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Abstract. A crossing estimate is established for symmetric Markov processes on genera
state spaces.

1. Introduction

T. Lyonsand W.-A. Zheng [17] used the forward-backward martingal e decomposi-
tion to prove acrossing estimate for Dirichlet functions along the paths of a station-
ary symmetric diffusion on R” over the timeinterval [0, 1]. Recently, A. Ancona,
R.Lyons& Y. Peres[2] established acrossing estimatefor Dirichlet functionsalong
the paths of atransient symmetric discrete-time Markov chain or atransient sym-
metric diffusion on aRiemannian manifold, over thetimeinterval [0, co), allowing
an arbitrary starting point for the process. In this paper, we show that a crossing es-
timate can be established for general symmetric right Markov processes—transient
or recurrent, over afinite or infinitetimeinterval, for quasi-every starting point. By
averaging the starting point with respect to the symmetrizing measure, we obtain
acrossing estimate that extends and sharpens the work of Lyons & Zheng [17].
Preliminary material is discussed in Section 2. Our main results are stated and
proved in Section 3. To give the reader ataste of these results we now state a special
case of Theorem 3.6. Let X be an irreducible symmetric strong Markov process
with state space E and symmetry measurem. For x € E, let P, denotethelaw of X
under the initial condition Xo = x. Let f : E — R bean element of the Dirichlet
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space of X. Such afunction f admits a“quasi-continuous’ m-version f with the
property that s — f(X) isright-continuous, as. P,,. (Here, B, := [, P, m(dx).)

Theorem. Fixreal numbersa < b, and let U, be the number of crossings of the
interval [a, b] that are completed by the process s — f(Xs) during the time in-
terval [0, 7]. Let u be a probability distribution on E admitting a bounded density
g with respect to m. Then for any r > 0,

EunU: = /E E(Un) g(x) m(dx) < 2t(b—a) 26(f, f) - supg(x),  (L1)

xeE
where &(f, f) isthe” Dirichlet energy” of f.

A variant of thisresult, more appropriate when X istransient, appearsin Cor-
ollary 3.7 (iii). Theright side of (1.1) is of the correct order of magnitude (for large
t) when X is positive recurrent. When X is null recurrent, it is not uncommon for
the left side of (1.1) to grow like a slowly varying function of ¢. An illuminating
discussion, in the case of planar Brownian motion, can be found in [3].

In Section 4 we provide examplesfor both continuousand discrete-timeMarkov
chainsand diffusionson finite- and infinite-dimensional spacesillustrating how our
results contain those obtained by Ancona, Lyons & Peresin [2] as special cases.

2. Preliminaries

Let E be homeomorphic to a Borel subset of a compact metric space, and let
A(E) denote the Borel o-algebraon E. Let m be a o-finite measure on #(E)
withsupp[m] = E.Let X = (R, A, M, 6;, X, P,) be an m-symmetric, irreduc-
ible right Markov process with state space E. In more detail, the right-continuous
process [0, +00) > ¢t +— X, is defined on the sample space (2, .#), adapted to
the filtration (.#;), and under the law P, is a strong Markov process with initial
condition Xo = x. The shift operators 6;, t > 0, satisfy X068, = X4, identicaly
for s, t > 0. Adjoined to the state space E isan isolated point 8 ¢ E; the process
X retiresto 0 atits“lifetime” ¢ :=inf{s : X; = 9}.
Thetransition operators P;, t > 0, are defined by

P f(x) = Ex(f (X)) = Ex(f(Xp)i 1 < ©).

(Hereand inthe sequel, we usethe convention that afunction defined on E takesthe
value0 at the cemetery point 3.) The P, may beviewed asoperatorson L%(E, m); as
such they form a strongly continuous semigroup of self-adjoint contractions. (This
isthe “m-symmetry” mentioned earlier.) The associated infinitesimal generator L
is defined by

Lf := Itiwt_l[P,f — 1] (2.1)

on the domain consisting of those f € L?(E, m) for which thelimitin (2.1) exists
inthe strong sense. The (typically unbounded) operator — L is self-adjoint and pos-
itive, so it admits a (self-adjoint, positive) square root «/—L. Let % be the domain
of «/—L, and define the bilinear form & on # by

&u, v) = (v/—Lu, V_LU)LZ(E,m)» u,veZ.
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Then (&, #) is the symmetric Dirichlet form on L2(E, m) associated with the
process X .

As was noted in [10], Theorems (16.19) and (16.21) of [12] imply that X is
m-specia standard. Therefore, by the fundamental work [1] of S. Albeverio and
Z.-M. Ma, the Dirichlet form (&, &) is quasi-regular. (Conversdly, it is shown in
[1] that given a quasi-regular Dirichlet form on L?(E, m), there is an associated
m-specia standard symmetric Markov processes.) Itisprovedin[5] that aDirichlet
formis quasi-regular if and only if it is quasi-homeomorphic to aregular Dirichlet
form on alocally compact separable metric space. Therefore, any result valid for
regular Dirichlet forms and invariant under quasi-homeomorphisms is applicable
to quasi-regular Dirichlet forms. This“transfer principle” will be used in the sequel
without special mention.

