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Abstract. Sompolinski and Zippelius(1981) proposethe study of dynamical systemswhose
invariant measures are the Gibbs measures for (hard to analyze) statistical physics models
of interest. In the course of doing so, physicists often report of an “aging” phenomenon. For
example, aging is expected to happen for the Sherrington-Kirkpatrick model, a disordered
mean-field model with a very complex phase transition in equilibrium at low temperature.
We shall study the Langevin dynamics for asimplified spherical version of thismodel. The
induced rotational symmetry of the spherical model reduces the dynamics in question to
an N-dimensional coupled system of Ornstein-Uhlenbeck processes whose random drift
parameters are the eigenval ues of certain random matrices. We obtain the limiting dynamics
for N approaching infinity and by analyzing its long time behavior, explain what is aging
(mathematically speaking), what causes this phenomenon, and what is its relationship with
the phase transition of the corresponding equilibrium invariant measures.

1. Introduction

Spin glasses are expected to show a very complex phase transition in equilibrium
at low temperature (the so-called spin glass phase), at least in the mean field model
(that isthe Sherrington-Kirkpatrick model, hereafter SK). This prediction of aspin
glass phaseis dueto Parisi (see[23] for asurvey); the mathematical understanding
isyet far from complete (see[1, 9, 11-13, 32]) in spite of recent progress mainly
due to Talagrand ([27—29]) and Bolthausen-Sznitman [7].

Studying spin glass dynamics might seem premature, since statics are not yet
fully understood. Nevertheless, following Sompolinski and Zippelius[26], amath-
ematical study of the Langevin dynamics has been undertaken by two of the authors
in the recent years (see [2, 3, 18]). The output of this line of research has been to
prove convergence and large deviation results for the empirical measure on path
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space as well as averaged and quenched propagation of chaos. The same problem
has been solved by M. Grunwald for discrete spins and Glauber dynamics[9, 17].
Thelaw of the limiting dynamics (the self consistent single spin dynamics) is char-
acterizedinvariousequival ent ways, fromavariational problemtoanon-Markovian
implicit stochastic differential equation, none of which being yet amenable, for the
moment, to a serious understanding. The task at hand isto understand the behavior
of these dynamics for large times, and in particular to check the prediction that
they exhibit aging regime, i.e. that the correlation between the spin at times s and
t really depends on both s and ¢ in acomplex way for low temperature (see [8] for
avery interesting survey on this subject).

This paper deals with a considerably simpler model than SK, that is “soft”
spherical SK (denoted SSSK in the sequel). The most serious difficulty in SK
dynamics is that the law of the coupling matrix and of the thermal noise have
rotational symmetry whereas the state space is a hypercube (or its vertices for the
discrete case). The spherical model has a sphere as its state space (or a spherical
congtraint) and thus is far simpler (see [12, 20] for former studies of states of
SSK). More precisaly, weshall consider thefollowing stochastic differential system
(denoted hereafter SDS)

N N
dui =" Jijuldi — f' (NE (u{>2) uide+ pY2awi (L1
j=1

j=1

where g8 isapositive constant, f/ isauniformly Lipschitz, bounded below function
on R* suchthat f(x)/x — oo asx — oo and (Wi)1<;<y isan N-dimensional
Brownian motion, independent of {J; ;} and of the initial data {u}.

The term containing f is a Lagrange multiplier used to implement a “soft”
spherical constraint. The system (1.1) is the Langevin dynamics for

N 1 N . 18, N
v] (du)zﬁexp B Zlijuful—Nf<Nj§(u1)) Edu’, (1.2)

ij=1

with v (-) thus being the equilibrium (invariant) measure of (1.1). For standard
SSK model, J;; isasymmetric matrix of centered Gaussian random variables such
that

1 2
E[J3] = I E[J7] = N

However, we shall also consider more general entries in the sequel. Namely, we
can take any coupling J of the form

J=G"DG

where the orthogonal matrix G follows the uniform law on the sphere, D is a
diagonal matrix and also G and D are independent.
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In this article, we study the convergence for solutions of (1.1) as N — oo
and prove the Large Deviation Principle (denoted hereafter L DP) with Good Rate
Functions (denoted GRF) for related objects of interest.

We describe the limits of the empirical covariance for the solution of (1.1) (see
Theorem 2.3). Moreover, we study their time evolutions and show that they exhibit
adynamical phase transition which is aweak type of aging (see Section 3).

Under a spherical constraint, the equation for the time evolution of the cor-
relations has already been proposed and its consequences derived in the physics
literature [14]. However, the treatment of [14], even though correct on the level of
intuition, does not contain detailed proofs which induced the length of the present
paper; the convergence of the empirical covariance is not completely proven (see
indication at the end of Section 2 to makeit rigorous) and the dynamical phasetran-
sition study, relying on fine complex analysis (existing Tauberian type of theorems
failing), isonly stated (see Section 7).

The methods used here to prove convergence of the dynamics are different
from the onesused in [2, 3, 17, 18] which were based on a perturbation argument
using Girsanov theorem. Here, we can even tackle the case of zero temperature, i.e.
B = oo (and thus the dynamics is deterministic except for the randomness of the
coupling and of the initial conditions), and we can choose rather general random
coupling J.

The important simplification offered by the spherical model is that the system
(1.1) isinvariant with respect to rotations. In particular, if we writeJ = G*DG
where G is an orthogonal matrix and D is the diagonal matrix of the eigenvalues
(A1, .., An) Of J, then v, ;= Gu, satisfiesthe simpler SDS

1
dv; = Dv,dt — f' <ﬁ|v,|2> v dt + BY2dB, (1.3)

where B := GW isan N-dimensional Brownian motion and |v, | isthe Euclidean
norm of the vector v, .

Thisdiagonalized systemisinteresting initsown right; it isasystem of random
modes Ornstein-Uhlenbeck processes coupled by afunction f/ of theinstantaneous
(int) empirical variance.

The main merit of the SSSK model we treat in this paper is that it is simple
enough to allow for rigorous proofs and a first mathematical understanding of the
aging phenomenon, which is aform of dynamical phase transition, and enable us
to isolate the main features that are crucial for this phenomenon to appear.

Aging is supposedly common in disordered systems, and even in some non
disordered ones. Let us first mention a few of these examples, from the physics
literature on the subject. The survey [8] contains avery interesting list of possible
examples of aging. The simplest being certainly low temperatures dynamics for
disordered ferromagnets (see aso the recent mathematically rigorous papers [24,
25]). Aging is aso expected in the Random Field Ising Model (see [10]). In the
context of spin glasses, the debate among physicists seems still unresolved for
local models (like Edwards-Anderson model), see the discussion in [8]. For mean-
field spin glasses a very complex picture of aging is advocated for the SK model,
but even with the help of the whole apparatus of the replica symmetry breaking
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methods, it isnot yet fully understood in the physics literature, and needless to say
inthe mathematicsliterature. One model seemsto bewell understood by physicists,
and that is the p-spin model (with p > 3). This model is still beyond reach of any
mathematical understanding, even though some progress has been maderecently in
[28] for the statics of the p-spin model. The much simpler SSSK model isamenable
to a mathematical analysis, and shows an interesting dynamical phase transition.
It should be noticed that we also show here a static phase transition, and that the
static and dynamic critical temperatures are equal, which is not always true if one
believes [8].

Sowhat isaging? It isamanifestation of the complexity of an energy landscape,
for time scales which are long but much shorter than for metastability or equili-
bration to happen. It is very dependent on initial conditions: it happens typically
for low temperature dynamics started fromi.i.d initial conditions (or after a*“deep
quench”, i.e from the equilibrium measure at very high temperatures). Thisis a
very different context than for metastability questions or for equilibrium dynamics
guestions, which are concerned by much longer time scales, and different initial
conditions: typically pure-stateinitial conditions for metastability and equilibrium
measures for spectral gap questions and equilibrium dynamics. Aging is present
when asystem needs along timeto forget its state at time ¢, when r islarge (usually
at low temperatures only). More precisely when the time needed to forget the state
at time ¢ depends on ¢. This is usually measured by the time correlation function
K (s, t). Aging implies that the time tranglation invariance islost for this function,
and that as [8] puts it: one must think in the two-times plane where K (s, ¢) does
not decay to zero when s (the age of the system) and r — s (the duration of the
experiment) both tend to oo but when ¢ — s is not large enough compared to s.

One should emphasize here that the order of thelimitsiscrucial. Onefirst takes
the thermodynamic limit (N — oo, N being here the size of the system) and then
studies the long time behavior of the limiting dynamics. This order of the limit
operations precludes any possibility of metastability transitions (at least when the
barriersbetween wellsgrow with N); the systemisnot given enough timetogofrom
one deep well to another one. Thiswill explain what happensfor initial conditions
(IC3) below, where the SSSK model starts from a zero-temperature ground state,
i.e., the top eigenvector of the random matrix. The question of aging is much more
about how the systems lingers “ on the boundary” of basins of attractions than how
it gets from one to another as for metastability or how it evolves when started from
mixtures of such pure states as in equilibrium questions (see Section 3.4). Another
point must be emphasized about the order of the limits: for aging we look at the
behavior of the limiting dynamics when both s and ¢ go to co. Clearly when s goes
first to oo aone, then the equilibrium picture should prevail. We will see thisis
really the case.

The aging mechanism we show in thiswork might seem surprising at first sight,
precisely because of the short time scales involved. We emphasize though that this
is precisely the time scales involved in the works on the RFIM [10], or on Ising
model [24]. Another, completely different, mechanism of aging could be sought,
for much longer time scales. If the time scale were dependent on the size N of the
system, one could envision the possibility for randomly coupled systems to age
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through a mechanism of visiting in various time scales, different wells of depths
in various scales. The question then is closer to the picture of a complex energy
landscape advocated for the static picture of most spin glass models: this other
aging mechanism would result from a competition between the long time needed
to find randomly located wells with depth of a given scale and then the time to get
out of those wells. This mechanism is not possible in the shorter time scaleswe are
considering in this work.

Finally, the model isflexible enough to enable usto analyze the role of the ran-
domness of the coupling in the appearance of aging. We work with rather general
coupling randomness (see (H0), (H1) and (H2) below), and isolate the natural hy-
pothesisfor aging. The most important conclusion about therole of thisrandomness
isthat aging does not appear unlessthelevelsjust below the top of the spectrum are
populated enough, i.e., the limiting spectral measure should give enough weight to
the high modes. Infact, aging appears because the energy levels of our Hamiltonian
next to their minimum value, which are related with the eigenval ues of the matrix
J, differ only by an energy of order of the inverse of the number N of particles.
Consequently, the system may visit al the states corresponding to these energies
in finite time (e.g. independently of N), creating a specific long time behavior of
the limiting system determined by the distribution of this cloud of energy levels. In
fact, aging could al so appear ininhomogeneous (possi bly non random) environment
models, provided the energy levels present such a distribution.

With6V = % Z,N:l 8, denoting the empirical measure of the eigenvalues of
J the following assumption is made throughout this article.

(HO) There exists a (non-random) compactly supported probability measure o
with at most finitely many atoms such that 6 — o in 2(R) for a.e. A.

Let [A*, A*] denote the smallest interval which supports o . Since the diagonal-
ized system (1.3) isinvariant tothetransformation A; < A; +k, f'(x) < f/(x)+k,
for any k € R, we may and shall choose the constant k hereafter to be such that
A = =A%

We also assume throughout that the extreme modes almost surely converge to
within the support of o. That is,

(H1)

P(Iimwpml\éi(pm <) =1

N—ooo 1=

For our results about the dynamics we further assume the following strict
positivity of o

(H2) o(G) > Ofor everyopenset G C [—A*, A*].

Although we assume the support of o convex (as for Wigner's semi-circular
law), our work could be generalized to other compactly supported measuresif we
assume that for N large enough all the eigenvalues remain in the support of the
limiting measure o, asinsured hereby (H1) and (H2). Without such an assumption,
the GRF governing our LDPs might no longer be determined completely by the
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limiting measure o (as shown for example in the somewhat different context of
[B]). In particular, the free energy for the model may well be different. However,
wecould significantly relax (H1) and (H2) if wewereto proveonly the convergence
of theempirical dynamical covariancewhen the system startsfor instancefromi.i.d.
initial conditions.

The organization of the paper is as follows. In Section 2 we state our as.
convergence results for the diagonalized system (1.3) and its invariant measure
as N — oo. These as. statements are derived here from the quenched LDPs
we obtain for the dynamic (1.3) and its invariant measure (given by (2.1)), in
Sections 5 and 4, respectively. The quenched LDPs are about the large deviations
due to the randomnessin the Brownian motion B and theinitial conditions vg, per
given infinite realization A\ of the eigenvalues of J. Each of our quenched LDPs
holds for a.e. such A, with the non-random GRF independent of A, and we obtain
the corresponding a.s. convergence result by finding the unique minimizer of the
GRF.

This study of (1.3) is done under four different initial conditions, the first con-
sisting of i.i.d random variables, the second of rotated i.i.d (that is, u6 of (1.1) are
i.i.d. random variables), the third indicating that we are beginning from the eigen-
vector of J corresponding to the maximal eigenvalue, and the last corresponding to
the stationary initial conditions given by (2.1).

Under the somewhat stronger assumptions (HOa) and (H1a) about the dis-
tribution of the eigenvalues of J we derive in Section 5 also annealed LDPs for
(1.3). The latter LDPs involve expectations with respect to A, thus taking into ac-
count also the possible large deviationsin A (but are not needed in so far as a.s.
convergence is concerned). Section 6 collects new tools and results, needed mostly
for the derivation of our LDPs, which are of a more genera scope and of some
independent interest.

Asillustrated at the end of Section 2, large deviation techniques are not needed
for the a.s. convergence results for the diagonalized system starting from i.i.d ini-
tial conditions. However, these techniques are crucia for the study of the static
phase transition as well as when considering other initial conditions, for example,
stationary. Moreover, they provide a more complete picture which may help in the
study of other models.

In Section 3wepresent theanalysisof thea.s. limit lawsof (1.3)for N — oo in
the special case of f/(x) = cx, deferring the proofs of most key technical stepsto
Section 7. (To simplify matters we do not study the phase transition phenomenon
for non-quadratic f. However, the derivation of the limiting equations is exactly
the same for any super linear f, so we keep it at thislevel of generality.) We find
that the dynamica phase transition with respect to the parameter g matches the
static phase transition for the invariant measure of (2.1) and is characterized by the
onset of aging above criticality, at least for i.i.d. and rotated i.i.d. initial conditions.

We conclude the introduction by illustrating our main results as they apply for
a specific model of SSSK, the coupling J of which corresponds to the Gaussian
Orthogonal Ensemble (denoted hereafter GOE), wheretheentries (J;;)1<i<j<y are
independent centered Gaussian variables with covariance [E[Js.] = (1+38;=)/N.
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To give explicit formulae, we choose f (x) = cx?/2. The GOE satisfies (H0) with
o the so-called semi-circular law (see[4] and Section 6.1), which is positive in the
sense of (H2). The fact that the GOE satisfies (H1) follows for example from the
LDP of Theorem 6.2 for the maximal eigenvalue, which is of some independent
interest. (However, since the eigenvalues for the GOE are not uniformly bounded,
(H1a) does not hold then, rendering the annealed LDPs of Section 5irrelevant for
this choice of J.)

Starting with the static properties of this SSSK model, our first result is the
almost sure convergence of the free energy for 8 > 0

F=I|m—IOZ J ..
ﬂ Ng‘] a.s

N—>oo
1 1
= |nf {ﬁsz - — log(s — A)v4— xzd)»} + = Iog(nﬁfl)
25>2 2 A|<2 2

Alternatively, we obtain the more explicit formula
1— x -1

/2
+ 1- |Og(7‘[ﬂ_1) + 2(1 x fl v - ldw if IB < ﬂc
2 Ex,g otherwise,
(14

1
Fﬁ:Z

wherexg = /8. —1and B. = c¢/4 at which agF,g is hot continuous (see Section
3.1).

The static phase transition can al so be characterized by the diagonalized Gibbs
measure /,LA defined in (2.1). We show in Theorem 2.1 that the empirical measure

oY = N7t 8, converges under pY, for almost every J, towards a non-
random probability measure vy € Z(R). Below criticality vy has a sub-Gaussian
tail whereas v hasinfinite fourth moment above criticality. We note in passing that
the empirical measure under v JN always converges towards a Gaussian law with a
finite variance ug > 0 (this follows from Theorem 2.1 and the ideas of Section
5.3).

About the dynamics for this special model, we get a quenched LDP for the non
centered empirical covariance

N
1 o
KN, s) = 5 > ujul. (1.5)
i=1

of the solution of (1.1) starting either from i.i.d initial conditions, spherical initial
conditions (including the Gibbs invariant measure) or initial conditions depending
on the matrix J, namely the eigenvector of J with maximum eigenvalue. Studying
the GRFs of the LDP showsthat KV converges almost surely towards the limiting
covariance K (¢, s) of Theorem 2.3. In fact, the centered covariance

1 N1 &,
Kn(t,s) = KNG@,s) — (ﬁ Zu;) <ﬁ Zu’s> (1.6)
i=1

i=1
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has the same limit behavior as KV when N goes to infinity for al of the above
initial conditions, except when (ug)lf,-SN arei.i.d. with a non-centered law (See
Proposition 3.7). Even in the latter case the limits of K and Ky have the same
long time behaviors (See Section 3.6). Hence, in the following, we shall focus on
K" and, to simplify the exposition, call KV the empirical covariance.

In Section 3.2, we analyze the limiting covariances K (¢, s) and show that,
starting from i.i.d initial conditions, they exhibit a dynamical phase transition at
the critical temperature (1/8.) and an aging phenomenon for low temperature (see
Proposition 3.2). More precisely, when starting from i.i.d initial conditions:

o If B < B, thenK(z,s) < Cpexp(—dglt — s|) for somedg > 0, Cg < oo and
al (1, s).

e If B = B, then K(¢t,s) — Oast —s — oo. If t/s is bounded, then the
polynomial decay isof power (1 —s)~1/2, and otherwiseit behaveslikes/2: 1,

o If B> pB.andr > s > 1, then K(z, s)(t/s)¥* is bounded away from zero
and infinity. In particular, the convergence of K (z, s) to zero occursif and only
if t/s — oo.

In contrast, starting from the top eigenvector, the aging phenomenon does not
appear. That is, K (z,s) — cga € (0, 00) forany 8 > 8., regardless of how ¢ — s
and s approach infinity (see Theorem 3.4). The Edwards-Anderson parameter ¢ 4
isalsothelimit of K(z,s) = K (|t — s|) when starting from the invariant measure
v of (1.2), as shown in Proposition 3.5.

The convergence of the empirical covariance K follows from the study of the
diagonalized system (1.3) which hasthe same empirical covariance. Wewill in fact
prove aquenched L DP for the couple of the empirical covariance and the empirical
measure of this diagonalized system (see Theorem 2.4). As a consequence, we
shall get the almost sure convergence of KV and of the empirical measure for
this diagonalized system. The limit law for the empirical measure is shown to be
themixture [ pdo (1), where 11, isthe weak solution of the Ornstein-Uhlenbeck
processes (2.15) with an appropriate initial data.

