounded
stopping times announcing the predictable stopping time ζp. By the preceding
paragraph,

Ex(UT∧σk ) ≤ Ex〈MF 〉T∧σk , k ≥ 1.

The proof is finished by sending k off to ∞ because UT∧σk increases to UT as k
increases to ∞. #$

The following two lemmas record facts needed in the proof of Theorem 3.6,
our main result. We write µ〈f 〉 for the Revuz measure of the PCAF 〈Mf 〉.

Lemma 3.4. For f ∈ Fref ,

µ〈f 〉(E) = 2Eref(f, f )−
∫
f̃ (x)2 κ(dx).

Proof . Fix f ∈ Fref ⊂ •
Floc. Then there exists an increasing sequence {Dk}k≥1

of quasi-open sets with ∪∞
k=1Dk = E q.e. and a sequence {gk} ⊂ F such that

f = gk a.e. on Dk . By (2.3),Mf,c
t = Mgk,c for t ≤ τDk , whence [Mf ]t = [Mgk ]t

for t < τDk , for all k. Consequently,

[Mf ]t = [Mf,c]t +
∑

0<s≤t

(
f̃ (Xs)− f̃ (Xs−)

)2
for t < ζ.

At time ζ ,

[Mf ]ζ = [Mf,c]ζ +
∑

0<s<ζ

(
f̃ (Xs)− f̃ (Xs−)

)2 + (Mf
ζ −Mf

ζ−)
2

= [Mf,c]ζ +
∑

0<s<ζ

(
f̃ (Xs)− f̃ (Xs−)

)2 + 1{ζi<∞}[f̃ (Xζ−)]2,

the second equality following from (2.11). Therefore (see, e.g., [4]),

1

2
µ〈f 〉(E) = 1

2
µc〈f 〉(E)+

1

2

∫ ∫ (
f̃ (x)− f̃ (y))2

J (dx, dy)+ 1

2

∫
f̃ (x)2 κ(dx)

= Eref(f, f )− 1

2

∫
f̃ (x)2 κ(dx). #$

In what follows we write Gα := ∫ ∞
0 e−αtPt dt (α > 0) for the α-potential

operator associated with X. With reference to the following lemma, see Section
5.1 of [11] for a discussion of the Revuz correspondence, which relates smooth
measures on E to PCAFs of X.

Lemma 3.5. Let µ and ν be smooth measures with associated PCAFs Cµ and Cν .
Then EµCνt = EνC

µ
t for all t ≥ 0.
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Proof . Any smooth measure µ can be written as a sum of finite smooth measures
with bounded 1-potentials. (For example, µ = ∑∞

n=0 µn, where µn := 1Fnµ,
Fn = {(n + 1)−1 ≤ φ < n−1}, and φ is as in the proof of Lemma 5.1.7 in [11].)
Because (µ, ν) �→ EµCνt is additive in either argument, it therefore suffices to
consider the case in which µ(E) + ν(E) < ∞ and Ex

∫ ∞
0 e−t dCµ+νt is a q.e.

bounded function of x. But then the desired equality follows by Laplace inversion
from ∫ ∞

0
e−αtEµ(Cνt ) dt = α−1Eµ

∫ ∞

0
e−αt dCνt

= α−1µ(Gαν) = α−1ν(Gαµ)

= α−1Eν

∫ ∞

0
e−αt dCµt =

∫ ∞

0
e−αtEν(Cµt ) dt,

wherein all terms are finite if α ≥ 1. The third equality above is an instance of the
“Revuz formula” and is a slight extension of formula (9.5) in [12]. #$
Theorem 3.6. Fix f ∈ Fref and a, b ∈ R such that a < b. Let Ut be the number
of crossings of the interval [a, b] that are completed by the process s → f̃ (Xs)

during the time interval [0, t]. Then for any smooth measureµ onE and any t > 0,

EµUt ≤ 2(b − a)−2Eref(f, f ) ‖E·Cµt ‖∞, (3.8)

whereCµ is the PCAF ofXwith Revuz measureµ, and ‖E·Cµt ‖∞ is theL∞(E,m)-
norm of x �→ ExC

µ
t .

