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Abstract. LetK ⊂ �d (d ≥ 1) be a compact convex set and� a countable Abelian group.
We study a stochastic processX inK�, equipped with the product topology, where each co-
ordinate solves a SDE of the form dXi (t) =

∑
j a(j−i)(Xj (t)−Xi(t))dt+σ(Xi(t))dBi (t).

Here a(·) is the kernel of a continuous-time random walk on� and σ is a continuous root of
a diffusion matrix w on K . If X(t) converges in distribution to a limit X(∞) and the sym-
metrized random walk with kernel aS(i) = a(i)+ a(−i) is recurrent, then each component
Xi(∞) is concentrated on {x ∈ K : σ(x) = 0} and the coordinates agree, i.e., the system
clusters. Both these statements fail if aS is transient. Under the assumption that the class of
harmonic functions of the diffusion matrixw is preserved under linear transformations ofK ,
we show that the system clusters for all spatially ergodic initial conditions and we determine
the limit distribution of the components. This distribution turns out to be universal in all
recurrent kernels aS on Abelian groups �.

1. Introduction

Let � be the set of a finite or countable Abelian group (�,+) and let K be a
non-empty, compact and convex subset of �d . We consider K�-valued solutions
X of the following system of stochastic differential equations:

dXαi (t) =
∑
j

a(j − i)(Xαj (t)−Xαi (t))dt +
∑
β

σαβ(Xi(t))dBβi (t)

(i ∈ �, α = 1, . . . , d, t ≥ 0).
(1.1)

Here
X = (Xi)i∈� = (Xαi (t))

α=1,...,d
t≥0, i∈� (1.2)

and we adopt the convention that sums over Roman indices i, j, k, . . . range over
�, while sums over Greek indices α, β, γ, . . . range from 1 to d. Where both types
of indices occur together, we write the Greek indices as superscipts. The (Bi)i∈�
are independent d-dimensional Brownian motions.
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The interaction kernel a : �→ [0,∞) satisfies
∑
i a(i) <∞. It is the kernel

of a continuous-time random walk on� that jumps from a point i to a point j with
rate a(j − i). We assume that this random walk is irreducible.

The diffusion coefficient σ is a continuous function from K into the real d × d
matrices. The associated diffusion matrix wαβ(x) := ∑

γ σαγ (x)σβγ (x) satisfies

∑
α,β

zαwαβ(x)zβ = 0 ∀x ∈ K, z ∈ I⊥x , (1.3)

where I⊥x is the orthogonal complement of the space

Ix := {y ∈ �d : ∃ε > 0 such that x + λy ∈ K ∀|λ| ≤ ε}. (1.4)

Condition (1.3) is needed to guarantee that (1.1) has a solution that stays in K�.
So-called ‘stepping stone models’ of the form (1.1) and generalizations to non-

compact or infinite-dimensional state space K have been considered by many
authors. They find their origin in population biology (see Shiga [24]). For one-
dimensional state space it is known that the long-time behavior of (1.1) depends
on the symmetrized random walk on � that jumps from a point i to a point j with
rate aS(j − i), where

aS(i) := a(i)+ a(−i) (i ∈ �). (1.5)

If this random walk is recurrent, then for appropriate initial conditions the long-
time limit X(∞) exists (in distribution) and is concentrated on {x ∈ K� : xi =
xj , w(xi) = 0 ∀i, j}. In this case we say that the system in (1.1) clusters. On the
other hand, if aS is transient, then (1.1) does not cluster but as t →∞, X(t) tends
in distribution to a non-degenerate invariant measure, in which case we say that
(1.1) has stable behavior. ForK = [0, 1] andK = [0,∞) this dichotomy between
stable and clustering behavior has been established by Cox, Greven, Notohara and
Shiga in [4–6, 22]. The results are also known for Wright-Fisher type diffusions
in dimensions d ≥ 1 and for infinite-dimensional Fleming-Viot diffusions (see
Dawson, Greven and Vaillancourt [12]). Higher-dimensional state spaces with in-
teraction between the components have also been considered, notably catalytic
branching by Dawson, Fleischmann and Klenke in [8, 15] (for models where � is
replaced by �d ) and mutually catalytic branching by Dawson and Perkins in [13].

For higher-dimensionalK it is often not known if solutions to (1.1) are unique.
For some specific models this difficulty can be overcome, e.g. with a duality as in
[13], but the general picture is not clear. We avoid this problem by proving the-
orems that are valid for any (weak) solution of (1.1). We prove two theorems on
the long-time limit X(∞) of solutions to (1.1). The first theorem, which is based
on an easy covariance calculation, shows that if this limit exists, then the picture
with the dichotomy between clustering and stable behavior holds for all models
of the form (1.1). The second theorem uses a rather restrictive assumption on the
harmonic functions of the diffusion matrixw to prove in the recurrent case that the
limitX(∞) indeed exists and hence the system clusters. The method also allows us
to give a formula for the distribution of the Xi(∞) (i ∈ �), which shows that this
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distribution does not depend on the random walk kernel a or the Abelian group�,
as long as aS is recurrent. Although our condition onw is rather restrictive, it seems
to be satisfied by all models of the form (1.1) studied so far, with the exception of
catalytic (not mutually catalytic) branching only.

2. Main results

We restrict ourselves to shift-invariant solutions of (1.1). LetK� be equipped with
the product topology and product-σ -field. We say that a solution X to (1.1) is
shift-invariant if for each j ∈ � the shifted process X̃i(t) := Xi−j (t) has the
same distribution as X. Similarly we say that a probability measure µ on K� is
shift-invariant if it coincides with its shifts by a distance j . Since we are not as-
suming uniqueness for (1.1), it is a priori not clear that solutions to (1.1) with shift-
invariant initial conditions are shift-invariant. We therefore show that shift-invariant
solutions exist.

Proposition 2.1. For each probability measure µ on K�, there exists a weak
solution (X(t))t≥0 to (1.1) with initial condition L(X(0)) = µ and sample paths
in the continuous functions from [0,∞) to K�. If µ is shift-invariant, then (1.1)
has a shift-invariant solution with the same properties.

As announced, in what follows we will not assume uniqueness of solutions to (1.1),
but for the interest of the reader we mention the following result, which can be
obtained by a straightforward adaptation of an argument by Shiga and Shimizu
[28].

Proposition 2.2. Assume that the function σ : K → �d ⊗ �d is Lipschitz contin-
uous. Then, for each K�-valued initial condition X(0), strong uniqueness holds
for equation (1.1).

