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Abstract. We give a completely rigorous proof that the replica-symmetric solution holds
at high enough temperature for the random K -sat problem. The most notabl e feature of this
problem is that the order parameter of the system is a function and not a number.

1. Introduction

This paper is a step in the author’s program to obtain rigorous results about disor-
dered systems related to the theory of spin glasses. This aspect of the paper, and
how it relatesto the author’s previouswork will be discussed briefly later. (See[T4]
for amore detailed survey.) The specific problem we will study is related to the
stochastic version of the famous K -sat problem of computer science, on which our
results arguably shed some light. We will not formulate the random K -sat problem
initsusual setting, but rather an equivalent version more suitable to our needs. The
reader familiar with the K -sat problem will immediately recognize the problem;
the reader who is not will only gain by considering directly the aspect of “random
geometry” that is relevant here. As we use the notation K for other purposes, we
will in fact consider the p-sat problem, where p > 2 is an integer fixed once and
for al. We consider the set =y = {—1, 1}V, and right away point out that we are
interested in the case N large.

Let us first fix some notation, that will remain in force throughout the paper.
We denote by [ N]? the collection of subsetsof N of cardina p. We write, for J in
[N17,

J={l,D,---,i(J, p)} (D)
wherei(J,1) < --- <i(J, p).

Consider, for J € [N]? and g < p, random variables&; ,, g < p all indepen-

dent, with

1
PEjg=D=PE1q=-D= >
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Thus given J, we can consider the following random subset A ; of Xy :

Ay ={6€Xy; 3g < p, 0i(y,q) #E1.q)-

Suppose now that we choose M sets Jy, - - -, Jy a random, independently and
uniformly on [N]?. The object of interest is the random set

A= ﬂA,k.

k<M

We would like to know whether A is typically empty or not; and more generally,
what isthe typical size of A, which can conveniently be measured by the median
of

1
5 log(2~NcardA). (1.2)
We should observe the trivia relation
EcardA =2V (1 — 277

sothat if Mlog(1—277) > Nlog2, then EcardA < 1 and A istypicaly empty.
Thus, the range of interest iswhen M is of order N; the parameter « = M/N is
essential. Leaving M/ N fixed, we will study the probleminthelimitas N — oo.

The study of (1.2) isvery difficult. Statistical mechanics offersastandard meth-
od (used in the present case in [M-Z]) to introduce an easier problem. Rather than
studying directly the points that belong to all sets A ;, we count to how many sets
Ay, agiven e belongs, by setting

Hy(o) =~ 14, (o). (13)

k<M

(The purpose of the minus signis simply to follow the conventions of physics). We
then introduce a number 8 (that physically represents an inverse temperature) and
which purposeis to weigh how much we will favor the configurations ¢ for which
—Hy (o) islarge. That is, weintroduce Gibbs' measure

Gn(o)) = Zy' exp—BHy (o) (14)
where Z y isthe normalization factor
Zy =) exp—BHy(o). (15)

We then study the random probability G, and the corresponding expected
“free energy” (per site)

1
Fy(,p) = —E log2~N Zy). (1.6)

from which the quantity (1.2) can be recovered as

ﬂlim Fn(, B) + Bo. .7
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(There, asusua, « = M/N).
The physical approach isto find aformula for Nlim Fn(a, B), and then hope,
—00

as B — oo, to deduceinformation about (1.1) bytakingﬂlim ﬂ—lNlim Fn(a, B).
—00 —00

The unjustified interversion of the limit this represents compared to (1.7) is no
special reason to worry, since the limit of Fy (o, 8) isin any case found using the
so called “replicamethod” that involves anumber of mathematically rather unjus-
tified assumptions. This is al the more so in the present case, where the “order
parameter” of the system (that is, the quantity that specifies it) is a function (or
rather, a probability distribution) instead of a number. In the present paper we give
acomplete and rigorous proof that given p, «, if 8 issmall enough, the predictions
of the replica method are correct. Since our real purpose, is, beyond any specific
case, to understand the powerful forces at work here, we will study a more gener-
al model. The main estimates for this more general model are harder than in the
case of the Hamiltonian (1.3), and being able to perform them represents at least a
technical progress. Our basic object is abounded function

f=[0,1 x {-1, 1}’ - R.

The purpose of the first variable is to introduce randomness. If X is a ran-
dom variable uniformly distributed over [0, 1], f (X, -) is a random function on
{—1, 1}’. Weconsideri.i.d. r.v. (X ;) andi.i.d. r.v. (ny) for J in[N]”. We assume
X uniformon [0, 1]; we assume n; € {0, 1},

P(ny=1)=yN'?P (1.8)
and we consider the random Hamiltonian

Hy(0) =Y 11 f(X7.0i72) "+ 0i(s.p)- 1.9
J

The number of termsoccurringin (1.9) is Y n;, ar.v. sharply concentrated around
J

yNP N ~ NL
p P!

so there are (about) a N terms, for @ = y/p!. If we wanted exactly M = |aN |
terms, we could, rather than (1.9), consider the Hamiltonian

its mean

Hy (o) = Z F X, 0ia, 0 5 OiUe, p)) (1.10)
k<M
where{Jy, - - -, Jy} ischosen uniformly among all subsets of [N]? of cardinal M.

To simplify sometechnical detail, wewill study the case of (1.9) rather than (1.10);
the small extrawork to handle (1.10) is|eft to the reader.

An important feature of mean field models is the symmetry between sites. To
ensure this symmetry we will require that

f(x,01,---,0p) issymmetricinthevariables oy, - - -, 0. (1.11)
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Although we have not checked the details, it seems almost certain that one
could with our method treat the more general case where (1.11) does not hold by
introducing arandom permutation among i (J, 1), - - -, i(J, p) in (1.9).

