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Abstract. We study the connectivity properties of the complementary set in Poisson multi-
scale percolation model and in Mandelbrot’s percolation model in arbitrary dimension. By
using a result about majorizing dependent random fields by Bernoulli fields, we prove that
if the selection parameter is less than certain critical value, then, by choosing the scaling
parameter large enough, we can assure that there is no percolation in the complementary set.

1. Introduction and statement of the results

In this paper we study two models from the theory of fractal percolation: Poisson
multiscale percolation model and Mandelbrot’s percolation model. The latter, which
is a generalization of the concept of Cantor set, was introduced by B. Mandelbrot [9]
and subsequently studied by J.T. Chayes, L. Chayes, R. Durrett, G. Grimmett and
others, see e.g. [1–5, 12, 14, 15]. In particular, Chayes et al. in [3] introduced the
concept of “sheet percolation” in the random Cantor set, which is in fact equivalent
to the absence of connected path in the complementary set. Their results were
generalized to the case of arbitrary dimension by M.E. Orzechowski in [14]. Here
we give an alternative (and shorter) proof of his result. In fact, the difference between
our proof and that of [14] is that, thanks to the result about majorizing dependent
fields, we were able to use a much simpler geometrical construction. We note
also that the problem of percolation in the complementary set was considered by
M.V. Menshikov, S.A. Molchanov and A.F. Sidorenko in Chapter 10 of [12]. Using
combinatorial argument, they proved the absence of percolation for small parameter.
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The main result of this paper concerns the analogous Poissonian problem. The
selected set here is constructed by composition of Poisson fields of different in-
tensities of balls of different radii. We note that the method of [14] can hardly be
applied to this model. Two-dimensional variant of this model was considered by
R. Meester and R. Roy in Section 8.1 of [10]. We generalise their results to the
case of arbitrary dimension and also we remove their restriction that the scaling
parameter could go to infinity only along some fixed subsequence.

One of the key points of our approach is a result (Theorem 2.1) about majorizing
dependent random fields by Bernoulli fields. We expect that this theorem may be
useful for studying other percolation models. In fact, results about majorization by
Bernoulli fields are important in percolation and were used by many authors, see
e.g. [6]. A result closely related to ours was proved by T.M. Liggett, R.H. Schon-
mann and A.M. Stacey in [8]. We discuss this in more detail in Section 2.1.

1.1. Poisson multiscale model

Let us construct Poisson multi-scale percolation model in Rd , d ≥ 2. Fix R > 1.
Level-i balls are balls in Rd with radius R−i , i = 0, 1, . . . Centers of level-i balls
form Poisson field in Rd with rate λi = cRid independently of the others. Denote
by U(i) the union of level-i balls. The object of interest is the set U = ∪∞

i=0U
(i). We

say that in this model percolation occurs if almost surely there exists a continuous
path γ : R �→ U , such that γ is not contained in any finite box. It is known that
there exists ccr = ccr (d), 0 < ccr < ∞ (cf. [10, 12, 13]) such that if c < ccr , then
U(i) is the union of nonintersecting finite components a.s. and if c > ccr , then U(i)

percolates for all i = 0, 1, . . . (from the rescaling argument it is evident that ccr
does not depend on i, i.e. ccr is the critical intensity for the model of Poissonian
balls of radius 1).

Trivially, if c > ccr , then the set U percolates for any R; it is not difficult to get
that it is so for c = ccr too. Indeed, let us show that for c = ccr , balls of levels 0
and 1 are enough to percolate. Trivially, the set U(0) majorizes a field of level-1
balls with intensity ccr . Together with U(1), they form a field of level-1 balls with
intensity ccrR

d(1 + R−d). This is in the supercritical phase due to the rescaling
argument. So, our main result is the following

Theorem 1.1. For any c < ccr there exists R0 = R0(c) such that for all R ≥ R0
there is no percolation in the random set U .