We now formulate our first result. We use the following notation. The subset of K
where the diffusion matrix w vanishes we denote by

∂wK := {x ∈ K : wαβ(x) = 0 ∀α, β}. (2.1)

In typical examples, ∂wK is a subset of the (topological) boundary of K . We call
∂wK the effective boundary of K . We use the symbol ⇒ for weak convergence
of probability measures on K�, as well as for convergence in distribution of K�-
valued random variables.

Theorem 1. LetX be a shift-invariant solution to (1.1) and assume that there exists
a K�-valued random variable X(∞) such that

X(t)⇒ X(∞) as t →∞. (2.2)

If the random walk with kernel aS is recurrent, then
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(i) P [Xi(∞) ∈ ∂wK ∀i ∈ �] = 1
(ii) P [Xi(∞) = Xj(∞) ∀i, j ∈ �] = 1.

(2.3)

If the random walk with kernel aS is transient, E[X0(0)] �∈ ∂wK and L(X(0)) is
spatially ergodic, then

(i) P [Xi(∞) ∈ ∂wK] < 1 ∀i ∈ �
(ii) P [Xi(∞) = Xj(∞)] < 1 ∀i �= j ∈ �. (2.4)

Theorem 1 follows from a standard covariance calculation combined with com-
pactness of the state space K . Although it seems hard to imagine a shift-invariant
solution to (1.1) that does not converge as t → ∞, the convergence in (2.2) is in
general hard to prove.1 For finite �, one may exploit the fact that

∑
i Xi(t) is a

bounded martingale to get (2.2), not only in the sense of weak convergence, but
also in L2-norm (see section 3.6 in Swart, [29]). For infinite �, convergence in
L2-norm does not generally hold.

For the statement of our second result, we need some elements of potential
theory associated with the diffusion matrix w. Write C(K) for the continuous real
functions on K and C2(K) for the functions on K that can be extended to a twice
continuously differentiable function on �d . A function h ∈ C2(K) is called har-
monic for the diffusion matrix w, in short w-harmonic, if

∑
α,β

wαβ(x)
∂2

∂xα∂xβ
h(x) = 0 (x ∈ K). (2.5)

More generally,2 a function h ∈ C(K) is called w-harmonic if it is of the form

h(x) = E[φ(Zx(∞))] (x ∈ K), (2.6)

where φ ∈ C(K) and the (Zx(t))t≥0 are K-valued solutions of the equation

dZxα(t) =
∑
β

σαβ(Z
x(t))dBβ(t) (t ≥ 0, α = 1, . . . , d), (2.7)

with initial condition Zx(0) = x. Solutions to (2.7) are bounded martingales and
hence there exists a Zx(∞) such that

Zx(t)→ Zx(∞) a.s. as t →∞. (2.8)

Note that (2.7) is a special case of (1.1) where � consists of just one point. We
denote the class of continuous w-harmonic functions by H(w). We introduce the
following assumptions on w.3

1 It is not even known if (2.3) and (2.4) hold for any weak limit point of (X(t))t≥0 as
t →∞. In particular, it cannot be excluded that the process X spends most time as t →∞
in a situation near (2.3) or (2.4), but makes deviations at some rare deterministic times.

2 Indeed, if solutions to (2.7) are weakly unique, then any C2-function of the form (2.6)
solves (2.5).

3 Condition (A.2) implies that the Dirichlet problem forw has a continuous solution for all
continuous boundary conditions on ∂wK . Not all w enjoy this property. A counterexample
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(A.1) Weak uniqueness holds for equation (2.7).
(A.2) For each φ ∈ C(K), the function x �→ E[φ(Zx(∞))] is continuous on K .
(A.3) H(w) is contained in the bp-closure of H(w) ∩ C2(K).

We now formulate our main condition on w. For any θ ∈ K , t ≥ 0 and f ∈ C(K)
we define Tθ,tf ∈ C(K) by

(Tθ,tf )(x) := f (θ + (x − θ)e−t ). (2.9)

Note that (Tθ,t )t≥0 is the semigroup associated with the differential equation

dYα(t) = (θα − Yα(t))dt (t ≥ 0, α = 1, . . . , d). (2.10)

Definition 2.3. We say that the diffusion matrix w has invariant harmonics if

Tθ,t (H(w)) ⊂ H(w) for all θ ∈ K, t ≥ 0. (2.11)

Condition (2.11) guarantees that under the evolution of equation (1.1),w-harmonic
functions ‘do not feel the diffusion terms’, in the following sense:

Lemma 2.4. Assume thatw has invariant harmonics and satisfies (A.1) and (A.3).
Let X be a solution to (1.1) and let Y be a solution to

dYαi (t) =
∑
j

a(j − i)(Y αj (t)− Yαi (t))dt (i ∈ �, α = 1, . . . , d, t ≥ 0),

(2.12)
with initial condition L(Y (0)) =L(X(0)). Then

E[h(Xi(t))] = E[h(Yi(t))] ∀h ∈ H(w), i ∈ �, t ≥ 0. (2.13)

Remark. While we assume weak uniqueness for equation (2.7) here, we do not
need uniqueness for equation (1.1). Uniqueness for (2.7) can often be proved under
much milder conditions on w than are needed for (1.1), as will be clear from the
examples given below.

We now formulate our main result.

Theorem 2. Assume thatw has invariant harmonics and satisfies (A.1), (A.2) and
(A.3). Let X be a shift-invariant solution to (1.1) with a spatially ergodic initial
condition with intensity E[Xi(0)] = θ (i ∈ �). If the random walk with kernel aS
is recurrent, then

L(X(t))⇒
∫
K

+θ(dx)δx as t →∞. (2.14)

where x ∈ K� is given by xi = x (i ∈ �), and +θ is the harmonic measure with
mean θ associated with w.

is the ‘punctured ball’ K = {x ∈ �2 : |x| ≤ 1} and wαβ(x) = δαβg(x), where g(x) = 0 if
|x| = 0, 1 and g(x) > 0 otherwise. The bp-closure of a class of functions is the smallest set
containing the class that is closed under bounded pointwise limits of sequences. The author
does not know examples of w violating (A.3). In our main cases of interest, (A.3) is easily
verified.
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Remark. +x is the distribution of the random variable Zx(∞) in (2.8). The class
of harmonic functions H(w) can be expressed in terms of the harmonic measures
(+x)x∈K by (2.6), and hence Definition 2.3 can be reformulated as a condition on
the harmonic measures of w.