Whenever we state a LDP or convergence result for random probability mea-
sures, such LDPor convergenceareinthespace 7 (%) of Borel probability measures
on a Polish aphabet space ¥, endowed with the corresponding Cj(%)-topology.
The space 2(X) is also often considered a subset of the vector space C(X)’, the
algebraic dual of C;(X), endowed with the C;,(X)-topology. Likewise, a LDP or
convergence for R?-valued random functions whose domainissuch ¥, isto be un-
derstood in the space C,(XZ) of continuous, bounded functions endowed with the
uniform (supremum-norm) topology, whereas such statements for R?-valued ran-
dom vectors are with respect to the usua (Euclidean-norm) topology. Statements
about product objectsthe coordinates of which are random measures, random func-
tions and/or finite-dimensional random vectors are to be understood with respect
to the product of the above mentioned topologies. The o-fields involved in such
statements are always the Borel o -fields for the relevant topology, completed with
respect to the collection of null sets common to the sequence of laws considered.
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LDP or convergence for dynamical systems will hold until afinitetime T > 0,
hereafter fixed but as large as required. The GRF of our LDPs often involve the
relative entropy function, denoted I (w|v). Another notation we frequently useis
y, for the law of a centered Gaussian variable with variance (1/u) for u > O.

2. Study of the diagonalized system

Inthissection, weassumethat wearegiventhelaw oV of theeigenvalues (A1, .., Ay)
of J and consider the mean field Gibbs measure

1 al 1
N _ 2 il
uA(d'v)_—Zg exp{ﬂ <i§=lx,vi Nf(N

N
i=1

ul?)> } ﬁ dv; 2.1)

i=1

with

N N N
zy =/exp!ﬁ(ZAivf—Nf(N—lzvl?))}l_[dvi.
i=1 i=1 i=1

We also consider the associated Langevin dynamics

N
. . 1 . . .
dvi = nvide — f (ﬁ > j(v;)z) vidt + Y24 B, (2.2)

j=1

including the case of B8 = oo. As shown in Section 6.4, our hypotheses that f” is
uniformly Lipschitz and bounded below on R imply the existence of a unique
strong solution of (2.2) in €([0, T], RY) for any finite time T and any initial
condition vo which isindependent of {B!}.

We want to study the asymptotic behavior of the empirical measure

1N
0y = 5 Z 8u;
i=1

under ,uy aswell asthat of the empirical measure on path space

v 1

0= ;5%” (2.3)
and the (empirical) covariance term

N 1¢ Qi

K" (s, 1) = v ;vsv, , (2.9

when the spectral measures 6V of J converge as. to o asin (H0). To state our
convergence result for the statics, let us introduce

h(u,v) ‘= g —Bfw)+ pv+ % log(27) (25)
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and
k(u,v) = 3115) {av+ pu — L(p, )}, (2.6)
for
Lip.a) = {;O% [log(1— 2(cer + p))do (x) gth(_:mxs;r p<1/2 27)
Then,

Theorem 2.1. Assume (HO), (H1) and f isstrictly convex. Then, for almost all A,
a) The free energy converges and

ST 1 N _
Fg = lim NlogZA ——Iur’lllj{k(u,v)—h(u,v)}. (2.8)

N—o0

b) For almost all A, 9} converges almost surely under wy in 2(R) towards
Vo 1=/V1—2(aﬁx+p,g)d0(?»), (2.9

with N1 v2 converging almost surely toug > 0. The couple (ug, vg) isthe
unique minimizer of (2.8). For A* > 0, the couple (og, ag) iswhere the supremum
ink(ug, vg) is uniquely achieved. In contrast, vg = 0 for A* = 0, rendering ag
irrelevant and resulting with vy = y1/u, -

Remark. Z}' = ZY, so (2.8) gives also the free energy limit for the invariant
mesasure (1.2).

We shall seein Section 3that the phasetransition can be described by the couple
(pg,ap) incase A* > 0. Below criticality, |ag|A* + pg < 1/2 so that v§ has a
sub-Gaussian tail. Above criticality, |ag|A* + pg = 1/2 and in fact vj may have
only afinite number of moments (for the semi-circular law, v hasfinite second but
not fourth moments). In contrast, for constant modes, or more generally whenever
1* = 0, thereis no phase transition as vg; is always Gaussian.

Theorem 2.1 is a direct consequence of the following quenched LDP result,
proved in Section 4.

Theorem 2.2. Under (HO) and (H1), for 8 € (0, co) and almost all A, the free
energy converges to F of (2.8) and the random variables

1, 1 1
2 2
Yév = (ﬁ Zvi , N Z)\,ivi , N Z(SA[’U[>
i=1 i=1 i=1
satisfy the LDP in R? x 22(R?) under n) with the GRF

%O(M,v,n) = (u,v,m)—h(u,v)+ Fg (2.10)
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where h(u, v) isgiven by (2.5),

H(u,v, ) = I(tlo®@y)+3 (u— [w?dn(h, w)) if 7 €., v)
R S otherwise,
(2.11)

for I(-|-) therelative entropy function, and (with 0/0 := 0),

A (u,v) = {n e 2R :m =o,

u > /wzdn(k,w)+|v—/kw2dn(k,w)|/k*}. (2.12)

When f isstrictly convex, the unique minimizer of]/ois(u,g, vg, w¥) fordm* (A, w)
= Y1-2(epr+pp) (dw)do () corresponding to (2.9).

For dynamics, we shall prove a convergence result when starting from the
following initial conditions
(IC1). The independent initial conditions: (vé)ls,-SN are i.i.d random variables,
independent of A and of B. The marginal law vg of each v6 is such that

1 Ao(n) = log f M dvg(v) (2.13)

is continuous and Ag(ng) < oo for someng > 0.

(IC2). Therotated independent initial conditions: vg = GugwhereG, independent
of X and B, followsthe normalized Haar measure Hy on SO(N), that is G follows
the uniform law on the random orthogonal matrices and g, independent of G, of
X and of B, issuch that {N ~1|ug|?} satisfy the LDP with some GRF « (-) that has
aunique, strictly positive, minimizer.
(IC3). The top eigenvector initial conditions: Set A1 = A} = max{iy, .., Ay}
and vo = (VN 0, .., 0), so that ug is the eigenvector of J corresponding to the
maximum eigenvalue A}, normalized to be on the sphere of radius VN.
(IC4). The stationary initial conditions. f is strictly convex and wvq follows the
Gibbs invariant measure Mf, independently of B, resulting with the stationary
solution v, of (2.2).

The more general case where the law of vg isspherical, can also be considered.
That is,

N N N
i 1 1 . 1 . .
dP ((vh)1<i<n ) = =— exp{—Ng(= D2+ Nh(=) A (vh)? dvt
(0brzizn) = 5 - ePl-Na(5; Do)+ NH 3 i) [T g
(2.14)
for ¢ and i continuous such that g is super-linear, non-decreasing and A ((A* +
Dx)/g(|x]) = Owhen |x| — oo (g and & may well depend upon B).

Thefirst caseisthe most standard choice for the vector v independently of the
original system, where the vy's arei.i.d. The second case corresponds for example
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to i.i.d. initial conditions for the original system (1.1). The last two cases study
what is happening when the initial conditions depend heavily on J; we shall seein
Section 3 that it very much affects the dynamical phase transition.

We shall prove

Theorem 2.3. Under (H0), (H1) and (H2), for almost all A theempirical measure
\3’T" convergesin 2(C ([0, T])) towards v(w) = [ v, (w)do (1) and the empirical
covariance KN convergesin C,, ([0, T]?) towards K (¢, s). Here v, isthelaw of the
Ornstein-Uhlenbeck process

{dv, = avdt — f/(Kq(t))vdt + B~Y2d B,

Law of (vg) = vg, (2.15)

K (¢, s) isthe unique solution of the non-linear equation

t S
K(t,s) = exp{— /0 f/(Kq(u))du — /0 f'(Ka)du) Lo(t + 5)
IAS t
+p71 fo expl— / f(Kq(u))du

- f f'(Ka)du}Z (t + s — 2v)dv (2.16)
with K;(t) = K (¢, r) and
Z©6) :=/e“da()\).

The law vg and the function Zo(-) are determined by the initial conditions as
follows.

1) For (IC1), vg isthe given law of v{) and Zo(8) = £ (6) [ v2dvo(v).

2) For (IC2), vo = y1/u+ With variance u* > 0 such that « (1*) = 0 and again
L0(0) = Z©0) [ v2dvo(v).

3) For (IC3), vg = 8 and Lo (0) = exp(Or™).

4) For (IC4), vo = Yi2amtpy and Lo@) = [v2Mdr*(r,v) +
(up — [ v2dm*(x, v))e*?.

Moreover, except for the case of (1C4), all of the above applies also when g = oo.

It is easy to check that K (7, s) = E[vsv,] is the covariance of the solution of
(2.15) for the initial conditions (1C1) and (1C2), whereas in general thisis not the
case for (IC3) and (1C4).

Wewill seein Section 3that for (1C1) and (1C2) the solution of (2.16) undergoes
adynamical phase transition; above criticality, the covariance K (¢, s) goesto zero
as|t—s| goestoinfinity only if it goestoinfinity faster than s Az. In contrast, for both
(I1C3) and (I1C4) the solution of (2.16) does not exhibit such an aging phenomenon.

Recall that KV is also the empirical covariance (1.5) of the SDS (1.1), so our
LDPsand convergence results apply for thelatter aswell. In particular, theanalysis
of KV for (IC4) appliesaswell to the (unique) stationary solution of the SDS (1.1).

We shall deduce Theorem 2.3 from thefollowing quenched L DPresullts, proved
in Section 5 (see Theorem 5.1 and Corollary 5.2).
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Theorem 2.4. Under (HO), (H1) and (H2), for almost every A and initial con-
ditions of type (IC1), (1C2), (IC3), or (IC4), (K", % fvzl 5)‘1"“{0 T]) satisfies the
LDP with a non-random GRF that achieves its minimum value uniquely at the
corresponding (K, o (L) ® vy) of Theorem 2.3.

We next illustrate how one may derive Theorem 2.3 without L DP techniques,
a least for initial conditions (IC1). For this, it suffices to assume in addition to
(HO) that the following weak form of (H1) holds:

N

. 1
(H1Y I|msupNZe'W <0 VneR.
N—oo i=1

The main idea of the proof is to assume that the empirical covariance Kf)’(z) =
KN(t, 1) convergesin Cy, ([0, T]) towards some non-random K (). Then, one can
verify that K converges towards the solution of (2.16). Indeed, we have that

v;‘ _ e;\,«z—fé FUEY w)du i

t )
vh + ﬁ—l/ze)nif—fé f’(KéV(u))duf e Hivtfy f/(Ky(“))d”dBi

0
forali e {1,..., N}, yieding

t s
KN (t.s) = expl— /0 F(Ka™ (0)du — /0 FKN @)du) Y @ + 5)

tAS t s
+p71 /0 exp{— f I/ (K" (u))du — / f1(KaN ))du)
x PN (t + s — 2v)dv + Ry

with Ry a (stochastic) reminder term of order N /2 under (H1)', and where we
have set

N N

1 : 1

20 =22 Sy’ ad 2oy =3
i=1 i=1

Since vy is independent of A, it follows that N~ "N | 5x1,u5 converges towards

o (X) ® vo(v) and, with (2.13), we see that under (H1)', Z5 and #V converge
towards %o and . of Theorem 2.3, respectively.

Thus, if K inv converges towards K, then KV converges towards the solution
of (2.16) under (IC1).

Further, as far as the empirical measures are concerned, one can approximate
(2.2) by the system of independent Ornstein-Uhlenbeck processes with law thvé,

1<i < N, given asthe weak solution of
dvi = }0idt — f'(Kg(0)vidt + B~Y2d B!,
with the same initial data vg. It is not hard to see that, for any fixed T < oo, the

empirical measures 7Y = & 3"V, 5)‘['5{0 ,, Converge towards the law 7 (1, v) =
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o (M)®v, (v),wherev, isgivenby (2.15). Indeed, itiseasy to check that the sequence
of random measures {7’?%’ v istight (for example, using an approximation scheme
asintheproof of Theorem 5.4). Therefore, we only need to prove that this sequence
hasauniquelimit point . Tothisend, notethat for any bounded continuousfunction
vV onRx Cp([0, T]) suchthat [ V (A, v)d Py y,do (L)dvo(vg) = 0,andany € > 0,
L > 0, one has by Chebyshev’sinequality that

P (/ V(h, v)d7Y (h,v) > e>

N
Se—Len/e%V(M,v)dP)mvé(v)
i=1
N 2
=e¢ Leexp £ZfV(xi,u)dP i (v) + 0 L
N & Ai Vo N
1=

The convergence of N1 Z,N: 1 8)»,‘,1)6 towards o (1) ® vo(v) and the continuity of
(A, v) > Py, thusresult with

2
P (/ Vo 0)d7 (v) = e> < ¢ Le—o@)+0 (),

Hence, choosing L of order o(+/N), we can deduce the almost sure convergence
of [V(x, v)d;?’TV (1, v) towards zero by Borel-Cantelli’slemma. Sincethisapplies
whenever [V (i, v)d P, yydo (A)dvo(ve) = 0, we conclude that n}v converges to
7 as needed. To make the above heuristic sketch into a complete rigorous proof,
one should mainly prove the convergence of K (9’ to a non-random function K.
This may be done for instance by using Theorem 5.3 which shows that KV is a
continuous function of arandom variable ¥ that is easily seen to converge.

3. Phasetransition and aging

In this section, we shall study both statics and dynamics phase transition. Through-
out weassumethat f (-) isstrictly convex, super-linear, with f” uniformly Lipschitz
on Rt andincase of 8 = oo alsothat f/(0) < 0, whereas o is a probability mea-
sure with at most finitely many atoms, supported on [—A*, A*] and positive in the
sense of (H2). To simplify the analysis, we also assume in Sections 3.1, 3.2.3, 3.3,
3.4 and 3.5 that

fo) =522
for some ¢ > 0 and that o is symmetric, that is

oc(he)=o(=re.).
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3.1. Satic phase transition

For * = Oitfollowsfrom Theorem2.1that thefreeenergy F = % log(2en?/(Bc))
is a smooth function of B € (0, c0) as is the variance ug = 1/./2f¢ of the
Gaussian limit of f)év. In particular, thereis then no static phase transition.

Turning to the (more interesting) case of A* > 0, let L denote the Stieljes
transform of o,

1
L(s) = / . _)\do(k), (3.1

with 8. € (0, +o00] corresponding to the critical temperature such that

o= L") (32

I

and
2
pipi=Ls L. (33)

The next theorem summarizesthe static phasetransitionat 8 = 8. incase 8. < oo.

Theorem 3.1. For any 8 < (0, B.) there exists a unique solution of p(s, ) = 0
on (A*, co), denoted sg. With sg := A* when g > B, the free energy of (2.8) isfor
any 8 >0

BsZ 1 1 .
Fg = > 3 / log(sg — A)do (L) + > log(@B™ ). (3.4

The function Fg is thus non-analytic at 8 = B, a characterization of the phase
transition. Corresponding to Fj are the parameters ug = sg/c, vg = ugsg —
1/(2B) and the limit law v} of (2.9), where ag = g and pg = 5 — Bsg. For any
B < B thelaw v§ has a sub-Gaussian tail, whereas if [L®)(s)] — oo ass | A*
then the 2(k + 1)-st moment of vj isinfinite for all 8 > B..

Toillustrate Theorem 3.1, consider o which isthe semicircular law of Theorem
6.1 corresponding to the GOE J of the SSSK model. Then, for s > A* = 2,

S S
Ly=>— 21
©=35"V3

(c.f. [4, Proof of Lemma 2.7]). The critical temperature correspondsto 8. = ¢/4
(see (3.2)), with sg = 2(1L — (1L — B/B:)>)~Y? when B < B.. The formula (1.4)
for the free energy then follows from (3.4) (see also [4, Lemma 2.7]). It is easy to
check that BEFIS is not continuous at B = B, and that the fourth moment of vg is
infinite for any g > B..
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3.2. Dynamical phase transition starting from (IC1) or (IC2) initial conditions

Our goal here is to analyze the asymptotic behavior of the limiting covariance
function K (¢, s) of the Langevin dynamics (1.1) (or its diagonaized form (2.2)),
forlargevaluesof  and s. Uptothevalueof K (0, 0) = [ v?dvg(v) € R, thesame
solution K (¢, s) of (2.16) corresponds to both (IC1) and (IC2) initial conditions.
For the sake of definiteness, we set hereafter + > s and K (0, 0) = 1, in which case
K (¢, s) isthe unique solution of

K(t,s) = g(r+s)+ﬁ—1/SR(r)$(z+s—2r)dr), (35)
0

1
«/R(t)R(s)(

where Z(0) = [ ¢*do (1) and

t
R() = exp(2 /O F(Ka(u)du) (36)

for K;(u) = K(u,u). In particular, we provide a characterization of the phase
transition in terms of the asymptotics of K (¢, s) and exhibit a primitive form of
the so-called aging regime introduced in [8]. We begin by describing the case of
non-random modes and find, as we should, an absence of aging regime, that is,
at any positive temperature, the covariance K (¢, s) approaches zero regardless of
the way the time parameters ¢ and s go to infinity. Then, we study the instructive
and simple zero temperature model where we show that an aging phenomenon
occurs. Finally, we consider positive and random modes models where we show
that a dynamical phase transition occurs; for 8 < 8., the covariance decreases
exponentiadly in |t — s| regardless of the way the time parameters go to infinity,
whereasfor 8 > ., an aging phenomenon shows up.

3.2.1. Constant modes

We start with the case of constant (non-random) modes, or more generally, that of
o = §p. Inthiscase, Z(0) = 1and (3.5) leadsto thefollowing equation for K;(-),

t

Kq(t) = 1+/0 ¢(Ka(r))dt ,

where ¢ (x) := 1 — 2xf’(x). With f strictly convex and super-linear it is easy
to see that for any 8 < oo there exists a unique positive point Ko, such that
¢(Ks) = 0. Furthermore, ¢ (x) < Ofor x > Koo and ¢p(x) > Ofor x < Koo,
implying that K;(t) — Ko monotonically ast — oo. In particular, K;(-) is
bounded above by max(K ~,, 1). The same applies for 8 = oo when f/(0) < 0
since then there exists a non negative K, such that Ko f/(Koo) = 0 (where
Ko = 0Owhen f/(0) = 0).

If 8 = cothen K(t,s) = «/Ku(t)K;(s) converges to K, independently of
the way (¢, s) approach infinity (we do not expect convergence to zero since here
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al the randomness is in the initial conditions). Considering 8 < oo, there exists
so = s0(B) < oo large enough such that

inf f/(Ka(s)) > (4BKoo) =85 >0,
§>50
andthenforallr > s > so

R(s)
VR(1)
Thus, we see no phase transition in the dynamics, with the covariance K (¢, s)
approaching zero exponentially in |¢ — s| for ¢, s large.

K(t,s) = Ku(s) < max(Kog, 1)e20=5)

3.2.2. Random modes at zero temperature

In this subsection, we discuss the case where 8 = oo and A* > 0 (so0 o isany
probability measure with at most finitely many atoms, supported on [—21*, A*] and
positiveinthesenseof (H2)). Then, by (3.5), K4 () = £ (2t)/R(t) iscontinuously
differentiable with

K;(t) = ¢ (Kq(1)) (37)
for
7' (21) ,
Pr(x) = 2x($(2t) — ().