Wewill study G and Zy given by (1.4) and (1.5) respectively. Wewill always
assume 8 = 1, because we can think to this parameter as built into f. A high
temperature hypothesis simply means that the parameter

flloo = SUP|f] (1L12)

issmall. The case of (1.3) issimply the case when

fx,01,--+,0p) = _ﬂ1{01:a1(x),-~»,op:ap(x)}

where the function x — (a1(x), - - -, a,(x)) isany function that sends Lebesgue
measure on [0, 1] onto the uniform measure on {—1, 1}7.

Before we state our main result, let us point out that the projection of Gibbs
measure on {—1, 1} is arandom element of the compact set M (r) of probability
measureson {—1, 1}". It thereby make sense to say that this distribution converges
inlaw tothelaw in M (r) of arandom probability on {—1, 1}".

Theorem 1.1. Given y, p thereisa number a(y, p) > 0 such that the following
occurs. If

I flloo = a(y, p) (1.13)

there is a probability distribution Q(y, f) on[—1, 1] such that, given any integer
r,asN — oo thedistribution of (o1, - - -, 6,) under Gibbs' measure convergesin
law to the law of the random product measure v on {—1, 1}" such that

Viira /Uidv(ol,"',ar)ZYi

where (Y;); <, arei.i.d. of law Q(y, f).

In words, this means that two remarkable things happen. First, as N — oo,
the distribution of (o1, - - -, o,) under Gibbs measure resembles a product measure
v on {—1, 1}¥. It is then obvious that it must resemble the product measure that
gives the same average (o;) to o; as Gibbs measure. Moreover, asymptotically,
(01), -+, (o) arei.i.d. of law Q(y, f).

) N N g N

exists(and canin principle be computed as a function of the probability distribution
Q(y, f) of Theorem 1.1).
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L et us now comment upon the relationship of this paper with the previouswork
[T1,2,3]. Inthree different cases the author has succeeded to prove the validity of
the“replica-symmetric solution” . Even though thereisin the present case an essen-
tially new feature (that the “ order parameter” is the distribution Q(y, f)) thefirst
and crucial stepisto provethat “thereisapure state”. Thisisthe aim of Section 2.
(The author feels that the new technique presented here is getting close to be able
to handle the “most general” case.)

The second main step isto prove that asymptotically, the empirical distribution
N71Y 8, resemblesthelaw of (o1). Thisistheaim of Section 3. The difficulty

i<N
thereis specific to the case where the “ order parameter isafunction” and the work
doneto overcomethisdifficulty hasno counter part in the previous papers[T1,2,3].

Once the two main obstacles are passed, the rest is easy. The distribution
Q(y, f) arises as a fixed point of a certain transformation. It is constructed in
Section 4, where the proofs are completed.

2. Uniqueness of state

Throughout the paper, we will denote by ( - ) thermal averages, that is, averages
with respect to Gibbs' measure. We will use 4-replicas, that is we will consider
dements (6, - -, ¢™) of T4 provided with G$*. Averages with respect to this
measure are also denoted by ( - ).

The main result of this sectionisthat if || £ issmall enough, we have

Yk > 1, lim Cyx=0 2.1
N—oo

where

2k
D _ 6@y, (63 — ¥
(o o )N(a o )) > 22)

Cni=Cpni(y) = E<<

There, aswell asin the sequel,

X-y= inyi~

i<N

Itisobviousthat Cy k11 < 16Cn k, SO (2.1) isthe %\measNIim Cn1=0;
—00

but the need to consider values of £ > 1 arisesfor technical reasons. It will require
hard work to prove (2.1), so, in order to provide motivation, we show first why
(2.1) implies that, for any r, the distribution of (o1, - - -, o) under Gibbs measure
is(asymptotically and in average) closeto aproduct measure. This proves“thefirst
half” of Theorem 1.1.

The basic observation isthat if p; € {—1, 1} fori < r, then

1+ pio;
1{01:P1s"'v0'r:pr} = 1_[ ( 21 l> .

i<r
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Consider the distribution o of o1, - - -, o under Gibbs measure, and consider the
product probability distribution v on {—1, 1}" suchthat [ o;dv = (0;). Then

1+ pio;
w(or=p1,---, 0, = pp) = <ﬂ (%»

. 1+ piloi
v({alzpl,...’grZpr})zl—[(—l—pT(O))'

i<r

Thus to show that the expected value of the total variation distance between p and
v goesto zero, it suffices to prove that for each finite set A,

E ([Tt —<Hm> -0,
icA icA
and, by symmetry among the variables, that
E|[Jte) - <]_[ a,-> - 0. (2.3)
i<q i<q

Now, by (2.1), for each ¢, we have

D _ D). (63 _ @\
(SR

After reading the proof of Lemma 2.1 below, it will be obvious that thisimplies

2
E <1_[(0i(1) — ai(z))> -0

i<q
and thus

E

i=q

<1—[ (o - Ui<z>>>‘ o

from which (2.3) readily follows by induction over g.
We now turn towards the proof of (2.1).

Lemma2.1. We have

1 2 3 4 K (k)
Cni < E< [T 8, - e, - oﬁv’m>> + =
O<m=<2k—1
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Throughout the paper, K denotes a universal constant, not necessarily the same at
each occurrence. Similarly, K (k) denotes a number depending upon k only, etc.

Even though Lemma 2.1 is proved in [ T3], we reproduce the simple proof for
the convenience of the reader.

Proof of Lemma 2.1. Writing
a; = (Gi(l) _ Gi(Z))(Gl_(3) _ Ui(4)) i

we have
2%k

CN,k=E< %Zai >

i<N

1
= N_ZkE< Z ail...aik>
i1, 0k

wherethe summationisover all choicesof iq, - - -, ix. The contribution of theterms
for which the indexes are not distinct is at most K (k)/N; dl the other terms are
equal by symmetry among the variables. |

In our next step, we learn how to relate the Gibbs measure on N sites with the
Gibbs measure on N — 2k sites. Thisisthe heart of the cavity method.