The proof of Theorem 2 is an adaptation of the ‘duality comparison technique’
of Cox and Greven [3, 4]. They use their technique to make a comparison between
systems with general diffusion matrices on K = [0, 1] and systems of interacting
Wright–Fisher diffusions, for which all moments are given by a duality with co-
alescing random walks. In our case, the role of the Wright–Fisher diffusion matrix
is played by the diffusion matrix w∗, defined as

w∗αβ(x) :=
∫
K

+x(dy)(yα−xα)(yβ−xβ) (x ∈ K, α, β = 1, . . . , d). (2.15)

When w has invariant harmonics and satisfies (A.1), (A.2) and (A.3), then w∗ is
continuous in x and satisfies (1.3). By Proposition 2.1 there exist solutions of (1.1)
for any continuous root σ of w∗. We do not have a duality for such systems, but
we can find an expression for the time evolution of harmonic functions and second
order moments, which is sufficient for our purposes. In fact, our methods yield the
following.

Proposition 2.5. Assume thatw has invariant harmonics and satisfies (A.1), (A.2)
and (A.3) and let w∗ be as in (2.15). Let X be a solution of (1.1) for a continu-
ous root of λw∗ (λ ≥ 0), with initial condition Xi(0) = θ (i ∈ �). Then, for all
i, j ∈ �, α, β = 1, . . . , d and t ≥ 0

E[(Xαi (t)− θα)(Xβj (t)− θβ)] = w∗αβ(θ)K
λ
t (i − j), (2.16)

whereKλ
t (i−j) denotes the probability that two delayed coalescing random walks,

each with kernel a, starting in points i and j , respectively, and coalescing with rate
2λ, have coalesced before time t .

3. Examples

We give examples of diffusion matricesw satisfying the assumptions in Theorem 2.
Although w∗ depends on w, different w may share the same w∗. The following
example describes the class of models for whichw∗ is the Wright–Fisher diffusion
matrix.

Example 3.1. (Wright–Fisher-class models). Assume thatK is the d-dimension-
al simplex

Kd = {x ∈ �d : xα ≥ 0 ∀α = 1, . . . , d,
∑
α

xα ≤ 1}, (3.1)

and that x �→ w(x) is Lipschitz continuous and satisfies (compare (1.3))
∑
α,β

zαwαβ(x)zβ = 0 ⇔ z ∈ I⊥x (x ∈ K). (3.2)
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Then w has invariant harmonics and satisfies (A.1), (A.2) and (A.3). The class
H(w) consists of all affine functions

x �→ a +
∑
α

bαxα (a, b1, . . . , bd ∈ �), (3.3)

and w∗ is the Wright-Fisher diffusion matrix:

w∗αβ(x) = xα(δαβ − xβ) (x ∈ K, α, β = 1, . . . , d). (3.4)

Note that in particular, weak uniqueness holds for equation (2.7) for allw satisfying
the requirements above. It is not known if solutions to (1.1) are unique for suchw.4

Since H(w) consists only of affine functions, Lemma 2.4 is trivial in the pre-
ceding example. In the following example it is really needed.

Example 3.2. (isotropic models). Assume thatK has non-empty interiorK◦, and
let ∂K := K\K◦ denote its topological boundary. Assume that

wαβ(x) = δαβg(x) (x ∈ K, α, β = 1, . . . , d) (3.5)

for some Lipschitz continuous function g : K → [0,∞) satisfying

g(x) = 0 ⇔ x ∈ ∂K. (3.6)

Then w has invariant harmonics and satisfies (A.1), (A.2) and (A.3). The class
H(w) is given by

H =
{
h ∈ C(K) : h|K◦ ∈ C2(K◦),

∑
α

∂2

∂xα
2 h(x) = 0 on K◦

}
, (3.7)

and w∗ equals

w∗αβ(x) = δαβg
∗(x) (x ∈ K, α, β = 1, . . . , d), (3.8)

where g∗ ∈ {g ∈ C(K) : g|K◦ ∈ C2(K◦)} is the unique solution of

− 1
2

∑
α

∂2

∂xα
2 g

∗(x)= 1 (x ∈ K◦)

g∗(x)= 0 (x ∈ ∂K).
(3.9)

Again, weak uniqueness is known in this case for (2.7) but not for (1.1).
The author has found a few more examples of diffusion matrices satisfying

the assumptions in Theorem 2, but in all these examples the system in (1.1) can,
through a linear transformation of the state space K , be reduced to a number of
independent copies of Wright-Fisher-class models and isotropic models. (Note that
a linear transformation of K leaves the drift term in (1.1) invariant.) The author
does not know if all models satisfying the assumptions in Theorem 2 are of this
form, but it seems that this could be the case.

4 This problem has nothing to do with the fact that � is infinite. In fact, it exists even for
simple equations of the form dZα(t) = c(θα−Zα(t))dt+

∑
β σαβ(Z(t))dBβ(t), with θ ∈ K

and c > 0 in dimensions d ≥ 2, when c and θ are such that (a part of) ∂K is accessible.
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Since it is not always obvious if a model fits into one of the examples above,
we give two more concrete examples and one counterexample.

A mutually catalytic Wright–Fisher model. This is one way to define an ana-
logue of the mutually catalytic branching model of Dawson and Perkins in [13] for
compact state space. Consider two populations,X1 andX2, taking values in [0, 1]�,
where the diffusion rate of each population is a function of the other population, in
the following way

dX1
i (t) =

∑
j

a(j − i)(X1
j (t)−X1

i (t))dt

+
√
X1
i (t)(1 −X1

i (t))X
2
i (t)(1 −X2

i (t))dB
1
i (t)

dX2
i (t) =

∑
j

a(j − i)(X2
j (t)−X2

i (t))dt

+
√
X1
i (t)(1 −X1

i (t))X
2
i (t)(1 −X2

i (t))dB
2
i (t). (3.10)

This corresponds towαβ(x) = δαβx1(1−x1)x2(1−x2) and hence this is an isotro-
pic model in the sense of Example 3.2. We note that the diffusion matrix w in this
model is not a scalar multiple of w∗; therefore Proposition 2.5 cannot be applied
to give an expression for second order moments of solutions of (3.10).