Proof. Let A = {x ∈ E : f̃ (x) ≤ a} and B = {x ∈ E : f̃ (x) ≥ b}. We
assume, without loss of generality, that neither A nor B is E-polar. Suppose first
that the killing measure κ vanishes. Then Fref contains the constant functions, so
u := 0∨ b−f

b−a ∧1 is an element ofFref and is a normal contraction of (b−f )/(b−a).
Consequently, u ∈ 3A,B , so the minimal-energy element F of 3A,B exists, and
Eref(F, F ) ≤ Eref(u, u). By Theorem 3.3, ExUt ≤ Ex〈MF 〉t . Therefore (using
Lemma 3.4 for the third inequality and Lemma 3.5 for the equality),

EµUt ≤ Eµ〈MF 〉t = Eµ〈F 〉C
µ
t ≤ ‖E·Cµt ‖∞ µ〈F 〉(E)

≤ 2‖E·Cµt ‖∞ Eref(F, F ) ≤ 2‖E·Cµt ‖∞ Eref(u, u)

≤ 2(b − a)−2‖E·Cµt ‖∞Eref(f, f ).

When κ  = 0 we proceed as follows. Let Xres be the Markov process obtained
by “resurrecting” (repeatedly) X at its death place Xζ− whenever ζ = ζi < ∞
(see [14], [19], and Section 18 in [23]). The Dirichlet form (Eres,Fres) of Xres is
related to (E,F) by

F = {u ∈ Fres : ũ ∈ L2(E, κ)},

E(u, v) = Eres(u, v)+
∫
E

ũ(x)̃v(x) κ(dx), u, v ∈ F.
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In particular, the killing measure for Xres is zero. The process X can be obtained
(in law) by killing Xres at the time

S := inf{t : Cκ,res
t > − logU},

where U is uniformly distributed over (0, 1) and independent ofXres. Here we use
the fact that κ is a smooth measure for Xres as well as for X (see [9]); Cκ,res is the
associated PCAF. Likewise µ is a smooth measure forXres, with associated PCAF
Cµ,res. Moreover, Cµ,res

t∧S under Pres
x has the same distribution as Cµt under Px for

q.e. x ∈ E. Thus, using the preceding paragraph,

Eµ(Ut ) = Eres
µ (Ut∧S)

≤ 2(b − a)−2‖Eres
· C

µ,res
t∧S ‖∞Eres(f, f )

≤ 2(b − a)−2‖E·Cµt ‖∞Eref(f, f ). #$

Let G := ∫ ∞
0 Pt dt denote the 0-potential operator for X.

Corollary 3.7. Fix f ∈ Fref and a, b ∈ R such that a < b. Let Ut be the number
of crossings of the interval [a, b] that are completed by the process s → f̃ (Xs)

during the time interval [0, t]. Then:

(i) EmUt ≤ 2t (b − a)−2Eref(f, f ).
(ii) For any positive smooth measure µ, EµUt ≤ 2(b − a)−2(1 + t)‖G1µ‖∞

Eref(f, f ).
(iii) If (E,F) is transient and µ is a positive smooth measure, then

EµU∞ ≤ 2(b − a)−2‖Gµ‖∞ Eref(f, f ).

Proof . Point (i) follows from Theorem 3.6 because the PCAF associated with m
is t �→ t ∧ ζ . Point (ii) follows from (3.8) by Lemma 5.1.9 of [11]. Finally, (iii)
results upon taking t → ∞ in Theorem 3.6 and noting that ExC

µ
∞ = Gµ(x). #$

Remark 3.8. Corollary 3.7(i) extends and sharpens the crossing estimate of Lyons
& Zheng [17], which concerned symmetric diffusions on Rn.

In the remainder of this section, (E,F) is assumed to be transient. We study the
limiting behavior of f̃ (Xt ) for f ∈ Fref . Let {Tk}k≥1 be an increasing sequence
of stopping times of X with limit ζ . Recall that ζi is the totally inaccessible part of
the lifetime ζ .