The positive solution K, of f/(x) = A* isunique (for f strictly convex, super-
linear such that f/(0) < 0). Moreover, standard Laplace method yields
g/
im (21) =1*,
t—oo L (21)
soforany § > Oandr largeenough, ¢;(x) > Oforx < Ko — 38 and ¢, (x) < Ofor

x > Koo + 8. Thus, from (3.7) we see that K;(t) — Ko ast — oo. Recall that
by (3.5), for B = oo,

) L4
K(t,S) = Kd(t)Kd(S) c_(f(zt)h(f(zs)

Therefore, the asymptotic behavior of K (¢, s) depends on the asymptotic behavior
of Z(-). Suppose for examplethat £ (0) ~ bo~49eM"? for someqg > 0, finiteb > 0
and large 6, where hereafter the notation f(-) ~ g(-) meansthat f/g — 1. Let
also f ~ g denote the case where f/g is bounded and bounded away from zero,
andt > s meanthatr — s — oco. Then, we see that

K(t, ) ~ Koo

for larget, s suchthat |t — s| = o(]z]) whereasfort — s > s > 1,

t—s| 2

K(t,s)~ Koo

exhibiting an aging phenomenon when g > 0.
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3.2.3. Random modes at positive temperature

In the previous zero temperature model, we observed that the asymptotic behavior
of the Laplace transform .#(9) was at the heart of the simple aging phenomenon
encountered in SSSK. Thisis till the case when we consider positive temperature,
e.g. B < oo, with random modes A* > O and f(x) = cx?/2. We shall also assume
here that the symmetric probability measure o (of at most finitely many atoms,
supported on [—A*, A*] and positive in the sense of (H2)), is such that for some
g > landfiniteby > 0

L(0) ~100 160717 . (3.9)
Observe that this assumption is equivalent to (c.f. [6, Theorem 1.7.1'])

byx1

o([A* = x, "D ~x|0 m

(3.9)

in view of the integration by parts formula
* 2. *
e 20) = 9/ e o (W —x, W]dx + e 2.
0

The assumption that ¢ > 1 is needed to insure that L (A*) < oo, resulting by
Theorem 3.1 with astatic phasetransition at 8. € (0, oco) of (3.2). For example, the
semicircular law that corresponds to the SSSK model with independent Gaussian
coupling satisfies (3.8) (alternatively, (3.9)), for g = 3/2.

Our assumption (3.8) yields the following asymptotic behavior of K (z, s) for
t > s > 1, inwhich we clearly see the appearance of one aging regimeat 8 > S..

Proposition 3.2. For any B € (0, B.) and ég < (sg — 1¥), thereexists C = Cg <
oo such that for all (¢, s),

K(t,s) < Ce %15l (3.10)
In contrast, for 8 = B., ¢ # 2,and ¢ > s > 1, we have the polynomial decay
(t —s)=9  for t/s bounded

K(t,s)~ X;:Vuqu otherwise . (3.11)
t q
where v/, = max(2 — ¢, 0). When § > B we get that
K(t, )~ (s/D)1?, (3.12)

so K (t,s) — Oifandonlyif t/s — oo.
Proposition 3.2 isadirect consequence of the next lemma,

Lemma33. Letyy =0for B < B, ¥ =y, for B = B, g # 2, and ¢y = g for
B > Bc. Then, for sz of Theorem 3.1 and some C,, g € (0, 00),

R(x) ~xp00 Cg px~Ve?r (3.13)
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Indeed, plugging our assumption (3.8) and the estimate (3.13) into (3.5), yields
after some computations the stated bounds (3.10)—(3.12) of Proposition 3.2.

Thecaseof 8 = B, and ¢ = 2 can be similarly handled, at the cost of cumber-
some notations and proof, resulting with x¥ replaced by log x in (3.11) and (3.13).
For simplicity, we shall not do so here.

The proof of Lemma 3.3 follows from the observation that (3.5) gives an equa-
tionfor R whichleadstoanexplicit formulafor the Laplace or the Fourier transform
of R. From the formulafor the Laplace transform of R, one can deduce by Taube-
rian theorems the first order term in the asymptotics of R given in equation (3.13)
but not the polynomial second order term which is needed to conclude. Hence, one
needs to use the formulafor the Fourier transform and proceed by use of complex
analysis. This proof is detailed in Section 7.

3.3. Absence of aging regime when starting from the top eigenvector

In case of (IC3) initial conditions, the limiting covariance function K (¢, s) of the
Langevin dynamics (1.1) (or its diagonalized form (2.2)), is the unique solution of

K(,s) = ) 4 /371 /S ROZ(t+s — 21)dr) , (319
0

1
«/R(t)R(s)(

wheret > s and Z(-), R(-), K4(-) areasintroduced in (3.5).

In case A* = 0 we recover the same solution as for (s3.5) so the analysis of
Section 3.2.1 applies here as well. In case 8 = oo the analysis of Section 3.2.2
applies here aswell, but for ¢ = 0, resulting with the absence of the aging regime.

Turning to deal with A* > 0 and 8 < oo, we make the same assumptions as
in Section 3.2.3, in particular assuming (3.8) holds for some ¢ > 1. Adapting the
analysisto the setting of (3.14), we show in Section 7 that

Theorem 3.4. Let 8. beasin (3.2). Then, (3.10) holds for any 8 € (0, B.) (with
samechoiceof 8g). Incaseof 8 = ., g # 2andt > s > 1, wehavea polynomial
decay of K (¢, s) to zero, albeit with a power that is no longer that of (3.11). For
any fixed 8 > B, regardless of the way in which  — s and s approach infinity,
K(t,s) — cga = p(A*, B)/(28) > 0. Thereis thus no aging regime for the
initial condition (1C3).

3.4. Dynamic phase transition for stationary initial conditions

We shall examine the dynamic phase transition for the diagonalized SDS (2.2) in
caseof f(x) = cx?/2and starting from the stationary initial conditions determined
by the mean field Gibbs measure (2.1). We assume asin Section 3.2.3 that 8 < oo,
A* > 0, and that the symmetric probability measure o satisfies(3.8) for someqg > 1
and b1 € (0, 0o). Our main result is then,

Proposition 3.5. Under (H0), (H1) and (H2), for almost all X the empirical mea-
sure f;}" converges in 2(C ([0, T])) towards v(w) = [ vy (w)do (L) where v, is
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the law of the Ornstein-Uhlenbeck process

{ dv; = (» — sp)vidt + p~Y2d B,

3.15
Law of (vo) = y2p(s5—1) » (319

and the empirical covariance K convergesin C;, ([0, T]%) towards K, (|t — s),
where

Kiny(t) = % [ / (sg — 1)L ITdo (0) + plsg, ,3)] . (3.16)

Recall that p(sg, B) = Owhen 8 < B, and p(sg, B) > 0 otherwise (see (3.3)).
The solution of (3.16) undergoes a dynamical phase transition; below criticality,
cga = 0andthecovariance K (¢, s) goesto zero exponentially fast as|r —s| — oo,
whereas above criticality it convergesto cpa = p(A*, 8)/(28) > 0. Thisis very
similar to (IC3) inwhich caseaso K (¢, s) — cga fors — ocoand (r — s) — oo.
Here, asin the case of (IC3), there is no aging phenomenon.

Proof. By Theorems 2.2 and 3.1 we have that f'(ug) = cug = sg, ag = f and
pp = % — Bsg, With T* (&, v) = y2p(s5—1) (V) ® o' (). It isthus easy to check that
1

Zﬁp(sﬂ”g)’

CEA =g — / drt Gy =8 L /(S/g — Yo =
' c 28
and in view of (3.9),

' 1 )
[vzefz(”‘*l)’dn*(k, v) = ﬁ / efz(*f’*)‘)’(s,g — 0" Ydo )

o0
= ,8_1/ e 2% 2(20)d6 .
t

Since p(sg, ) = O whenever sg # A*, also
o0 1
€_2Yﬂt$0(2t) — '3—1 [/ e—zsﬂgg(ze)de + El)(s/g, ﬂ)} = Kmv(ZZ‘) , (317)
t
resulting with
t
e Po2t) + BL / e 2% 2(20)dH = ¥o(0) (3.18)
0

independently of 7. Note that in Theorem 2.3, K4(0) = K(0,0) = Z£0(0) = ug
for (1C4), with the expression of (3.18) being the value of K (¢, t) obtained upon
setting f'(Kq(t)) = f'(ug) = sp in (2.16). Thus, the unique solution of (2.16)
under (1C4) correspondsto K, (t) = ug for al . Thedynamics (3.15) for vy, isthen
merely (2.15) of Theorem 2.3. Moreover, settingr = s + 7 > s and Kq(t) = ug
in (2.16), we have by (3.18) that

s+1/2
K(s+1,5) = e 284D po2(s +7/2) + BL / e %% 2(20)do
/2

= e P Zo(1) = Kinu(7)
thusyielding (3.16). ]
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3.5. The convergence of K (s + 7, s) t0 K,y ()

We shall examine next the convergenceof K (s + 1, s) of (2.16) to K;,,,, (7) of (3.16)
ass — oQ.

Proposition 3.6. Suppose f(x) = cx?/2, B < oo, A* > 0 and the symmetric
probability measure o satisfies (3.8) for some ¢ > 1 and b1 € (0, c0). Then, the
unique solution K (¢, s) of (2.16) for (IC1), (IC2) or (IC3) issuchthat for all T > O,

lim K(s +7,5) = Kinp(7) (3.19)
S—>00
Proof. Notethat for al threeinitia conditions, it follows from (2.16) that
Ka(s + %)R(s + %) — K(s+7.5)VR®RG + 1)

1 /2 T
— B / R(s + 5 — 6)2(20)d6
0

for R(-) of (3.6). Withr1(z,0) := /R@)R(t +0)/R(t + %) andra(z,0) ;= R(t —
0)/R(t) we thus have that

K(s+71,5) =

! T T2 T
ri(s, T) [Kd(s t3) —F /0 ra(s + 5, 9)3(20)d9:| )

Fixing T > O, it follows from (3.13) and (7.37) that r1(s, ) — 1 and ra(s +
5.0) — e=28% ass — oo, uniformly in 6 € [0, t/2]. Moreover, an analysis
similar to that donewhen proving Lemma3.3 and Theorem 3.4 showsthat K;(x) =
R'(x)/(2cR(x)) — ug asx — oo. Therefore, by (3.17) and (3.18)

/2
lim K(s+17,5) = ug — ,3_1/ e 289 £(20)d0 = Kiny(7) ,
§—>00 0
for al threeinitial conditions, as stated. O
3.6. Limiting behavior of the centered covariance K y

Until now, we have studied the asymptotic behavior of

N 1¢ i _ 1 - i
K (t,s):NthvS=NZu,us,
i=1 i=1

with (ui)lﬁiSN being the solution of (1.1), and called it empirical covariance even
though this covariance should rather be given by

N
1 ,
Ky(t.$) = KV(t.5) =my(Omy(s). my(0) =+ Zlu,
The next proposition showsthat starting from (1C1)—(1C4), the centered covariance

K y convergesand itslimit hasthe samelong timebehavior asthat of K of Theorem
2.3.
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Proposition 3.7. Assume (HO0), (H1) and (H2). Sarting the SDS(1.1) with either
(IC1), (IC3) or (IC4), for almost all A the centered covariance Ky (z, s) of (1.6)
convergesalmost surely tothe corresponding K (t, s) of (2.16), uniformlyin (¢, s) €
[0, T']2. Further, in case of (1C2), for i.i.d. initial conditions, that is, where ug has
law 1 ®", we have that a.s. and uniformly in (¢, s) € [0, T]?,

L)L (s)
JROR(E)

Remarks. Recall that our assumption (3.8) implies the convergence of £ (¢) % (s)/
ZL(t+s)tozerowhent As — oco. Thus, K (t, s) of (3.5) dominatestheright hand
side of (3.20) for larget A s, or in other words, limy_, o Ky (2, s) then behaves as
K, s) =limyooo KNG, 5).

Nlim Kn(t,s) = K(t,s) — (f xdp(x))? (3.20)

Proof. Let 1 denote the N-dimensional vector (1,...,1) and s := N~ Y2G1
which follows the uniform law on the unit sphere in RY. Recall that u, = G*v,
for the solution v, of the diagonalized SDS (1.3), hence my (t) = N~Y2(s, v,).
Note that under our assumptions, B. and D of (1.3) areindependent of G, asiswvy,
at least for (IC1), (IC3) and (1C4). Thus, for these initial conditions and each fixed
t € [0, T], the random vectors s and v, are independent. Consequently, the law of
my (¢) is then the same as that of N~1/2g4|v,|/|g| where g is independent of v,
and follows the standard centered Gaussian law y®V. With KV (¢, 1) = N~ Yv,|?
it followsthat for every § > 0, and r < oo,

N
P(my ()] > 8) < P(KN(t.1) > r) + P(gd > 871> " ¢?) .
i=2

Notethat (KN (¢, 1) > r) — 0 exponentially in N whenever r > K (¢, t), by the
LDPs of Theorem 2.4. Since the same appliesfor P(g? > §2r~1 Y"1 , ¢?), theas.
convergence of m y () to zero follows by the Borel-Cantelli lemma. We thus see
that for (IC1), (1C3), (IC4) and each (z, s) € [0, T]?, amost surely,

lim Ky(@,s)= lim KN@,s)=K(@,s) . (3.21)
N—oo N—oo

We turn to deal with (IC2) in the special case where ug has law u®V (and
fexp(nxz)d,u(x) < oo for somen > 0). Solving (1.1) it is easy to check that,

t
/0 VRN T, aW )

(3.22)

(€71, ug) +

1 1
O =N TR NVBRN D

where Ry (s) = exp(2 [y f'(K™ (u, u))du). We next show that the second term
in the right hand side of (3.22) converges a.s. to zero, that is, for each t € [0, T1],

Imy (@) — Ry ()" 2Vn(0)] = 0 a.s. (3.23)
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where Vy (1) := N~ (¢! 11, ug). To this end, consider the martingales

U Yy = N_lfu VRN ()71, dW )
0

at the stopping times
i =inf(s >0 : Ry(s) = M)A T

for some M > 2sup, o 71 f'(K (2, 1)). By the Burkhol der-Davies-Gundy inequal-
ity (c.f. [19, Theorem 3.3.28]), for some A < oo and all § > 0,

Pl sup [Ywnw)|>6]| < 8_4[E[( sup Yy (@)] < ZE[((Yn)o )]
ue ]

[0,1% ue[O,t}\‘,’I] 8
AT omriars
= 5Nz "
Recall that almost surely Ry (s) — R(s) uniformly ins € [0, T] (by the LDPs of
Theorem 2.4 and the Lipschitz continuity of ). Hence, by the choice of M, aimost
surely r,{‘,l > ¢t for all N large enough, yielding by the Borel-Cantelli lemmathat
limsup|Yn ()| <limsup sup |Yny(u)|=0. (3.24)

N—o00 N—oo ue[o’fl\/gl]

With Ry (1) — R(¢) > 0, wethus get (3.23) by combining (3.22) and (3.24).
Continuing from (3.23) and fixing J, note that

N
E(Vy () = /xdu(x)N_l(]l,e’J]l) = /xdu(x)Zsize”"'

i=1

where s = (sq, ... , sy) follows the uniform law on the unit sphere of RV, inde-
pendently of theeigenvalues (11, ... , Ay) of J. Applying Theorem 5.4 for vg = y,
it follows by the contraction principle that aimost surely,

N
limsup sup [N"1) " gZe™ — 2(1)| =0,
N—oo t€[0,T] i=1

where g = (g1,..., gn) follows the standard centered Gaussian law y®V, in-
dependently of the eigenvalues of J. Hence, the representation s = g/|g| results
with

limsup sup |E(Vyn(2)) —/xdu(x)ff(m =0, (3.25)
N—oo t€[0,T]

for amost every J. Considering Vi (t) — E(Vy (¢)) amounts to centeri ng w, that
is, assuming fxd,u(x) = 0. In this case, the independence of (ug)1<;i<y and
(H1) imply that for some B < oo and any fixed ¢t € [0, T'] and J,

B P
ELV e, uo) ] < / (e
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hence by the Borel-Cantelli lemma, for each r € [0, T, almost surely, N~1(e!7 1,
ug) — 0.

Combining this, the convergence results Ry (t) — R(¢) and (3.23), (3.25), we
see that for eachr € [0, T'], amost surely,

Nlim mpy (t) :/xd,u(x)f(t)/\/R(t).

Clearly it then follows that (3.20) holds for each (z, s) € [0, T]2.

Finaly, recall that by Theorem 2.4, up to anull set .4"g of J values, the func-
tions KV are exponentialy tight on C([0, 712, R). Since [my (1) — my(s)|% <
KN, )+ KN (s, s)—2KN(r, s)andmy (1)% < KN (¢, 1), the Arzela-Ascoli’sthe-
orem resultswith the exponential tightnessof my on C ([0, 7], R),forall J ¢ A4"g.
Fix J ¢ A oU.A"1,where.4"1 denotesthenull set of J suchthat my (r) — m(z) for
al J ¢ /"1 andeachrationa ¢ € [0, 1]. Then, the exponential tightness of m y im-
pliesthat almost surely it hasalimit point m’; (-) € C([0, T], R) with respect to the
uniform convergence. Moreover, m/J(t) = m(t) for eachrational 7 € [0, 1], hence
m(-) isthe only possible limit point of m y (-). Consequently, the a.s. convergence
results (3.20) and (3.21) hold uniformly in (z, s) € [0, T]°. O

4. Proof of Theorem 2.2

The spherical constraint induced by the super-linear f insures that the covariance
NIYN w2 = [x2di) (x) is well controlled, but it can not insure a quasi-
continuity of themap . +— [ x2d p(x) under uf. For thisreason, it isnot possible
to derive Theorem 2.2 as a contraction from the much simpler quenched LDP for
the empirical measure.

The next lemma, providing the LDP for Yé\’ under the Gaussian measure y ®V
isthe key to the proof of Theorem 2.2.

Lemma4.1. Under (HO) and (H1), for almostall A, thelaw of ¥ under y®V sat-
isfiesa LDP with GRF .# (u, v, 1), whereasthelaw of (N~ Y"1 v2, N71Y° Y,
Aiv?) under y® satisfies the LDP with GRF k(u, v).

Wewish to apply Gartner-Ellistheoremto prove Lemmad4.1. However, because
this theorem requires the essential smoothness of certain limiting logarithmic mo-
ment generating functions, we first consider the case where 6"V are supported on
the same finite, non-random set (and hence so is o), then relax this assumption on
thejoint law of A by the use of exponentially good approximations. The following
simple lemma is key to the success of this program, which we follow in al the
LDPs proved in this article.

Lemma4.2. Let ¢ denote the finite set of jump discontinuity points of a given
piecewise constant function ¢ : R — R. If (HO) holds for 6" and o such that
o(#) =0, thenit holdsfor 6 o p~Lando o ¢~ 1.