A three-type interaction model. Consider three populationsX1, X2, X3, subject
to the conditions Xαi (t) ≥ 0,

∑3
α=1X

α
i (t) = 1 (i ∈ �, t ≥ 0), solving a system

of the form

dX1
i (t) =

∑
j

a(j−i)(X1
j (t)−X1

i (t))dt

+
√
X1
i (t)X

2
i (t)X

3
i (t)(

2
3dB

1
i (t)− 1

3dB
2
i (t)− 1

3dB
3
i (t))

dX2
i (t) =

∑
j

a(j−i)(X2
j (t)−X2

i (t))dt

+
√
X1
i (t)X

2
i (t)X

3
i (t)(

2
3dB

2
i (t)− 1

3dB
1
i (t)− 1

3dB
3
i (t))

dX3
i (t) =

∑
j

a(j−i)(X3
j (t)−X3

i (t))dt

+
√
X1
i (t)X

2
i (t)X

3
i (t)(

2
3dB

3
i (t)− 1

3dB
1
i (t)− 1

3dB
2
i (t)). (3.11)

This model arises if pair resampling in the Wright-Fisher model is replaced by
resampling of triples. Its diffusion matrix is wαβ(x) = (δαβ − 1

3 )x1x2x3, which
can be transformed into an isotropic model in the sense of Example 3.2 through
a linear transformation of the state space. A small calculation shows that w∗ is a
scalar multiple of w, and hence for this model Proposition 2.5 gives an explicit
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expression for second order moments. Higher order moments are unknown, how-
ever, and finding a duality for the model seems difficult.5

Catalytic Wright-Fisher diffusions. Consider two populations, X1 and X2, tak-
ing values in [0, 1]�, where the diffusion rate of the second population is propor-
tional to the size of the first population, in the following way

dX1
i (t) =

∑
j

a(j − i)(X1
j (t)−X1

i (t))dt +
√
X1
i (t)(1 −X1

i (t))dB
1
i (t)

dX2
i (t) =

∑
j

a(j − i)(X2
j (t)−X2

i (t))dt +
√
X1
i (t)X

2
i (t)(1 −X2

i (t))dB
2
i (t).

(3.12)

This corresponds to w11(x) = x1(1 − x1), w22(x) = x1x2(1 − x2) and w12(x) =
w21(x) = 0. With a little effort it is possible to show that formula (2.11) in Defini-
tion 2.3 is violated, i.e.w does not have invariant harmonics, in our terminology. It
seems that at present nobody can treat the long-time behavior of (3.12), but Greven,
Klenke and Wakolbinger [16] treat a similar case whereX1 is replaced by the voter
model. They show that the model clusters6 when a is nearest neighbor on� = �d

in the recurrent dimensions d = 1, 2. However, the long-time limit distribution of
the components depends on the dimension. Such dimension-dependent behavior in
the clustering regime has been found for catalytic branching (see [8, 15]) and it can
also be conjectured for (3.12).

Note that this behavior differs fundamentally from that of systems wherew has
invariant harmonics. Under the conditions of Theorem 2, the distribution ofXi(∞)
(i ∈ �) does not depend on the choice of the Abelian group�, nor on the interaction
a, as long as aS is recurrent. Moreover, it coincides for all w which have the same
w-harmonic functions, as occurs for the classes of diffusion matrices described in
Examples 3.1 and 3.2. Thus, we may say that Theorem 2 describes a situation in
which the systems exhibits ‘large time-scale universality’, where we borrow a term
from renormalization theory. For a renormalization analysis of models of the type
in (1.1) we refer to [1, 2, 9–11, 17]. We note that the ‘universal object’ found in
this work coincides with our w∗ in (2.15). In particular, the function g∗ in (3.9)
occurred first in [17].

5 More generally, one can think of “p-type q-tuple models”, with p populations and re-
sampling of q-tuples, 2 ≤ q ≤ p. For q = 2 this yields the p-type Wright-Fisher model.
For p = q the model can be transformed into an isotropic model; here for p = q = 2, 3
(but not for p = q ≥ 4) the diffusion matrix is a scalar multiple of w∗, and Proposition 2.5
gives an explicit expression for second order moments. For 2 < q < p the p-type q-tuple
model does not have invariant harmonics, in the sense of Definition 2.3. For details we refer
to [29].

6 Here we mean clustering in the sense of our Theorem 1, i.e. concentration on the effec-
tive boundary and the coordinates agree. Note that for the model in (3.12), ∂wK = {x : x1 =
0, x2 ∈ [0, 1]} ∪ {x : x1 = 1, x2 ∈ {0, 1}}.
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4. Proofs

Since we are not assuming uniqueness for solutions of equation (1.1), we have to
get our information about these solutions from the fact that they solve a martingale
problem. We formulate this martingale problem and construct solutions to it in sec-
tion 4.1. In section 4.2 we prove Theorem 1. Our main tool is an equation (formula
(4.11)) for the time evolution of covariances between the components of solutions
of (1.1). In section 4.3 we prove Lemma 2.4, which describes the time evolution of
the expectation of w-harmonic functions of the components. For models with the
diffusion matrix w∗ in (2.15), the formulas for the covariances and the harmonic
functions can be combined to give an expression for the covariances in closed form
(Proposition 2.5). For more general models we use in section 4.4 a comparison
argument (formula (4.32)) to derive an inequality for the covariances, which yields
Theorem 2. In section 4.5 we prove the assertions in Examples 3.1 and 3.2.

4.1. Proof of Proposition 2.1

Just as in the finite-dimensional case, each solution of the infinite-dimensional sto-
chastic differential equation (1.1) solves the martingale problem for an appropriate
second order differential operatorA, and conversely, each solution to the martingale
problem for A can be represented, on an appropriate space equipped with a set of
Brownian motions, as a weak solution of the stochastic differential equation (1.1)
(see Shiga & Shimizu, [28]). In order to prove Proposition 2.1, it therefore suffices
to construct solutions to this martingale problem with the mentioned properties.

Here, we first formulate the appropriate martingale problem, where some care is
needed regarding the domain of the operatorA. General theory then gives existence
of solutions to the martingale problem and compactness of the space of solutions.
We use this compactness to construct shift-invariant solutions.

We equip the spaceK� with the product topology and letC(K�) be the Banach
space of continuous real-valued functions on K�, equipped with the supremum
norm ‖ · ‖∞. We write x = (xαi )

α=1,...,d
i∈� for a point in K�. Solutions to (1.1),

whenever they exist, are continuous K�-valued processes that solve the martin-
gale problem (see Ethier & Kurtz, [14] for the relevant definitions) for the linear
operator A on C(K�) given by

(Af )(x) :=
( ∑
i,j

∑
α

a(j − i)(xαj − xαi ) ∂
∂xαi

+
∑
i

∑
α,β

wαβ(xi)
∂2

∂xαi ∂x
β
i

)
f (x),

(4.1)

with domain D(A) = Cfin(K
�), the space of C2-functions depending on finitely

many coordinates only.
We will occasionaly (notably in the proof of Lemma 2.4) need an extension of

A to a larger domain. To this aim, we introduce the space C2
sum(K

�) of functions
with continuous summable second derivatives. By definition, f ∈ C2

sum(K
�) if
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there is an open set U ⊂ �d , U ⊃ K , and an extension of f to a function with
continuous first and second order partial derivatives on U�, such that

x �→ ( ∂
∂xαi
f (x))

α=1,...,d
i∈�

x �→ ( ∂2

∂xαi ∂x
β
j

f (x))
α,β=1,...,d
i,j∈�

(4.2)

are continuous functions from K� into the spaces l1({1, . . . , d} × �) and
l1({1, . . . , d}2 × �2) of absolutely summable sequences, equipped with the
l1-norm.

