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Abstract. LetK be a simply-connected compact Lie Group equipped with anAdK -invariant
inner product on the Lie Algebra �, of K . Given this data, there is a well known left invariant
“H 1-Riemannian structure” on L (K) (the infinite dimensional group of continuous based
loops in K), as well as a heat kernel νT (k0, ·) associated with the Laplace-Beltrami operator
on L (K). Here T > 0, k0 ∈ L (K), and νT (k0, ·) is a certain probability measure on
L (K). In this paper we show that ν1 (e, ·) is equivalent to Pinned Wiener Measure on K on
�s0 ≡ σ 〈xt : t ∈ [0, s0]〉 (the σ -algebra generated by truncated loops up to “time” s0).

1. Introduction

In this paper we consider the equivalence of two measures on the loop space
of a compact Lie group. This so-called “loop group” is the space of continuous
paths in the Lie group based at the identity equipped with a certain well-known
left-invariant “H 1-Riemannian structure”. The study of Loop groups is motivated
primarily by physics and the theory of group Representations. They have been
studied extensively in both the mathematics and the physics literature. See for
example [25], [17], [23], [3], [13], [14], [1], [20], [16], [11] and the references
therein.

Heat Kernel and pinned Wiener measure are two natural measures that have
been advocated as the “right” measure on Loop groups. Pinned Wiener measure
on a Loop group is the law of a group-valued Brownian motion that has been
conditioned on loops. This measure has been extensively studied in [15], [22],
[2], [21]. Heat Kernel measure has been studied in [12], [10] as another natural
measure on Loop Space. In [12], Driver and Lohrenz showed that there exists a
certain process that deserves to be called “Brownian motion” on the path space of
a Loop group. The Heat Kernel measures on the Loop Space are the time t , t > 0
distributions of this Brownian motion. Thus it is a natural question to consider the
equivalence of these two measures.

A further motivation comes from logarithmic Sobolev inequalities and the pa-
pers of Getzler [14], Gross [15], Driver [10], Hsu, Aida, and Elworthy. The classical
Sobolev inequalities are a fundamental tool in analyzing finite-dimensional mani-
folds. For infinite-dimensional manifolds logarithmic Sobolev inequalities, because
of their dimension-independent character, are seen to be the proper analogues of
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classical Sobolev inequalities. Logarithmic Sobolev inequalities have been studied
extensively over infinite-dimensional linear spaces as well as finite-dimensional
manifolds (see [7], [8] for surveys and [18]). If a logarithmic Sobolev inequality
does hold for pinned Wiener measure, µ0, then the Dirichlet form µ0 〈∇f,∇f 〉 as-
sociated with pinned Wiener measure will have a spectral gap (the so-called “Mass
Gap inequality”).

In [14], Getzler showed that the Bakry and Emery criteria (see [4] and [5])
for proving a logarithmic Sobolev inequality does not hold in general for loop
groups when the “underlying measure” is pinned Wiener measure. In [15], using
pinned Wiener measure, Gross showed that a logarithmic Sobolev inequality on
Loop space does hold, but with an added potential term (a so-called “defective”
logarithmic Sobolev inequality). Using Heat Kernel measure instead, Driver and
Lohrenz proved in [12] that a logarithmic Sobolev inequality does hold on Loop
groups, without Gross’ potential. If Heat Kernel and pinned Wiener measures were
equivalent with Radon-Nikodym derivatives bounded above and below then the
Holley-Stroock Lemma (see [18])would tell us that pinned Wiener measure admits
a classical (i.e. “non-defective”) logarithmic Sobolev inequality. Even if the equiv-
alence were not so nice, it might still be possible to use the Driver-Lohrenz result of
[12] to eliminate the Gross’ potential term and thereby prove a logarithmic Sobolev
inequality for pinned Wiener measure.

In Section 5 we show that pinned Wiener measure is equivalent to Heat Ker-
nel measure on �s , the σ -algebra of functions depending on the loop up to time
s < 1. We view the Loop-Space-valued Brownian motion, developed by Driver
and Lohrenz in [12], as a group-valued two-parameter process. Viewing one of the
parameters fixed, the resulting process has the same distribution as Heat Kernel
measure. In Section 4, using extensively the two-parameter calculus developed by
Norris in [24], we show that in the other parameter this process is a Brownian semi-
martingale on the path space of the Lie group. The fact that we can pull back this
process to a Lie algebra valued Brownian Semimartingale together with Girsanov’s
Theorem, and the fact that Wiener measure and pinned Wiener measure are equiv-
alent on �s ; gives us our result that on �s Heat Kernel measure and pinned Wiener
measure are equivalent. In our proof, the analysis is done in a bigger space (the
Wiener space of the compact Lie group) which is why we require s to be strictly
less than one.