1.2. Mandelbrot’s percolation model

We construct the random set D ⊂ Rd , d ≥ 2, by the following iteration process.
Fix some N ∈ N and p ∈ (0, 1). Divide the space into closed (hyper)cubes with
side 1, which are called level-0 cubes. Each of these cubes is selected with proba-
bility p independently of the others; the union of all the selected level-0 cubes is
denoted by D0. Then, divide every nonselected level-0 cube into Nd equal cubes
with side N−1, which are called level-1 cubes. Again, each of level-1 cubes is se-
lected with probability p independently of the others; together with the selected
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level-0 cubes they form the set D1. Iterating this construction, we obtain the se-
quence of sets D0 ⊂ D1 ⊂ D2 ⊂ · · ·, where Di = Di−1 ∪{selected level-i cubes}.
The side of level-i cube equals N−i for i = 0, 1, . . . Finally, we define a random
set D = D(d,N, p) := ⋃∞

i=0 Di .
We say that in this model percolation occurs if almost surely there exists a

continuous path γ : R �→ D, such that γ is not contained in any finite box.
Note that (Rd \ D) ∩ [0, 1]d is the standard Mandelbrot’s random fractal. In

fact, considering this model in the whole space instead of [0, 1]d do not bring new
nontrivial results; we made it like this to underline the similarity of this model (and
of method of studying it) with the Poisson multiscale model.

To formulate the result, we define a d-dimensional lattice Md as the lattice
with vertex set Zd and the edge set given by the following adjacency relation.
Two vertices x = (x1, . . . , xd) and y = (y1, . . . , yd) of Md are connected iff
|xi − yi | ≤ 1, i = 1, . . . , d. Note that two cubes are connected if they have at least
one common point, so the percolation by selected level-0 cubes is equivalent to
the site percolation in Md . Let pcr = pcr(d) be the critical probability for the site
percolation in Md . The main result of this section is the following

Theorem 1.2 (Orzechowski [14]). For any p < pcr there exist N0 = N0(p) such
that for all N ≥ N0 there is no percolation in the random set D.

2. Proofs

2.1. Majorizing dependent fields

Definition 2.1. We say that one random set G1 is stochastically smaller than the
other random setG2 iff it is possible to couple them in such a manner thatG1 ⊂ G2.

We need the following result:

Theorem 2.1. Let {η(x)}x∈Zd , η(x) ∈ {0, 1} be a translation invariant random
field. Denote by Ma = {−a, . . . , a}d ⊂ Zd the cube of side 2a + 1 centered in 0.
Denote

δ = sup P{η(0) = 1 | η(x1) = 0, . . . , η(xl) = 0, η(y1) = b1, . . . , η(ym) = bm},
(1)

where the supremum is taken over all (including the empty) finite subsets {x1, . . . , xl}
⊂ Ma , {y1, . . . , ym} ⊂ Zd \ Ma , and b1, . . . , bm ∈ {0, 1}. Then the random set
G = {x : η(x) = 1} is stochastically smaller than the Bernoulli random set with
parameter p = 1 − (1 − δ(2a+1)−d

)(2a+1)d .

Proof. We prove this theorem in two steps.

Step 1. (Note that similar construction was used in Lemma 8 of [7].) Consider a
field of Bernoulli (i.e. independent) random variables {η′(x)}x∈Zd with P{η′(x) =
1} = δ. Let

G′ = {x ∈ Zd : there exists y ∈ Ma(x) such that η′(y) = 1},
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where Ma(x) = {−a+x, . . . , a+x}d . We construct a coupling such that G ⊂ G′.
To this end, enumerate Zd = {x1, x2, . . .} and let ξx1 , ξx2 , . . . be i.i.d. random
variables uniformly distributed in [0, 1]. Put

η′(xi) = 1{ξxi ≤δ},

for i = 1, 2, . . . and
η(x1) = 1{ξx1≤P{η(x1)=1}}.

So η(x1) ≤ η′(x1) as P{η(x1) = 1} ≤ δ. If η′(x1) = 0 then we pass to x2. Using
(1) we have

η(x2) = 1{ξx2 ≤P{η(x2)=1|η(x1)=0}} ≤ 1{ξx2 ≤δ} = η′(x2).

If η′(x1) = 1 then all the sites from Ma(x1) already belong to G′, so we just
exclude them from the “tail” {x2, x3, . . .} and reenumerate this tail in natural way.
We continue to construct the field {η(x)} in this way. At each step m we have

P{η(xm) = 1 | η(x1), . . . , η(xm−1)}
= P{η(xm) = 1 | η(xi1) = 0, . . . , η(xil ) = 0, η(xil+1), . . . , η(xim−1)} ≤ δ,

where xi1 , . . . , xil ∈ Ma(xm) and xil+1 , . . . , xim−1 /∈ Ma(xm). So

G ∩ {x1, . . . , xm} ⊂ G′ ∩ {x1, . . . , xm}.
Hence, by induction, G ⊂ G′.
Step 2. Now we will construct a coupling such that the Bernoulli random set B(p)

with parameter p will contain G′. For z ∈ Ma denote

G′
z = {y ∈ Ma(x) : x = (2a + 1)k + z, k ∈ Zd , and η′(x) = 1}.