Aging of spherical spin glasses 25

Proof. Suppose that u, — o in 2(R). Then, by the Portmanteau theorem
wn(I) — o(I) for any interval I such that o(d1) = 0. Since o (#) = O this
appliesto the finitely many intervals {1;} in the partition ¢~ of R, resulting with

n o =Y a8y — P oUNdpupy =00¢ T, (41)
J J

Thus, 6V — o as.implieséN ocp™! > s optas O

Proof of Lemma 4.1. First, we assume that 6V are supported on the same finite,
non-random set for all N, and by (H1) sois their limit . Since o ({A*}) > 0
and o ({—A*}) > 0, under (HO) and (H1), we may and shall take the sequence
A = (A)1<i<n inasubset © of full probability such that 6V — o and A* =
max¥_, ; = —min’_; &; forall N largeenough. For V e Cj,(R?) and (p, &) € R?
let

= Iog/ eV F @ g, ()

and consider the Laplace transforms
1 N N N
An(p.a. V) =+ log [/ exp(ZV(ki,vi)+aZAivi2+vai2>
i=1 i=1 i=1

N 1 N
X ]_[dy(vi)} =N Y v = /Wk)d&l\’(k) :
i=1 i=1

Since ¥ (A) = oo iff ad + p > 1/2, it follows that on € and al N large enough,
An(p,a, V) isfiniteiff ||]A* + p < 1/2. For such (p, «), by dominated conver-
gencewe seethat ¢ € Cp([—A*, 1*]), hence

)\‘*
Ap.a. V)= lim Ay(p.e. V) = lim A*W(A)d6N(A)=/W(A)dU(A)

4.2

exists and is finite. Obviously, A(p, &, V) := [ ¥ (A)do (1) isinfinite whenever
la|A* + p > 1/2 (recal that o ({A*}) > 0and o ({—A*}) > 0). Using dominated
convergence it is easy to check that the function (p, o, t) > A(p, , > ; ;V;) is
continuous everywhereand differentiablewherever itisfinite, thusbeing essentially
smooth for any fixed V; € C,(R?). Combining the Gartner-Ellis theorem with
projective limits for % = R? x C,,(R?) (see[15, Corollary 4.6.11(a)]), we deduce
that Y satisfiesthe LDPin %’ with the convex GRF

H(u,v,7)= sup {{V,t)+pu+av—A(p,a, V)}. (4.3)
(p,a,V)e¥



26 G. Ben Arouset al.

Note that for any V € C,(R?) and any o € 2(R)

A0,0, V) = / (logfem’wdy(w))do(x)

= sup [/ Vdu — (o ® y)] (4.4)
{ne?(R?):u1=0}

(see [15, Lemma 6.2.13] for a similar computation). Let So(n) = I (ulo ® y)
when 1 € 2(R?) issuchthat 11 = o and .#o(t) = oo for any other t € Cp(R?)'.
Then, #o(-) is a convex GRF on Cj,(R?)’ (for example, this follows from [15,
Lemma6.2.12]). Moreover, by (4.3), (4.4) and Fenchel duality

A w,v,r)= sup {(V,7) = A@0,0,V)} = SJo(r)
VeCy(R2)

(see[15, Lemma 4.5.8)), isinfinite whenever © ¢ 2(R?), allowing us to consider
hereafter all LDPs in the space 2 := R? x 2(R?). The space % is metrizable by
the metric d(-, -) such that for any (x, y) € 22

d(x,y) = |x1 — y1| + |x2 — y2| + D(x3, y3) (4.5)

where | - | isthe standard Euclidean distance on R and

D(p,q) = SUIO{I/qbdp—/qbqu rsuple(z)| < 1,
supé(z) —dWMI/1z — yl < 1}
Y#2Z

Toremovetheassumptionthat 5V and o are supported on the same non-random
finite set, we proceed by constructing exponentially good approximations of Yév in
(Z,d),asfollows. Let¢,, : R — R,m € N, be piecewiseconstant, monotone non-
decreasing functions and denote _#,, the finite set of jump discontinuity points of
om - R — R, m € N. Since o hasfinitely many atoms, we may and shall consider
such a sequence ¢, for which Om(x) = =P (—=x), P (A*) < A%, A¥ & Im,
—A* ¢ Imo(In) = 0and

Up  pm(x) —x| <m™t, (4.6)
|<r*+1

foralm.LettingA? = ¢y, (\and Ak = ¢m(A*) thecondition (H1) thenobviously
holdsfor A™, whereas by Lemma4.2, the empirical measures 6 o ¢,.1 of (A" }fv=1
convergeas. too o ¢>,;1 as N — oo. Thus, by the above proof we deduce that for
any m, the sequence

N

YN,m . 1 - 2 1 m, 2 1 Y
0 "= |y 2 A b
i=1 i=1

i=1
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satisfies the LDP in 2 with some convex GRF ¢ (u, v, u). Note that for ae. A
and all N large enough, by (H1) and (4.6),

N N
A vy < NEST A = il 40D < m T INEY (@ 40D
i=1 i=1

where d ischosen asin (4.5). Therefore, foral § > 0,r < 1/2andae A

1
limsup  log Pd(Yy "™, YY) = 8)

N—o0

<r4 Iog/ erwzdy(w) —Mré = oo —00 ,

implying that Yév ™ are exponentially good approximations of Yé" .

Recall that (4.4) implies that the empirical measures N1V ;. . satisfy
the LDP in the Polish space 2(R?) with the GRF .#o(x) (even when o is not
supported on afinite discrete set). Therefore, these 22(R?)-val ued random variables
areexponentially tight (seefor example[21, LemmaZ2.6]). Thetwo covarianceterms
N=1¥ v2and N1 Y 2,02 havefinite exponential moments, henceit follows that
Yé\’ isalsoexponentialy tightin 2. Fromthisand[15, Theorem 4.2.16(a)] it follows
that Y satisfiesthe LDPin (2, d) with the GRF

A (x) =sup lim inf HM(y) . 4.7
(x) npmm{y:d(x’y)q} 6)) 4.7)

Since #(-) are convex for al m and (x, y) > d(x, y) : #2 — R isconvex (see
(4.5)), it is easy to check that necessarily 2#'(-) is also convex on . To identify
this convex GRF we shall apply Proposition 6.4 for ¢ : R> — R? such that
c(h,v) = (v2, A?). To thisend, by Lemma 6.5, it suffices to check that v (1) is
bounded on [—-1* — §, A* 4 8] for some § = 8(p, p,a) > O whenever V. = 0
and A(pp, pa,0) < oo for some p > 1. The latter condition is equivaent to
la|A* + p < 1/2, in which case ¥ (A) = —0.5log(1 — 2(aX + p)) is indeed
bounded on[—A* — 8, A* + 8] for some§ > 0. Hence, the convex GRF of the LDP
for v is

A (u,v, ) = Fo(n) + F(u — [ w?dpu(n, w), v — /szdu(k, w))
for u suchthat .#o(ut) < oo and infinite otherwise, where

F(a,b) = sup {pa +ab} = sup {pa +ab}. (4.8)
{p,a:|a|r*+p<1/2} {p,a:la| *4+p=<1/2}

It is easy to check that F(a,b) = a/2 when a > |b|/A* (with 0/0 = 0), and
F(a, b) = oo otherwise, leading to the formula (2.11) for .#".

Note that (N~1 3N v2, N=1 YN | 20?), satisfies the LDP in R? with the
convex GRF of (6.17), by the above application of Lemma 6.5. For |a|A* + p <
1/2, the function L(p, @) of (2.7) equals A(p, a, 0), hence the continuity of #
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L(tp,ta)ast + 1/(2la|r* +2p) > 0resultswith this GRF being given by k(u, v)
of (2.6). O

Proof of Theorem2.2. By (H1), the LDP of Lemma4.1 may and shall be consid-
ered without loss of generality to hold in the closed subset 2" = {(u, v, ) : |v] <
A\*+ Du, u € 2(R)} of Z inwhich YN isfor ae. A and al N large enough (see
[15, Lemma4.1.5(b)]). Since f issuper- Imear h(u, v, u) = h(u, v) of (2.5)iscon-
tinuous and bounded aboveon 7. So, with ZN fexp(Nh(YO A, )y ®N (dv),
by Varadhan'slemmafor a.e. A

. 1
Fg= lim =logzy = sup {h(u,v) — A (u,v, ) (4.9)
N—>oo N (u,v %
U, L)EL

exists, is finite, and by Lemma 4.1 can also be written as (2.8). Moreover, for all
D e Cp(X),

lim —Iog/ No¥g A w) p@v)y = sup (@@, v, ) — #®u, v, W)},
N—>oo N 5
(u,v,W)ex

(4.10)

with #%(u, v, 1) given by (2. 10) (see [15 Theorem 4.3.1]). Since #° = %" —
h + Fg isaGREF, the LDP for YO under u}\ with this GRF thus follows (see [15,
Theorem 4.4.13)).

Assume hereafter that f isstrictly convex. Then, the GRF # isstrictly convex
in (1, u) wherever it is finite (by the strict convexity of I(-|lc ® y) and f(-)). In
particular, the supremum in (4.9) is finite and is obtained at a unique (ug, 7*).
Theset & = {v : 7™ € o/(ug, v)} is anon-empty, bounded, closed interval on
which 2 (ug, -, 7*) is a finite constant, while 2" (ug, v, 7*) = oo for v ¢ 7.
With v — h(ug, v) strictly increasing, the unique solution of A#9() = Oisat
(ug,vg, m*) forvg = sup{v : v € &}. Sincek(u, v) = inf,, A (u, v, ) it follows
that (ug, vg) isalso the unique minimizer in (2.8) and = * is the unique probability
measure for which 4" (ug, vg, m*) = k(ug, vg).

For A * > 0,by (2.11),if u € o/ (u, v) foru < |v|/A*, then u({w = 0}) > Ofor
which I (ulo ® y) = oo, or else, either u({A = A*}) = 1or u({r = —A*}) =1,
in contradiction with the definition of A* > 0 such that o ([—a, b]) < 1 whenever
a A b < 1*. Consequently, [vg| < A*ug. Then, for [a|A* + p < 1/2

avg + pug — L(p, )

_ vl

- 2%

and by lower semi-continuity of L(.), there exist conjugate exponents (og, ag)

achieving the supremum in k(ug, vg) (and such exponents are unique by the strict

convexity of L(-) wherever finite). Note that pg = 1/2 — |ag|1™ isat all possible

only if c({2*}) = 0Oand ag > O or o ({—A*}) = 0 and ag < 0. By Fubini’s
theorem, for such ¢ and (p, «), aswell aswhenever |a|A* + p < 1/2,

+,0(Mﬂ - |v/3|/)‘ )+ = |Og(2 4p) —>p——00 —O0

AP0, w) = (27) Y21 = 2(an + p)) Y2~ A2@+0Dw%/24y, 45 (1)
= Y1-2(artp)(dw)do (A) , (4.11)
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isin 2(R?) with uf** = . For such (p, &), if I(ulo ® y) < oo, u1 = o and
w # uP %, then

I(ulo ®@y) — /(ou\ + p)w?dp + L(p, @) = I (u|p”*) > 0. (4.12)

Consequently, if w1 = o and u #£ uP#-*# then (see (4.8)),

H(ug,vp, n) = I(ulo @ y) + sup avg + pug — /(00» + p)wdp
{0, ala|r*+p=<1/2}

> agvg + pgug — L(pg, ag) = k(ug, vg) .

Since A (u, v, u) = oo when u1 # o, it followsthat 7* = urs-* as stated.

If A* = Othen o = 8. By (2.11), #°u, v, ) = oo except when v = 0,
u > 0and u1 = o, inwhich case #°%(u, v, ) = [ H,(u2p)do + kg (u) for the
GRFs H,(-) of (6.19) and «, (1) := 0.5(u — 1 —logu). It iseasy to check that y1/,
is the unique minimizer of H,(-) for any u > 0, leading to k(u, 0) = k(). The
unique minimizer of kg (u) — h(u,0) isug > 0O, the unique solution of uf’(u) =

1/(28). |
5. LDPsfor the dynamics (2.2)

In this section, we study the Langevin dynamics of (2.2) starting from (1C1), (1C2),
(IC3) or (IC4). Hereafter, we use #" to denote the law of a standard Brownian
motion Bjg 71 and allow for any g € (0, oc]. The main difficulty in our program
isto deal with the non-continuity of themap u — [ x2du(x) inthe Cp,-topol ogy.
Consequently, itisnot enough to provethe LDP only for the path empirical measure
N of (2.3). We are forced to prove instead the LDPs for the couple (K, DY),
where the (empirical) covariance term KV of (2.4) is considered an element of
Cy([0, T1?). More precisely, letting

1N
~N _ X
ap = I ;_l thvioﬂ, 5.1)

we shall prove in this section that:

Theorem 5.1. Under (HO), (H1) and (H2), starting from (I Ci)1<; <4 initial condi-
tions, thecouple (K™, #1Y) satisfiesan a.s. quenched LDPin Cy ([0, T]?) x 2(R x
C,([0, T])) with GRF

Hi(K ) = inf |1}(fg, W : K = FPX®), m = FP2(%, M)] .

The functions (F P}, F P2) are described in Theorem 5.3. The GRFs 12, 12, I3
and 17 are described in Theorems 5.4, 5.7, 5.8 and 5.9, respectively.

From this theorem, we deduce the following convergence result (in particular,
implying Theorem 2.4).
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Corollary 5.2. Under (HO), (H1) and (H2), starting from (/ Ci)1<;<a initial con-
ditions, (K", ﬁ;" ) converges almost surely towardsthe corresponding (K, ) with
a(h, w) = vy (w) ® o(A) and v, , K described in Theorem 2.3.

Proof. By Theorem 5.1 it suffices to check that each of the GRF #%., i =
1, 2, 3, 4, admits a unique minimizer corresponding to (K, ) described above.
By part (c) of Theorem 5.3 this amounts to checking that (4™, u7) are the unique
minimizers of the GRF I, i = 1, 2, 3, 4, for ¢* of (5.5) and k. = 0 @ vo ® .
Indeed, by Theorem 5.4 the unique minimizer of the GRF 12 is ([ crduk., u%)
anditiseasy to check that * = [ cydu} incaseof (IC1). TheGRF 12 and I3 are
obtained as contractionsin Theorems 5.7 and 5.8, respectively, with I{f obtainedin
Theorem 5.9 via Varadhan's lemma. The unique minimizers are identified there to
be the couples (4, u.) corresponding to (I1C2), (1C3) and (1C4), respectively. O

We also show in thissection that for all four initial conditions, (K7, 7%}*’) satisfy
the annealed LDP on C, ([0, T]?) x 2(R x Ci([0, T])) with the same GRF asin
Theorem 5.1, provided (HO) and (H1) are replaced by the following stronger
assumptions.

(H0a) Thesequences " satisfiesthe LDP in 2(R) with speed N and trivial GRF
which is zero at the compactly supported o with finitely many atoms and +oo
elsawhere,

(H1a) For somefiniteinteger Ng

N
P(sup max |A;| < A% =1
N>No i=1

The proof of Theorem 5.1 is based on the contraction principle. Namely, we
shall first prove in Section 5.1 that (K, ﬁ}v ) is a continuous function of the sim-
pler object (67, 7)) (typically, corresponding to independent variables). We then
derive LDPsfor (¢, f7) under different initial conditions, considering (IC1) in
Section 5.2, (IC2) in Section 5.3, (IC3) in Section 5.4, and finally, (IC4) in Section
5.5.

5.1. The contraction

To state our contraction result, let usfirst introduce some notations. Given T > 0,
let X7 1= R2 x C,([0, T]) and X1 := Cp([0, T13, R®), both endowed with the
uniform (supremum-norm) topology, 21 := 2 (X7) endowed withthe Cj-topology
and %7 = 21 x 27 endowed with the corresponding product topology. Note that
cr : Xp — %7 defined for (u, v, w) € [0, T]® as

cr(hs vo, B (s v, w) = (vgx"ewl, B=Y2B, vorke™™ 1B, Byrke*,

k=0,1, 2), (5.2)
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is a continuous mapping. With the free path empirical measure

1 N
N = o
Y ; hi-vo- Bo.r) 3

in 27, it follows that the corresponding empirical covariance
1 g o
@V = fcr(,\,vo, B)dal (x, vo, B.) = —Zcr(/\i,vb, B)), (5.4)
N=

isin 27 for amost all vg, A and the realization of B. Consequently, (¢, ,a’}’) €
Y.
We are now in position to state the main result of this section.

Theorem 5.3. For f’ uniformly Lipschitz, bounded below function on R* and any
T < oo:
a) There existsa continuousmap F P} : 27 — C,([0, T]?), suchthat KV of (2.4)
can be expressed as

KN(s,1) = FP} (%N> (5. 1).

b) There exists a continuous map FP% Y1 — P(R x Cp([0, T])) such that 7
of (5.1) can be expressed as

Y = FPE(eV, ).

c) Define 7} =0 ® vo ® W~ for vg of Theorem2.3. Then, K = FPTl((g*) isthe
unique solution of (2.16) when taking

* = (2P W), 0, 7 Hu A v) £ O (w), k=0,1,2) (5.5)
and FP%(%*, u3) isthelaw (1, w) defined in Corollary 5.2.
Proof. a). Let usdenote K, (¢) := K (¢, ) for K € Cp,([0, T]?) and
Fi(K,A) == f'(Kaq(t)) — &
Note that (2.2) is equivalent to
. [ .
v = exp{—/ Fy(KN, 2)ds)vh
0

t t u
5 2ol [ RN 0ds) [ el [ F&Y. ads)dB,
0 0 0
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holding fori = 1,..., N, where the stochastic integral is against a previsible
process. Applying Ito’s formula gives

t
o = expl— /O Fy(KY, )ds)uh + B~Y2B]
t t
_/3*1/2/ B,’;FM(KN,M)GXD{—/ Fy(KN, x)ds)du. (5.6)
0 u

It follows from (5.6) that there exists anon-trivial map @7 : 27 x C»([0, T]%) —
C»([0, T1?) such that for any (s, t) € [0, T]?

KN(s, 1) = dp ((gN, KN) (s, 1). (5.7)

To explicitly describe @7 we denote the coordinatesof ¢ € 2’ inaccordancewith
the coordinates of ¢ of (5.2) as

@ = (G2.0(w), Coulu, w), Gaxlu, v, w), k =0,1,2)

and aso use the notations $2 = {(1, 2), (2, 1)},

0
HI(K) 1= (= [ (Ka©)de)

and
d 0
DHY(K) = EHTQ(K) = f'(Ka(r)) eXp(—/ [ (Ka(§)dE) .

In this context, D°H = H by definition. It isnot difficult to check that (5.7) holds
for d7 such that for (s1, s2) € [0, T12, % € 27 and K € Cy([0, T]?),

D7 (%, K)(s1, 52) = G10(s1 + 52) Hy (K)Hy? (K) + %3,0(s1, 52, 0)
+ Y Hy®(K)%2,0(50 (2 S0(1)

oeSs?
s1 [S2 .
L A A D P
0 JO ;i—01
D’ H'Y (K ) D* H2 (K )dudv
. So (1)
+ Y Hy®(K) / D DG k(w51 + 52— u)
oes? 0 =01
DY *H Y (K)du
S
+ Y / Dk 502 S0 1) — 1)
oes? 0 k=0,1
DY *H,"®(K)du. (5.8)

o (1)
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For the purpose of studying the continuity properties of &7 we may and shall
assumethat f’ > 0 without loss of generality. Inthiscase, foranyO<u <t <T
and K € Cy([0, T]?),

t
O<H/(K) <1, and / IDH/(K)|du < 1.
0

Moreover, because f’ isLipshitzand e ™ —e ™| < |x —y| Alforx,y > 0, it
follows that

o
S|/ (K) ~ HLGOI < 1 e [ 1Kuts) ~ Ratolds
<6 0

where || f’|| # denotes the Lipschitz norm of f’.

Furthermore, since [ze™ — we™| < |z — w| + |x — y|(ze™* 4+ we™Y) for any
x,y,z,w > 0, it follows that

IDHY (K) — DHY(K)| < || f'|l# [|Kd<r> — Ka(v)| + (DHY(K) + DHY (K))

9 ~
X](; |Kq(s) — Kd(s)|dsi| .

It is now an easy matter to deduce from (5.8) that there exists a finite constant
k(T,||f'|l#) sothat, forany € € Zr,any K, K € C,([0, T]?),andany S < T,

S
||¢T<%,K)—¢T<%,K)||§osk(r,nf’ug)n(gnlo/o IIK — K||%dv. (5.9)

In the above inequality, || - ||3, denotes for a (vector valued) function on [0, T,
r =1, 2, 3, thesupremum normover [0, S]". It followsfrom (5.9) that the sequence
Ky11 =7 (%, K,),n > 0, issuch that

(T, 1 f 1G] S)"

n!