Consider theexpression H (6) = Hy (o) given by (1.9), and the similar expres-
sion Ho(o) where the summation isrestrictedto J C {1,---, N — 2k}. We note
that Hp isthe Hamiltonian of an N — 2k spin system, except that the parameter y
has been replaced by a parameter ' such that

/

4 __VY
(N —2k)p=1 NP1

In the sequel, Gibbs' measure relative to the Hamiltonian Ho will simply be
called “ Gibbsmeasureon N — 2k sites’. Wewill also use“ Gibbsmeasureon N — 1
sites’ or “on N — r sites’ with the obvious meaning.

Let usnow fix somenotation. For 7 € [N —2k]?1andO<m <2k—1,9 < p
we set

(2.4)

Ni,m = NIU{N—m}
Xl,m = XIU{N—m}
Wewrite I = {i(1,1),---,i(I, p— D}wherei(l,1) <--- <i(l, p —1).
ForO<m < 2k — 1, weset
Em = (o) (2.5)
= exp Z N f Xims 0i(1,2)> **» Gi(1,p—1)» ON—m)
Ie[N—2k]P—1

and

= ] én (2.6)

O<m=<2k—1
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Let us observe that if the following holds
VJe[N),py=1l=cadlJN[N—-2k+1---,N) <1 2.7

then
exp—H(6) = & exp—Ho(o). (2.8)

Thisisbecauseif card(J N[N —2k+1, ---, N]) < 1, theterm of H(¢) corre-
spondingto J occursin Hpif max J < N —2k,andoccursiné’,, ifmax J = N —m.
(On the other hand, terms for which n; = 1, cardJ N[N — 2k +1,---,N] > 2
do not occur in the right hand side of (2.8), so that (2.7) is essentially necessary for
(2.8) to hold).

Consider now the event 21 defined by (2.7). It should be obvious that

Kk
P@p 21— 29)

and that 21 is probabilistically independent of ther.v. & and Hy(os).
The following fact that is now obviousis fundamental for the sequel.

Lemma 2.2. For any function z on {—1, 1}%*, on the event 21 we have that

Av{h(oN—2k+1, -+, ON)E )0
Av{&)o

(h(oN—2k+1, "+, ON)) = (2.10)

There, Av meansaveragewithrespecttoall thepossiblevaluesof oy 241, - -
oy = *£1; thebracket ( - o meansthermal averageinthevariablesos, - - -, oy 2,
with respect to the Gibbs measure on N — 2k sites, that is Gibbs measure of Ham-
iltonian Hp.

Wewill need the (immediate) extension of (2.10) to 4-replicas. Inthisextension,
we simply replace &, by

& =[]6mc") (2.11)
<4
where &, (6®)) isgiven by (2.5), andwereplace S by &' = [[ &,
0<m<2k—1
Lemma 2.3. We have
K (k)
Chve = —— + E<eXp(4||f||oo > npw) Av (212)
| T e, o) )
O<m=<2k—1 0

where the summationisover 0 <m’ <2k — 1,1 € [N — 2k]P?~L.
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Proof. We use the version of (2.10) for 4-replicas, with

1 2 4
h= [T @3l —oiley, —oyl,).
0<m<2k-1
We observe that
2
(hé"y0 = < [T @3, a§2>m>rf<a<l>>£(a<2>>> =0
O0<m=<2k—-1 0
Moreover,
() = ep(—Iflloo Y n1m) »
I.m
so that
(€")o" < exp@Il flloo Y 11.m)-
I,m
The result follows. O
GiveneV, ... 6@ inxy, I €[N — 2k]?~1, we consider the quantity
§01,m - (pl,m(o.(l)v ) 6(4)) (213)
() 0 0
= Eexpz FX1ms 051 1y O3, p—1)» ON—m)

<4

The expectation is of course over the random variablas X.m. Let us observe that
@1, dependsupon 6®) (¢ < 4) only through al( 1> 4 < p—1andthrough o\
We consider the quantity

Avie, —o P e, —a ) (2.14)
v A £ lloo @ @
e"p[m;@ orm@Y, - 6@ — 1

where the summation isover I € [N — 2k]~1, and the average over a(e) =+1

It does not depend upon m, but only upon p©@ = (6\);<y_2. We denote by
O (pD, ..., p@) this quantity (2.14).

Lemma 2.4. We have

K(lj\; n E@(pD, .., p®)2y,. (2.15)

Cni =
Proof. Theideaissimply toperformintegration Ex inthevariables X; ,, in (2.12),
and then integration E,, in the variables i ;.
To integrate in the variables X ,,, we observe that the dependence upon these
variables of the right-hand side of (2.12) is only through &”’; we also observe that
forn € {0, 1}, wehave EY" = (EY)", so that

Exél, = ]‘[@{’; (2.16)
1
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where of course the product isover I € [N — 2k]?. Thus (2.12) becomes

cN,ksE< I1 (Av(oﬁ)m—aN)mxa“) “”,,,)H(wlmexp4||f||x>"'m>>

O<m=<2k—1 0
+ K (k)/N. (2.17)

We will now take expectation in the variables n; ,,. We observe the indepen-
dence of the termsin the product [ . We aso observe that
m

Ea"=1+P(n=1@—-1)
o that
ETeunepdi e =] (1+ @ e -1) (219

1

Now, writing
14x= ex+R(x)

where |R(x)| < Kx? for x > 0, we obtain the result (therewe use that p > 2). [

In order to use (2.15), we need to understand ®. The only termsthat contribute

to Av in (2.14) are those for which o,(\,zim = jf,l)m and 0(4) = —olf,s)m Thus
we can make the change of variables
1 2 3 4
al(v)m_e ajil)m=—e al(v)m_e 61(\’)m=_6/ , (2.19)
and write
o, ..., pP) = Ay ce'ep Z(e““f“oo -1 (2.20)

where ¢; ,, is as before, replacing in (2.13) the quantities cr . Dy their values
(2.19). We must now understand ¢; ,,, better. To reflect thefact that the dependence
of g1.m ino\, isonly through e and ¢/, we will make a change of notation, and
we write

o1m = 01D, p@. €. €. (2.21)
(We keep the index m even though this quantity does not depend upon m). We
observe the fundamental properties that