There are (2a + 1)d such sets G′
z and G′ = ∪z∈MaG

′
z. Let ζx , x ∈ Zd be i.i.d.

random variables uniformly distributed in [0, 1] and η′′(x) = 1{ζ(x)≤δ(2a+1)−d }.

Define B(δ(2a+1)−d
) = {x ∈ Zd : η′′(x) = 1}. Since

P{ζ(y) ≤ δ(2a+1)−d

for all y ∈ Ma(x)} = δ,

we can write

G′
z = {y ∈ Ma(x) : x = (2a + 1)k + z, k ∈ Zd , and η′

z(x) = 1}
where

η′
z(x) = 1{η′′(y)=1 for all y∈Ma(x)}.

Thus, G′
z ⊂ B(δ(2a+1)−d

). This implies that G is stochastically smaller than B(p)

for p = 1 − (1 − δ(2a+1)−d
)(2a+1)d . �

In comparison with our Theorem 2.1, Theorem 0.0 (i) of [8] relaxes the condition
on the supremum in (1), but gives the proof only for δ sufficiently small. Thus,
Theorem 2.1 is of independent interest, although the result from [8] could have been
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used for our needs too. Note also that just before Theorem 0.0 in [8] it is stated that
for one-dimensional 1-dependent positively correlated fields the majorization could
always be obtained; our result together with an argument analogous to Lemma 2.2
below show that it is true for many-dimensional fields arising from typical block
(rescaling) arguments in percolation (at least when the event “the block is good” is
increasing, as it often is).

Another reason which motivated us to include this theorem, is the following.
Applying Theorem 2.1 to the set G̃ = {x : η(x) = 0} and making suitable changes
in (1), one gets that the field η is also minorized by some Bernoulli field, so Theo-
rem 2.1 in fact allows us to make two-sided bounds. To illustrate this, consider the
following

Example. Let F(·, . . . , ·) be some increasing Boolean function of (2a + 1)d ar-
guments such that F(0) = 0 and F(1) = 1. Let η1 be a Bernoulli field with
parameter q1 < pcr and η2 be a dependent field constructed in the following way:
If η3 is a Bernoulli field with parameter q2, let η2(x) = F(η3(y), y ∈ Ma(x)).
Denote Gi = {x : ηi(x) = 1}, i = 1, 2. One may be interested in proving the
following:

(i) for fixed q1 < pcr and small q2 the set G1 ∪ G2 do not percolate;
(ii) for fixed q2 and q1 close enough to pcr the set G1 ∪ G2 percolates.

Now, Theorem 0.0 (i) of [8] allows us to prove (i), but is applicable to (ii) only
when q2 is close to 1. On the other hand, Theorem 2.1 together with an argument
analogous to Lemma 2.2 gives the proof of both (i) and (ii).

2.2. Proof of Theorem 1.2

We prefer to put the proof of this theorem first, because it is more illustrative and
the proof of Theorem 1.1 contains some artificial constructions.

Following [5, 14], it suffices to show that the set Dn is in the subcritical phase
uniformly in n (i.e. that the probability of existence of the path from the origin to
the boundary of big box is small uniformly in n). Indeed, note that the absence of
percolation in the complementary set is full-sheet percolation of [14], so we may
apply Lemma 1 of [14].

To proceed, we will need some definitions and lemmas. Level-k cube K is
labeled in the following way:

K = (k, i1, . . . , id)

= {x = (x1, . . . , xd) ∈ Rd : xj ∈ [ijN
−k, (ij + 1)N−k], j = 1, . . . , d},

il ∈ Z, l = 1, . . . , d, where i1, . . . , id are “coordinates” of the cube. Suppose also
that we are given a family of i.i.d. random variables Z(k, i1, . . . , id), each taking
the value 1 with probability p and 0 otherwise. Introduce the random set D(i) as
the union of all level-i cubes K for which Z(K) = 1. Clearly, Dn = ∪n

i=0D
(i)

(random sets Dn were defined in Section 1.2).
The distance between two cubes K1 = (k, i1, . . . id ) and K2 = (k, j1, . . . jd) is

dist(K1,K2) := max{|il − jl |, l = 1, . . . , d}. Note that it is defined for the cubes
of the same level only.