One can check that for functions f ∈ C2
sum(K

�), the infinite sums in (4.1)
converge in C(K�) and the result does not depend on the summation order or on
the choice of the extension of f toU�. WritingA′ for the extension of the operator
in (4.1) to the larger domain C2

sum(K
�), one can check that A is a core for A′,

and hence any solution to the martingale problem for A also solves the martingale
problem for A′.

We now collect the necessary facts about non-emptyness and compactness of
the space of solutions to the martingale problem for A. Note thatK� is a compact,
separable metrizable space. We write DK� [0,∞) for the cadlag functions from
[0,∞) to K�, and CK� [0,∞) for the continuous functions from [0,∞) to K�.
We equip DK� [0,∞)with the Skorohod topology (see Ethier & Kurtz, [14], chap-
ter 3), under wich it is a separable metrizable space. Measurable processes with
sample paths in DK� [0,∞) are DK� [0,∞)-valued random variables (measurable
with respect to the Borel σ -field on DK� [0,∞)) and vice versa. We use the symbol
⇒ for weak convergence of probability measures on DK� [0,∞), as well as for
convergence in distribution of DK� [0,∞)-valued random variables. By a solution
to the martingale problem for an operator on C(K�) we always mean a solution
with sample paths in DK� [0,∞).
Lemma 4.1. For each probability measure µ on K� there exists a solution to the
martingale problem for the operator A in (4.1) with initial condition µ. Each so-
lution to the martingale problem for A has sample paths in CK� [0,∞). The space
of solutions to the martingale problem for A is compact in the topology of weak
convergence. If Xn,X solve the martingale problem for A, then Xn ⇒ X implies
Xn(t)⇒ X(t) for all t ≥ 0.

Proof of Lemma 4.1. By the Stone–Weierstrass theorem, C2
fin(K

�) is dense in
C(K�). Condition (1.3) guarantees that A satisfies the positive maximum prin-
ciple. Hence the existence of solutions to the martingale problem for A follows
immediately from Theorem 5.4 and Remark 5.5 in chapter 4 of Ethier & Kurtz
[14]. The other assertions also follow from statements in that book. Continuity of
sample paths folllows from Problem 19 in chapter 4, where one needs to use the
functions

fx(y) :=
∑
i

γi |xi − yi |3 (x, y ∈ K�), (4.3)

with the γi chosen in such a way that
∑
i a(j − i)γi ≤ Mγj for all j ∈ �.

Note that fx ∈ C2
sum(K

�) for all x ∈ K�. Compactness of the space of solutions
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follows from Lemma 5.1 and Remark 5.2 from chapter 4 of [14]. Finally, weak
convergence in path space of solutionsXn to the martingale problem forA implies
convergence of finite-dimensional distributions by Theorem 7.8 from chapter 3 and
the continuity of sample paths.  !
Proof of Proposition 2.1. Existence of solutions to the martingale problem for A
is guaranteed by Lemma 4.1, and hence all we need to do is to show that for shift-
invariant initial conditions we can find a shift-invariant solution to the martingale
problem.

We use a Cesàro-type argument. LetX be a solution to the martingale problem
for A with initial condition L(X(0)) = µ. It is not hard to check that there exist
finite sets �n ↑ �, such that

lim
n→∞

|{j ∈ �n : j + i ∈ �n}|
|�n| = 1 ∀i ∈ �. (4.4)

Define a shift-operator on DK� [0,∞) in the obvious way, by putting (Tj x)i(t) :=
xi−j (t) (i, j ∈ �, t ≥ 0). Let (Xn) be a sequence of processes with sample paths in
DK� [0,∞) with law L(Xn) = |�n|−1 ∑

j∈�n L(TjX). The Xn solve the mar-
tingale problem for A and by Lemma 4.1, the sequence (Xn) has a cluster point. It
is easy to check that each cluster point is a shift-invariant solution to the martingale
problem for A with initial condition µ.  !

4.2. Proof of Theorem 1

We start by collecting some necessary facts about spatially ergodic measures on
arbitrary Abelian groups. For j ∈ �, let the shift operator Tj : K� → K� be
defined as (Tjx)i := xi−j . The σ -field of shift-invariant events is

S := {A ∈ B(K�) : T −1
i (A) = A ∀i ∈ �}. (4.5)

A probability measure µ on K� is spatially ergodic if for every A ∈ S either
µ(A) = 1 or µ(A) = 0. The following is a variant on von Neumann’s mean
ergodic theorem (see Krengel, [19], chapter 1).

Lemma 4.2. For n = 1, 2, . . . , let pn : � → [0,∞) be functions satisfying∑
i pn(i) = 1 and

lim
n→∞

∑
k

|pn(k − i)− pn(k − j)| = 0 ∀i, j ∈ �. (4.6)

Let X = (Xi)i∈� be a family of K-valued random variables with shift-invariant
spatially ergodic law L(X). If E[X0] = x, then

lim
n→∞E

[∣∣∣x −∑
i

pn(i)Xi

∣∣∣2] = 0. (4.7)

In our case, probability distributions pn satisfying (4.6) will arise in the following
way.



586 J. M. Swart

Lemma 4.3. Let a be the kernel of an irreducible continuous-time random walk
on � and let Pt(j − i) be the probability that the walk is at time t in j when it
starts in i. Then

lim
t→∞

∑
k

|Pt(k − i)− Pt(k − j)| = 0 ∀i, j ∈ �. (4.8)

This lemma can be proved by a standard coupling argument, which we leave to the
reader.