Hence, K, — Ko € Cp([0, T1?). By (5.9), the mapping K — &7(%, K) is
continuous on C([0, T]2) S0 Koo = ®7(%, Koo) and by Gronwall’s lemma this
is the unique fixed point of &7 (%, -) in C»([0, T]?). Denoting Ko = FPX(%)
if follows that K¥ = FPL(%"). Let us tackle next the continuity of FP1(-).
Considering again (5.8), one can find a finite constant C(7') such that for any
(6,6) € Zr,any K € C,([0, T]?) andany S < T,

I1Kns1 — KnllS 1K1 — Koll3, .

150 =

107(%. K) — 01(%. K)I3, < C(D)|1€ - F113,. (5.10)

Applying (5.9) and (5.10) for K = FPA(%) and K = FP}(%), Gronwall’slemma
yields
|FPE(%) — FPA@)|IT, < (Tt TN NNTIEG 14 — ) T

and therefore the continuity of F PT ().



34 G. Ben Arouset al.

b). Recall that (5.6) implies that
v = ¢ (K", Ai, vh. B)(1)
for ¢ : C»([0, T1?) x L7 — C»([0, T]) such that

G(K. 7 v0. BY(t) = BY2B, + e Jo B (K:Mdsyy,

t
—,3_1/2/ BuFy(K, hye~ Ju Fx(K2ds gy,
0

Consequently,
ay = v, a),

where, by definition, for any 2 : R x C»([0, T]) — [—1, 1] of uniform Lipshitz
constant at most 1,

f h()"a Vs, t S T)d'(//(K, I‘L)()‘" U)
= /h(k,¢(K,K,vo, B)(t),t=T)
du(i, vo, B).

Fixing i as above, K, — K in Cy([0, T1?) and u,, — pin 27, let g(K, x) :=
h(h, (K, x)) withx := (A, vo, B) € X7. Since x — ¢(K, x) is continuous,
g(K,-) € Cp(Xr) implying that [ g(K, x)du,(x) — [ g(K,x)du(x). By tight-
nessof {u,}, thereexist compactsI',, C X7 suchthat 11, (T'y) > 1—nforaln > 1.
For any n > 0, the continuous mapping K +— ¢ (K, x) isuniformly continuous on
r,,so

limsup| [ g(Ky. x)dpun(x) — f ¢ (K. x)dpn ()]

n—o0

< 2n+limsup sup [[¢(K,, x) — ¢(K, x)|| = 2n.

n—oo xern

Consideringn | 0,weseethat [ h (A, ¢ (Ky, x))dpn(x) = [ h(X, p(K, x))du(x)
for any h bounded and uniformly Lipschitz. Consequently, ¥ (K, u,) — ¥ (K, i)
in 2(R x C,([0, T])) Thus, ¥ : C»([0, T]?) x 27 — 2(R x Cy([0, T])) is
continuousand 7Y = FPZ(%", i}) where

FPRE, ) = (FPH®), 1)

is continuous.

c). Computing &7 (%*, K) of (5.8) for ¥* of (5.5) results after integration by
parts with the right-side of (2.16). Accordingly, FPrl(fg*) equals K of (2.16). To
complete the proof, notethat v (K, 117) isexactly thelaw 7 (A, w) of Corollary 5.2
per given K and vp. O
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5.2. LDP of the free measure for initial conditions (IC1)

The goal of this part is to prove a LDP for the couple (¢, i) and the initial
conditions(IC1). Todo so, wefollow the program taken when proving Theorem 2.2.
That is, we combinethe Gartner-Ellistheorem and projectivelimitsfor o composed
of finitely many atoms, using exponentially good approximations to establish the
LDP with a convex GRF in case of agenera o. For an explicit representation of
this GRF we then apply Proposition 6.4 relying upon the fact that [MT\’ is made
of thei.i.d. random variables (vj, B') and the modes (1;)1<;<y Whose empirical
measures convergeto o (super-exponentially in N, for the annealed case). We thus
derive the following result.

Theorem 5.4. Assuming (H0)—(H1) (or (H0a)—(H1a)) and (H2), the couple (",
,&’}’ ) satisfies a quenched (respectively, annealed) LDP in %/ with respect to the
law oV of the modes, under the product law v§" ® # €N for (v, B). The GRF
I%(~) of this LDP isfiniteonly for n1 = o and I (ulo ® vo ® #") < oo inwhich
caseitisgiven by

I%(‘g,u)=I(M|U®VO®W)+F((€—/CTdu)

where F is some convex non-negative function such that F(x) > Ofor all x £ 0
and cr isthe continuous mapping of (5.2).

To deal with the spherica law of (2.14), let g(u) = g(u) — u/2 noting that
h(v) — g(u) is continuous and bounded above on {(u, v) : |v| < (\* + Dul.
Hence, considering Theorem 5.4 for vg = y and applying Varadhan's lemma for
D(E, u) — (%1.0(0) + h(%1.1(0)), with @ € Cp(¥7) we get the following
corollary.

Coroallary 5.5. If the law of vg is given by (2.14) then assuming (HO)—(H1) (or
(HOa)—«(H1a)) and (H2), the couple (", ju7 ) satisfies a quenched (respectively,
annealed) LDP in %7 with respect to the law ¢V of the modes. The GRF for this
LDPis

LY (%, ) = I5(%, w) + §(%1,0(0) — h(€11(0)
— _inf {I3(%. ) + §(%1,0(0)) — h(%11(0))}
(6,1t
wherein I1(-) weset vp = .
For the proof of Theorem 5.4 weneed thefoll owing simpleadaptation of Lemma
4.2.

Lemma5.6. Let ¢ denote the finite set of jump discontinuity points of a given
piecewise constant function ¢ : R — R. If (HOa) holds for 6" and o such that
o(#) =0, thenit holdsfor 6 o p~Lando o ¢~ 1.
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Proof. The proof of Lemma4.2 shows that the mapping it — po¢ =1 : 2(R) —
2(R) iscontinuous at o. By (HOa) o isthe only point of finite rate for the LDP
of 6. The contraction principle thusimplies that (H0a) appliesto 6" o ¢~ and
o o ¢~ (for example, see[15, Remark (c), page 127]). O

Proof of Theorem5.4.  Assuming (HOa)—«(H1a) and (H2) we establish the an-
nealed LDP by:

1) Proving the LDPfor iy in 27 withthe GRF Jo(n) = I (t|lo @ vo ® #") when
u1 = o and fo(u) = oo otherwise.

2) Proving that " is exponentialy tight in 27, hence the couple (¢, AY) is
exponentialy tight in %/¢.

3) Combining the Gartner-Ellis theorem and projective limits we show that the
couple (N, o) satisfiesthe LDPin %1 with aconvex GRF whenever 6V, N > 1
are supported on the same finite, non-random set, on which o is strictly positive.
4) With D(, -) denoting the Wasserstein distancein 27 and

€] :== sup [[Cu,v,w)|= sup sup|%;iu,v, w)|
u,v,wel0,T] u,v,we[0,T] j.k

for ¢ € 27, itiseasy to check that
d((6, 1), (€, 1)) := |6 — | + D(u, ) (5.11)

is a complete metric for the (separable) topology of %7. Invoking (H2) for the
first timein the proof and using exponentially good approximationsin (% r, d) we
conclude that the LDP for (&V, f7) holds with a convex GRF regardless of the
support of 6.
5) Relying again on (H2), we apply Proposition 6.4 and Lemma 6.5 in order to
identify the GRF of the LDP as having the form of 13(%, ).

Let us now detail these five steps of the proof.
Sepl By (Hla) wemay and shall assume hereafter that o and 6V, N > 1 are
supported on [—1*, A*]. For W € C(Xr) let

Ywh) = log / eV *vB) gy (v)dw (B) . (5.12)

Notingthat vy € Cp([—1*, A*]) forall V € Cp(X7), itthenfollowsby (HOa) and
Varadhan's lemma that

A(V) = N'Lmoo%log [/ N JVvany du(?N(v)dWM(B)daN(A)]

— lim ~ Iog/ NS gaN () = / YvWdo(h), (5.13)
N—oo N

existsand isfinite. Moreover, by dominated convergence, 8 — A (Y, 6;V;) iscon-

tinuousand differentiable everywherefor any fixed V; € Cp(X7). Taking projective

limitswe deduce the LDPfor /17 in C,(E7)" (endowed with the Cj, (X7)-topology

and its Borel o -field), where the convex GRF of the LDP is the Fenchel-Legendre
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dual of A(-) (see[15, Corollary 4.6.11(a)]). Asin (4.4) it is not hard to verify that
forany V € Cp(X7)

A(V) = / (IogfeV(A’”’B)duo(v)d“f/(B)>do(A)

= sup [/ Vdu — I(u|lo @ vo ® W)] (5.19)
{neZ?(Xr)in1=o}

(see [15, Lemma 6.2.13] for a similar computation). With #g(t) := oo for any
T ¢ P(X7), we see that .#g(-) is a convex GRF on C,(X7)’ (cf. [15, Lemma
6.2.12]). By (5.14) and Fenchel duality (see [15, Lemma 4.5.8]), the convex GRF
for the LDP of [# is necessarily .#o(-) which isinfinite outside 27 = 2(Xr),
allowing usto consider hereafter all LDPsinthe space 27 (or %1 = Z1 x 27).
Sep2 By Stepl, [LITV satisfiesthe LDP with GRF in the Polish space 27, henceit
isexponentialy tight (see[21, Lemma 2.6]). We thusturn to prove the exponential
tightness of €V in 27. Tothisend, let T'y; = N,,>00" ., Where

N

N
1 , 1 :
Cyo:= {(}\,vo,B):—E (v’)sz,—E sup (B))? < M},
M N &0 N = o

andforadln > 1,

N
1 . )
Tani={A\vo,B): sup — § |B} — B> <n"?M} .
seefo.r] N

[s—t|<n—

We claim that o7y 1= {€N (X, vo, B)(-) : (X, vo, B) € 'y} is pre-compact in
Z7 for any fixed M < oo. Indeed, with p = max(1*, 1)2e*'T < oo itiseasy to
check that [ler (x)|| < p(v3 + B~LIB.I1?) for x = (&, vo, B.) € I7 implying that
the functionsin .7, are uniformly bounded by pM (1 + ~1). Moreover,

sup ez (0, v, w) — e (X)(u, v, w)|| < A¥w —w'|p@s + BLHIB.IP),
u,vel0,T]

implying that any 4V e .oZ; is of uniform Lipschitz norm of at most A*p M (1 +
B~1) with respect to w. Consequently, <7, is equicontinuous with respect to w.
Similarly,

sup  ler () (u, v, w) — er (X)W, v, w)|
v,wel0,7T]

< pB~%(lvol + B~Y2|B.I)IBy — By,
so applying the Cauchy-Schwartz inequality, it follows that
sup N w,v, w) — GV, v, w) | < n oM (B2 4 7Y

v,w,u,u’€[0,T]
lu—u'|<n=3
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for any ¥V e .o/ and al n > 1, resulting with the equicontinuity of .7, with
respect to u. The latter bounds also apply with respect to v, s0 .<7 ), being bounded
and equicontinuous, is by Arzela-Ascoli, a pre-compact subset of 2.

By thefinitenessof Ag(ng) of (2.13) and theindependence of v{),for anyL >0
thereexists M; < oo so that

1 &,
P( > (wp)? > My) < exp{(—LN}. (5.15)
i=1

By Désire André reflection principle, for n < 1/(2T),

E(exp( s{gp]BE»szHexp(nB%)) <00, (5.16)
te[0, T

soincreasing M, as needed, also

N

1 .
P(= > sup (B))?> M) < exp{—LN} (5.17)
N = te[o.1]

Partitioning [0, 7] into intervals of length n=3 each, by the stationarity of the
increments of the Wiener law, we get for somer < coandal n, M, N,

M
o sm, st )
s, te[O T]

|s—t|<n—3

§n3T[P’( sup Z(B 2 > 5 2)

uel0,n 3]
N

< nSTP(Z sup (B)2 > gNM) < n3TrNe nNM/2T (5 1g)
i—1 uel0,1]

Combining (5.15), (5.17) and (5.18) we have that for any L there exists M = M|,
finite such that for all N,

e.¢]
P((gN ¢ &/M) S 2€_LN —I—TrN Zn3e—nNM/27 S 3€_LN
n=1

and the exponential tightness of " follows.

Sep3 Assumethat 6V, N > 1 are supported on afinite, non-random set ¥ =
{s1,...,8m} such that p, = o({s;}) > Oforr = 1,...,m. Without loss of
generality wemay andshall takeXr = % x Rx Cp ([0, T]) throughout Step 3. Then,
the identity (5.13) applies for any W € C(Xr) such that max;co ¥w(A) < oo.
Moreover, by (H0a), oV ({6 " (s,) = 0}) < 1foral r and N large enough. Hence,
A(W) = oo whenever max; o ¥y (A) = oo, with the identity (5.13) applicable
foral W € C(Xr). Let.#, denotethe vector space of all R°-weighted finite sums
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of atomic (dirac) measureson [0, 713, and & = {(a, V) : V € Cp(X7), o € M ).
Any (a;, V) € &,1=1,...,d, definesaprojection

T (@ 1) = (<az,f€>,/vzdu, I=1....d)

from %/ to R% . Fixing such d, and (¢, V;) we thus have that

d m

h(©) := A Olon. ) +0eaV) = Y prhr(6)
=1 r=1

for 1, (0) := log E(exp({(0, Y,))) and the R??-valued random vectors

Y, =Y, (vo, B) = na,V(CT(sra vo, B), 83,,1)0,3) .

By Fatou’slemmaand dominated convergence, thefunctions’, : R — (—o0, 00]
are lower semi-continuous with £,.(-) differentiable in the interior of 2, = {0 :
h,(0) < oo}. Moreover, |Y,| < p,(1+ v3 + B~ B.||?) for some non-random
constants p, < oo, hence O isin theinterior of &, by (5.16) and the finiteness of
Ag(ng) of (2.13). Consequently, if 8 — h(0) is asteep function, then by Gartner-
Ellis theorem 7o v (47, ﬂ’T\’) satisfy the LDP in R%? with a convex GRF (see
[15, Theorem 2.3.6]). We show below the steepness of 4(-) for adl d < oo and
(o, Vi) € &. Considering the projective limits as in [15, Theorem 4.6.9], we get
that (&N, 7 ) setisfiesthe LDP with some convex GRF in the algebraic dual & of
&, endowed with the &-topol ogy. The &-topology induces a Hausdorff topology on
% C & corresponding to the pointwise convergence of functionsin 27, hence
theidentity map isacontinuousinjection from (%1, d) to &. Applying theinverse
contraction principle for this injection, the exponential tightness of (%%, ,a¥ ) in
(%, d) asestablished in Step 2, resultswith the L DP with same convex GRF hold-
ing for (&V, [ﬂ}’) in(#%r,d) (see[15, Theorem 4.2.4]). Recall that the functions
h,(+) are bounded below on compacts, hence it suffices for the steepness of &(:)
to show for » = 1,...,m that h,.(8,) — oo whenever 8, € 2¢ converges to
0 € 02,. Observing that Zj’zl 01+4V; isbounded for @ in any compact set, we
may and shall assume without loss of generality that vV, =0,/ = 1,... ,d and
embed all functionsof A = s, into oy € .#,,. It isthen easy to check that

1
(0,Y,) = a(@v + vo(b(®), g) + 5l9, A©)g) ,

whereg = (B, ..., B;,)forsome0 <t <t <--- <t, <T,anda(@) € R,
b(#) € R" and the symmetric n-dimensional matrix A(0) are non-random and
linearin @ € R?. With K ¢ denoting the strictly positive definite covariance matrix
of g, itisnot hard to check that 4, () = oo unle&sK;1 — A(0) ispositive definite
in which case

1
hr(8) = — logdet(l — K, A(8)) + Ao(n(6)) (5.19)
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with n(6) = a(6) + 0.5(b, (K;* — A)~'b)(6). Hence, for 6, — 6 € 92,
either Amin(K;* — A(6,)) | Oinwhich case ,(6,) — oo or else 6 — 5(6) is
continuous at 8., with n(6) necessarily at the boundary of {n : Ao(n) < oo}.
The assumed continuity of Ag(-) then resultswith 4, (8,)) — oo, completing Step
3 of our proof.

Sep4  For the genera case we introduce exponentially good approximations
based on the quantizations ¢,,(-) of the modes A as in the proof of Lemma 4.1.
Indeed, letting A" = ¢y, (A and Ak = ¢, (1*) thecondition (H 1a) then obviously
holds for A\™, Whereas by Lemma 5.6, the empirical measures N o ¢ -1 satisfy
the LDPin 2([—A},, m]) W|th GRF that is zero at o o ¢,* and +oo otherwise.
Moreover, the support of 6V o ¢, N > 1 is afinite non-random set on which
o o ¢, L isstrictly positive (by the positivity of o asin (H2)). Denote in analogy
with (5.3) and (5.4),

N
1 . .
ANm . N,m .__ m i i
: § Ssloy s O E N > (!, vh. BY) .
i=1

m ~N,m

Then, for any m, by Step 3 the sequence (-, fp") satisfiesthe LDP in %7
with some convex GRF. Observing that ||c7 (1, vo, B.) — cr (A, vo, B)| < |1 —
Np' (v3+ B~LIB.|12), for some p’ < oo andal i, A’ € [—A*, A*], it followsfrom
(5.4) and (4.6) that

1N — N | < p' = ZM — AM(p)? + BB

smlp( Z<vo> N ZHB ||)

With
1N
DGy i) = 5 2P = dil = m 7
i=1

we thus conclude by (5.15) and (5.17) that (&N, [LITV ") are exponentially good
approximations of (¢, %) in (%7, d). From this, the LDP with convex GRF
satisfied by (V- [/TV ™) for al m, and the exponential tightness of (¢, a%),
it follows by [15, Theorem 4.2.16(a)] that (¢, i)Y) also satisfies the LDP in
%1 with some convex GRF. For the last conclusion we rely on the convexity of
(x,y) > d(x,y): JJ/% — R of (5.11), as done for example in case of (4.7).

Sep5 Having proved in Step 4 the LDP for (%7, AN) inZr x 2(X7) witha

convex GRF, we next identify this GRF to be 1% (+) by applying Proposition 6.4 for
¢ = cr of (5.2) and the vector space .#, that separates pointsin 2’7 (recall the
formulawe got in Step 1 for the GRF .#o () of the LDP of ,1 ). Indeed, we have
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seenin Step 2 that [ler || < p(v3 + B2 B.|12), hence by (5.16) and the finiteness
of Ao(no) of (2.13), for somen > 0

Asc(lierl) == Iimsup% log [E[e"Nf”"T”d’w] <log [E[e”p(”gwfl“g”z)] <o0.
N—o00

By Lemma 6.5 it remains only to verify that ¥, (4., (-) of (5.12) is bounded on
[-2*, A*] forany r € [0,1) and @ € .#, for which [ Yy ) (R)do(A) < oo.
Fixing such ¢ € .4 ,, acomputation similar to the one leading to (5.19), yields for
some strictly positive definite matrix K,, o-ae. 2 andal r € [0, 1],

1
Vria,er)(A) = 5 logdet(l — rK,A(M)) + Ao(rn, (1)) ,

where (1) :=a(k) + 0.5(b, (r 1K ;1 — A)~1b) (1) for somea(r) € R, b(1) €
R" and symmetric n-dimensiona matrix A () that are non-random and continuous
in A, such that Kg_l —rA(x) isdtrictly positive definitefor r = 1 and o-a.e. 1. By
(H2) and continuity of A(-), theeigenvaluesof (r*lK;1 — A) arebounded below
by (r—1 — 1)Ami,1(K;1) > Oforalr €[0,1) andal A € [—A*, A*]. Therefore,
since A(-) iscontinuous, A € [—A™, A*] —% logdet(l —rK,A(})) isbounded
continuous. For thesamereasons, i, isbounded continuouson[—A*, A*] forany r €
[0, 1). Now, let i = sup{n : Ao(n) < oo} € (0, oc]. Since [ Ag(n1(A))do () <
00, Ao(n1(r)) is finite for o-ae. A, resulting with n1(2) < 75 for o-ae. A, and
by monotonicity of r — n,(1), n,(A) < 7 for o-ae. » and dl r € [0, 1). By
continuity of n,, wededucethat (1) < nforal » € [-1*, A*]andany r € [0, 1).
Hence, r supy;<;+ 1 (1) < 7 resulting with sup;; <« Ao(rn, () < oo as needed
to complete Step 5 and with it the proof of the annealed LDP.