Heat Kernel measure is a time t distribution of a process on the path space
of a Loop group which is started from the identity loop (i.e. the constant
loop). This describes a homotopy between the endpoint of this process and
the identity loop. As a consequence, Heat Kernel measure concentrates all its
mass on null-homotopic loops. On the other hand pinned Wiener measure is
quasi-invariant under translations by finite-energy loops. Thus Pinned Wiener
measure must assign non-zero mass to all homotopy classes. Therefore if the
Lie group is not simply connected, pinned Wiener measure is not equivalent
to Heat Kernel measure. Thus our result showing absolute continuity on �s

for s < 1 is in a sense the best result that can be obtained in the non-simply-
connected case.
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2. Statement of results

2.1. Loop group geometry

Let K be a connected compact Lie group, � ≡ TeK be the Lie algebra of K , and
〈·, ·〉� be an AdK -invariant inner product on �. For ξ ∈ �, let |ξ |� ≡

√〈ξ, ξ〉�.
Let �g and ρg be left and right translations on K respectively. (i.e. �g and ρg are
maps taking K to K so that �g (x) = gx while ρg (x) = xg). Let

L (K) ≡ {σ ∈ C ([0, 1] → K) |σ (0) = σ (1) = e}

denote the based loop group on K consisting of continuous paths σ : [0, 1] → K

such that σ (0) = σ (1) = e, where e ∈ K , is the identity element.

Definition 2.1. (Tangent Space of L (K)). We will need the following definitions:-

• Given a function h : [0, 1] → � such that h (0) = 0, define (h, h)H = ∞ if h
is not absolutely continuous and set (h, h)H =

∫ 1
0

∣∣h′ (s)∣∣2
ds otherwise.

• Define

H ≡ H (�) ≡ {h : [0, 1] → �|h (0) = 0 and (h, h) <∞} .

Then H (�) is a Hilbert space under (·, ·)H .
• Define

H0 ≡ H0 (�) ≡ {h ∈ H (�) |h (1) = 0} .
Then (H0 (�) , (·, ·)H ) is also a Hilbert space.

In order to define the tangent space T L (K) of L (K) let θ denote the Maurer-
Cartan form. That is θ 〈ξ〉 ≡ (

�k−1

)
∗ ξ for all ξ ∈ TkK , and k ∈ K . Let θ 〈X〉 (s) ≡

θ 〈X (s)〉 and p : TK → K be the canonical projection. We now define

T L (K) ≡ {X : [0, 1] → TK|θ 〈X〉 ∈ H0 and p ◦X ∈ L (K)} .

By abuse of notation, use the same p to denote the canonical projection from
T L (K)→ L (K). As usual, define the tangent space at k ∈ L (K) by TkL (K) ≡
p−1 {k}. Using left translations, we extend the inner product (·, ·)H0

on H0 to a
Riemannian metric on T L (K). Explicitly set

(X,X)L(K) ≡ (θ 〈X〉 , θ 〈X〉)H0(�) where X ∈ T L (K) .

In this way, L (K) is to be thought of as an infinite-dimensional Riemannian man-
ifold. Viewing the Lie algebra (�, 0) as a commutative Lie group with Lie algebra
�, we obtain definitions for

L (�) ≡ {σ ∈ C ([0, 1] → �) |σ (0) = σ (1) = 0}

as the “Lie group” with Lie algebraH0 (�) thought of as a commutative Lie algebra.
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Definition 2.2. (The Laplacian �L(K) and �L(�)). Take an orthonormal basis of
H0 (�). Then define an operator �L(K) on functions f on L (K) by setting

�L(K)f ≡
∑

∂2
hf, where (∂hf ) (γ ) ≡ ∂εf (γ exp εh) |ε=0.

Define the Laplacian �L(�) on functions f on L (�) in the same way above by
setting

�L(�)f ≡
∑

∂2
hf, where (∂hf ) (γ ) ≡ ∂εf (γ + εh) |ε=0.