D . p® (2) (€]

(p P, €, E/) = @Im (p ’ p(3)v p(4)v —€, 6/) (222)
I,m(p ) "'7p(4)767€/) - Qol,m(p ) 7p(4)a p(3)767 _6/) (2'23)
Fors = 0,1, 2, 3, we define 4 functions y$ of p(l), oo, p® by
yQ = Avgr(= Avgy, (PP, p@, p®, p® e )
Y7 = Avegr
€,€
Ui = Ave'prm
€,€

3 /
Y = Avee g,
€,€
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Thus (2.22) and (2.23) respectively imply the fundamental facts that

Exchanging p'¥ and p®® changesthe sign of /7, v3. (2.24)
Exchanging p® and p® changesthe sign of y2, v3. (2.25)

Moreover, we have the identity

Qrm =P+ eyl +eyitedy;

and thus
NP— Z(e‘”‘f”“go[ — D =Wo+eWi1+€Wo+ee'Ws (2.26)
where, fors =1, 2,3
14
W, = W@‘l”f oo "y (2.27)
I

and

Wo= 1 Z(e“”f Iy? —1) (2.28)

Now, going back to (2.20) and using (2.27), we get
@6V, ., 6¥) = Avexp(Wo + e W1 + € Wa + €€’ Wa) (2.29)
€€’
= exp Wo(ch Wy ch W5 sh W3 + sh Wy sh W, ch Wa).

Since we want to prove that something happens for || f || small, thereis no loss
of generality to assume || f|l0c < 1. Then W, (s < 3) are bounded by a number
depending upon y only, so that (2.29) implies

@D, -, 6% < K(y, pr (W + (W1W)¥)
Combining with (2.15), we have proved the following

Lemma2.5. We have

K(f, p, k)
< _—
Cn.k N

+ Ky, p(E(WZ) o+ E(W1W2)%)0) (2.30)

Now we have to relate these termsto C ok 2x; We will prove the following.

Lemma2.6. We have

K(y.p.k)
EWEo = = 2=+ K. D' I IR a0 0) (23D
K(y, p, k) 1/2

E((W1W2)%)o < + K, pMIAIECY e V) (232)

VN

A crucial ideathereisthat the potentially disastrous power 1/2 ontheright is offset
by the index 2k rather than k. To explain this, we state and prove our main result.



198 M. Talagrand

Theorem 2.7. Thereisa constant K (y, p) such that
I fllccK(y,p) <1= lim Cya(y)=0.
N—o00
Proof. Given yg arbitrary, we set

cx = limsup sup Cy x(y).
N—oo Y=Y0

Sincey’ < y, Lemmas 2.5, 2.6 show that

12
cx < (Ko, )l f1%) ea)

Thus
1/2k

< (K(vo, P fl13)c;
Since ¢y < 165, if K (30, p)Il flloo < 1thisimpliesc, = O for each k. O

Proof of Lemma 2.6 We need abetter understanding of the quantitieﬁ Wl, W, Ws.
The functions y§ depend upon p, .., p™ only through al( Lot < 44q <
p — 1. We use elementary Fourier analysisin {—1, 1}*?~1 to write

VoD o) =3 @B Byn) [ 1o, (2.33)

q<p—1LeB,
where the summation isover all choicesof By, - - -, B,—1 C {1, - - -, 4}. To control
theFourier coefficientsa® (By, - - -, B,_1) weobservefirstthata®(By, - - -, Bp_1) =

Oif al sets By, - - -, B,,—1 areempty (and if s # O!) It should also be obvious that
la*(B1, -+, Bp-1)| < K| flleo (2.34)

Indeed (for specificity)
a* By, By = EAvee [] J] o\l " -1
q<p— lZEB

where the average is over ¢, €’ o(fl = #1 and F isarandom function of these
numbers that satisfies |F| < 4| f]loo. The smallness of || f|loo Will of course be

used through (2.34). We observe that

v IT e =# 20 I1 Tl

I g=<p-1teB, i1,0ip-1q<p—1LeBy

where the summation in the right hand side is over iy, - - -, i,,—1 al different, and

where
1 _
R:_(N 2k><1.



The high temperature case for the random K -sat problem 199

It thus follows that

1
a2 [ Tl

I g<p-1teBy

ot )

g<p-1 i<N—2k LeB,

< —-.

K(p)
N

Let us denote by T (resp. T”) the transformation that consists of exchanging p™®
and p@ (resp. p®@ and p®) so that by (2.24), (2.25)

T =T' W) =y}
and thus
v = %w? ~ TP ~T'WH +TT' W) (235)
Combining with (2.27), (2.33) we get

W3 —RY b>By, -+, Bp-)(U = T(U) = T'(U) + TT'(U))|

- K(p,v)

<=7 (2.36)

There,

U=UB-.By1)= [] (% > ]_[al.“’) , (2.37)

qg<p—1 i<N—2k LeB,

the summation is over all choicesof By, ---, B,—1 and

b3(B1, -+, Bp—1)| < KO fllso-
Thus, to prove (2.31), it suffices to show that given By, - - -, B,_1, we have

K(p, k) 1/2
N

E(U—-TWU)-T'(U)+TT'(U)*)o < +K (P Cy y (V). (2.38)

Wewrited; = o; — b;, whereb; = (o0;)o. Writing o; = 6; + b;, and expanding the

products [] we see now that it sufficesto prove (2.58) where rather than (2.37),
teBy

we have

v=T1 (% 3 n) =3 |

g<p—1 i<N—2k teB, q<p-1

(where 0 < n(q) < 4). The essential observation is that
U-TU)-T'U)+TT'(U)#0=

3915 By, N {1, 2} # @; 3g2; By, N (3,4} # 0. (2.40)
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Thus, to prove (2.38) it sufficesto prove that under (2.40)