The process X will be the object of study in the rest of the paper. In the remain-
der of this section we recall certain notions that will be particularly important. For
further details and discussion the reader isreferred to [11] and [18].

For aclosed set F C E, define

Fr={feZ: f=0m-aeonE\F},
and recall the following definitions (cf. [1], [5] and [18]).
Definition 2.1.

(i) Anincreasing sequence {F}},>1 of closed subsets of E isan &-nest provided
Up>17 F, IS&1-densein #, where &1 = & + (-, VL2(E.m)-

(ii) A set A C E issaidto be quasi-open (resp. quasi-closed) if thereisan &-nest
{Fr}i>1 such that Fi N A isrelatively open (resp. relatively closed) in F for
eachk > 1.

(iii) A functionu : E — [—o0, +o0] IS quasi-continuous provided there is an
&-nest { F;.} such that u restricted to Fj, isreal-valued and continuous, for each
k.

(iv) Aset N C E is&-polar provided thereis an &-nest { Fi }x>1 such that N C
Nk (E\Fy).

(v) A statementinvolving x issaid to hold quasi-everywhere (g.e.) on E if the set
of x’sfor which the statement failsto hold is &-polar.

Let oy ;= inf{t > 0: X; € N} denote the hitting time of N. It is known that
an increasing sequence { F, },>1 of closed subsets of E isan &-nest if and only if
P.(lim, og\F, < ¢) = O.Inparticular, N isg-polarif andonlyif B, (oy < ¢) =0.
See[1] and [18]. Notice that an &-polar set is necessarily m-negligible.

Each u € # has aquasi-continuous m-version i, for which

u(X;) —u(Xo) =M + N/, 1=0; (22)

see Theorem 5.2.2 of [11]. (Recall the convention f(3d) = 0.) The process M* is
amartingal e additive functional of X and N* isa zero-energy continuous additive
functional (CAF) of X. The above decomposition is unique and is called Fuku-
shima's decomposition. M* can be further decomposed as M* = M*< + M*4,
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where M- is the continuous part and M*¢ the purely discontinuous part of M*.
The quadratic variation (M*-¢) = [M":“] of M"-¢ isapositive continuous additive
functional of X, and its Revuz measure is denoted M?“) . A well-known property of
continuous martingales impliesthat if D isquasi-open and u € % then

Ky (D) = 0if and only if & is constant g.e. on D. (2.3)

Thefollowing proposition records the (first) Beurling—Deny formulafor quasi-
regular Dirichlet forms; see[7] or [15]. If x isameasure on E charging no &-polar
set, then there is a quasi-closed set F carrying u that is minimal in the sense that
if F* isany other quasi-closed set carrying u, then F\ F* is &-polar; such an F
is unique modulo &-polars, and is caled the quasi-support of w. See (4.6.3) and
(4.6.4) of [11].

Proposition 2.2. The symmetric quasi-regular Dirichlet form (&£, %) can be
uniquely decomposed as

1 - ~ _~ ~
&, v) = 8w, v) + > ffE E[u(x) —4(y)] - [v(x) = 9(»]J (@dx, dy)

+ / w(x)V(x) Kk (dx)
E

for u, v € 7, with £, J and « satisfying the following conditions

(i) (&9, ) isa positive definite symmetric bilinear formwith the strong local
property: &(u,v) = 0 for any u, v in & such that & is g.e. constant on a
quasi-open super set of the quasi-support of the measure |v| - dm.

(ii) J is a o-finite symmetric positive measure on (E x E)\d that charges no
subset of (E x E)\d whose marginal projection is &-polar. (Here d denotes
the diagonal of E x E.)

(iii) « isao-finite positive measure on E charging no &-polar set.

Infact, £© (u, v) = %;QZ%%E). Furthermore, every normal contraction operates
ontheform &(©.

The “jumping measure” J is given by J(dx,dy) = v(dx)N(x, dy), where
(N, H) isalLévy system for X and v is the Revuz measure of the PCAF H. The
“killing measure” is the Revuz measure of the PCAF obtained by taking the dual
predictable projection of the additive functional ¢ — 1, <;;, where ¢; isthetotally
inaccessible part of ¢. See Section 2 of [4] and Section 4.5 of [11].

The reflected Dirichlet space (6™, #'¥) associated with (&£, %) was intro-
duced (for regular Dirichlet forms) by M. L. Silverstein [22, 23] in 1974, as atool
in his study of the boundary theory of symmetric Markov processes. The reflected
Dirichlet space can be defined for a quasi-regular Dirichlet form as follows; see
[16]. Asin[11], define

9’;Ioc = {u : 3 anincreasing sequence { D, } of quasi-open setswith U2 ; D, =
E g.eand asequence {u,} C & suchthat u = u, m-ae. on D,, Vn}.
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Eachu € 9’;Ioc has a quasi-continuous m-version i on E. By (2.3), “fw iswell-

defined for u e ?Ioc by declaring {,, := u{, , on D,. Foru € 9’;Ioc! define

oref . 1‘ c 1‘ ~ o~ 2 ~ 2
¢ (u, u) = sy, (E) + [U(x) —u(W]“Jdx,dy) + [ u(x)"«k(dx).
2 2 ExXE E (2 4)

Definition 2.2. The reflected Dirichlet space (&', Z™) associated with the
quasi-regular Dirichlet space (&, ) isthe set

F = e Floe: 6w, u) < 0o}

equipped with the norm &' determined by (2.4).