Remark 2.3. (Motivation for defintion 2.2). In analogy with finite-dimensional Rie-
mannian geometry, given a function f on L (K), we should expect the Laplacian
�L(K)f to be div (∇f ) where the divergence div ≡ tr∇, with ∇ being the Levi-
Civita covariant derivative. So given an orthonormal basis {h} ofH0 (�), and letting
∂h, in T L (K), be the left-invariant vector field associated to h, we should expect

“�f = div (∇f ) =
∑
h

∂h · ∇∂h (∇f ) =
∑
h

∂2
hf −

(∇∂h∂h
) · ∇f .”

However, the sum
∑

h ∂
2
hf −

(∇∂h∂h
) · ∇f is not well-defined independent of

orthonormal basis. As Driver and Lohrenz showed in [12]
∑

h ∂
2
hf −

(∇∂h∂h
) ·∇f

is defined independent of good orthonormal bases. Here an orthonormal basis {h}
is good if the Lie bracket

[
h (s) , h′ (s)

] = 0 s-a.s. In that case
∑

h ∂
2
h −

(∇∂h∂h
)

reduces to
∑

∂2
h (which is independent of any orthonormal basis).

2.2. Measures on the loop group

2.2.1. Pinned Wiener measure

Let the Wiener space We (K) denote the space of all continuous paths in K starting
at the identity. Explicitly

We (K) ≡ {σ ∈ C ([0, 1] → K) |σ (0) = e} .

Definition 2.4. (Heat Kernel measure on K). Let t > 0. The Heat Kernels PK
t

on K are the unique functions so that for any smooth f on K , the function u on
[0,∞) × K defined by setting u (t, x) ≡ ∫

K
f (y) PK

t

(
x−1y

)
dy is a solution to

the Heat equation with initial condition f . Explicitly

∂tu = 1

2
�Ku

u (t, x)→ f (x) as t → 0.

It is well known that x → PK
t are smooth function on K and that PK

t (x) =
PK
t

(
x−1

)
. Here “dy” denotes Haar measure on K .
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Definition 2.5. (Wiener Measure on We (K)). Wiener Measure, µt , on We (K)

with parameter t , is the unique measure so that for any bounded cylinder function
f of the form f (x) = F

(
xs1 , · · · , xsn

)
we have

µt [f ] ≡
∫
Kn

F (x1, · · · , xn)
n∏

i=1

PK
t(si−si−1)

(
x−1
i−1xi

)
dxi,

where x0 = e and s0 = 0. [The measure µ1 will also be denoted by µ in the sequel.]

Definition 2.6. (Brownian motion on K). We will state two equivalent definitions.
A process s → β (s) is a Brownian motion on K starting at e with parameter t iff:

1. β is aWe (K)-valued random variable distributed according to Wiener measure
µt

2. the process s → β (s) is a diffusion starting at e with generator t
2�K . This

means that the process s → β (s) is a martingale so that β (0) = e a.s. and

ds (φ ◦ β) =
(
φ′ ◦ β (s)

)
dsβ + t

2
(�Kφ) ◦ β (s) ds

for any smooth φ on K . Here �K is the Laplacian on K with respect to the
metric 〈·, ·〉K on K while dsβ denotes the Ito differential of β in the s variable.

The first definition is easier in simpler cases like �d or compact Lie groups. The
second definition is easier to extend to the infinite-dimensional cases and manifolds.
See Definition 2.11.

Definition 2.7. (Pinned Wiener Measure) Pinned Wiener Measure, µ0,t , on L (K)

with parameter t is the unique measure on L (K) so that for any bounded cylinder
functions f of the form f (x) = F

(
xs1 , · · · , xsn

)
where F ∈ C∞ (K), then

µ0,t [f ] ≡
∫
Kn

F (x1, · · · , xn)
PK
t(1−sn)

(
x−1
n

)
PK
t (e)

n∏
i=1

PK
t(si−si−1)

(
x−1
i−1xi

)
dxi,

(2.1)
where x0 = e and s0 = 0.[We will use the notation µ0 to denote µ0,1.]

Definition 2.8. (Brownian bridge on K). s → χ (s) is a Brownian bridge on K

with parameter t if χ is an L (K)-valued random variable distributed according to
pinned Wiener measure µ0,t .