K(p,k) 1/2
N

E({U%)o < + K (P CY e (V) (2.41)

where U isasin (2.39). Since|c'r,.(l)| <2, |bi| < 1,wehave|V,| < K* for each q.
Wefix q1, g2 asin (2.40).

case 1l: g1 # q2.
We have

U < K(p'VEVE < K vk + v

P e

j=12 i<N—2k (eBy

Ak

and all we have to show is that

B+ = E<( > T1s “)b") k> (2.42)

i<N—-2k{cB

2 K(p,k)
= K2y ) + —2—

Expanding the power and using trivial bounds, the left hand sideis at most

K(p)"( <l];[ko,>o +—)

Now, by Cauchy-Schwarz,

)= (lel)
( )

4k
(1) (2) (1) (2)
E
i<4k 0 i<N-2k 0

< Cn-2k,2c(¥").

and

The last inequality is seen by integrating p@, p® inside the power 4k rather than
outside in the definition of Cn—_ox 2.
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case 2: g1 = g2. We will show that

2%
cadB > 2= E<(% Z l_[ (-,l_(Dbln) > (2.43)
0

i<N—2k (cB
1/2 K(p, k)
< K(p)kCI\,/_Zk’Zk(y/) + N

By Cauchy-Schwarz, the left hand side of (2.43) is a most

4k

1
(2 o)’
i<N—-2kleB 0

Expanding the power, using trivial bounds, and the fact that cardB > 2, thisis at

most
2 1/2
k - 1
(K(p) (E<H ol> +N) :
<4k 0

and we finish as before.
We have proved (2.31). The proof of (2.32) is very similar and is left to the
reader. O

1/2

3. Non-correlation of spin averages

Throughout this section, we denote by M; the set of probability measures on
[—1, 1], provided with the distance

(3.1)

d(v, p) = SUDV9(X)dV(X) - /G(X)dM(X)

where the supremum is over the functions 6 : [0, 1] — R that have a Lipschitz
constant 1, that is satisfy

0(x) —0()| =< |x — vyl
foral x, yin[—1, 1]. We can assume 6(0) = 0, so that 0 isvalued in [—1, 1].

The distance (3.1) is known as the “transportation cost” between v, p. Its use
is motivated by the fact that we can find apair U, V of random variables such that

LU)=u, LV)=v,ElU-=V]|=d, n. (3.2

This statement (known as the Monge-K antorovich theorem) is a concrete, efficient
way to use the information provided by d. The aim of this section is to prove the
following:
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Theorem 3.1. For y9 > 0O, there exists a constant K (yo, p) such that if || fl~
K (y0, p) < 1, then

. 1
JE;Ed&VXﬁ@%gﬂqD)zo (33

i<N
uniformly in N for y < yp.

There Z({01)) denotesthe law of ther.v. (o1).
Giventwor.v. X, Y,wewriteC(X,Y) = EXY — EXEY, their correlation.

Lemma 3.2. To prove (3.3) it suffices to prove that for each function 6 with Lips-
chitz constant < 1, we have

Ivleoo EC(0((01)), 0({02))) =0 (34)

uniformly over y < yyp.
Proof. Under (3.4), we have

2
E (% > 0o — E9(<ai>>)) — 0.

i<N

The result follows, since in (3.1) the sup can be arbitrarily (and uniformly over
wu, v) approximated by afinite maximum. O

Given a function 6, from [—1, 1]* to [—1, 1], we define L(6) as the smallest
number such that we can find numbers (b(;)) j<x for which

v,y e [-1, 105, 10() — 0] < Y b(lxj — yjl
<k
and
> b(j) < L(®).
j<k
Thus, for k = 1, L(09) issimply the Lipschitz constant of 6. The proof of (3.4)
relies upon the following statement.

Proposition 3.3. Thereisanumber K (yo, p) suchthatif || f]l.o K (0, p) < 1and
¥ < o, givenk > 1, given any function 0 : [—1, 1]¥ — [—1, 1], given € > 0, we
can find k' > k arbitrarily largeand 6’ : [—1, 1]¥ — [—1, 1] with the following
properties

L®') < L©)/2 (3.5)
C@Oo1), -+, {ok)), O({ok+1) -+ » (o)) (36)
< CO'((o1)0, -+, (ox)0), 0'({ow41)0. - - - » (02%')0))

+€ 4+ 0(2).

There, { - )o denotes the Gibbs measure for N — 2k sites, and parameter ' =
y (N — 2k)/N)P~1, and o(1) a quantity that goesto zeroas N — oc.
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To provide motivation for this technical statement, we first show why thisim-
plies Theorem 3.1. Given a 1-Lipschitz function 6 : [-1,1] — [-1, 1], we it-
erate the result of Proposition 3.3 to find, given r, integers k', k” and amap 0’ :
[—1, 1] — [—1, 1] such that

L) <L@®)/2" <27 (3.7)
C(0({01)), 6({02))) (3.8)
< C¥'({o1)0, - -, (0%)0), 0" ({or 4 1)0, - -, (o247)0))

+% +0(1).

where ( - )o isthe Gibbs measure for N — 2k” sites. By definition of L(0"), we

can find numbers (b(j)) j<p suchthat Y b(j) < L(0") < 27" and that
J<K

voy e [-L Y, 10/ ) — 0/ )l < Y b()Ixj — vl
Jj<k'

<2) b(j) <2v7

J=kK

Thisimpliesthat 6’ takes its values in an interval of length < 22" It follows
easily that the first term to the right of (3.7) is < 232", so that

1
CO((o1)), 0((02))) < 2°7 + —t+o).

Letting N — oo and then r — oo completes the proof.
To prove Proposition 3.3, for consistency with the notation of Section 2, we

will replace (01), - - -, (o2c) by (ow), -+, (ON—2k41)-
We will use the cavity method as in Section 2. To evaluate