By induction we define passable and good cubes.
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Definition 2.2. The level-n cube K is good iff Z(K) = 1. For k < n the level-k
cube K ′ is passable iff it intersects with a sequence of at least N adjacent good
level-(k + 1) cubes. The cube K ′ is good iff it is passable or Z(K ′) = 1.

Lemma 2.1. If there exists an infinite path in Dn, then there exists an infinite
sequence of adjacent good level-0 cubes.

Proof. Consider an infinite path γ in Dn. Without restricting of generality one can
suppose that this path do not pass two or more times through the same selected cube.
Consider a connected subpath γ ′ of γ which passes only through cubes from D(n).
As γ do not pass two or more times through the same selected cube, then two
cases are possible: either the number of cubes through which γ ′ passes is not less
than N , or γ ′ connects two selected cubes K1,K2 of levels i1, i2 < n such that
K1 ∩ K2 �= ∅. In the second case γ can be modified in such a way that it will not
contain γ ′ anymore. In the first case all the level-(n − 1) cubes through which it
passes are passable and therefore good. Thus we obtain from γ the sequence γ1 of
adjacent good cubes of levels 0, . . . , n−1 (note that those of level at most n−2 are
in fact selected cubes). Iterating this construction, we obtain the infinite sequence γn
of adjacent good level-0 cubes. �

Let us introduce some notation. For fixed k identify the level-k cubes with the
vertices of Zd , i.e. cube (k, i1, . . . , id) is identified with the point (i1, . . . , id) ∈ Zd .
Note that the graph obtained by this identification and by the connectivity by one
common point is Md . We associate two random fields ηsk = {ηsk(x)}x∈Zd and
η
g
k = {ηgk (x)}x∈Zd to the set of level-k cubes, where

ηsk(x) =
{

1, if the cube (k, x) is passable,
0, otherwise,

η
g
k (x) =

{
1, if the cube (k, x) is good,
0, otherwise.

Denote also by ξq,k = {ξq,k(x)}x∈Zd , ξq,k(x) ∈ {0, 1} the Bernoulli random field of
level-k cubes with parameter q ∈ [0, 1]. Let Pη

g
k

and Pq,k := Pξq,k be the probability
measures induced by the respective random fields.

Lemma 2.2. Suppose that for some 0 ≤ k < n the random field η
g

k+1 of good
level-(k + 1) cubes is stochastically smaller than the Bernoulli field ξp′,k+1. Then
the random field ηsk of passable level-k cubes is stochastically smaller than the

Bernoulli field ξp1,k+1 with p1 = 1− (1− δ5−d
)5d , where δ = Pp′,k+1{ηsk(0) = 1},

i.e. δ is the probability that a given cube is passable computed with the assumption
that the field of good cubes of the next level is Bernoulli with parameter p′.

Proof of Lemma 2.2. By the assumption of the lemma, we can majorize the fieldη
g

k+1
by Bernoulli field ξp′,k+1. Denote by η̃sk the field of passable level-k cubes con-
structed on ξp′,k+1 (i.e. suppose that we declare level-(k + 1) cubes good indepen-
dently with probability p′ and construct the level-k passable cubes starting from
them). Clearly, ηsk is majorized by η̃sk , so it suffices to prove the lemma for η̃sk . Fix
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any l ≥ 0, m ≥ 0, x1, . . . , xl ∈ M2, y1, . . . , ym /∈ M2, b1, . . . , bm ∈ {0, 1} (see
Theorem 2.1 for the definition of M2). Let us introduce the events

A = {η̃sk(0) = 1},
B = {η̃sk(x1) = 0, . . . , η̃sk(xn) = 0},
C = {η̃sk(y1) = b1, . . . , η̃

s
k(ym) = bm}.

Note that P(A) = δ. We need to prove only that P(A | B ∩ C) ≤ P(A). Denote
,(C) = {y ∈ Zd : dist(y, yj ) ≤ 1 for some j = 1, . . . , m}. We can write C =
∪iCi where Ci are all possible configurations of good level-(k+1) cubes contained
in ,(C) such that the event C occurs. It is clear that Ci ∩ Cj = ∅ for i �= j , so,
denoting PCi (·) = P(· | Ci),

P(A ∩ B ∩ C) =
∑
i

PCi (A ∩ B)P(Ci)

≤
∑
i

PCi (A)PCi (B)P(Ci)

= P(A)
∑
i

PCi (B)P(Ci)

= P(A)P(B ∩ C).