2.2.2. Heat kernel measure

Definition 2.9. (Brownian Bridge Sheet on �). A Gaussian process {χ (t)}t∈[0,1] is
a Brownian bridge Sheet on � if for (t, s) in [0, 1]2,χ (t, s) is a �-valued mean-zero
Gaussian process with covariance given by

E 〈A,χ (t, s)〉� 〈B, χ (τ, σ )〉� = 〈A,B〉� (t ∧ τ)G0 (s, σ ) ,

where χ (t, s) ≡ χ (t) (s) ∈ �; A,B ∈ �; t, τ, s, σ ∈ [0, 1]; and G0 (s, σ ) ≡
s ∧ σ − sσ .
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Remark 2.10. It turns out that if χ is a Brownian bridge sheet on � then χts has a
version which is continuous in both its parameters, t → χts is a Brownian motion on
� with parameter G0 (s, s) and s → χts is a Brownian bridge on � with parameter
t . We will always choose such a jointly-continuous version of χ .

Definition 2.11. (Brownian motion onL (K)). A process t → 3 (t, ·) is anL (K)-
valued Brownian motion if and only if for any smooth cylinder function f :
L (K)→ �, there is a real-valued martingale Mt so that

dt [f (3 (t, ·))] = dtM + 1

2

(�L(K)f
)
(3 (t, ·)) dt.

See Theorem 2.14 for the existence of this Brownian motion. So t → 3 (t, ·) is a
diffusion on L (K) with generator 1

2�L(K). [Define a Brownian motion on L (�)

by thinking of � as a Lie group and applying the above definition]

We will need the the following Theorem:

Theorem 2.12. (Malliavin). Let
(
50,�0,

{
�0
ts

}
(t,s)∈[0,1]2 , P0

)
be a filtered com-

plete probability space where

�0
ts ≡ σ 〈χτu : τ ∈ [0, t] , u ∈ [0, s]〉 ,

�0 ≡ ∨(t,s)∈[0,1]2 �0
ts , and χ is a �-valued Brownian bridge sheet in the sense of

Definition 2.9. Let ∂t denote Stratonowicz differentiation in the t variable. Then
given k0 ∈ L (K) there is a jointly continuous solution 3 (t, s) to the stochastic
differential equation

∂t3 (t, s) =
∑

A∈ONB(�)

(
�3(t,s)∗A

)
∂tχ

A (t, s) (2.2)

with 3 (0, s) = k0 (s) ,∀s ∈ [0, 1] ,

where the A run through an orthonormal basis of � and χA (t, s) ≡ 〈χ (t, s) , A〉�.
Henceforth we write Eq. (2.2) more concisely as

∂t3 (t, s) = (
�3(t,s)

)
∗ ∂tχ (t, s) with 3 (0, s) = k0 (s) ,∀s ∈ [0, 1] . (2.3)

[see Malliavin [23]; see also Theorem 3.8 of [10] and Baxendale [6]]

Remark 2.13. (Explicit Matrix Representation of Eq. [2.3]). Let Mm (�) be all
m×m matrices on � and GLm (�) be all invertible matrices in Mm (�). We will
work with an explicit matrix representation of our Lie group K . K will be thought
of as a subgroup of GLm (�) ⊂Mm (�) for some m. Such a representation exists
as a consequence of the Peter-Weyl Theorem. Hence Eq. (2.3) can be rewritten as

∂t3 (t, s) = 3 (t, s) ∂tχ (t, s) (2.4)

with 3 (0, ·) = k0,∀s ∈ [0, 1] ,

where we have used matrix multiplication to define 3 (t, s) ∂tχ (t, s). Explicitly if
we let Bij denote the i, j entry of the matrix B we have

∂t (3 (t, s))ij =
∑
k

(3 (t, s))ik ∂t (χ (t, s))kj .
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Theorem 2.14. (Brownian motion on L (K)). Let 3 (t, s) be the process from
Theorem 2.12 and Remark 2.13. Theorem 2.12 tells us that s → 3 (t, s) is a Loop
a.s. Let 3t denote this loop s → 3 (t, s). Then t → 3t is a Brownian motion on
L (K) in the sense of Definition 2.11.

Proof. See Theorem 3.10 of Driver [10]. ��
Now that we know that Brownian motion on L (K) exists, we can define Heat

Kernel measure on L (K).