Lemma 3.9. Assume that (E,F) is transient, and let f be an element of Fe. Then
for q.e. x ∈ E

(i) limt→ζ,t<ζ f̃ (Xt ) = 1{ζi<∞}f̃ (Xζ−), Px-a.s.,
(ii) supt≥0 |f̃ (Xt )| is Px-square integrable, and

(iii) f̃ (XTk ) converges to 0 in L2(Px) as k → ∞.
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Proof . Assertion (i) restates (2.10) – of course, the existence of this limit, in
[−∞,+∞], is also guaranteed by Theorem 3.7(iii). Because X is transient, there
is a strictly positive bounded Borel function γ with bounded Green potential Gγ .
Defining µ(dx) = γ (x)m(dx), we have

Pµ
(

sup
t≥0

|f̃ (Xt )| > λ
)
≤ ‖Gγ ‖∞ Cap(|f̃ | > λ), λ > 0,

where Cap is the 0-order capacity associated with X. In addition, by a result of
K. Hansson (Theorem 1.6 in [13]; the proof adapts easily to the present situation),
we have ∫ ∞

0
Cap(|f̃ | > λ)2λ dλ ≤ 4E(f, f ).

It follows that
Pµ

(
sup
t≥0

[f̃ (Xt )]
2
)
≤ 4‖Gµ‖∞E(f, f ). (3.9)

This proves assertion (ii), and (iii) follows from (i) and (3.9) because {Tk < ζ,∀k}
⊂ {ζi = ∞}. #$
Theorem 3.10. Let f ∈ Fref have decomposition f = g+ h, where g ∈ Fe and
h = E·[φ] ∈ H. Then for q.e. x ∈ E, f̃ (Xt ) converges Px-a.s. to f̃ (Xζ−)1{ζi<∞}+
φ as t ↑ ζ , and f̃ (XTk ) converges to φ in L2(Px) as k → ∞.

Proof . The theorem follows from Lemma 3.9, (2.8), and evident properties of the
Px-square integrable martingale Mh defined by (2.7). #$

4. Examples

In this section, we give three examples to illustrate the general results obtained in
the last section.

Example 4.1. Let X = {Xt, t ≥ 0} be an irreducible continuous-time Markov
chain on a countable state space E. For x, y ∈ E, define

pt (x, y) := Px(Xt = y) and G(x, y) :=
∫ ∞

0
pt (x, y) dt.

For x, y ∈ E the limit

q(x, y) := lim
t↓0

pt (x, y)− δxy
t

exists, 0 ≤ q(x, y) < ∞ if x  = y, −∞ ≤ q(x, x) < 0, and
∑
y:y  =x q(x, y) ≤

−q(x, x). The symmetry of X amounts to the “detailed balance” equations:

m(x)q(x, y) = m(y)q(y, x), x  = y,

where m(x) := m({x}).
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The Dirichlet form (E,F) on L2(E,m) associated with X is given by

E(f, g) = 1

2

∑
x  =y

[f (x)− f (y)] · [g(x)− g(y)]m(x)q(x, y), (4.1)

on the domain F, which contains the completion of the space of finitely supported
functions on E endowed with the inner product E1 = E + (·, ·)L2(E,m). It is easy
to see that

Fref =

f :

∑
x  =y

[f (x)− f (y)]2m(x)q(x, y) <∞

 (4.2)

and thatEref(f, g) is given by the expression on the right side of (4.1). Given x ∈ E,
the Revuz measure of the PCAF

Cxt :=
∫ t

0
1{x}(Xs) ds, t ≥ 0,

consists of a mass of size m(x) concentrated at x. By the strong Markov property
of X applied at the hitting time of {x},

EyCxt ≤ ExCxt =
∫ t

0
Px(Xs = x) ds =

∫ t

0
ps(x, x) ds

for all y ∈ E and t ∈ [0,∞). Thus for every f ∈ Fref , we have by Theorem 3.6,

m(x)ExUt ≤ 2(b − a)−2
( ∫ t

0
ps(x, x) ds

)
Eref(f, f ), (4.3)

where Ut is the number of crossings of [a, b] by s �→ f (Xs) during the time
interval [0, t]. In particular,

m(x)ExU∞ ≤ 2(b − a)−2G(x, x)Eref(f, f ). (4.4)