For example, let X be the absorbing Brownian maotion on E = (0, 1). In this
context m is Lebesgue measure and each u € . is equal m-a.e to an absolutely
continuous function & with #(0+) = u#(1—) = 0 and ¥’ square integrable over
(0, 1). The Dirichlet form is given by &(u, v) = %fol ' (x) - V' (x)m(dx). One
checksthat u € 7™ if and only if u admits an absolutely continuous (on (0, 1))
m-version ¥ with &’ sguare integrable over (0, 1). Such a function & necessarily
has finite limits at the endpoints of (0, 1). Of course, (&', ' N L2(E, m)) can
be identified as the Dirichlet form of the Brownian motion on [0,1] with reflection
at the endpoints.

Note that if (&, 7) is aregular Dirichlet space on L2(E, i) which is quasi-
homeomorphicto (&, 7),then (6" , 7' istheimage spaceof (6™, 7€) under
the same quasi-homeomorphic map j. Thusthe results established in [4], [22] and
[23] for reflected Dirichlet spaces remain valid in the current setting. In particular,
it follows from [4] that (6™, 7™ N L2(E, m)) isaDirichlet form on L2(E, m).

Animportant related object isthe extended Dirichlet space (&, #.). A function
fisin Z, if and only if there is an &-Cauchy sequence { f,},>1 in % such that
fn convergesto f m-ae. on E. The sequence { f,,},>1 is called an approximating
sequencefor f.Let &(f, f) :=1im,— 00 E(fn, fn), Which, by Lemma 1.7 of [23]
(or Theorem 1.5.2 of [11]), does not depend on the choice of the approximating
sequence. By Theorem 2.1.7 of [11], each function u € %, has a quasi-continuous
m-version u, and by Theorem 5.2.2 of [11] the Fukushima decomposition (2.2)
holdsforu € #,. Notethat it followsfrom Theorem 1.9 of [23] (or Theorem 1.6.2
of [11]) that (&, 7 ) isaHilbert spaceif andonly if (&, &) istransient. By Lemma
1.7 of [23] and the assumed irreducibility of (&', %),

ifue #,hasé&(u,u) =0, thenu isconstant m-a.e. on E. (2.5

Silverstein ([23], Theorem 16.2) has shown that 7' = #, when (&, 7) is re-
current. When (&, ) istransient, it isknown (see[4] and [23]) that the subspace
A c Z' of harmonic functions of finite & -norm is & -orthogonal to .7,
and that 7' = 7, @ #. A function i in # can be uniquely expressed as
h(x) = Ex[¢] for x € E, where ¢ is aterminal random variable for the right
Markov process associated with (&, #). A terminal random variable is an .-
measurable function ¢ on the sample space @ such that (i) E.|¢| < oo for g.e.
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x € E,(ii)pob =pon{t < ¢}forall ¢ > 0,and(iii) {¢ # 0} C {{, < oo}. (Here
¢p isthe predictable part of thelifetime¢.) Let { D, },>1 be an increasing sequence
of quasi-open set~swith Un>1D, = E g.e.. It followsfrom Lemma8.1 of [22] that
forg.e.x € E, {h(X¢p, )}n=1 isaPc-uniformly integrable martingale and

¢ = lim h(Xyp ), P.-as. (2.6)
n—o0

forge. x € E. Heretp, = inf{t > 0: X; ¢ D,}. In general, h(X,) isnot a
martingale. However by (1.16) of [4]

M = h(X;) — h(X0) + ¢y ¢ >0, (2.7)

is a martingale additive functional of X having finite energy; in particular, the
Revuz measure of (M") has finite mass. Thus by Theorem 1.4 of [4], M" is a
sguare-integrable martingale under P, for g.e. x € E. Conversely, if ¢ isaterminal
random variable of X and h(x) = E,[¢], then h € s if and only if the Revuz

measure of (M") has finite mass (see, e.g. [4]). Because 7' C 7|, ONe can
use Theorem (5.7)(iii) of [10] and an adaptation of Theorem 1.6 of [4] to see that

lim  h(X,) = h(Xc-) 1 <o0) + 0. 29)

t—>C,t<¢

where, as before, ¢; isthe totally inaccessible part of ¢. (See [10; p. 301] for the
fact that the left limit X, _ existsin E on {¢; < oo}.) Thus

M} =¢ —h(Xo) and M} =h(X; )<} + & —h(X0). (29

For later reference we record here the analogous statement for f € %, now a
direct consequence of Theorem (5.7)(iii) in [10]:

lim (X)) =100 f(X;~) Pe-asforqe xeE. (2.10)

t—>C,t<¢

In combination with Fukushima's decomposition (2.2), thisyields
M — M = —Fx. 1 211
¢ - = f( )z, <00} (2.11)
3. Crossing Estimate

Throughout this section we use A and B to denote digjoint quasi-closed subsets of
E, neither of which is &-polar. Define

Tap:={feZ¥:0<f<1 f=1qgeonAandf =0 ge onB},
and noticethat T'4 g is convex.