Definition 2.15. (Heat Kernel measure on L (K)). Let k0 ∈ L (K) be a loop and
let t > 0. Let 3 (t, ·) be an L (K)-valued Brownian motion so that 3 (0, ·) = k0 in
L (K) a.s. Then, as in the finite-dimensional manifold case, Heat Kernel measure
νt (k0, dk) is defined to be the law of 3 (t, ·). Explicitly∫

L(K)

f (k) νt (k0, dk) = Ef ◦3 (t, ·) .

Remark 2.16. (Heat Kernel measure is a Heat Kernel). Driver and Lohrenz showed
for any t > 0, for all bounded cylinder functions f on L (K); the function u on
(0,∞)× L (K) defined by

u (t, k0) ≡
∫
L(K)

f (k) νt (k0, dk) ,

is the unique solution to the heat equation

∂u (t, ·) /∂t = 1

2
�L(K)u (t, ·) with lim

t↓0
u (t, k) = f (k0) .

Here�L(K) denotes the operator from Definition 2.2. See Theorem 1.1 of [12]. See
also Definitions 3.10 and 4.17 in [12]. In [12], results on Heat kernel measures are
obtained for groups of compact type, and not merely compact Lie groups.

2.3. The stochastic framework

We shall use the results of Section 2.2.2 to obtain our probability space.

Definition 2.17. (Ambient probability space).
(
5,�, {�ts}(t,s)∈[0,1]2 , P

)
is going

to be our biparametrically-filtered probability space where

• 5 ≡ C ([0, 1] → L (K)) equipped with �, the completion of the Borelσ -algebra
under P .

• Let 3 be the process from Theorem 2.12 so that 30 = e, where e denotes the
identity loop.

• P is defined to be Wiener Measure onC ([0, 1] → L (K)). Explicitly,P ≡ Law

3.
• gt :C ([0, 1] →L (K)) →L (K) by x→ x (t) for any x∈C ([0, 1] →L (K))

• By Theorem 2.14 we see that dLaw gt = dνt (e, ·).
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• gts (x) = [x (t)] (s) in K .
• �00 is a σ -algebra containing all the null sets of �.
• �ts ≡ σ 〈gτσ : τ ∈ [0, t] and σ ∈ [0, s]〉 ∨ �00.

Theorem 2.18. (Semimartingale properties of g·s). The process g of Definition
2.17 has the following properties:-

1. The process t → gts is a semimartingale.
2. Let Xts ≡

∫ t

0 g−1
τs ∂τ gτs . Then t → Xt · is a Brownian bridge sheet on � with

respect to the measure P . Furthermore, X can be taken to be continuous in
both its parameters.

Proof. t → 3ts a Brownian motion on K ⇒ t → gts a Brownian motion on K .
In particular, g is a semimartingale and Xts ≡

∫ t

0 g−1
τs ∂τ gτs is well-defined. By

Proposition 8.3 of [9] we know that Xts ◦ 3 = ∫ t

0 3−1
τs ∂τ3τs = χts . Thus X is a

Brownian bridge sheet with respect to the measure P . ��
Remark 2.19. We shall never again refer to χ,3 or the underlying abstract prob-
ability space. Also we will always use the version of X that is continuous in both
parameters t and s.

We are now in a position to state the main result of this paper.

Theorem 2.20. (Semimartingale properties of gt ·). Let g be an L (K)-valued
Brownian motion as in Defintion 2.17. Then:-

1. s → gts is a K-valued �ts-semimartingale.
2. ∫ s

0
∂σ gtσ g

−1
tσ = Wts −

∫ s

0

dσ

1− σ

∫ t

0
Adgτσ dτXτσ ,

where s → Wts is a Brownian motion on � with parameter t .

Proof. Theorem 2.20 is a special case of Theorem 4.1 proved in Section 4. ��
Theorem 2.21. Let z < 1 and let �z ≡ σ 〈xs : s ∈ [0, z]〉 where xs : L (K)→ K

is the evaluation map at time s. Then pinned Wiener measure, µ0, is absolutely
continuous with respect to Heat Kernel measure, ν1 (e, ·), on the σ -algebra �z.