CO{on), -+, {oN—k+1)), OUoN—-k), -+, (ON-2%+1))) (39
it follows from Lemma 2.2 that we make an error o(1) if replace (oy—_,) by

Av{on-—m&)o

yYIvar (3.10)

where & isgiven by (2.6). One unpleasant feature of & isthat Y 5, ,, isnot bound-

1
ed. Given an integer u, we define a small perturbation 7, ,, of the variables n;
for which
Vm <2k =1, M, <u (3.11)
1
They are many ways to do this. The reader will choose his own. We simply need
that
Vm <2k =13 nim <u=VLnm =T, (3.12)
1
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and that the variables 7, ,,, are independent of the variables 7, ,,, if m % m'.
Let us define &,,, & asin (2.6) when ;,,, is replaced by 7, ,,. Then it should
be obvious that given ¢, we can fix u so that (3.9) is at most

C(e(a()? ) ak*l)v e(ak’ Ty aZkfl)) +€+ 0(1) (313)
where -
o, = Avion-mdlo (3.14)
Av(&)o

Weset kK’ = k(p — 1)u. By (3.11), & involves only a bounded number of vari-
ables o;. It follows from the work of Section 2 that we make an error at most o(1)
if in (3.14) we replace average ( - )o by average for the product measure 1o such
that

Vi < N — 2, f oidpo(p) = (ai)o.
Writing w(f) for [ fdu, we seethat in (3.14) we can replace (3.13) by
— MO(AUGN—mg)
po(Avé)

AsN — oo, thereisonly avanishing probability such that thesetsU{I; 77, ,, =
1} are not disjoint asm ranges from 0 to 2k — 1. Since o isaproduct measure, in
(3.13) we can replace (3.15) by

(3.15)

_ 10(AvON _mEm)
Ho(AvE )

0 (ao, - - -, ar—1) isafunction of the numbers (o; ) o, but unfortunately thisfunc-
tionisrandom, inthat it dependsin particular upon the values of the numbers7; ,,,;
moreover wewould really likethat thisfunction dependsonly upon (o; ) fori < k/;
which is certainly not the case apriori. To go over that difficulty, we will show that
the symmetry among the sites for ( - )g lets us rearrange coordinates. More pre-
cisely, conditionally upon the numbers7; ,,(I € [N — 2k, m < 2k — 1), the
distribution of the pair

(3.16)

9(“05 ) ak*l)v O(Qka ) aZkfl) (317)
depends only upon the numbers b,, = > 7, ,,,m = 0,---,2k — 1. Note that

1
by < u. Thus, conditionally upon the numbers7; ,,, we do not change the distri-
bution of the pair (3.16) if we now define
_ Ho(AvoN_n & m(bp))
" 140(AVE (b))

(3.18)

where

Em(bm) = exp Z f(Xm,m O(p—D(mu+n—21)+1, "> O(p=1)(mu+n), ON—m)
1<n<b,,

(3.19)
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and where (X, ,) are i.i.d uniform over [—1, 1]. Simply stated, the b,,(p — 1)
coordinates of U{/; 7, , = 1} arerearranged asthefirst b, (p — 1) coordinates of
the m-th block of length (p — 1L)u. These blocks are long enough to accommodate
by (p — 1) coordinates.

From now on, a,, is given by (3.18).

Given a sequence Y = (y;)1<i<n—2k, Consider the product measure iy on
{—1, 1}V givenby uy(0;) = ;. Thuspo = pyfory = (p)o = ((0:)0)1<i<n—2k-

We define now
V«y(AUUmeéam(bm))
My(Avgm(bm))
where by, = Y nrm. X = (Xm,n), 1 = (77,,,). With this notation, we have a,, =

am (y’ X’ 77) = (320)

1
am(y, X, n) fory = (p)o.
We now introduce two random functions 61, 6, on [—1, 1]V =2 given by

Ql(y) = e(ao(yv Xv 7])1 Y ak—l(yv X» ’7)) (321)
92()’) = e(ak(yv Xv n)a T azk—l(yv X’ 77)) (322)
Thus8(ag, - -+, ar—1) is61(y) caculated for y = (p)o.
The dependence of 6 fromy isonly through y1, - - -, y S0 that we can define
afunction

9/()}11 T yk’) = E/Ql(Y) s
the expectation E’ being taken in the random variables X,, ,, 77 ,,,- It should be
quite obvious that
0 (41, -+ yow) = E'62(y)

because 6, is constructed like 0y, shifting the dependence through y by &’ placesto
the right. Let us observe that

0'({o1)0, + -+, {ow)0) = E'6(ag, - - -, ax—1) (3.23)
0'({op+1)0, - -+, (021 )0) = E'O(a, - -+, azk—1). (3.24)

The expectation in (3.23) is asmoothing operation, that will be responsible for
the fact that 6 is a smooth function of the variables y;.

Another crucial observation isthat 61(y) and 62(y) are probabilistically inde-
pendent functions of the randomness (X, n); thisis because 6; depends only upon
those variables X, », 7, ,, Wherem < k — 1, while 62 depends only upon those
withk < m < 2k — 1. Thus, we have

C((ao, - - -, ax-1), O(ax, - - -, as—1) (3.25)
= C(0'((o1)0, - -+, {ow)0), 0" ({ok11)0, - -, (O2%')0))

as we see by first integrating in X, n conditionally upon { - )o, and using (3.23),
(3.24).