Proof of Theorem 1. For any two K-valued random variables X and Y the co-
variance of X and Y is the quantity Cov(X, Y ) = E[X · Y ]−E[X] ·E[Y ], where
· denotes the inner product x · y = ∑

α xαyα . By tr(w) we denote the trace
tr(w)(x) = ∑d

α=1wαα(x) (x ∈ K) of the diffusion matrix w.
LetX be a shift-invariant solution to (1.1). A simple calculation involving Itô’s

formula shows that the intensity is conserved:

E[Xi(t)] = x ∀t ≥ 0, i ∈ �, (4.9)

for some x ∈ K . Moreover, there exists a function C : [0,∞)×�→ � such that

Cov(Xi(t), Xj (t)) = Ct(j − i) (t ≥ 0, i, j ∈ �). (4.10)

For each i, the function t �→ Ct(i) is continuously differentiable and satisfies

∂
∂t
Ct (i) =

∑
j

aS(j − i)(Ct (j)− Ct(i))+ 2δi0E[tr(w)(X0(t))]. (4.11)

Solutions to (4.11) can be represented in terms of the symmetrized random walk
which jumps from a point i to a point j with rate aS(j − i). Let us denote by
PSt (j − i) the probability that this random walk is at time t in j , starting from i. A
partial integration of the Markov semigroup of the random walk (see Liggett, [21],
Theorem I.2.15) gives

Ct(i) =
∑
j

P St (j − i)C0(j)+ 2
∫ t

0
PSs (i)E[tr(w)(X0(t − s))]ds. (4.12)

We next show that assumption (2.2) implies that the law of X(∞) is an invari-
ant law under the evolution in (1.1). More precisely, there exists a shift-invari-
ant solution X∞ to the martingale problem for the operator A in (4.1) such that
L(X∞(t)) = X(∞) for all t ≥ 0. To see this, define solutions to the martingale
problem for A by Xn(t) := X(tn + t), where (tn) is some sequence tending to
infinity. By Lemma 4.1 and the fact that weak convergence of probability measures
on DK� [0,∞) is metrizable, we can find a subsequence (Xn(k)) that converges in
distribution to some solution X∞ to the martingale problem for A. Now

L(X∞(t)) = lim
n→∞L(X(tn + t)) =L(X(∞)) ∀t ≥ 0, (4.13)
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where the limit denotes weak convergence of probability measures on K�. It is
easy to see that X∞ is shift-invariant.

We now prove the assertions for aS recurrent. Applying (4.12) to the process
X∞, we get

C∞t (i)−
∑
j

P St (j − i)C∞0 (j) = 2
∫ t

0
PSs (i)E[tr(w)(X∞

0 (t − s))]ds, (4.14)

where C∞t (i) refers to covariances of the process X∞. By the compactness of the
state space K , the left-hand side of (4.14) is bounded. The right-hand side is equal
to

2E[tr(w)(X0(∞))]
∫ t

0
PSs (i)ds. (4.15)

By the recurrence of the random walk with kernel aS , the integral in (4.15) diverges
as t tends to infinity, and therefore (4.14) can only hold if E[tr(w)(X0(∞))] = 0.
The matrix w is non-negative definite and symmetric, and hence tr(w)(x) = 0
implies w(x) = 0, and therefore P [X0(∞) ∈ ∂wK] = 1 and by shift-invariance
we arrive at (2.3) (i).

Moreover, combining what we have just proved with (4.11) we see that

∂
∂t
C∞t (i) =

∑
j

aS(j − i)(C∞t (j)− C∞t (i)), (4.16)

which means that C∞ is a bounded aS-harmonic function. By the Choquet–Deny
theorem (which follows easily from Lemma 4.3 –see Liggett, [21], Theorem II.1.5)
it follows that C∞ is constant. Hence Cov(Xi(∞),Xj (∞)) = Var(X0(∞)) for
all i, j ∈ � and the Cauchy–Schwarz inequality gives P [Xi(∞) = Xj(∞)] = 1,
which implies (2.3) (ii).

We now prove the assertions for aS transient. We start by noting that the spatial
ergodicity of L(X(0)) together with Lemma 4.2 and 4.3 imply that for each i ∈ �

lim
t→∞

∑
j

P St (j − i)C0(j) = 0. (4.17)

Applying (4.12) to the process X, taking the limit t →∞, using the fact that aS is
transient and inserting (4.17), we get

lim
t→∞Ct(i) = 2E[tr(w)(X0(∞))]

∫ ∞

0
PSt (i)dt. (4.18)

Now assume that P [X0(∞) ∈ ∂wK] = 1. Then E[tr(w)(X0(∞))] = 0 and (4.18)
gives Var(X0(∞)) = 0 and therefore, by (4.9), X0(∞) = E[X0(0)] a.s. This con-
tradicts our assumption that E[X0(0)] �∈ ∂wK and we conclude that P [X0(∞) ∈
∂wK] < 1, and by shift-invariance (2.4) (i) holds.

To get (2.4) (ii), we note that by the fact that the random walk with kernel aS
is symmetric,

∫∞
0 PSt (j − i)dt <

∫∞
0 PSt (0)dt for all i �= j , and hence by (4.18),

Cov(Xi(∞),Xj (∞)) < Var(X0(∞)), which implies (2.4) (ii).  !
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4.3. Proof of Lemma 2.4

Solutions to (2.12) can be expressed in terms of the random walk which jumps from
a point i to a point j with rate a(j − i). Let us denote by Pt(j − i) the probability
that this random walk is at time t in j , starting from i. Then

Yi(t) =
∑
j

Pt (j − i)Yj (0) (i ∈ �, t ≥ 0). (4.19)

Let us write (Rt )t≥0 for the Feller semigroup onC(K�) associated with the process
Y , i.e., (Rtf )(y) := E[f (Y y(t))] where Yy is the solution of (2.12) with initial
condition Y (0) = y.

Fix h ∈ H(w)∩C2(K) and i ∈ � and define f ∈ C2
fin(K

�) by f (x) := h(xi).
It is not hard to see thatRtf ∈ C2

sum(K
�) for all t ≥ 0 (however,Rtf �∈ C2

fin(K
�)).

Let A′ be the extension of the operator A in (4.1) to the domain C2
sum(K

�). Write
A′ = B+C, whereB contains the first andC the second order derivatives. General
theory (see Ethier & Kurtz, [14], chapter 1) tells us that t �→ Rth is continuously
differentiable in C(K) and

∂
∂t
Rth = BRth. (4.20)

Using the fact that X solves the martingale problem for A′ we get the following
integration by parts

E[h(Xi(T ))] − E[h(Yi(T ))]=
E[(R0f )(X(T ))] − E[(RT f )(X(0))]=E

∫ T

0
(B + C + ∂

∂t
)(RT−t f )(X(t))dt

=E
∫ T

0
(CRT−t f )(X(t))dt (T ≥ 0).