Proof. This Theorem is proved as Theorem 5.1 in Section 5. ��

3. Motivation for theorem 2.20

Definition 3.1. (Brownian Sheet on �). A Gaussian process {β (t)}t∈[0,1] is a
�-valued Brownian sheet if for (t, s) in [0, 1]2, β (t, s) is a �-valued mean-zero
Gaussian process with covariance given by

E 〈A, β (t, s)〉� 〈B, β (τ, σ )〉� = 〈A,B〉� (t ∧ τ)G (s, σ ) ,

where β (t, s) ≡ β (t) (s) ∈ �; A,B ∈ �; t, τ, s, σ ∈ [0, 1]; and G(s, σ ) ≡
min (s, σ ).
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Remark 3.2. (Theorem 2.20 is reasonable). g satisfies

∂tgts = gts∂tXts with g0s = e, (3.1)

where X·s is the Brownian bridge sheet from Theorem 2.18. By Theorem 3.7, there
is a Brownian sheet b on � so that

Xts = bts −
∫ s

0
btσ

(1− s)

(1− σ)2
dσ . (3.2)

If we replace X by b in Eq. (3.1), then Lemma 3.3 shows that s → gts would
be a K-valued Brownian motion with variance t and hence

∫ ·
0 ∂sgtsg

−1
ts would be

a �-valued Brownian motion with variance t . In reality, because Xt · contains an
extra finite-variation term, it turns out that the law of

∫ ·
0 ∂sgtsg

−1
ts is equivalent (but

not equal) to the law of a Brownian motion on �.

Lemma 3.3. (Semimartingale properties of ht ·). Let b be a �-valued Brownian
Sheet (see Definition 3.1). Let hts be the solution to

∂thts = hts∂tbts with h0s = e. (3.3)

Then the process s �→ hts is a K-valued Brownian motion with parameter t .
Furthermore one can choose a version of h which is jointly continuous in both
parameters s and t. In future, h will be taken to be this jointly continuous solution.
Note:- Eq. [3.3] is to be interpreted like Eq. [2.2].

Proof. Let si = i/n. Then {0 = s0 < s1 < · · · < sn = 1} is a partition of [0, T ].
For convenience, let �ib (t) ≡ btsi − btsi−1 . We compute

∂t

(
htsi h

−1
tsi−1

)
= htsi ∂t btsi h

−1
tsi−1

− htsi ∂t btsi−1h
−1
tsi−1

= htsi ∂t�ib (t) h
−1
tsi−1

=
(
htsi h

−1
tsi−1

)
Adhtsi−1

∂t�ib (t)

=
(
htsi h

−1
tsi−1

)
Adhtsi−1

dt�ib (t)+ 1

2
dt

(
htsi h

−1
tsi−1

)
Adhtsi−1

dt�ib (t)

+1

2
Adhtsi−1

[
dtbtsi−1 , dt�ib (t)

]
=

(
htsi h

−1
tsi−1

)
Adhtsi−1

dt�ib (t)+ 1

2
dt

(
htsi h

−1
tsi−1

)
Adhtsi−1

dt�ib (t)

=
(
htsi h

−1
tsi−1

)
∂t

∫ t

0
Adhτsi−1

�ib (dτ) ,

where we have used that fact that btsi−1 ∈ �1si−1 and that�ib (·) is independent of
�1si−1 . Thus

∂t

(
htsi h

−1
tsi−1

)
=

(
htsi h

−1
tsi−1

)
∂t

∫ t

0
Adhτsi−1

dτ�ib (τ ) with h0si h
−1
0si−1

= e.
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It suffices to show that
{∫ ·

0 Adhtsi−1
dt�ib (t)

}
i∈{1,···,n}

is a �n-valued Brownian

motion with parameter 1/n, since this will imply that t →
{
htsi h

−1
tsi−1

}
i∈{1,···,n}

is

a Kn-valued Brownian motion with the same parameter. But this is true by Levy’s
criterion and the following computation of quadratic variations.

Let Jt denote the joint quadratic variation∫ t

0
Adhτsi−1

dτ�ib (τ )Adhτsj−1
dτ�j b (τ ) .

Then

dJt = Adhtsi−1
(dt�ib (t)) Adhtsj−1

(
dt�j b (t)

)
=

∑
A,B

(
Adhtsi−1

A⊗ Adhtsj−1
B

)
dt�ib

A (t) dt�j b
B (t)

= δij�i sdt
∑
A

(
Adhtsi−1

A
)⊗2

= δij

n

∑
A

(
Adhtsi−1

A
)⊗2

dt

= δij

n

∑
A

A⊗2dt.