Here we used that A is an increasing event, B is decreasing, and the conditional
measure PCi is FKG, so PCi (A∩B) ≤ PCi (A)PCi (B). The eventA only depends on
the level-(k+1) cubes in M1, so if y1, . . . , ym are outside M2, then M1 ∩,(C) = ∅
and PCi (A) = P(A). Now it remains to apply Theorem 2.1 with a = 2 and δ defined
above. Lemma 2.2 is proved. �

The key point in the course of the proof of Theorem 1.2 is the following

Lemma 2.3. If p < p′ < pcr , then there exists N0 ∈ N such that for any N ≥
N0 and any n > 1 the random field of good level-0 cubes can be stochastically
majorized by Bernoulli random field with parameter p′.

Proof. We will prove this lemma by induction. Fix ε < p′ − p.
Clearly, for level-n cubes, ηgn = ξp,n is stochastically smaller than ξp′,n so the

statement of the lemma holds.
Suppose that for the level-(k+ 1) cubes, ηgk+1 is stochastically smaller than the

Bernoulli field ξp′,k+1.
We need the following definition:

Definition 2.3. For random field {ζ(x)}x∈Zd , ζ(x) ∈ {0, 1} define the cluster of the
vertex x ∈ Zd

Wζ (x) = {y ∈ Zd : there exist m and a sequence

y0 = x, y1, . . . , ym = y such that ζ(yi) = 1

and yi−1 is a neighbor of yi in Md , i = 1, . . . , m}.
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As it is proved in [11], p′ < pcr implies that there exists β(p′) > 0 such that
for all ν and all x ∈ Zd

P{|Wξp′ (x)| ≥ ν} ≤ exp(−β(p′)ν). (2)

Fix some level-k cube K with coordinates x ∈ Zd . Using (2) and the induction
assumption (i.e. that the field η

g

k+1 is majorized by Bernoulli field ξp′,k+1), we have

P{K is passable} = P{there exist a path by good level-(k + 1) cubes

of length not less than N intersecting K}
≤ NdPη

g
k+1

{Wη
g
k+1

(0) ≥ N}
≤ NdPp′,k+1{Wξp′,k+1

(0) ≥ N}
≤ Nd exp(−β(p′)N) =: ε1(N). (3)

By Lemma 2.2, the random field of passable level-(k + 1) cubes is majorized
by Bernoulli random field with parameter

ε2(N) = 1 − (1 − (ε1(N))5−d

)5d

(which can be made arbitrary small by choosing small ε1 = ε1(N)).
Choose N such that ε2(N) < ε, i.e. p + ε2(N) < p′. As the random field of

good level-k cubes is the random field of passable level-k cubes together with D(k),
we get that ηgk is stochastically smaller than ξp′,k .

Note that the choice of N depends only on p′. So we can take it the same for
all levels of cubes. Thus, Lemma 2.3 is proved. �

Now we can finish the proof of Theorem 1.2. By Lemma 2.3, one can choose
N such that the random field of good level-0 cubes is majorized by Bernoulli field
with parameter p′, p < p′ < pcr . By Lemma 2.1, this implies that the set Dn is in
the subcritical phase uniformly in n. �

2.3. Proof of Theorem 1.1

Denote Un = ∪n
i=0U

(i). Similarly to the previous model, we need to show that
the set Un is in the subcritical phase uniformly in n. Indeed, take a finite path
γ : [0, 1] �→ U . Note that, due to the fact that the balls never “touch”, we may
suppose that they are open without changing the problem. So, γ is covered by open
sets, and, choosing a finite subcovering, one gets that γ lies in Ui for some finite i.

Choose α, 0 < α < 1/2
√
d , and c′, c < c′ < ccr , such that

c′(1 + α)d < ccr . (4)

Denote λ′
i = c′Rid . Consider also the balls of radius R−i (1 + α) in Rd , whose

centers form Poisson field of rate λ′
i ; denote their union by W(i). Note that, due

to (4), the set W(i) does not percolate for i = 1, . . . , n.
For i = 1, . . . , n − 1 consider a partition of the space into the cubes with

side R−i/
√
d, which we call the level-i cubes. Note that the side of level-i cube is
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chosen in such a way that if the center of level-i ball is inside the cube, then the
latter is completely covered by the ball. Also, denote by V (i) the union of the balls
with the centers at the centers of the level-i balls and radius R−i (1 + α), so the
set V (i) is in fact the “expanded” set U(i).