Assuming now that (HO)(H1) and (H2) hold, fix A such that 6 — o
and limsupy_, ., max¥_; [A;| < A*. Fix §’ € (0,1) and No(A) < oo such that
max;’; [AY| < A*+5'forall N > No.Then, thedegeneratelawso ™ =5~ v,

on [—A* — &, A% 4 8]V satisfy (HOa)—(H1a), upon replacing A* by A* + &' in
(H1a). The corresponding annealed LDP is actually the stated A-quenched LDP.
It is easy to check that Steps 1 and 2 of the preceding proof remain valid upon
changing A* to A* + ¢ and considering N > No(\). Moreover, Step 3 applies
even when 6V, N > 1 are supported on some finite set %/ on which o (-) is
not strictly positive, provided that eventually 6V ({s,}) = O for al s, ¢ %. By
(H1) and (H2) thisindeed applies for 6V o ¢, of Step 4, regardless of m. In
the identification of the GRF in Step 5 we now need to establish the boundedness
of Yy (acr)(-) Of (6.12) on [—A* — 8, 1* 4 8] for some § = é(«,r) > 0. Thisis
done as in the preceding proof, noting that by continuity of A(.), per r < 1the
strict positive definiteness of K;l —rA()) extendsto [—A* — 8, A* 4 8] for some
8 = 8(a, r) > 0. Changing § > 0 as heeded, the same applies for the continuity
and boundedness of —% logdet(l —r K, A(-)), n,(-) and Ag(rn,(-)). Theresulting
“annealed” GRF I%(-) depends on the (degenerate) laws o™ only through o of
(H0a), henceisindependent of the particular A chosen, as claimed. ]



42 G. Ben Arouset al.

5.3. LDP of the free measure for initial conditions (IC2)

The case of rotated initial conditions (1C2) is dlightly different than that of (1C1)
since the coordinates of vg are no longer independent. However, we shall see that

Theorem 5.7. Assuming (HO)—(H1) (or (H0a)—(H1a)) and (H2), the couple (&7,
p/}’ ) satisfies a quenched (respectively, annealed) LDP in %/ with respect to the
law oV of the modes, under the law induced on (vg, B) by (IC2) and # ®V. The
GRF of this LDP is given by

13(%, ) = inf{IX(@, D) + k@) : (6, ) = S, %, 0)}

where I} is the GRF of Theorem5.4 for vo = y and S : R x ¥y — 27 x 27
is such that

S1(u, 6, %) = S1(u, @) = (L>G1.x, L2k, 34, k=0,1,2)

for L := u/f?l,o(o)lf}:l_o(opo and

/h(X,v,B)dSz(u,%, 1 (x, v, B) 1=/h(k,Lg, B)dpi(, g, B) ,

for all h: X7 — [—1, 1] uniformly Lipshitz continuous.

Remarks.

(8). Considering the unique minimizer of the GRF «(-) + I 1( -) appearing above,
thatis (u*, [ crdpi, p1) for p, = o @ 1, ® W, itiseasy to check that the unique
minimizer of the GRF 72(-) is

S(u*,/CTdPlv pr1) = (/ crdpur, pur) -

Thisis exactly the couple (4™, u7.) of (5.5) corresponding to (1C2).

(b). The quenched L DP of Theorem 5.7 holds A-a.e. In the context of the SDS (1.1)
it is natural to ask for a quenched LDP that holds for aimost every J = (G, \).
Indeed, Theorem 5.7 provides such aresult whenever the law of ug isinvariant to
rotations (so fixing G is the same as averaging over it). For other laws of ug the
GRF of aJ-quenched LDPispossibly quite different from I% (+). Nevertheless, our
conclusions from the quenched L DP of Theorem 5.7 which are about convergence
almost surely in (A, G, ug, B) readily apply to the SDS (1.1).

Proof. Observe first that fixing ug € R, the Haar measure Hy induces on
vo = Gug the uniform law on the sphere SV —1 with radius |ug|. It iswell known
that thislaw can berepresented asthelaw of '“0' org where g isindependent of ug and

follows the standard centered Gaussian law y®N By the assumed independence
of G and uo, we can describe v of (IC2) as ‘l"?' g, where now ug independent of

g isalso random. Taking

1

N
N Z Ay gi’B[ioyT] ’
i=1

2
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by Theorem 5. 4theGRF/c(u)+Il( -) appliesto the A-quenched (annealed) LDP of
(N~ Huol?, [erdiay, i) inR* x #7.Since N~t|g|? = [(cr)10(00dzy > O,
thetransformation S correspondstoreplacing g; by vo = ‘lu(f' gi andthen recomput-
ing (", ¥ ). By the contraction principle, the LDPthen holdswith the stated GRF
12(-) provided S iscontinuous at every (u, %, [X) for which k (u) + IX(%, [I) < oo.
By Cramér’s theorem, N 1|g|2 satisfies the LDP in R with the GRF /cg(r) =
0.5( — 1 — logr). Recall that the GRF (1) + I+(%, %) is at least iy (0) =

whenever fgl 0(0) = 0. It iseasy to check that S is continuous except at points for
which (51 0(0) =0. |

5.4. LDP for the free measure starting from the eigenvector with maximum
eigenvalue

In this section, we consider (IC3) where ug is the eigenvector of J corresponding
to the maximum eigenvalue A%, = max/Y_, 1;, set without loss of generdlity to be
A1, 50that vg = (v/N, 0, ..., 0). For A% suchinitial conditions are approximately
equivalent to zero initial conditions, whereas ¢V of (5.4) isthen

1()\'* )kew)u}kv

1
B )
VBN
N

Bl B (1)K e k=o,1,2)
i=1

&N (u, v, w) = ((A’,‘\,)kewm,

1
BN
Thus, an annealed LDPfor (47, i}') requiresan LDPfor {1% }. For example, such
anLDPwithanon-trivial GRF isproved in Section 6.1 for the Wigner semi-circular
law. However, the latter does not satisfy (H1a). It turns out that (HOa), (H1a) and
(H2) imply theLDPfor {17} withthe (trivial) GRF k(1) := Oand k. (r) := +00
for al r £ A*, making the following annealed LDP possible,

Theorem 5.8. Assuming (HO)—(H1)(or (HOa)—(H1a)) and (H2), the couple (",
,u/}’ ) satisfies a quenched (respectively, annealed) LDP in %/ with respect to the
law oV of the modes, under the law induces on (vg, B) by (IC3) and % ®V . The
GRF of this LDP is given by

(@, ) =Inf{I3(@, p) + F() +ks(r) 1 € = S(r, ¢, %), peHy 1. Ir] < 17},
where I} isthe GRF of Theorem 5.4 for vg = o,
S (@) = Ef | (s)[?ds
0

isa GRF on H&T ={¢ : »(0) =0, #(¢) < oo}, and the continuous mapping
SR x H&T x X'y — X7 issuch that

S, @)= (ke pY2rte (), By, v, w)

1B ke g (w)p(v) k=0, 1, 2)
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Remark. Considering the unique minimizer of the GRF I%(-) + Z(P) + kx(r)
appearing above, that is (A\*, 0, [ crdu}., u3) for uh = o @ So® #', itiseasy to
check that S(1*, 0, [ erdul.) isexactly * of (5.5) corresponding to (1C3).

Proof. Observethat ¢V = S(\*,, \/ANBL} @N) for

N

~ 1 ..

@N = (0,0, T § B! B! (1)ke) |
i=2

Note that the couple (f crdiiy, ,iII}’) for

1 N
~N .
=— 8, gni
MT N-—-1 2; )L,,O,B[O‘T]
i=

is exponentialy equivalent in (%7, d) to @V, 7)) (c.f. [15, Definition 4.2.10]).

By Schilder’s theorem \/LNBL}, independent of (A%, [ crdiil, i), satisfies the

LDPwithGRF #(-)in H&T. Thus, by the contraction principle, it sufficesto show
that (A%, [crdily, i) satisfiesthe LDPin R x %7 with the GRF k. (r) + I3(-)
(c.f.[15, Theorem 4.2.13)).

In the A-quenched case, assuming (HO)—(H1) and (H2), the latter LDP isa
consequenceof Theorem5.4sinceamost surely, A%, — A*and iV := (iY)1 — o
in 2(R). Assuming instead (HOa)—«(H1a) and (H2), it follows from (H1a) that
|Ay] < A%, whereas by (HOa) and (H2), for any § > 0,

Iimsup1 logP(Ay < A" —68) = —o0
N—o00 N

(for example, see the proof of (6.3)). Consequently, (A%, [ crdiiy, i) is expo-

nentially equivalentin R x #/7 to (\*, [ crdiy, i¥}). Moreover, i is exponen-

tially equivaentin 2(R) to6 ", hencealso satisfying (H0a). In particular, Theorem

5.4 appliesto ([ crdii, i), yielding theannealed LDPfor (A%, [ crd iy, iy)

with the GRF k. (r) + IX(-). O

5.5. LDP for the free measure with Gibbs initial conditions

In this section, we consider (1C4) where the law of vg is the diagonalized Gibbs
measure Mf of (2.1). We then establish the following result

Theorem 5.9. Assuming (H0)—(H1) (or (HOa)—(H1a)) and (H2), thecouple (",
[ﬂ}’ ) satisfies a quenched (respectively, annealed) LDP in %/ with respect to the
law oV of the modes, under the law induces on (vo, B) by (IC4) and % ®VN . The
GRF of this LDP is given by

IFE. 0w =@, w— _inf  J@. ),
(€. eV
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where

J(@E )= I(ulo®@y W)+ Fy ((5 - / CTdM> + Bf(%¢1.0(0)
—%1,000)/2+ B€11(0) ,
incasepus =cand I(ulo @ y @ #°) < ocoand J (¥, ) := oo otherwise. Here

Fy(x) = sup (o, x), xeXr
aeY,

is a non-negative convex function, where
D, = {a €My /e<°""T()"”°’B')>dy(vo)d”f/(B.) <00 VA < AF } ,

for the vector space ./, of all R%-weighted finite sums of atomic (dirac) measures
on[0, 713 (and 7 isgivenin (5.2)). When f isstrictly convex, the unique minimizer
of J(-) in%r is(¢*, uy) of (5.5).

Proof. Noting that ,uﬁ\’ isaspecia case of the spherical law (2.14), our starting
point is Corollary 5.5. When applied for g(x) = Bf(x) — x/2 and h(x) = Bx, it
resultswith (¢, i) satisfying the stated LDP with the GRF I (-). The identifi-
cation of the function F, (x) is done by examining Step 5 of the proof of Theorem
5.4 and its use of Lemma6.5.

Turning to find the minimizers of I#(-) when f isstrictly convex, recall that the
unique minimizer of the GRF of the LDPfor ((47V)1,0(0), (6")1,1(0), (28)1,2) is
shown in Theorem 2.2 to be (ug, vg, 7*). Thus, the minimizers (¢*, uj.) of I;‘(-)
aretheminimizersof J(-) subject to the constraints (4%)1,0(0) = ug, ($*)1,1(0) =
vg and (u})1,2 = m*. Since {(cr)1.(-), k = 0, 1, 2} isindependent of B., writing
¢* = [ crdu’ +x*, itfollowsthat x* minimizes F, (x) subject to the constraints
x1,000) = ug — [(c7)1,0(0)dn* and x1,1(0) = vg — [(c7)1,1(0)d7*, whereas u%.
minimizes I (ulo ® y ® #") subject to the given margina (1)12 = 7*. Thus,
necessarily, uy = 7* @ V.

Asfor the optimization problem in x, recall that in the course of proving The-
orem 2.2 we have also characterized vg. In particular, this characterization implies
that the constraints on x are such that

x1,1(0) = A*x1,0(0) = A*cEa (5.20)

forcea :=upg — f vzdvg;(u) > 0. To complete the proof, it suffices to show that
the unique minimizer of F, (-) subject to (5.20) is given by

X ew) = cpaHR ™, x5, ()=0, x3,()=0, k=012,
(5.21)

To thisend, we first show that for every x € 2’7,

F)/((-xls X2, -x3)) Z Fy((-xl’ 07 -x3)) 2 F)/((-xlv 07 O)) (522)
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with strict inequality whenever x3 # 0. Indeed, observe that ¢y = ((c7)1, (c7)2,
(cr)3) equalsino ® y ® # -law to ((cr)1, —(c71)2, (c7)3) due to the symme-
try of the law #" of B.. Consequently, if « = (a1, a2, a3) € %,, then so does
(a1, —a2, a3). By convexity it then follows that (a1, 0, a3) € Z,, resulting with
the left inequality of (5.22). By the conditional independence of (cr)1 and (cr)3
given A under theo ® y ® # -law, it follows that (a1, 0, a3) € 2, if and only if
(¢1,0,0) € 2, and (0, 0, a3) € Z,. Hence,

F}/((-x].? O’ -x3)) = F)/((xly Oa 0)) + F}/((Ov 09 x3)) 2 F)/((xlv 09 O))

asweclaimedin (5.22), with astrict inequality whenever x3 # 0 (since F,, (x) > 0
for al x £ 0).

Suppose next that thereisaminimizer (4, u.) of I#(-) suchthat x;’k(u, w) #
0forsomek € {0,1,2}, u € [0,T] and w € [0, T]. Let I}(-) denote the GRF
for the LDP of ((4V)1,0(0), (67)1,1(0), (V)2 x(u, w), AY) in R® x 27 when

starting with (IC1) initial conditions, with 1 4( -) denoting the GRF for the LDP of
the same object under (IC4) initia conditions. Going over Step 5 of the proof of
Theorem 5.4, it is not hard to show that f%(«) is finite only when u; = o and
I(nlo ® vo ® #7) < oo, inwhich caseit is given by

46,10 = 1alo @ v0® 1)+ £y (6 — [ can
where & := ((c1)10(0), (e7)1.1(0), (e7)4(u, w)) and for any y € RS,

F,(y) = sup{{cx, y) : / exp((@1 + ra2)v? + azf~ Y2 /uBvake" )dy (v)dy (B)
<00 V[A| < A¥)
= sup{oy1+ or2y2+ aays a1+ Aaz+ 05638 ure?* < 0.5
VIA| < A%}, (5.23)

It follows as before that the minimizers of IA?.(-) aregiven by ([ édus + y*, u3),
where y* = (7, y5.y3) € RS for

y; =Ay] =A"cpa 20, (5.24)

and y3 isaminimizer of ﬁy (7, ¥3, y3). It follows immediately from (5.23) that
forany y3 #0

ﬁy(yf, V5, ¥3) = 7 +aSUOE> N lgf {a2(A* — 1)y7 + a3y3
2,03

—0.50{3,3 u)LZkezw’\y’lk}
n
2

v

Vi _ s
71 + sup {Jaallys| — 0.5a3 8 tu(x*)% e yi} >
o3

= F,(y},y5,0) .
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By the contraction principle, necessarily y; = x;k(u, w) # 0 should aso be a
minimizer of ﬁy (y1, 5, y3), acontradiction.

Suppose then that there is aminimizer (¢*, u7) of 1;1(-) such that xik(w) #+
i 1= cpa(W)ker™ for somek € {0,1,2) and w € [0, T]. Applying the same
stramegyfortheGRFT;‘(.) of theLDPof ((6V)1,0(0),(4™)1,1(0), (V)14 (w), 1])
we have that necessarily xik(w) isaminimizer of F, (y], y3, y3) for

Fy(y1. 2, y3) = suplaay1 + azyz + agys : a1+ rap + azife < 0.5
VAl < A7},

and y}, y3 of (5.24). Incaseof A*cg4 > 0,takingaz — ooyields, for all y3 # y3,

~ i .
Fy(y1. 3. ¥3) = 71 + sup inf {a2(" — M)y +es(ys — Aty
2,03 =
yi Vi o~
> 71 + sup {az(yz — y3)} > 71 =F,(y1.55,¥3)
a3

in contradiction with x1p(w) # y3 minimizing fy (1, ¥5,). Incase A* =0, it
follows from Theorem 2.2 that cg4 = 0 and then clearly Fy (0,0, -) hasaunique
global minimum at y3 = 0. We have thus completed the proof of (5.21) and with
it, that of the theorem. O

6. LDPsfor the GOE and related quantities
6.1. Large deviations of eigenvalues of the GOE

Letusrecall that, if J;; isasymmetric matrix of centered Gaussian random variables
such that

1 2
E[15'] = E[J7] = L

thenthelaw o of the N real valued eigenvalues of J is given by
1 1 N N
oMdry, - diy =5 [T I —A,-|exp[—ZNZA?} [Tan.
1<i<j<N i=1 i=1

where ZV is the normalizing constant. It has been proven in [4] that

Theorem 6.1. The spectral measures 6V = % SN | 85, of the GOE J satisfy the
LDP with speed N2 and with the GRF

1 1
1w = / o) + 5 / logx — y|Ydu(x)du(y) — 3/8,

whose unique minimizer isthe semicircular probability measure

1
o= 2—11|x|52v4—x2dx. (6.2)
JT
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We next state and prove the LDP for the maximum eigenvalue of the GOE J.

Theorem 6.2. Themaximal eigenvaluesA*, = max{":1 A; of the GOE J satisfy the
LDPin R with speed N and the GRF

I*(x) = {gv (z/22 —1dz, x > 2, 62)

otherwise.
The next estimate is key to the proof of Theorem 6.2.

Lemma 6.3. For every M large enough and all N,
o (m%f il = M) < e NV
1=
Proof. Observethatforany |x| > M >8and A; € R,

x — Aile 4 < (x| + [aiDe 4 < 2)x| < /8.

Therefore, integrating with respect to A1 yields, for M > 8,

ZNfl
O-N(|)»1| >M) < ei%NMZ—N/ eixz/sdx
Z% Jixizm

N
* / [Tdkx = aile 4 BagN "Gy, j = 2)
i=2

N-1
122 2
<67§NM _‘/efx /de
= 7N

Further, following Selberg (c.f. [22, Theorem 4.1.1]), the explicit formulafor ZV
shows that ZN=1/ZN < ¢C'N for some finite C’ and al N (see also proof of [4,

Property 3.1]). Taking C = max(C’, fe*xz/gdx), it followsthat forany M > 8
o (1| = M) = No (] = M) < e 8VMH2CN
1=
and the lemmafollows since C < oo isindependent of M. O

Proof of Theorem 6.2. Obviously, I*(x) isaGRF. Moreover, with 7*(x) continuous
and strictly increasing on [2, co) it clearly suffices to show that for any x < 2,

1
limsup = loga™ (A} < x) = —oc0 (6.3)
N—oo
whereas for any x > 2
1 . .
Nll_)mooﬁ loga™ (M = x) = —I*(x) . (6.4)

Starting with (6.3), fix x < 2and f € Cp(R) suchthat f(y) = Oforal y < x
whereas [ fdo > 0. Notethat {A% < x} € {f fd6" = 0}, so (6.3) follows by
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applying the upper bound of the LDP of Theorem 6.1 for the closed set F = {u :
J fdu =0}, suchthato ¢ F. Turningtotheupper boundin (6.4), fix M > x > 2,
noting that

N N
oV (A =x) = oN(mai(|)\,-| >M)+oV <x;;, > x, max || < M) (6.5)
1= 1=

By Lemma 6.3, the first term is exponentialy negligible for all M large enough.
To deal with the second term, let o *(x € ) = o¥ (1 -~ N"H¥2h € ),
AV L=N =D Y, 8, and

N1 1 1)/4
Cn =~y (=N~ YNNI/,
Further, let B(o, §) denote an open ball in 2(R) of radius§ > 0 and center o, with
B (o, 8) its intersection with 2([—M, M]). Observe that for any z € [—-M, M]
and p € 2([—-M, M]),

1
D(z, p) 1= / log |z — yldu(y) — Zzz <log(2M) .
Thus, for the second termin (6.5),
oV (A*N > x, m%i(|xi| < M)
=
M AN-1
< NCN/ dklf R A VN =)
x [-M,M]N-1

M
< NCy ( / NSy ) P g
X

+@M) Vo) N ¢ B, 9))) (6.6)

For any h of Lipschitznormat most Land N > 2,

N
-1 =12y ) -1 N
[(N -1 ;(h((l N™H7N) —h(x)| <3N fpglkzl .