In view of (3.20), (3.25), to prove Proposition 3.3, we only have to prove the
required bound on L(#’).
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First, given X, n, we will study the dependence of a,,(y, X, n) upony. For a
function v on [—1, 1], it is obvious that

< supv —infv. (3.26)

%y )
dyi Hyt®
Together with the fact that

exp_bm”f”oo = gm(bm) = eprm”f”oo P
crude elementary estimates then imply that

a
8—ydm(y, X, 1) = b flloo €XP 3l fllocbm-

Since ay, (Y, X, 1) depends only upon those y; for which
i€ Jm,n):={(p—Dum+1 -, (p—Dum+bu(p—1}
we have

|am (yv x7 77) - am(y/v x7 77)| (327)

< 4by | £ loo(€XP3I fllockm) D 1y = ¥il.
ieJ(m,n)

Next, we combine this information with the smoothness of 6. We know by def-

inition of L(#) that we can find numbersd,,, m < k —1forwhich Y d, <
0<m<k—1
L(0), such that, for all values of xo, - - -, xx—1, xg, - - -, X, _q in[—1, 1], we have

|9('x07 e axk—l) - 9()‘:6, e 7-x],(_l)| S Z dm|.Xm _.xrlnl.

m<k—1
Combining with (3.27), we get
61(y) — 61.(Y")| (3.28)
<4 )" dubull flloo@P3 fllocbm) Y Iyi = ¥il-
m=<k—1 ied(m,n)

We take expectation to obtain

16" (y1, -+, k) — 0" rss =+ o5 Yi)I (3:29)

<4 ) dn > cilyi — il

m<k—1 (p—Dum<i<(p—Du(m+1)
where
Ci = E4bm”f||ooexp3||f”oobml(p—l)bmzi—(p—l)um-
Thus

> ¢i 4P = D fllooE(b2 exp3| flloobm)
(p—Dum<i<(p—Du(m+1)
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and
LOY< Y dn > Ci
m<k—1 (p—Dum<i<(p—1Du(m+1)
< (Y dn)A(p = DIl oo E DS, &3l £ loobm)-

m<k—1

Since > d, = L(#), wewill bedoneif we show that

m<k—1
1
1/ looK (v, p) < L= I flloo EBf, @3l fllochm) < 57— (3:30)
8(p—1)
Now,
(%%
_ 4 _ p—1
Eexpby, = (1+ r=tG 1))

=expy(e—1)

so that (3.30) is obvious, and Proposition 3.3 is proved. O

4. Construction of the limiting probability

We consider the function f asfixed once and for al, so that dependence in f will
not be indicated. Given y > 0, we construct amap 7,, from My to M, asfollows.
Given v in M1 we consider ani.i.d. sequence Z = (Z;);>1 distributed like v. We
consider the product measure 1z on {—1, 13N such that [ o;duz(0;) = Zi. We
consider a Poisson r.v. b of expectation y/(p — 1)!, and we assume that » and Z
are independent. We consider the random variable

uz( Av_eexph)
e==+1
= —( 1o oph) 4.0
nz e:l_gl Y
where
h = Z f(Xg, 01 (p-1+1s -+ Og(p—1)» €) (4.2

q=b

and where the sequence (X,) isi.i.d. uniform, independent of Z, b. We then define
T,(v) asthelaw of Y.

Lemma4.l. Ify < ypand

I flloK(yo, p) =1, 4.3

then for all v, v/ in M1

1
d(T, (v), T, (V) < Ear(v, V) (4.4)
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Corollary 4.2. Under thecondition of Lemma 4.1, there existsa unique probability
0, such that

Ty(Qy) = Qy-
Proof. (M1, d) isacomplete metric space. |

Proof of Lemma 4.1. Consider another i.i.d. sequence Z' = (Z!), and define Y’ as
in (4.1), replacingZ by Z'.
Using (3.36), we see asin (3.27) that

1Y —Y'| < 4Dl f lloc €XP(3| £ llsob)) Z Zi — Z]].
i<b(p—1)

Since b is independent of Z;, taking expectation, we see under (4.3) (mimicking
the estimates of the previous section following (3.29)) that

ElY —Y'| <) cE|Zi - Z]] (4.5)

where > ¢; < 1/2. We then use the fundamental property of the distance d: we
i>1

canassumethat E|Z; — Z!| = d(v, V'), while #(Z;) = v, £ (Z!) ='; Thus(4.5)

givesE|Y — Y| < %d(u, V). Since Z(Y) =T, (v), £(Y’) = T, (v'), this proves

(4.4). O

Lemma4.3. We have
supd(Ty (). Ty (1) = oy = ")
v

where o denotes a function such that Iir(r)1 o(t) =0.
t—04

Proof. Thisis aconsequence of the obvious fact that given y, ¥/, we can find two
Poissonr.v. b, b’, with

Eb=y/p\,Eb =y'/p!, P(b#Db)=o0(y—V). 0
Corollary 4.4. \We have
d(Qy, Qy) = oy —v").
Proof. We have
d(Qy, Qy) = d(T,(Qy), T (Qy)

=d(Ty(Qy), Ty (Qy) +d(T,(Qy), Ty (Qy))

=< %d(va Qy) +d(Ty (Qy), Ty (Qy1)
using Lemma4.1, so that

d(Qy, Qy) = 2d(T,(Qy), T, (Qy1)

and the conclusion by Lemma 4.3. |

We denote by ( - )o Gibbs measure on {—1, 1}V~1 with parameter ' =
y(1 — N~1). Wedenote by Zo((on)) the conditional law of (o) given ( - )o
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Proposition 4.5. If weassume || f|loo K (v0, p) < 1, then, uniformlyiny < ygwe
have

IJi_)moo Ed(ZLo({on), Ty(ZL((on)0))) =0 (4.5)
and in particular
N'Lmood(y((UN»» T, (Z({on)o)) = 0. (6.7)

Proof. It seems better here to be dlightly informal rather than being unreadable.
We start with relation
{ Aile exph’)o
€=
== 4.
(on) ( éi’leXph/)O (4.7)

where
h' = Z 11,0/ (X1,0, i(1,5)s -+ Oi1,p—1)5 €) »

where the summation is of course over I € [N — 1]7~1. According to the results
of Section 2, we make only a vanishing error if we replace in (4.7) the average
with respect to Gibbs' measure ( - )o by the average for the product measure py
on {—1, 1}V wherey = ((07)0)i<n_1. Thus, the law of (o) asymptotically
resembles the law of