Lemma3.l. 'y pis&"™ -complete.
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Proof . Suppose first that X istransient. Let {f,} C T4 p bean &' -Cauchy se-
quence. Then f,, = g, + h, where g, € #,and h,, € #. Because 7, and # are
&' -orthogonal, both {g,,} and {,, } are &' -Cauchy sequences. Asnotedjust before
(2.5), 7, is&™ -complete, sothereexistsg € Z, withlim, ¢ (g, —g, gn—8) =
0. Extracting a subsequence if necessary, we can even assume that

Px( lim sup|Z,(X,) — 3(X,)| = 0) —1 forqex € E;

see Theorem 2.1.4 and Lemma 5.1.2 of [11]. In particular, g, (x) — g(x) for g.e.
x € E. Atthecost of extracting afurther subsequence, we can use Theorem 1.4 of
[4] to arrange that

PX(M,h” converges uniformly in¢ € [0, c0) asn — c0) =1 forge x € E.
Inview of (2.7) we therefore have
P (fo(X,)— fa(x) converges uniformly in € [0, ¢) asn — co)=1for gex €E.
But (&, &) isirreducible, so by Theorem 4.6.6 of [11],
Pi(op <) >0 forgexcekE,

and therefore £ (x) := lim, £, (x) existsfor g.e. x € E, because f,(X,,) = Oon
{op < ¢}. It follows that lim, i (x) = f(x) —g(x) for g.e. x € E, and then by
Lemma3.10f [4] that h := f — g isan element of # and that {i,} is &' -conver-
gent to . Consequently { /,,} is &' -convergent to f, from which it followsthat f
isan element of I'4_ 5. We have shown that every & -Cauchy sequencefrom Iy g
admits a convergent subsequence; this proves the & -completeness of I'y .pinthe
transient case.

Now suppose X isrecurrent, sothat 7' = 7 ,. Fix astrictly positive bounded
function y on E with [, ydm < oo, and let F denote the extended Dirich-
let space for the transient Dirichlet form (&7, #7) on L2(E, m), where #? =
F N L2, y) and

&Y (u,v) = E(u, v) +/ u(x)v(x)y(x)m(dx) foru,ve FV.
E

(This is the Dirichlet form for X killed at rate y.) Because u € # implies
uvO0)Ale Z,itiseasy to check that #, N L®(E, m) C Z . Of course,
TCop C F,NL®E,m). Let {f,} C 4 p bean & -Cauchy sequence. Clear-
ly sup,, &7 (fn. fn) < o0, so by the Banach-Saks theorem there is a subsequence
{futw) OF {2} whose Cesro means g; = k=1 21;21 fn(jy are &Y-convergent
(hence also &-convergent) to some g € %+ . Because (67, #7) is transient, the
sequence {gx} admits afurther subsegquence along which the quasi-continuous m-
versions gy = k=1 Z’; 1ﬁ,(k) converge &7 -g.e. (= §-g.e.) to g. It follows that
g € I'4 p. Now let f denote the limit of { f,,} in the abstract complet|on FA p oOf
T'a.5 (endowed with the metric associated with 6"). Then gy — f inTy p as
well,so f =g € Cap.ThusT4 |s(g”ef—complete|nthe recurrent case. O
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For Theorems 3.2 and 3.3 below, we assume that I"4 g iSs non-empty. Since
4 p isalso convex and & -complete, it admits a unique element F = Fa p oOf
minimal &"€ -norm; thisfollows by standard arguments because of (2.5). If (&, %)
istransient, then F = f +h,where f € #,andh € A#; weset MF .= M/ + M"
where M/ and M" are defined by (2.2) and (2.7). If (&, %) is recurrent, then
F e 7 = #,, inwhich casewelet MF be the martingal e additive functional in
the Fukushima decomposition (2.2) for F € .. In either case, M isaP,-square
integrable martingalefor g.e. x € E, and we have the “ Fukushima decomposition”

F(X)— F(Xo) =M} + NF —¢l<y, 120, (3.1)

where N isa CAF of zero energy and ¢ := 17, <o0) limy4¢ F(X,) istheterminal
variable associated with the harmonic part of F if X istransient, and simply O if
X isrecurrent; cf. (2.8) and (2.10). Let [M F] denote the quadratic variation of M
and let (M*) denote the dual predictable projection of [MF].

Theorem 3.2. Let S and T be finite stopping times with § < T < ¢,. Then for
quasi-every x € E,

E.([F(Xp) — 1% —[F(Xs) — 1% < E.(MF)r — (MF)s) (32

and
E.(F(X7)? — F(X5)?) < Ex((MF)r — (MF)g). (33

Proof . Using arguments found on pp. 322—-323 of [20], one sees that Fis equal
g.e. to the “ condenser potential”

G(x) :=P(o4 < o0p), x € E.

The function G defined above is quasi-continuous. Moreover, G is an excessive
function of the part process X£\B (X killed at o5); in fact, G is the equilibrium
potential of A relative to XZ\B_ It follows that N in (3.1) is non-increasing on
theinterval [0, o] and decreases only when X isin A, P,-as. forg.e.x € E. The
additivity of N¥ now implies that N is non-increasing throughout the random
timeset {+ > 0: X, ¢ B}, decreasingonlyon{t > 0: X, € A}.