(4.21)
Here

(CRT−t f )(x) =
∑
k

PT−t (k − i)2
∑
α,β

wαβ(xk)
(

∂2

∂xα∂xβ
h
) ( ∑

j

PT−t (j − i)xj
)

(x ∈ K�). (4.22)

For each k in this summation, fix (xj )j �=k and define s ≥ 0 and θ ∈ K by s =
− logPT−t (k − i) and θ = (1 − e−s)−1 ∑

j �=k PT−t (j − i)xj , i.e., define s and θ
in such a way that (θ + (xk − θ)e−s) =

∑
j PT−t (j − i)xj . Then

PT−t (k − i)2
∑
α,β

wαβ(xk)
(

∂2

∂xα∂xβ
h
)( ∑

j

PT−t (j − i)xj
)

=
∑
α,β

wαβ(xk)
∂2

∂xαk ∂x
β
k

(Tθ,sh)(xk). (4.23)

Now use thatw has invariant harmonics and that Tθ,s maps differentiable functions
into differentiable functions, so that

Tθ,s(H(w) ∩ C2(K)) ⊂ H(w) ∩ C2(K) ∀θ ∈ K, s ≥ 0, (4.24)
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to see that the right hand sides in (4.23), (4.22) and (4.21) are zero. This proves the
lemma for h ∈ H(w)∩C2(K). To generalize this to arbitrary h ∈ H(w) it suffices
to note that the set of h ∈ C(K) for which (2.13) holds is bp-closed.  !

4.4. Proof of Theorem 2 and Proposition 2.5

We start by collecting some elementary facts about w-harmonic functions from
potential theory. If w satisfies (A.1), then the formula (Stf )(x) := E[f (Zx(t))],
with Zx as in (2.7), defines a Feller semigroup (St )t≥0 on C(K). Let G be its
full generator, i.e. Gf := limt→0 t

−1(Stf − f ) with domain D(G) the space of
all f ∈ C(K) for which the limit exists in C(K). We add a final element to the
semigroup, by (S∞f )(x) := E[f (Zx(∞))] = ∫

K
+x(dy)f (y).

Lemma 4.4. Assume thatw satisfies (A.1) and (A.2). Consider setsH,H ′, H ′′, H ′′′
defined as

H :={h ∈ D(G) : Gh = 0}
H ′ :={h ∈ C(K) : Sth = h ∀t ∈ [0,∞]}
H ′′ :={h ∈ C(K) : S∞h = h}
H ′′′ :={S∞φ : φ ∈ C(K)}

(4.25)

Then H = H ′ = H ′′ = H ′′′ = H(w). For each φ ∈ C(K) there exists a unique
h ∈ H(w) such that

h(x) = φ(x) (x ∈ ∂wK) (4.26)

and this h is given by h = S∞φ.

Proof of Lemma 4.4. It is easy to see that H ⊂ H ′ ⊂ H ′′ ⊂ H ′′′ = H(w). To
see that H ′′′ ⊂ H , note that by the martingale convergence theorem φ(Zx(t))→
φ(Zx(∞)) almost surely, so bounded convergence implies that E[φ(Zx(t))] →
E[φ(Zx(∞))] for each x ∈ K . Since |E[φ(Zx(t))]| ≤ ‖φ‖∞ <∞, it follows that
Stφ→ S∞φ as t →∞ in the sense of bounded pointwise convergence. Therefore

(StS∞φ)(x) = lim
s→∞(StSsφ)(x) = (S∞φ)(x) (x ∈ K). (4.27)

It follows that t−1(St − 1)S∞φ = 0 for all t , so taking the limit t → 0 we see that
H ′′′ ⊂ H . Now we note that

P [Zx(∞) ∈ ∂wK] = 1 (x ∈ K). (4.28)

(SinceZx converges, this is in fact a special case of Theorem 1.) By (4.25), S∞φ ∈
H for each φ ∈ C(K). To see that h := S∞φ solves (4.26) it suffices to note that
for each x ∈ ∂wK the process Zx(t) := x solves (2.7). To see that h is the unique
w-harmonic function satisfying (4.26), suppose that h̃ ∈ H is another one. Then
by (4.25) and by (4.28)

h̃ = S∞h̃ = S∞φ = h. (4.29)

 !
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Proof of Theorem 2. Consider the trace tr(w∗) of the diffusion matrix w∗ in
(2.15). Since w∗(x) is a non-negative definite symmetric matrix, tr(w∗) is non-
negative. Moreover, it is easy to see from (2.15) and the fact that +x is concentrated
on ∂wK (see (4.28)) that tr(w∗)(x) = 0 iff x ∈ ∂wK . Since we are assuming (A.2),
tr(w∗) ∈ C(K). In fact, tr(w∗) ∈ D(G) (see Lemma 4.4) and

Gtr(w∗) = −2tr(w). (4.30)

To see why this is so, note that by Lemma 4.4 there exists a unique h ∈ H(w)
such that h(x) = |x|2 on ∂K , and therefore v∗(x) := h(x) − |x|2 is the unique
v∗ ∈ D(G) such that v∗ = 0 on ∂wK andGv∗ = −2tr(w). Now use that a solution
Zx of (2.7) solves the martingale problem for G to write for x ∈ K

tr(w∗)(x) = E[|Zx(∞)− x|2] = 2
∫ ∞

0
E[tr(w)(Zx(t))]dt

= v∗(x)− E[v∗(Zx(∞))] = v∗(x). (4.31)

Like tr(w∗), the function tr(w) is continuous, non-negative and satisfies tr(w)(x) =
0 ⇔ x ∈ ∂wK . Therefore for each ε > 0 we can find a λ > 0 such that

tr(w) ≥ λ(tr(w∗)− ε). (4.32)

Inserting this into (4.11) we find that

∂
∂t
Ct (i)≥

∑
j

aS(j−i)(Ct (j)−Ct(i))+2λδi0
(
E[tr(w∗)(X0(t))] − ε

)
(i∈�, t≥0).