We define now passable sets P0, . . . , Pn−1, and good sets G0, . . . ,Gn.

Definition 2.4. First, define the good level-n set Gn by Gn := U(n). For i < n,
level-i cube is passable if it intersects with some connected component of diameter
greater than 2αR−i of Gi+1. The passable level-i set Pi is the union of all passable
level-i cubes. The good level-i set Gi is defined by Gi := Pi ∪ V (i).

Lemma 2.4. Percolation in Un implies percolation in G0.

Proof. Consider a path γ in Un. Let γ ′ be some subpath of level-n balls (i.e. from
Gn) connecting some two balls S1, S2 of levels i1, i2 < n. If the diameter of γ ′ is
less than 2αR−n, than γ ′ is contained in V (i1)∪V (i2). Otherwise, by Definition 2.4,
γ ′ is covered by passable level-(n − 1) cubes. Iterating this argument, we get the
proof of Lemma 2.4. �

The main ingredient of the proof of Theorem 1.1 is the following:

Proposition 2.1. If for fixed c < c′ < ccr the scaling parameter R is large enough,
then Gi can be stochastically majorized by W(i), i = 0, . . . , n.

Proof. We prove this proposition by induction. Clearly,Gn = U(n) can be majorized
by W(n). Suppose that the hypothesis of the proposition holds for the level k + 1;
let us prove it for the level k.

Note that, since the Poisson field of balls W(k+1) is subcritical, the result of [13]
imply that for any α > 0, i ∈ N there exists β(α, c′) > 0 such that for any level-k
cube K (compare with (3))

P{K is passable} ≤ Rde−β(α,c′)R. (5)

To proceed with the proof of Proposition 2.1, we need two additional lemmas.

Lemma 2.5. The random field of passable level-k cubes can be stochastically ma-
jorized by Bernoulli random field of cubes with parameter ε(R) which can be made
arbitrary close to 0 by choosing R large enough. Note that the choice of R depends
only on d, c, c′, but not on n.

Proof of Lemma 2.5. Note that two cubes are passable or not independently if there
are at least two cubes between them, because we are interested in the connected
components of Gk+1 with diameter greater than 2αR−k , and α < 1/2

√
d. Anal-

ogously with Lemma 2.2, substituting the sum by the integral and using FKG for
Poisson fields, one can prove that the random field of passable level-k cubes sat-
isfies the conditions of Theorem 2.1 with a = 2 and, by (5), δ = Rde−β(α,c′)R .
So it can be stochastically majorized by Bernoulli random field with parameter
ε(R) = 1 − (1 − (Rde−β(α,c′)R)5−d

)5d . �
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Lemma 2.6. Bernoulli random field of level-k cubes with parameter ε(R) can be
stochastically majorized by balls of radius R−k(1 + α), centers of which form
Poisson field in Rd with rate ε′Rkd , and ε′ can be made arbitrarily close to 0 by
choosing R large enough.

Proof of Lemma 2.6. Consider the following coupling. The cube is selected if
there is some point of Poisson field in it. Note that the cubes are selected or not
independently and

P{the cube is selected} = ε(R) = 1 − exp(ε′((1 + α)/
√
d)d).

If there is a center of the ball in the cube, then the cube is completely covered by
the ball. By Lemma 2.5, choosing R large we can make ε(R) arbitrary close to 0
and thus ε′ will be arbitrary close to 0 (and, in particular, ε′ < c′ − c). �

We continue proving Proposition 2.1. By Lemmas 2.5 and 2.6, the good level-k
set Gk is majorized by the union of V (k) with the field of balls of radius R−k(1+α),
centers of which form Poisson field in Rd with rate ε′Rkd . Since c + ε′ < c′,
Proposition 2.1 is proved. �

Now we finish the proof of Theorem 1.1. By Lemma 2.4,

{no percolation in G0} ⇒ {no percolation in Un}.
By (4) and Proposition 2.1, the set G0 (and therefore Un) is in the subcritical phase
uniformly in n. Thus, Theorem 1.1 is proved. �
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