Because the quasi-closed sets A and B are digoint, the quasi-left continuity of
X impliesthat P, (c4 = o < ¢) = 0for g.e. x € E. Consequently, 1 — F(x) is
equa for g.e. x to the complementary condenser potential H (x) := P (op < 04).
But clearly

H(X))— H(Xo) = -MF — NI + ¢y, >0,

P.-as. for g.e. x, so the preceding argument allows us to deduce that N is non-
decreasingon {r > 0: X, ¢ A}, increasingonlyon {t > 0: X, € B}. It follows
that there are positive continuous additive functionals (PCAFs) C4 and €8 such
that C4 increases only when X isin A, C® increases only when X isin B, and

Fx)) - F(Xo =M/ =} +CP — Ly, 120, (34
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By Itd’'sformula (see, e.g., Théoréme VI1I1.27 in [6]),

t
Fx)?— F(X0)2 = K, -2 /0 F(X,) [dCA — dCP] — ¢211 gy + (M),
= Kl‘ - ZCtA - ¢21{§§t} + <MF>t, (35)

where K isaP;-uniformly integrable martingalefor g.e. x € E'. The second equal-
ity in (3.5) followsbecause F = 1g.e.on A and F = 0g.e. on B. Combining (3.4)
and (3.5) we find that

[F(X)—1°—[F(Xo)— 1% = K[ +(M"), —2CP + 2p — ") 11 <, 1>0,

P.-as. for g.e. x € E, where K’ is another uniformly integrable martingale.
Consequently, if S < T < ¢, are stopping times,

[F(Xr) = U2 = [F(Xs) = 1] = K7 — K+ (M")r — (MF)s —2(CF - CF),

from which (3.2) follows upon taking expectations. Likewise, (3.5) implies
F(X7)? - F(X5)? = Kr — K5 = 2(C{ = C{) + (M" )7 — (MF)s,

from which (3.3) follows upon taking expectations. O

Let U, bethenumber of crossingsbetween A and B that the process X compl etes
by timet. Moreprecisely, definestoppingtimes S1, Sz, ..., T1, T2, ... by S1 = o4,
T, = Sl+030951,and|nduct|vely, Sy = Th-14+04907, |, Ty := S, +0pobs,.Let
thesequencesSl, So, ... Ty, o, .. . bedefined analogously withtherolesof A and
B interchanged. Now put UAZB =sup(n i T, <1}, UP~>4 :=supn: T, <1},
and finaly U, := UA~8 + UB~4. (Convention: sup® = 0.)

Theorem 3.3. If T isa stopping time, then
E.(Ur) <E.(M")r
forqge x € E.

Proof . Assume, for the moment, that T < ¢,. Observe that F(X s,) = lon
{8, < oo} andF(XTn) =0o0n{T, < oo}, Pi-as.for g.e. x € E. Thus, by (3.2),

P(U77 8 >=n) =P(T, <T)
= Ex((F(X7,a1) = 1% = [F(Xs,07) = U% T, < T)
< E:((F(Xar) — 1? = [F(Xs5,07) — 119
<E(MP) a1 — (MF)s,07) (36)
for g.e. x € E. Inthe same way, (3.3) leadsto

Pe(UF™4 2 k) < Ex(MT)z, o — (MT)g 1) 37

The desired inequality follows by combining (3.6) with (3.7) after summing as n
and k vary over thepositiveintegers—theintervas[S, AT, T, AT], [Sk AT, Ty AT]
(n, k > 1) have nointerior pointsin common and their unioniscontainedin[0, T].
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Turning to the general case, let {o}} be an increasing sequence of bounded
stopping times announcing the predictable stopping time ¢,. By the preceding
paragraph,

Ex(Urno) <E(M)1pg, k=1

The proof is finished by sending k off to co because Ur x4, increasesto Ur ask
increases to co. O

The following two lemmas record facts needed in the proof of Theorem 3.6,
our main result. We write 1 7y for the Revuz measure of the PCAF (M /).

Lemma3.4. For f € 7',
i) (E) = 26" (f, f)—/f(X)ZK(dx).

Proof . Fix f € 7' ¢ 9';I0c- Then there exists an increasing sequence { Dy }x>1
of quasi-open sets with Up? ; D = E g.e. and a sequence {gx} C # such that

f = g ae.on Dy. By (2.3), M/“ = M8 fort < 1p,, whence [M /], = [M#],
fort < tp,, for al k. Consequently,

M1 = M7+ 3 (Fxo) — F(X0))? forr <.

O<s<t

Attimec¢,

M), =M+ 3 (FXo) — Fx,0) 2+ ] — Ml )?

O<s<¢

=M+ Y (FX) = FX0)? + L <o [F (X2,

O<s<¢
the second equality following from (2.11). Therefore (see, e.g., [4]),

1

1, 1 V2 1~
S (E) = 51 (E)+ 5 f / (F@) = F»)* Jdx.dy)+ 5 / F@)2k(dx)

1 ~
=6 D -5 / For2e(dx). .

In what follows we write G, = [;° e * P, dt (@ > 0) for the a-potential
operator associated with X. With reference to the following lemma, see Section
5.1 of [11] for a discussion of the Revuz correspondence, which relates smooth
measures on E to PCAFsof X.