(4.33)
For any function h ∈ H(w), Lemma 2.4 and (4.19) imply that

E[h(X0(t))] = E
[
h
( ∑

j

Pt (j)Xj (0)
)]
. (4.34)

By Lemma 4.2, Lemma 4.3, the spatial ergodicity of L(X(0)) and the continuity
of h this implies that

lim
t→∞E[h(X0(t))] = h(θ). (4.35)

In particular, we may apply this to the function x �→ tr(w∗)(x) + |x − θ |2 which
is a continuous w-harmonic function by (4.30) and Lemma 4.4, to get

lim
t→∞E[tr(w∗)(X0(t))] + Ct(0) = tr(w∗)(θ). (4.36)

Combining this with (4.33) we see there exists a T such that for all t ≥ T
∂
∂t
Ct (i) ≥

∑
j

aS(j − i)(Ct (j)− Ct(i)) + 2λδi0(tr(w
∗)(θ)− Ct(0)− 2ε)

(i ∈ �, t ≥ 0).. (4.37)
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Write Dt(i) := tr(w∗)(θ)− Ct(i)− 2ε (i ∈ �, t ≥ 0), so that

∂
∂t
Dt (i) =

∑
j

aS(j−i)(Dt (j)−Dt(i))−2λδi0Dt(0)+Rt(i) (i ∈ �, t ≥ T ),

(4.38)

where the remainder Rt(i) is non-positive and, since Ct(i) is continuously differ-
entiable, continuous in t . Consider a continuous-time random walk on� that jumps
from a point i to a point j with rate aS(j − i) and that is killed in the origin with
rate 2λ. Denote by Pλt (j, i) the probability that this random walk is at time t in
j , starting from i. A partial integration of (4.38) gives (see Liggett, [21], Theorem
I.2.15)

DT+t (i) ≤
∑
j

P λt (j, i)DT (j) (t ≥ 0). (4.39)

Since we are assuming that aS is recurrent,
∑
j P

λ
t (j, i)→ 0 as t →∞ for each

i ∈ �, and using the compactness of K we see that for each i ∈ � there exists a
T ′ such that for all t ≥ T ′

Ct(i) ≥ tr(w∗)(θ)− 3ε. (4.40)

We have thus shown that lim inf t→∞ Ct(i) ≥ tr(w∗)(θ) for every i ∈ �. On the
other hand, with the help of formula (4.36) it is easy to see that lim supt→∞ Ct(0) ≤
tr(w∗)(θ). By the Cauchy–Schwarz inequality, Ct(i) ≤ Ct(0) for all i ∈ � and
hence

lim
t→∞Ct(i) = tr(w∗)(θ) ∀i ∈ �. (4.41)

We now show the convergence in distribution ofX(t). We start withX0. Combining
(4.41) with (4.36) one gets

lim
t→∞E[tr(w∗)(X0(t))] = 0. (4.42)

Now fix any φ ∈ C(K). The function (φ − S∞φ) is continuous on K and zero
on ∂wK (see Lemma 4.4)), and from (4.42) and the fact that tr(w∗) is continuous,
non-negative, and zero only on ∂wK it therefore follows that

lim
t→∞E[φ(X0(t))− (S∞φ)(X0(t))] = 0. (4.43)

Here S∞φ ∈ H(w) (see Lemma 4.4) and hence by (4.35)

lim
t→∞E[(S∞φ)(X0(t))] = (S∞φ)(θ) =

∫
K

+θ(dx)φ(x). (4.44)

Formulas (4.43) and (4.44) imply that L(X0(t))⇒ +θ as t →∞. To get from this
to the convergence of X(t) it suffices to note that (4.41) by the Cauchy–Schwarz
inequality implies that for all i, j ∈ �

lim
t→∞E[|Xi(t)−Xj(t)|2] = 0. (4.45)

This gives weak convergence for L((Xi(t))i∈=) for every finite = ⊂ �, which
implies (2.14).  !
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Proof of Proposition 2.5. This proof copies the proof of Theorem 2 up to formu-
la (4.39), with a few changes. First, replace the covariance function Ct(i) by a
covariance matrix function

Ct(j − i)αβ := E[(Xαi (t)− θα)(Xβj (t)− θβ)]. (4.46)

Now change (4.30) into Gw∗αβ = −2wαβ and note that (4.32) and (4.34) change
and simplify to

w = λw∗
E[h(X0(t))] = h(θ),

(4.47)

respectively, and proceed the argument with equalities replacing inequalities, ε = 0
and T = 0 to get, instead of (4.39)

E[(Xαi (t)− θα)(Xβj (t)− θβ)] = w∗αβ(θ)
(

1 −
∑
k

P λt (k, j − i)
)
, (4.48)

which is just (2.16).  !

4.5. Proof of the examples

Proof of Example 3.1. We start with weak uniqueness for (2.7). The uniqueness
proof of Sato, in section 4 of [23], although stated there only for diffusion matrices
of a special form, carries over to our situation. For this, the main fact one has to
check is the following. For α = 1, . . . , d + 1, let

Fα := {(x1, . . . , xd) ∈ Kd : xα = 0} (α = 1, . . . , d)
Fα := {(x1, . . . , xd) ∈ Kd :

∑
β xβ = 1} (α = d + 1) (4.49)

be theα-face of the d-dimensional simplexKd . Then one needs that for any solution
Zx to (2.7) with x ∈ Fα

P [Zx(t) ∈ Fα ∀t ≥ 0] = 1, (4.50)

but this is immediate by the martingale property of solutions to (2.7). Now one can
prove strong uniqueness for the case where σ is the unique non-negative definite
symmetric root of w. By (3.2), this σ is Lipschitz continuous on the interior ofKd
and therefore a standard argument gives uniqueness of solutions to (2.7) up to the
first hitting of a face Fα . By (4.50), the process stays in this face after hitting it.
Each face is isomorphic toKd−1 and therefore strong uniqueness can be proved by
induction. For details we refer to [23].

To see that H(w) is given by (3.3), note that by (3.2), the effective boundary
of K consists of the extremal points of Kd :

∂wK = {e1, . . . , ed+1}, (4.51)

where e1 = (1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1) and ed+1 = (0, . . . , 0). By the
martingale property of solutions to (2.7), the harmonic measure associated with w
is given by

+x =
d∑
α=1

xαδeα +
(

1 −
d∑
α=1

xα

)
δed+1 . (4.52)
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Since +x is an affine function of x, every harmonic function is affine. The other
assertions are now trivial.  !
Proof of Example 3.2. Weak uniqueness of solutions to (2.7) is proved in the same
way as in Example 3.1, where this time one needs to check that any solution Zx

starting in x ∈ ∂K is constant with probability one.
We note that solutions to (2.7) are now time-transformed Brownian motions,

and hence +x is the first hitting distribution of Brownian motion started in x and
stopped at ∂K . Hence the w-harmonic functions are the same as the harmonic
functions for Brownian motion and we can use Proposition 4.2.7 and Theorems
4.2.12 and 4.2.19 in Karatzas & Shreve, [20], to see that (A.2) holds and thatH(w)
is given by formula (3.7). The same references show that (3.9) has a unique solu-
tion. It follows from (3.7) that w has invariant harmonics. The other assertions in
Example 3.2 are now readily checked.  !
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