Thus, by Lemma 6.3, the spectral measures 1V~ under oV —1 are exponentially
equivalent in 2(R) to the spectral measures 2V —1 under a]{,v‘l, so Theorem 6.1
appliesaso for the latter (c.f. [15, Theorem 4.2.13]). In particular, the second term
in (6.6) is exponentially negligibleas N — oo forany § > Oand M < oo.
Therefore,

. 1 N * N
limsup —logo™ [ Ay > x, max|A;| <M
N—oo i=1

. 1 .
<limsup—logCy +1lim sup ®(z, ) (6.7)
Nooo N z€[x,M]
neBy(0,0)
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Notethat ®(z, u) = inf,~0 ®,(z, ) with @, (z, u) := [log(lz—y|vn)du(y) —
122 continuous on [~ M, M] x 2([—M, M]). Thus, (z, u) > ®(z, 1) is upper
semi-continuous, so

lim sup &(z,u) = sup P(z,0) (6.8)
0 z€[x,M] z€[x, M]
HEBM(0,8)

With o supported on[-2, 2], clearly D(z) := %d)(z, o) existsfor z > 2. More-

over, D(z) = —/(z/2)2 — 1 < 0 as shown for example in [4, Proof of Lemma
2.7]. Itisaso shownin[4, Lemma2.7] that ® (2, o) = —1/2. Hence, for x > 2,

Supd>(z,o):dD(x,o):—%—I*(x). (6.9)

=X

Again by meansof Selberg’'sformula, itisnot hardtoverifythat N~ log Cy — 1/2
(c.f. the proof of [4, Property 3.1]). Combining this with (6.7)—(6.9) completes the
proof of the upper bound for (6.4). To prove the complementary lower bound, fix
y>x>r>2ands > 0, noting that for al N,

N
oV (ATV > x) > gV (Al € [x, y], ma%(|xi| < r)
i=
y A —_
=Cy | ey N=DOGLAY D o N1 i o)
x [—rr]N-1

> kCy exp ((N -y inf oG ,u))o[[\\,’_l (ﬂN—l € B, (o, 5))

z€[x,y
HEBy(0,8)

with k& = k(x, y) > 0. Recall that the LDP with speed N2 and GRF I (-) applies
for the measures 1V—1 under a,{}’*l. It follows by this LDP's upper bound that

oY@Vt ¢ B(o,8)) — 0, whereas by the symmetry of o (-) and the upper
bound of (6.4),

011\\,]_1 (,th_l ¢ P([—r, r])) < 20Nt (Ay=r)—0
as N — oo. Consequently,

1 1

liminf =logo™ (A% > x) > = inf  ®(z,

N—oo N 9o ( N _x) -2 + z€[x,y] @ )
HEB)(0,9)

Observethat (z, u) — ®(z, w) iscontinuouson [x, y] x Z(—r, r]),fory > x >
r > 2. Hence, considering § | Ofollowed by y | x resultswith the required lower
bound

+ d(x,0). |

NI =

o1
I}V@gﬁlogo Ay =x) =
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6.2. ldentification of GRF for non-continuous contractions

Letc : ¥ — Z be acontinuous function from a Polish space ¥ to a separable
Banach space (7, | - ||). Let C**(%) denote the class of R-valued, continuous,
bounded above functions on . Let 2™ denote the topologica dua of % and
(o, x) = a(x) the duaity map for « € Z* and x € Z. Endow the set of finite
(probability) measures . (X) (Z(X), respectively), with the Cp, (2)-topology. Let
{& N} beasequence of 2(X)-valued random variables, and denotethe law of £y
by Py. For every W € C(X) such that Py-as. [(W v 0) d ¥y < oo and every
r>0,let

A (W) = limsup = Iog/ NUWILN A g (6.10)

N—o00

with A(W) = sup,_q A, (W). In particular, A(W) is well defined for al W ¢
C*P(zyand A(W) = Aso (W) for any such W.

For ¢ that is bounded with respect to thenorm of 2, the Bochner integral | cdu
is well defined on (%) with 4 +— [cdu : 2(£) — (%, | - ||) acontinuous
function. Let €5 = [cd %y and F(0) = O, while F(x) = oo for x # 0. If
(N, Ly) satisfiesthe LDPIin % x 2(X) withaconvex GRF (%, u), then by the
contraction principle (c.f [15, Theorem 4.2.1]), { ¥y} satisfies the LDP in (%)
with some convex GRF Io(14) such that

1%, 1) = {Io(u) + F(€ — [cdp) if Io(n) < oo, (6.11)
otherwise.

The main result of this section isthe following extension of theidentity (6.11),
for an appropriate choice of F, to unbounded continuous functions ¢ such that
Asc(llcl) < oo for somen > 0. Note that then E(/ [c[|ld £ n) < oo and the
Bochner integrals ¥x = [cd¥n are (again) well defined Z'-valued random

variables.

Proposition 6.4. Suppose A~ (n]|c]]) < oo for somen > 0, and that (¢, LN)
satisfies the LDP in 2" x 2(X) with a convex GRF I(%, u). Let 7 '= {a € ¥ :
A({e, ¢)) < oo} for a separating vector space % C Z*, and

F(x):= sup {«, x), xe &
a€D,

where 9, ‘= {a € # : dp > 1, pa € Z}. Qppose also that for any W, €
Co(T) ={V+{ac):VelyE),acZ,}suchthat W, | Woo € C*b(%)

limsup A(W,,) < A(Weo). (6.12)

n—oo

Then, [(%, n) satisfies the identity (6.11) for Ip(-) the GRF for the LDP of {.# x}
in 2(X). Inparticular, 1(%, u) = 0iff ¢ = [ cdp and Io(n) = 0.
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Remarks.

e Clearly, F(0) = 0and when & = % then F(x) = oo for every x # 0. Thisis
indeed thecasewhenc : X — (&, || - ||) isbounded, or more generally, when
Allc]]) < oo forall n < oco.

e By Varadhan'slemma, the LDPwith GRFfor (4, < ) impliesthe existence
of limitsin (6.10) for W = V + («, ¢) and the convexity of (o, V) — A(V +
(a, c)). Moreover, then necessarily A(V) = An (V) isfinite for every V e
Cp(T), with

Io(p) = sup {/Vdu— 1_\(V)} (6.13)

Vely(D)

(see[15, Lemma4.1.5(a) and Theorem 4.5.10], notingthat | Vd % y isbounded
inN).

e Itisnot clear from (6.11) that [(-) islower semi-continuous. Infact, (%, u) —
F(% — [ cd ) might be upper semi-continuous but not lower semi-continuous
(for such an example, see Section 6.3). However, it iswell known that

(€, u) = sup  sup {(a,(g>+/VdM—Z\(v+(a,c>)}. (6.14)
e, VeCp(X)

Recall that 1(%, ) is aso the convex GRF for the LDP in the vector space
X x A (X) endowed with the coarser % x Cp(X)-topology. Thus, to get
(6.14) apply for example [16, Theorem 3.1] in the latter space, noting that
AV + (o, ¢)) < oo iff @ € Z regardless of the value of V € Cp(X). In
the original formula, the supremum over « is achieved on the whole set 9.
However, ta € 9, forany « € 2 andt € [0, 1). The convexity of ¢ +—
h(t) == AV + (ta,c)) : [0,1] — R implies that lim1h() < (D).
Hence, sufficesto consider o € 2, in (6.14). Being asupremum of continuous
functions, [(-) islower semi-continuous. Comparing with (6.11) thisis due to
some cancellation between the Ip(-) and F(-) terms.

e Suppose (6n, L) are exponentialy tight in 2 x 2(X), and that the limit
in (6.10) exists for r = coand W = V + (a,c). If in addition 2(0) :=
AOO(Z,‘.’:1 0; (a;, ¢) +6;+4 Vi), isan essentially smooth, lower semicontinuous
functionthat isfinitein someneighborhood of O, forany o; € Z*, V; € Cp(X),
d € N, then (¢y, £y) satisfies the LDP with the convex GRF (%, u) of
(6.14), or alternatively, with Ao (V + (e, c)) replacing there A(V + (a, c))
(thisis a simple adaptation of the proof of [15, Corollary 4.6.14], where the
restriction of the LDPto 4 x Z(X) isby [15, Lemma4.1.5(b)]).

Proof . By the contraction principle 1(%, u) > Ip(un) forany € € 2, u € 2(%).
Thus, hereafter fix without loss of generality u € #(X) such that Ip() < oco. By
(6.13), then,

n/(IICII A M)dp < To() + AQllel]) < oo
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for every M < o0, so by monotone convergence theorem we seethat [ ||clldp <
oo. Therefore, (a, ¢) € LY(u) forany o € 2%, [ cdw iswell defined as a Bochner
integral, and we have the Fubini property that

/(a, cydu = (a,/cd,u).

Consequently, (6.14) becomes
I(%, ) = sup {(a, = / cdp) + .o (u)} :
aeY,

where

Ie(w) = sup {| (V+g)du— AV +g)}, (6.15)
VeCy(X)

for g € L1(1) N Co(X). We establish the identity (6.11) as soon as we show that
Io(n) = Io(u) for any such g, that is, when vV + g € C4 () foradl V € Cp(2).
Tothisend, let

(bn,m(x) = x:“xe(—m,n) + n:“xZn - m:“xg—m
for x € R, with ¢, = ¢oo.m- Then, ¢, (g) € Cp(X) soforany n,m € N and
Ve Cp(2),
L) > / (V4 8 = dum(@)dit — AV + g — b n(2)).

Since g € L(1), by dominated convergence

lim_lim /(g — bum(@)di =0

m—00 n— o0

Applying (6.12)to W, :=V +g—¢nm(g) | V+g—dn(g) € C**(%),itfollows
that for every V e Cp(X),

IMSUpA(V + g — ¢um(g) < AV + g — dn(g) < A(V)

(recall that A(W) < A(W’') whenever W < W' e C*"(%)). Hence, I,(n) >
Io(w). Similarly, ¢p m(V 4+ g) € Cp(2), soforany n,m e Nand V € Cp(%),
Io(p) > f¢n,m(v + g)dp — Agnm(V +9)) -

With [ ¢y m(V +g)dun — [(V + g)du by dominated convergence, and applying
(6.12) for Wy = @pm(V + &) | ¢n.oo(V +g) € C*P(5), we get that

HMSUP A(Gnm(V + 8)) < A@noo(V +2) <AV +9),

m—00

and deduce that Io(u) > I (w). This completes the proof of the identity (6.11).
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Since Aso(nllc]]) < oo, the convex set & contains the intersection of % with
an open ball centered at the origin. If x # 0, then («, x) > 0 for somewa € %.
Taking € > 0 small enough such that ea € Z,, thus results with F(x) > 0. Since
F(0) =0, by (6.11) we seethat (¥, u) = 0iff € = [ cdp and Io(n) = 0. ]

Thefollowing lemmadescribesthetypical application of Proposition 6.4 inthis
paper.

Lemma6.5. Supposethat ¥ = R x X' and Ly = N~1 3N, 85, 5, for x; ii.d.
¥’-valued which are independent of {1;} and 6V := N1 Zl{v:l 8y, satisfies the
LDPinZ2(K) for some K compact, witha GRF that iszero at o and +oo otherwise.
Let Y (L) = logE[e" *)] for W € C(%).

(@). If Y,w(-) is bounded above on K for some p > 1, then

Ace(W) = R(W) = A(W) i= / Y (do () (6.16)

(b). If Y(4, ¢y (+) isbounded abolleonKWhene\/er T\(p(a, c)) < ooforsomep > 1,
then 2, = {a € @ . inf .1 A(p(a, c)) < oo}, the identity (6.16) applies to any
W e C4(X) U C?b(x) and condition (6.12) holds.

Remarks.

() Lemma 6.5 appliesalso for non-random X if 6V — o for someo € 2(K), for
al 8§ > 0eventualy {A;} c K?° (the closed §-blowup of K), and the boundedness
above of Yy ) () is established over K? for some § = §(a, p) > 0. Indeed,
carrying the whole proof in K¢, the only modification needed is in (6.18) where
Now Ao (W) = limsupy_, ., [ Ywdé™N = A(W).

(b) In the context of Proposition 6.4, part (b) of Lemma 6.5 results with AC)
replacing A (-) in (6.14) and with the convex GRF for the LDP of %y being

1(€) = sup {(a, €) — A, )} - (6.17)
€YD,
(c) If Lemma 6.5 appliesfor % = Z'*, then the convex set ¥,, contains a centered
open ball for the operator norm on 2°*. Consequently &, isin this case the interior
of {a € % : A({a, ¢)) < oo} for the latter topology.

Proof. (a) Let p > 1and C < oo be such that supy.x ¥ ,w(0) < C. Then, for
any 6, — A € K, by Holder'sinequality,

Ele" @) Uy, yswaial < eS/PPW O, ) = W, ) + Y4

By continuity of W, wethusseethat E[e" @ )2y 4 >w..y41] — 0asn — oo.
Our assumption also impliesthat yw (-) < ¥ ,w(-)/p isfinitethroughout K, so by
continuity of W and dominated convergence,

F[e" @ WG

Vw99 =W . 94+1] = oo Ele

With6, — A € K anarbitrary sequence, by continuity of y — logy on R* we see
thet ¥w € C(K). Hence, yw € C,(K) by compactness of K. As y,war (@) <
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pr < oo, the preceding argument appliesto W A r. Thus, Ywa, € Cp(K) for
any r < oo. By monotone convergence, ¥y ., 1 ¥w for every A € K. Moreover,
Ywar € Cp(K) areuniformly bounded below onthecompact K , hence A (W Ar) 4
A(W). By definition

. 1 . . _ S
Aoo(W) = limsup = log E[e" /x ww(WoN(/\)] > A(W) > lim AW Ar)
N— 00 N r—00

= lim As(W AP). (6.18)
r—00

Applying Varadhan's lemmafor the continuous, bounded mapping i > [ Ywdu
on 2(K) it follows by the trivial LDP for 6V that Aso (W) = T\(W). Likewise,
Ywar € Cp(K) results with Ao (W A r) = AW A7) foral r < oo and (6.16)
follows out of (6.18).

(b) The proof of part (a) shows that A(W) > A(W) for any W € C(Z), with
equality for W e C%?(%) and by our assumption also for W = V + (a, ¢) with
« such that A(p2(a, c)) < oo forsome p > 1. If « € 9, then p%a € Z for
some p > 1, sowe seethat A(W) = A(W) foral W e Co(T) U Cb (). Fix
W, € C5(X) suchthat W, | Wy € C%P(X). Then, 1~\(W1) < oo, implying that
E(e"1*)) < oo for o-a.e. 1. Thisimmediately gives vy, | ¥w, by dominated
convergence. As [ (Yw, vV0)do < oo, by dominated convergence [ (1w, v 0)do |
[ Ww,, vO)do.Since [ (Yw, AO)do | [(¥w., AO)do by monotone convergence,
we now deduce that (6.12) holds for any such W,, | W4,. We have aready seen
that inf ,-1 A(p(a, ¢)) < oo whenever @ € %,. Moreover, if A(p3(a, ¢)) < oo
for some p > 1 then by our assumption and (6.16) it follows that pa € &, that is
x € Y,. O

6.3. LDP for the uniform law on the sphere

Wewish to stressasimple corollary of our work, namely, the LDP for the empirical

measure under the uniform law s/ on the sphere S¥—1 of radius +/A'. Thisis a

direct consequence of the strategy of Sections 5.3 and 6.2.

Theorem 6.6. The law of the empirical measure under s%ﬁ satisfies a LDP of
speed N and the GRF H1(-), where

I(ly) + 31— [ x2dpx) +logu) if [x2du(x) < u (6.19)
+00 otherwise.

Hy(n) = {

Proof. Fixu > Oandlet g beof law y®V. By Cramér'stheorem, (u"1N~1|g|?,
N-IYN 5,.) satisfies the LDP in R x 2(R) with some convex GRF. In this
setting Lemma 6.5 trivially applies, and it is easy to check that the formula (6.11)
for this GRF is then

I(ply) + 30u — [ x%dp) if [ x%dp < ru,

400 otherwise.

I]M(rvl'L) = {

In Section 5.3 we provided a representation of the empirical measure under
s¥N as the contraction § : R* x 2(R) — 2(R) of (N"Yg|2, N"LY N, 5,)
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for S(r, u(-)) = w(y/r-). Itisnot hard to check that H, (1) = inf, 7 cs-1(,
0. (r, ﬁ) 0

Remark. Thisproof showsalso that the L DPfor theempirical measureof vg = Gug
of (1C2) hasthe GRF

«(0) if u=do
H(p) = info{;c(u) + H, ()} otherwise.

6.4. Srong solutions of the DS (1.1)

The next lemma provides the existence and uniqueness of strong solutions of the
SDS (1.1), hence also of the diagonalized SDS (2.2).

Lemma®6.7. If f’ is globally Lipschitz and bounded from below, then for any
integer N, B € (0,00], T < o0, any symmetric N x N matrix J, and any given
initial condition (u})1<;<y € R, which is independent of {B/}, the SDS (1.1)
admits a unique strong solution on € ([0, T], RV).

Proof. Since f’ is globally Lipschitz, for any M < oo it is easy to check that
bi(u) = (Qu); — /(N ul? A M)u' resultswith aglobally Lipschitz drift 5(u) =
(b1(u), ..., by(u)). The existence and uniqueness of a sguare-integrable strong
solution u™) for the SDS

N
duj =" Jijulde — ' (N"Hu P A M) uide + 2B (6.20)
j=1

is thus standard (for example, see[19, Theorems 5.2.5, 5.2.9]). With u™) defined
on the same probability space and filtration, consider the stopping times t); =
inf{t : u™| > /NM}. Note that u™ is the unique strong solution of (1.1) for
t € [0, ta], with 73 a non-decreasing sequence. By the Borel-Cantelli lemma, it
suffices for the existence of a unique strong solution u = limy;_, .o u™) of the
SDS(1.1) in[0, T], to show that

Y P@u<T) < oo (6.21)
M=1

To this end, fix M and let x, = u{ry, with Z, = 2872 [s"™ YN xiaBl.
Applying Ito'sformulafor g, = |x;|2 insures that

SATHM SATM

(X, Xp)dt — 2/ f/(N_lgl)g,dt +Zs + ﬂ_le

gs§g0+2/
0

0

N
<o+ p N5 +205+0 [ gdi+z, (6:22)
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where we have used the lower bound f’ > —c for some ¢ € R and denoted by
Ay = Othe spectral radius of J. Asthe quadratic variation of the martingale Z; is

4/B) o™ gidt < 4B~Ls/N M, applying Doob's inequality for the martingale
Ly = exp(Zs — (2/B) f3"™ g:dt), yieldsfor any A > 0,

P( {Z - (Z/ﬂ)f gtdt} > A) <P (supLs > e*‘) <e™4
s<T s<T

Therefore, (6.22) shows that with probability greater than 1 — =4, forany r < T,

t
8t Sgo+ﬁ’lNT+A+2(/3*1+/\*N+C)/ gsds
0

and by Gronwall’s lemmathen also

M _ -1 *
sup (UM 12 < (lUol? + BINT + A)e2F Hrital, (6.23)

t<T
For large enough M onemay set A = A(M) > 0 such that the right-side of (6.23)
is NM /2, resulting with

Paey < T) < e 4.