Example 4.2. Let Y = {Yn, n = 0, 1, 2, · · ·} be an irreducible discrete-time
Markov chain on a countable state space E, with transition probability function
p(x, y) = P(Yn+1 = y |Yn = x). Define, for x, y ∈ E,

pn(x, y) := P(Yn+k = y|Yk = x) and H(x, y) :=
∞∑
n=0

pn(x, y).

Assume that Y is symmetric in the sense that there is a measure m on E with

m(x)p(x, y) = m(y)p(y, x), for all x  = y,

wherem(x) = m({x}) as before. Let (?(t))t≥0 be a unit-rate Poisson process (with
?(0) = 0) independent of Y . Then

Xt := Y?(t), t ≥ 0,
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is a continuous-time Markov chain as in Example 4.1, with symmetry measure m
and “infinitesimal transition rates” q(x, y) equal to p(x, y) (x  = y). Notice that

G(x, y) =
∫ ∞

0
Px(Xt = y) dt =

∫ ∞

0
Px(Y?(t) = y) dt = H(x, y)

for all x, y ∈ E.
Let (Eref ,Fref) and Ut be as as in Example 4.1, with q(x, y) replaced by

p(x, y). For f ∈ Fref and real a < b, the number UYn of crossings of [a, b] that
k �→ f (Yk) completes by time n is equal to UTn , where Tn = inf{t : ?(t) = n}.
Thus, by Theorem 3.6 and independence,

m(x)ExUYn = m(x)Ex(UTn)

≤ 2(b − a)−2Ex(CxTn)E
ref(f, f )

= 2(b − a)−2
n−1∑
k=0

pk(x, x)Eref(f, f ), (4.5)

for all x ∈ E. Sending n to infinity in (4.5) we obtain

m(x)ExUY∞ ≤ 2(b − a)−2H(x, x)Eref(f, f ), (4.6)

which is Theorem 1.3 of [2].

Example 4.3. In this final example suppose that our symmetric right Markov pro-
cess X is a diffusion in the sense that t �→ Xt is continuous on [0, ζ ) and ζ is
predictable. In this case the Beurling–Deny decomposition simplifies to

E(f, g) = 1

2

∫
E

3(f, g)(dx), f, g ∈ F,

where 3(f, g) is the (signed) Revuz measure of the CAF 〈Mf ,Mg〉.
For example, if E is a finite-dimensional Riemannian manifold and X is the

associated Brownian motion, then d3(f, g)/dm = ∇f · ∇g, where m is the Ri-
emannian volume measure. Similar expressions for 3(f, g) occur when X is the
diffusion associated with a divergence-form generator or an infinite-dimensional
diffusion of “gradient type”; see, e.g., Section II.3 of [18], and also [8] for examples
of diffusions on path and loop spaces over compact Riemannian manifolds.
In the present setting,

Fref =
{
f ∈ •

Floc :
∫
E

3(f, f )(dx) <∞
}
,

and if f ∈ Fref , then 3(f, f ) is the smooth measure associated with 〈Mf 〉. Thus,
taking T = ∞ in Theorem 3.3, we obtain

ExU∞ ≤ Ex〈Mf 〉∞ = G(3(f, f ))(x) for q.e. x ∈ E, (4.7)

where U∞ is the total number of crossings of [a, b] by t �→ f̃ (Xt ).



Crossing estimates for symmetric Markov processes 83

WhenE is a finite-dimensional Riemannian manifold and the infinitesimal gen-
erator ofX is a uniformly elliptic divergence-form operator, the transition operators
ofX admit continuous densities with respect to the volume measurem, and this ad-
ditional smoothness allows one to eliminate the exceptional set in (4.7). This yields
Corollary 8.4 of [2]. Also, specializing Corollary 3.7(iii), we recover Corollary 8.5
of [2].
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