Lemma 3.5. Let 1 and v be smooth measureswith associated PCAFs C#* and C".
ThenE,C} = E,C/ forall t > 0.
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Proof . Any smooth measure 1 can be written as a sum of finite smooth measures
with bounded 1-potentials. (For example, u = Y 02 o iy, Where w, = 1p, i,
F,={n+1)"1<¢ <n1}, and ¢ isasin the proof of Lemma5.1.7 in [11].)
Because (1, v) — E,C; is additive in either argument, it therefore suffices to
consider the case in which w(E) + v(E) < oo and Ey [o° e'dc!' isaqe.
bounded function of x. But then the desired equality follows by Laplace inversion
from

0 o0
fo e “E,(C))dt =a'E, /O e dcy
= o (Gav) = a (Gop)
o0 o
:oFlEU[ e dct :/ e “E, (C" dt,
0 0

wherein all terms arefiniteif « > 1. The third equality aboveis an instance of the
“Revuz formula” and is a dight extension of formula (9.5) in [12]. o

Theorem 3.6. Fix f € 7 anda, b € R suchthata < b. Let U, be the number
of crossings of the interval [a, b] that are completed by the process s — f(Xs)
during thetimeinterval [0, ¢]. Then for any smooth measure i on E andany ¢ > 0,

E U < 2(b —a) 26" (f, £) |E.C!lloo, (3.8)

where C* isthe PCAF of X with Revuzmeasure i, and ||E.C! || isthe L (E, m)-
normof x > E,CF.

Proof. Let A = {x € E . f(x) <a}andB = {x € E : f(x) > b}. We
assume, without loss of generality, that neither A nor B is &-polar. Suppose first
that the killing measure « vanishes. Then ' contains the constant functions, so
U= Ov%/\lisanelementof 7' andisanormal contraction of (b—f)/(b—a).
Consequently, u € T'4 g, S0 the minimal-energy element F of T’y p exists, and
E(F, F) < &% (u, u). By Theorem 3.3, E U, < E,(MF),. Therefore (using
Lemma 3.4 for the third inequality and Lemma 3.5 for the equality),

E Ui <Eu(M"), =Ey,, Cl' < IIE.C/ lloo 1t(r) (E)
< 2/|E.C lloo & (F, F) < 2|[E.C/" 00 6™ (1, u)
<2 —a) PIECH 1™ (S, ).
When « # 0 we proceed as follows. Let X" be the Markov process obtained
by “resurrecting” (repeatedly) X at its death place X, whenever ¢ = ¢ < oo

(see[14], [19], and Section 18 in [23]). The Dirichlet form (6™, #') of X" is
related to (&, ) by

F={ueF®:uelL?E, r)

E,v) = Ew, v) +/ w(x)v(x) k(dx), u,veZ.
E
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In particular, the killing measure for X" is zero. The process X can be obtained
(inlaw) by killing X" at the time

S:=inf{t:C""® > —logU},

where U isuniformly distributed over (0, 1) and independent of X", Here we use
the fact that « is a smooth measure for X aswell asfor X (see[9]); C* " isthe
associated PCAF. Likewise i isasmooth measure for X", with associated PCAF
CH1%, Moreover, 1 under P® has the same distribution as C;* under P for

g.e. x € E. Thus, using the preceding paragraph,

EM(UI) = ELeS(Ut/\S)
< 2(b — a) ?|E"SCH N 00 (S, f)

IS

<2(b—a) 2|E.C/" |06 (f. 1) =
Let G := [,° P, dt denote the O-potential operator for X.

Corollary 3.7. Fix f € 7™ anda, b € R suchthata < b. Let U, be the number
of crossings of the interval [a, b] that are completed by the process s — f(Xjs)
during the time interval [0, 7]. Then:

() EnU; < 2t(b —a) 26 (f, f).

(ii) For any positive smooth measure w, E, U, < 2(b — a) 21+ 1)||G1iptlloo

S 1)
(i) If (&, 7) istransient and u is a positive smooth measure, then

E U < 2(b —a) ?|Gulles 8 (f, ).

Proof . Point (i) follows from Theorem 3.6 because the PCAF associated with m
ist — t A . Point (ii) follows from (3.8) by Lemma 5.1.9 of [11]. Finaly, (iii)
results upon taking r — oo in Theorem 3.6 and noting that E, C4, = Gu(x). O

Remark 3.8. Corollary 3.7(i) extends and sharpensthe crossing estimate of Lyons
& Zheng [17], which concerned symmetric diffusions on R".

Intheremainder of thissection, (&, &) isassumed to betransient. We study the
limiting behavior of f(X,) for f € 7. Let {Tk}r>1 be an increasing sequence
of stopping times of X with limit ¢. Recall that ¢; isthetotally inaccessible part of
thelifetime ¢.