Av eexph’
—My(€=ﬂ P , ). 4.8)
ny( Av expi)
Let us define
by = Z n1.0 (4.9
1
and
h= Z F(Xg, 0(g-D(p-+1, "+ Og(p—1)» €)- (4.10)
q=<by
Consider a uniform random permutation = of {1, ---, N — 1}, independent of all
the other r.v. considered. Let us write
th= Y f(Xg 0r(q-D(p-D+D)> " *» Or(g(p—1))€)-
q=<by
Consider the quantity
uy( Av e expth)
— (4.12)

A h) -
“V(€=Lexm )

If wefix (-)o, by andthe X ;, that is, if theonly randomnessisthat of = and then; o,
we see that the random quantities (4.8) and (4.11) have asymptotically the same
law. Thisisbecausethe by sets I for which n; o # 0 aredigoint with aprobability
— las N — oo, and, conditionally upon the fact that they are digoint, they are
distributed like the family of the by sets

{t(@g—-D(p-D+1D), -, t(g(p— D)}
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for ¢ < by. By permuting the indices in (4.11), we can see the random per-
mutation as shuffling the indices of y rather than those of i. Thus, if we write
7(Y) = ({(o7())0)i<n—1 thelaw of (4.11), given ( - )o, isasymptotically the law of

Av eexph

Av oph) (4.12)
Hr(y) e:il p

Thecrucial pointisthat, conditionally upon ( - )o,asN — oo, any given number n

of components (o7 (1))0, - - -, {(or(n))o Of T(y) asymptotically resembles afamily of

nidirv.oflan g = (N =171 Y 8(5),- Thus, asymptotically we can replace
1

i<N—
(4.12) by

nz( Av e exph)

—(“Aﬂ =~ (4.13)

Hz 5:i1 p

where z = (z;)i<n—1, and (z;)i<ny—1 arei.i.d of law &. We proved in Section 3
that (in probability) & is close to ¥ ({o1)0) SO that in (4.13) we can assume that
(z)i<n—1aei.i.dof law Z({o1)0). Moreover,as N — oo goesto oo, by converg-
esinlaw to aPoissonr.v. b with Eb = y /(p — 1)!. This completes the argument.

([l

Theorem 4.6. Under (4.2), we have
lim Z((o1)) = Q.
N—o0
Proof. We have

d(Z((01)), Qy) = d(ZL((on)), Qy)
=d(Z({on)), Ty (Qy))
= d(Z((on)), T, (Z({01)0)))
+d(T, (£ ((01)0)), T, (Qy))-

Using Lemma4.1, we have

d(T,(Z((01)0)), Ty (Qy))
1
Ed(¥(<01)o), gy)

IA

IA

1 1
Ed(ff(wl)o), 0,)+ Ed(Qy, 0,).
Thus 1

d(Z({01)), @y) < Ed(ff(m}o), 0,)+R

where R — 0as N — oo (by Proposition 4.5 and Lemma4.1).
Thus, if we fix yo such that (4.2) holds, and set

ay = sup d(Z({on)), Qy) ,
7=<%0
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we deduce from (4.8) that
. 1.
limsupay < =limsupay-_1
N 2

sothat ay — O. O

In order to prove Theorem 1.1, it remains now to show that, given any number
k,therv. ({0;))i<x are asymptotically independent.

If we combine Proposition 4.5, Theorem 4.6, and Corollary 4.4, we see that
Ed(ZLo({on)), Q) — 0i.e the conditional law of (o) given { - ) is essen-
tially Q, . We observe that there is very little to change to the proof of Proposition
4.5 to prove that the conditional law of (o) given the Gibbs measure Gy_, on
N — r sites @so converges in probability to Q,. Thus, it suffices to prove that
(ON—r11), -+ -, (on) areasymptotically independent given G y . Thisis however
obvious from (3.11), (3.14). O

To conclude, et us now see how to compute the limiting free energy per site.
First, (considering as usual f asfixed) we show that, setting F (y) = log Zy (),
we have

1d 1

~-—EFn(y) = —Elog{exp f(X, 01, -, 0p)) +0(D). (4.14)

N dy p!
To see this, we consider a new independent sequence 7', of r.v., n, € {0,1},
P(n, = 1) = y'N'=P, and we assume that this sequence is independent of all
other sequences. Thus n’; = max(ny, 1) satisfies

/

Py Y 14 vy'
Py =1 = No1 T N1 N2o-D
Thus
logd "exp 0 f(X,.0is). - Gics.p) (4.15)
B 7

i distributed like Zy (y + /(1 — 51=)).

Let n} =n'; — ny, so that we have the identity
ZGXPZ N7 f (X7, 0i7.0), 5 0i(s.p)
4 J

= ZN(V)<9XPZ 0y f(Xy,0i0.1, " 0ig,p))
7

and thus

EFy (y +y (1 - NZ—l)) (4.12)

=EFN(y) +E |09<9XPZ 'y (X7, 0i0.1), Ui(J,p))>-
J
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Thelast termis zero if no '} isequal to 1; if exactly one '/ isequal to 1, itis

Elog(exp f(X, 01, -+, 0p))

by symmetry upon the sites. For y” << 1/N, the probability that one exactly »’/
islis(atthefirst orderiny’)

((3)-20)

which, as N increases, behaveslike Ny’ / p! Together with (4.16) thisproves (4.14).
Now we deduce from Theorem 1.1 that

Jd 1 1
li — —FEF =—FI X
om 9y N N (V) o 09/ fX,01,---,0p)dvy
where vy is the product measure on {—1, 1}” for which v(o;) = Y;, and where
(Yi)i<p isi.i.d. distributed like Q,,. This proves Theorem 1.2, since Fy(0) =
Nlog2.
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