Since A(M) > nM for some n > 0 and al large M, this is enough to give
(6.21). ]

7. Proofsof Theorems 3.1, 3.4 and Lemma 3.3

Proof of Theorem3.1. By (2.5)«2.8) we have that for any 8 € (0, 00),

Fy = SIpint (8 — a)v -+ G~ o~ L+ 100,001 + Slog2m). (1)

The value of Fg is the one obtained by exchanging the supremum and the in-
fimum in the above formula. Even though the Min-Max theorem does not apply
directly, one may prove its conclusion by cutting wisely the sets over which the
extrema are taken. We provide here a different argument, which though less trans-
parent, is much shorter and more elegant. This argument is based on the formula
(4.9) that representsthe free energy Fg intermsof an extremum involving the extra
parameter 1 € 2(R).

Settinge = p and p = 3 — Bs for fixed s > A* leadsto

Fg < sup(sBu — %uz) ; / log(s — A)do (L) + = Iog(nﬂ b,

Hence, with optimal u = s/c we seethat Fg < G where

Gp = 2 inf (£ [ 1096 = iado oy + Slogirgh. (72
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Since p(s, B) isdtrictly increasingins > A* andin 8 > 0 with p(s, 0) < O for
al s € [A*, 00), we find the following two cases depending upon the existence of
a(unique) s = sg > 1* so that

2—'35 =L(s). (7.3)

e For g € (0, B.) there exists sg > A* satisfying (7.3). Such sg is unique by strict
monotonicity of s — p(s, B). Note that the infimum in (7.2) is attained where the
infimum of /7, p(¢, B)dt isattained, that isat s = sp.

e For 8 > B, thereisno solution s > A* of (7.3). Then, ff* p(t, B)dt > Ofor all
s > A* and theinfimum in (7.2) is attained at sg = A*.

In view of the above, it suffices to show that Fg > Gg in order to establish
(3.4). Tothisend, set u = sg/c, v = usg — 1/(2f) and u = p”* of (4.11) for
a=pandp = 5 —Bsg. Obviously, (sg —1*)L(sp) < 1,andwitho (-) symmetric,
it follows that

2Bs2
P> splisp) = 1, (7.4)

implying that A*u > v > 0. Moreover, (7.4) and the choice of sg result with

u="2 - L(sﬁ)+ ﬁlu

Y L(Sﬂ)|

2f

The latter inequality amounts to the condition that 1 € .7 (u, v) of (2.12). Conse-
quently, by (4.9), (2.11), (4.12), (2.5) and (2.7) we see that

Fg > h(u,v) — A (u,v, u) = h(u,v) + 1-(1— u)+ L(p, @)

2
— But } _ P 1 Iog(27[) — = [ log(L = 2(ath + p))do (3)

2
/3 1
/Iog(s,g —MNdo (M) + = Iog(nﬂ ),

as needed to compl ete the proof of (3.4).
Recall that by Theorem 2.1,

UE‘; = /Vl—Z(aﬁA+pﬁ)do()") = /VZ/S(Sﬂ—)L)dO’()")'

Thus, foreach g € (0, B.), vy isamixtureof Gaussianlawswith uniformly bounded
variances, so v itself has a sub-Gaussian tail. For any g > f., the 2k-th moment
of vgisckp Jox— 1) ~*do (1), for somefinite, positive constant ¢k, . Toconclude
the proof, observe that [(A* — 1)~**Vdo (1) = co whenever |L® (s)| — oo for
s | A* (see(3.2)). ]
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The proof of Lemma 3.3 isreminiscent of the approach of Wong and Wong [30,
31]. Since o (+) is supported on the compact set [—A*, A*], the Stieljes transform
L (-) of (3.1) has an anaytic continuation

1
L(z) == / ——do (V) (7.5)
Z—A
toz € C\ [—A*, A*], which for R{z} > A* may also be expressed as
o
L(z) = / e P 20)do . (7.6)
0
Thefirst step in our analysisisto study the asymptotics of L (A* + z) in the sectors
T

Sp 1= [z £0: |ag(z)| < 3 +0} , (7.7)

of C, for |z| | O, as summarized in the next lemma.

Lemma7.1. Fixing6 € (0, %), forall k < g —1,

limsup ILOGF +2) —L®O0H| =0, (7.8)
z€89,|z110
where
o0 *
(—=DFL® "y = / e M9k 20)do < 0o (7.9)
0
whilefor k =n =[g] and by = (-1)"b1T’'(n +1—q) # 0,
limsup |2/ 9L\ +2) —by| =0, (7.10)
z€8p,1z|40

andin caseg = n isinteger also,

limsup 2L D +2)|=0. (7.12)
z€8p,1z|40

Proof of Lemma 7.1. From (7.5) it follows that for all z € C\ [-A*, A*], k =
1,...,n=|ql,

L® () = (=D& / z—2N" Vo). (7.12)
When R{z} > 1*, it follows from (7.6) that
L® () = (-DF f e ok 2(0)do
0

which by monotone convergence (for z = s € R suchthats | 1*), and (3.8) yields
(7.9). Incase g = n isan integer, (3.8) similarly implies that

lim[sL®Ya* +5) =0. (7.13)
510
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Fixing hereafter 6 € (0, 5), let k = /(1 —sinf)/2 > 0. Note that for al z € Sy
and A € [—A*, 7],

lz+ A% — Al > k(lz] + 25 = 1) . (7.14)

Combining (7.12) (for k = n — 1) and (7.14) it follows that |L D (* + z)| <
kLD x4 |z))| for aAl z € Sg. Hence, (7.13) implies (7.11) in case ¢ is an
integer.

Fixingnextk < g — 1, let

Bo(h) = [(z 4+ A — )~ ®FD _ gx )~ +D)

and note that by (7.14), h. (L) < Co(A* — 1)~ **D for some Co = Co(k, k) < o0,
al z € Sy and dl A € [—1* A*]. Moreover, it is easy to check that i,(1) <
s —2)~*+D whenever A* — 1 > M|z|,forall § > OandsomeM = M(8) < oo
independent of A and z. Hence, by (7.12), foral z € Sp and § > 0,

ILOO* +2) — LOOH| < k! /hz(k)da(k)

< SILO )| + Cok! / W=~ * Dasn) .
(AM*=1)=<M|z|

By (7.9) and (7.12) we know that [ (»* — 1)~ *+Ddo (1) < oo, whereas o ([A* —
M|z|, A*]) — 0as|z| — 0 (by (3.9)). It thusfollows that

limsup ILOGF +2) — LO0H| < sILO ),
z€89,1z|10

leading to (7.8) when taking § | O.
Turning to prove (7.10), integration by partsresultsfor z € C \ R~ with

A*
/ (242" =2~ do ()
—)\*
2%
=@+22)" "D 4L 4+ 1) f (z+x)" "D (1" — x, A*]dx , (7.15)
0

and by a change of variable, for al § > 0, then

)
ZHH/ (2 +x) " xldx = f A48 " Dg4ds 1= — A0,
0 I

O.w

wherew := 8z tand ', := {(1 — x)v + xw : x € [0, 1]} is the line segment
connectingv € Ctow € C. Taker = |w| € RY, 7 € (0,r) and w’ = (' /r)w.
Noting that i1 (£) := (14 &)~ "2 ¢4 isanalytic inside the trapezoid connecting
r, w and w’, Cauchy’s formulayields

Ar/,r + Ar,w + Aw,w/ + Aw’,r’ =0,
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where A, ,, = frv Y h(&)dg. Sincen 4+ 1 > ¢, it follows by Euler'sintegral of the
firstkind, that
Fg+HI'n+1—q)

lim A, = e (0, .
roos’ 0 " I'(n+2) (0, 00)

With n = arg(w) it is easy to check that
|Arwl < 279G cos(n/2) — 1)~ -, 0,

uniformly in || < /24 6. Similarly, |A, | < 2()4(1 —)~"+2 — O as
r’ — 0. It thusfollows that for any fixed § > 0,

)
i Mg+ Dron+1—
lim sup IZ”“‘C’f (c4x) H2gagy - AT DTOHLI=0), o
|z|—0,z€Sp 0 I'(n+2)

(7.16)

By (3.9), for any 6’ > 0 there exists § > 0 small enough such that

| / (40 "D (o ([ —x,27]) — Jdx| < 8 / Iz 4 x|~ 5

(7.17)

r( +1)

wherefor all z € Sy, by (7.14),

S o
2" / |24 x|~ xldx < 0+ / (L+5)""*Ps9ds < o0.
0 0

(7.18)
Sincefor any fixed § > 0,
limsup [z|"+1~ /w Iz + x|~ 2dx =0 (7.19)
lzI—0 J
it thus follows from (7.16)—(7.19) that
lim sup |z"+l_q/2A*(z + )" 2o ([ = x, A*])dx — w| =
|z|—0,z€Sp 0 'n+2)
By (7.12) and (7.15) we then easily establish (7.10). O

We state and prove next adirect inversion lemma for Laplace transforms.

Lemma 7.2. Suppose that the (one-sided) Laplace transform

f(2) :=/ e ¥ f(x)dx
0
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of an absolutely integrable, continuousfunction f (x), defined for R{z} > 0, hasan
analytic continuationin S, of (7.7) for someé € (0, %) andissuchthat [f(z)| — O
when |z] — oo for z € Sy. If for some& € C andr € (0, 00),

limsup |z'f(z) —&| =0, (7.20)
2€8,12140
then,
limsupx™" £(x) — ——| =0, (7.21)
xtoo ['(r)

Proof of Lemma 7.2. This proof is an adaptation of [30, proof of Theorem 1]. With
f(x) continuous and absolutely integrable, we have from the Laplace inversion
formulathat for al x > 0,

fx) = i / e f(2)dz , (7.22)
2mi r

where" = {z : N{z} = so > 0}. Sincef(z) isinfact analyticin Sy and |f(z)| — O
when |z| — oo, Cauchy’s theorem implies that we can replace I by the contour

Tpy=Dp,UCp, (7.23)

for any (p, n) € (0, 0) x (0, 9), where

T T
Dy = {ag@) = Z +n. 121 = o} U a9 = =7 = .1zl = o}
Con={lzl = p.ag@ € (-5 —n. 5 +1)}.

It follows by Hankel’sintegral representation of the gamma function and a change
of variable, that for any loop I" around the negative axis, and any r > 0, x > 0,

r—1

= [ etz = .
i [ 5 T

Let{(z) :=f(z) —&z7"for& e Candr € (0, 0o) of (7.20). Then, by (7.22),

£ B xl—r
L) 2ni

) - C(z)e™dz, (7.24)

Lo

where T, , is any of the contours of (7.23). Note that {(z) is aso analytic on Sy
with [{(z)] — 0 as|z] - oo, z € Sp. Fixing n € (0, 0) it thus follows that
SUp.cp,, [€(z)] isfinite for any p > 0. Moreover, by (7.20), Sup.cp, , IC(2)] <

Sp~"foral § > 0and p < p1(8). Consequently, for all p < p1

}/ C)edz| < / K@z
Dy

Dﬂv'l

oo .
<25p~" f eI gy < 25p " (xsing) "L, (7.25)
14
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and likewise,
| f C(2)e¥ dz| < 2ndpt"er* . (7.26)
Con
Choosing p = x~1 it follows from (7.24), (7.25) and (7.26) that

1-r £
|x f(x)—m| <éC

forsomeC = C(n) < oo, dl § > Oandany x > xg(8). Taking § | O we establish
(7.212). O

Proof of Lemma 3.3. For all t > O let

g(v) = e PFTR(T).
With f/(x) = cx itfollowsfrom (3.5) and (3.6) that R(¢) satisfiesthelinear Volterra
integrodifferential equation,

t
R(t) = 2cK4(OR(t) = 2c.L(2t) + 21 / ROZLC24 —v))dr . (1.27)
0

By Fubini’s theorem and integration by parts, it followsthat for al s > 0,

T T
2(sp + s)/ e >Tg(r)dt —1 < cL(sp + )1+ /3*1/ e >Tg(v)dT).
0 0
(7.28)

Recall that L (sg + s) < oo and p(sg + s, B) of (3.3) is strictly positive for all
s > 0. Therefore, by (7.28), the (one-sided) Laplace transform

g(2) :=f e % Tg(v)dt (7.29)
0

of g(tr) > 0 converges absolutely whenever s = R{z} > 0. Hence, considering
the (one-sided) Laplace transform of (7.27) for iR{z} > 0, leads by (7.6), Fubini’s
theorem and integration by partsto

2(sp +2)g(2) —1=cL(sg + 2)(L+ B 1g(2)). (7.30)
Note that for all s > A* and w £ 0,

. M s —
.ﬁ{L(S +lUJ)} = /_)L* mdd()\.) < L(S) .

Hence, %{p(sg + z, B)} > 0 whenever %{z} > 0O, in which case by (7.30),

_ BlcL(sg+2)+1)

90 == s+ B)

(7.31)
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Notethat L (z)| — 0as|z| — oo, sothat p(ss + 2z, B) = 2 (sp +2) — L(sp +2)
does not vanish for large values of |z|. Furthermore, p(sg + z, B) is andytic in
C\ R~ and hasno zerosin theright half plane i{z} > 0 except possibly inz = 0.
Since an analytic function can have only afinite number of zerosin any compact
subset of the complex plane, there must exist aé € (0, 7/2) sothat p(sg + z, B)
does not vanish in the domain Sy of (7.7). Fixing hereafter this value of 6, we have
that g(z) of (7.31) iswell defined for any z € Sy where it is an analytic function,
suchthat |g(z)| — 0as|z| — 00,z € Sp. WithL® (sg+2),k =1,2,... ,n = [¢]
dso anayticon C\ R~ and [L® (z)| — O as|z| — oo, it follows by the same
argument that

g™ () = / - e ET(=20)"g(t)dT (7.32)
0

converges absolutely whenever s = 9i{z} > 0 and has an analytic continuation to
Sy, given by

g = B {cL(sﬁ +z)+1}

cdz" | p(sg+z,8)

such that |g™ (z)| — Oas|z| — 00,z € Sp.

We shall next verify that g(z) satisfies (7.20) for some &, s # Oandr, g €
(0, 00) when 8 € (0, B.]. Lemma 7.2 then appliesto f = g, resulting by (7.29)
with
2rq'ﬁ§t],/3
C(ry,p)

Weshall also verify that g™ (z) satisfies(7.20) for someé&, 4 # Oandr, g € (0, 00)
when g > .. Lemma7.2 then appliesto f = g™, resulting by (7.32) with

xl_r%ﬁg(x) ~xtoo Cq,ﬂ = (733)

X178 (—2x) g (x) ~y1ro0 Cyp - (7.34)

The statement of Lemma 3.3 is exactly (7.33)—(7.34) withr, g = 1when g8 < B,
orB=p,q>2rp=qg—1wheng=p8,q9e@,2);andryg=n+1-gq
when 8 > B..

Turning to verify (7.20) for g, g™, & # 0 and stated values of r, we have the
following cases.
o If B € (0, Bc) thensg > A* issuch that p(sg, B) = O, whereas L (sg + 2) is
analytic in a neighborhood of z = 0. Thus, g(z) of (7.31) has a simple pole at
z =0,and (7.20) holdsfor » = 1and & = B(cL (sg) + 1)/(cgf’:(sﬁ, B)). Itiseasy
to check that 2 (sg, B) = 28/c — L'(sp) > O, hence & # 0.
o If B = B, thensg = A* with L(A* + z) analytic only for z € Sp and not in a
whole neighborhood of z = 0. With ¢ > 1it sufficesby (7.9) and (7.8) (for k = 0),
to consider the scaled limit of p(A* + z, B;) for z € Sp. To this end observe that

2be 2. —/ L' +§)ds
C C To.;

P+, B) =224+ (L) =LAV +2) =
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where the line segment I'g ;, connecting 0 and z € Sp isinside Sp. If ¢ > 2, then
(7.8) appliesfor k = 1, thus implying that

limsup |z7'p(W* + 2. Be) — b3| =0 (7.35)
1z140,z€8p
for b3 := 2B./c — L'(0W*) € (0, oo) (recal by (7.9) that L'(A*) < Oisfinite). So
inthiscase |zg(z) — &| — Oas|z| — O, uniformly in Sy, where ¢ = B(cL (\*) +
1)/(cb3) > 0.1f g € (1, 2), then applying (7.10) for L' (A* + &), it follows that for
somed(|z]) { Oas|z| | O,
bpzd™1

q—

< 1219728 (|z])

‘ / L'V + £)dE —
FO,Z.

for al z € Sy. Hence, inthiscase, for b3 = —b2/(¢ — 1) > O,

limsup |29 p(A* + 2z, Be) — b3 = 0, (7.36)
|z140,z€8s

and now |z¢1g(z) — &| — Oas|z| — O, uniformly in S,.
o If B > B.thenagainsg = A*. Thanksto (7.9), (7.8) (and (7.11) in case ¢ isan
integer), it follows from (7.30) that

. _ +9(z
limsup |z |g™(z) — %
|2140,z€Sp p(A*+z,B)

Recall that p(1*, ) > 0and g(0) isfinitein this case. Applying (7.8) (for k = Q)
and (7.10) we thus have that

L™ =0.

limsup 2" 9g™(z) — £ =0,
1z]40,z€8p

where§ = b2(B + g(0)/(p(2*, B)) # 0. O

Proof of Theorem 3.4.  In analogy with (7.27), here we have that
t

R'(t) = 2ce®* +2cp71 / R(T)Z2(t — 1))dT .
0

Proceeding asin Section 3.2.3 it suffices to establish that

R(X) ~1100 Cg pxPe®s (7.37)
where p = min(g — 1,1) for 8 = B., ¢ # 2 and p = 0 otherwise. To this end,
note that similarly to the derivation of (7.31), here
Sﬁ-i-cf—k* + ﬂ
cp(sp+2z,B)

whenever i{z} > 0. The function g(z) then admits the same singularities as the
one of (7.31), except for an additional simple poleat z = 1* — 5. We thus observe
the following three regimes.

g@@) =
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e For g € (0, B.), thesimple pole at A* — sg < O affects neither the asymptotics
of g(z) near z = 0, nor that of g(x) asx — oo.

e For g = B. wehavesg = A*. Using (7.35) wheng > 2and (7.36) for g € (1, 2),
now the additional pole at z = O results with

limsup |z g(z) —£| =0, (7.38)
1z|10,z€ 8y

for & = B/b3 > 0, leading to the estimates (7.37) on the asymptotics of g(x) as
X — OQ.

e For 8 > B, thesimple pole at z = 0 results with (7.38) holding for p = 0 and
& = B/p(*, B) > 0. Consequently, applying Lemma 7.2 for f = g leads here to
R(x) ~ czie?"* asx — oo. Itisnot hard to check that then K (1, s) of (3.14)
convergestocga € (0, o0) whenever ¢t —s — oo and s — oo. O
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