Lemma 3.9. Assumethat (&, %) istransient, andlet f bean element of 7 .. Then
forgex e E

() imiser<g F(X1) = L <o f(X¢-), P-as,
(if) sup;>o | f(X;)|isPy-squareintegrable, and
(iii) f(X7,) convergesto0in L2(P,) ask — oo.
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Proof . Assertion (i) restates (2.10) — of course, the existence of this limit, in
[—o0, +0¢], is aso guaranteed by Theorem 3.7(iii). Because X istransient, there
isastrictly positive bounded Borel function y with bounded Green potential Gy .
Defining i (dx) = y (x)m(dx), we have

(U1 FO0)I > 1) < 16y Iow CaR T > 2. 2> 0,
=

where Cap is the 0-order capacity associated with X. In addition, by a result of
K. Hansson (Theorem 1.6 in [13]; the proof adapts easily to the present situation),
we have

/Oo Cap(|f] > M2rdh < 46(f. f).
0
It follows that N
R (SRLFXOI?) = 4G Rl . £). (39)
=

This proves assertion (ii), and (iii) follows from (i) and (3.9) because {7} < ¢, Vk}
C & = oo} |

Theorem 3.10. Let f ¢ 7™ have decomposition f = g +h, where g € 7, and
h = E.[¢] € #.Thenforg.e.x € E, f(X,) convergesP,-a.s.to f(X;—)1{; <co} +
¢ ast 1 ¢, and f(Xr,) convergesto ¢ in L?(P,) ask — oo.

Proof . Thetheorem follows from Lemma 3.9, (2.8), and evident properties of the
P,-square integrable martingale M" defined by (2.7). ]

4. Examples

In this section, we give three examples to illustrate the general results obtained in
the last section.

Example4.l. Let X = {X;,t > 0} be an irreducible continuous-time Markov
chain on a countable state space E. For x, y € E, define

o0
pi(x,y) =P(X;=y) and G(x,y) I=/0 pi(x, y)dt.
For x, y € E thelimit

. ope(x,y) = bxy
s =lim——
q(x,y) m ;

exists, 0 < g(x,y) < coif x # y, —00 < q(x,x) <0,and 3", q(x,y) <
—q(x, x). The symmetry of X amounts to the “ detailed balance” equations:

m(x)q(x,y) =m(y)q(y, x), x#y,

wherem(x) := m({x}).
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The Dirichlet form (&, %) on L?(E, m) associated with X is given by

1
6(f.0) =35 ) If@) = fO]-[8@) —gWIm)qx.y). (&)
xy

on the domain %, which contains the compl etion of the space of finitely supported
functions on E endowed with the inner product &1 = & + (-, *) 2 - It iS€3SY
to seethat

7' = {f DY L) = FOPm)g(x. y) < oo} (4.2)
xXFy

andthat &' ( f, g) isgivenby theexpression ontheright side of (4.1). Givenx € E,
the Revuz measure of the PCAF

t
(o ::/0 1 (Xs)ds, t>0,

consists of amass of size m(x) concentrated at x. By the strong Markov property
of X applied at the hitting time of {x},

t

t
E,C; <E.C/ =/ P.(X; =x)ds =/ ps(x, x)ds
0 0
foral y € Eandr € [0, oo). Thusfor every f € 7' we have by Theorem 3.6,

t
m(x)E U, <2(b— a)_z(/o ps(x,X)dS)é‘”Ef fs )s (4.3)

where U, is the number of crossings of [a, b] by s — f(X;) during the time
interval [0, ¢]. In particular,

m(x)ExUss < 2(b —a)2G(x, x) &' (£, f). (4.9)

Example4.2. Let Y = {Y,, n = 0,1,2,---} be an irreducible discrete-time
Markov chain on a countable state space E, with transition probability function
px,y) =P¥ut1=y|Y, = x). Define, forx, y € E,

]

Pl y) =P =Y =x) and H(x,y) =) p"(x,).
n=0

Assumethat Y is symmetric in the sense that thereis ameasure m on E with
m(x)p(x,y) =m(y)p(y, x), forall x # y,

wherem(x) = m({x}) asbefore. Let (I1(z));>0 beaunit-rate Poisson process (with
I1(0) = 0) independent of Y. Then

X: ==Y, t >0,
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is a continuous-time Markov chain as in Example 4.1, with symmetry measure m
and “infinitesimal transition rates” ¢ (x, y) equal to p(x, y) (x # y). Notice that

G(x,y)=/0 Px(xz=y>dt=/o P (Vi = y)di = H(x, y)

forall x,y € E.

Let (6", 7)) and U, be as as in Example 4.1, with ¢(x, y) replaced by
p(x,y).For f € 7™ andreal a < b, the number UY of crossings of [a, b] that
k — f(Yx) completes by timen is equal to Ur,, where T,, = inf{r : TI(t) = n}.
Thus, by Theorem 3.6 and independence,

m(x)E;UY =m(x)E,(Ur,)
< 2(b — a)"’EL(C},) 8 (f. )

n—1
=20 —-a) %) P, ) 8 ), (4.5)

k=0

for al x € E. Sending n toinfinity in (4.5) we obtain
mx)EUY < 2(b—a) 2H(x, x) & (f, 1), (4.6)
whichis Theorem 1.3 of [2].

Example 4.3. Inthisfinal example suppose that our symmetric right Markov pro-
cess X is adiffusion in the sense that r — X, is continuous on [0, ¢) and ¢ is
predictable. In this case the Beurling—Deny decomposition simplifies to

1
£(f.8) = E/EF(f, QWx).  fige 7

where I'(f, g) isthe (signed) Revuz measure of the CAF (M7, M8).

For example, if E is afinite-dimensional Riemannian manifold and X is the
associated Brownian motion, then dT°(f, g)/dm = V f - Vg, where m is the Ri-
emannian volume measure. Similar expressions for I'(f, g) occur when X is the
diffusion associated with a divergence-form generator or an infinite-dimensional
diffusion of “gradient type”; see, e.g., Section 11.3 of [18], and also [8] for examples
of diffusions on path and loop spaces over compact Riemannian manifolds.

In the present setting,

e _ {f € Floc: /El"(f, fldx) < oo},

andif f € 7™ thenT'(f, f) isthe smooth measure associated with (M /). Thus,
taking T = oo in Theorem 3.3, we obtain

ExUs <E,(M')o = G(I(f, f))(x) forgex € E, 4.7

where U isthe total number of crossings of [a, b] by ¢ — f(X 0.
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When E isafinite-dimensiona Riemannian manifold and theinfinitesimal gen-
erator of X isauniformly elliptic divergence-form operator, thetransition operators
of X admit continuous densities with respect to the volume measure m, and this ad-
ditional smoothness allows oneto eliminate the exceptional setin (4.7). Thisyields
Corollary 8.4 of [2]. Also, speciaizing Corollary 3.7(iii), we recover Corollary 8.5
of [2].

Acknowledgement. We thank Russell Lyons for his helpful comments on the manuscript.
References

1. Albeverio, S, Ma, Z.-M.: Necessary and sufficient conditions for the existence of
m-perfect processes associated with Dirichlet forms, Seminaire de Probabilites XXV,
Lect. Notes Math. 1485, 374-406 (1991)

2. Ancona, A., Lyons, R., Peres, Y.: Crossing estimates and convergence of Dirichlet func-
tions along random walk and diffusion paths, Ann. Probab. 27, 970-989 (1999)

3. Burdzy, K., Pitman, JW., Yor, M.: Some asymptotic laws for crossings and excursions,
Colloque Paul Lévy sur les Processus Stochastiques (Pal aiseau, 1987), Astérisque 157—
158, 59-74 (1988)

4. Chen, Z.-Q.: On reflected Dirichlet spaces, Probab. Theory Rel. Fields 94, 135-162
(1992)

5. Chen, Z.-Q., Ma, Z.-M., Rockner, M.: Quasi-homeomorphisms of Dirichlet forms,
Nagoya Math. J. 136, 1-15 (1994)

6. Dellacherie, C., Meyer, P-A.: Probabilités et Potentiel, Chapitres V a VIII, Hermann,
Paris (1980)

7. Dong, Z., Ma, Z.-M., Sun, W.: A note on Beurling—Deny formulae in infinite-dimen-
sional spaces, ActaMath. Appl. Sinica (English Ser.) 13, 353-361 (1997)

8. Driver, B.K., Rockner, M.: Construction of diffusions on path and loop spaces of com-
pact, Riemannian manifolds, C. R. Acad. Sci. Paris, Sér. | Math. 315, 603-608 (1992)

9. Fitzsimmons, PJ., Getoor, R.K.: Revuz measures and time changes, Math. Z. 199,
233-256 (1988)

10. Fitzsmmons, P.J.: Markov processes and nonsymmetric, Dirichlet forms without regu-
larity, J. Funct. Anal. 85, 287-306 (1989)

11. Fukushima, M., Oshima, Y., Tekeda, M.: Dirichlet Forms and Symmetric Markov
Processes, Walter de Gruyter, Berlin (1994)

12. Getoor, R.K., Sharpe, M.J.: Naturality, standardness, and weak duality for Markov
processes, Z. Wahrsch. Verw. Gebiete 67, 1-62 (1984)

13. Hansson, K.: Imbedding theorems of Sobolev typein potential theory, Math. Scand. 45,
77-102 (1979)

14. Ikeda, N., Nagasawa, M., Watanabe, S.: A construction of Markov processes by piecing
out, Proc. Japan Acad. 42, 370-375 (1966)

15. Kuwae, K.: Functional calculusfor Dirichlet forms, OsakaJ. Math. 35, 683—715 (1998)

16. Kuwae, K.: Reflected Dirichlet forms and the uniqueness of Silverstein’s extensions,
Preprint (1998)

17. Lyons, T., Zheng, W.: A crossing estimate for the canonical processon aDirichlet space
and atightness result, Astérisque 157-158, 249271 (1988)

18. Ma, Z.-M., Rockner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet
Forms, Springer-Verlag, Berlin (1992)

19. Meyer, P-A.: Renaissance, recollements, mélanges, ralentissement de processus de
Markov, Ann. Inst. Fourier (Grenoble) 25, 465497 (1975)



Z.-Q.Chenetal.

20.

21.
22.
23.

Oshima, Y., Yamada, T.: On some representations of continuous additive functionals
locally of zero energy, J. Math. Soc. Japan 36, 315-339 (1984)

Sharpe, M.: Genera Theory of Markov Processes, Academic Press, San Diego (1988)
Silverstein, M.L.: The reflected Dirichlet space, I1l. J. Math. 18, 310-355 (1974)
Silverstein, M.L.: Symmetric Markov Processes, Lect. Notes Math. 426, Springer-
Verlag, Berlin (1974)