We still have to show that hts has a jointly continuous version. That is by
Kolmogorov’s continuity criterion we must show that

P
[
d (hts, hτσ )

p
] ≤ C

[
(t − τ)2 + (s − σ)2

]m+β
2

,

where d (x, y) denotes the distance between points x and y in K . The proof is
essentially the same as that done in Theorem 3.8 of Driver [10] with the modification
that G(s, σ ) is used in place of G0 (s, σ ). in particular, see Eq. [3.12] of [10]. ��

3.1. Semimartingale properties of Xts

Let Xts be as in Theorem 2.18. Then X is a Brownian bridge sheet on �. Brownian
Sheets are easier to work with than Brownian bridge Sheets (they are martingales
in both their parameters for instance). The goal of this section is to write Xt · as a
linear functional of bt ·, a Brownian sheet.

To motivate this decomposition we recall the decomposition of a Brownian
bridge X̃ (below in Remark 3.4) in terms of a Brownian motion and a finite-variation
part. The Brownian bridge X̃· is supposed to play the role of Xt · but with one fewer
parameter.

Remark 3.4. (Doob’s h transform). Let X̃ be a Brownian bridge from 0 to 0 on �.
Then there is a Brownian motion b̃ which can be written as a linear function of X̃

(i.e. b̃s ≡ X̃s −
∫ s

0

(
∇ ln P�

1−σ

)
(X̃σ )dσ = X̃s +

∫ s

0

X̃σ

1− σ
dσ ).
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Definition 3.5. Define continuous �-valued linear maps on paths,

Ts, Ss : C ([0, 1] → �)→ �,

by setting

Ts(y) = y(s)−
∫ s

0
y(σ )

(1− s)

(1− σ)2
dσ if s ∈ [0, 1) .

Ss(x) ≡ x(s)+
∫ s

0

x(σ )

(1− σ)
dσ if s ∈ [0, 1) .

Remark 3.6. Notice that in Remark 3.4 we wrote the underlying Brownian motion
b̃· as S

(
X̃·

)
(·). Similarly we shall prove the process bt · ≡ S (Xt ·) is a Brownian

Sheet and that Xt · can be written as T (bt ·).

Theorem 3.7. (Decomposition of the Brownian bridge sheet). Let X be the Brow-
nian bridge sheet from Theorem 2.18. Define b by setting

bts ≡ Ss(Xt ·) = Xts +
∫ s

0

Xtσ dσ

1− σ
for any t, s ∈ [0, 1] .

Then b is a Brownian sheet on � and Xts can be recovered from b as:

Xts = Ts(bt ·) = bts −
∫ s

0
btσ

(1− s)

(1− σ)2
dσ. (3.4)

We shall defer the proof of Theorem 3.7 until after Lemma 3.8 below.

Lemma 3.8. (Properties of the transformations S and T ). There exist unitary maps
T : H (�) → H0 (�) and S : H0 (�) → H (�) so that T (y) (s) = Ts (y) and
S (x) (s) = Ss (x) for any s ∈ [0, 1). Furthermore S = T −1.

Proof. Define a subset of H (�) by setting

U ≡ {
y : y′ ∈ C∞c ((0, 1)→ �)

}
.

C∞c ((0, 1)→ �) is dense in L2 ([0, 1] → �) and therefore, by the isometry
between L2 and H (�),U is dense in H (�).

Define x (s) = Ts (y) for y ∈ U . Then

x (s) =
∫ s

0

(1− s)

1− σ
y′(σ )dσ,

and

x′ (s) = y′ (s)−
∫ s

0

y′(σ )
1− σ

dσ. (3.5)

Since y′ is zero near 1, s → y′(s)/ (1− s) is bounded on [0, 1] and x′ is constant
near s = 1. The boundedness of y′(s)/ (1− s) implies that x (s) → 0 as s → 1.
So we can define a map T : U → H0 (�) .
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We claim that T is a norm-preserving and so can be extended to a map from
H (�) onto a closed subspace of H0 (�). Integrating by parts,∫ 1

0
ds

[∫ s

0

y′(σ )
1− σ

dσ

]2

− 2
∫ 1

0
y′ (s) ·

∫ s

0

y′(σ )
1− σ

dσds

=
[∫ 1

0

y′(σ )
1− σ

dσ

]2

− 2
∫ 1

0

y′(s)
1− s

·
∫ s

0

y′(σ )
1− σ

dσds

=
[∫ 1

0

y′(σ )
1− σ

dσ

]2

− 2
∫ 1

0

[∫ s

0

y′(σ )
1− σ

dσ

]
· ds

[∫ s

0

y′(σ )
1− σ

dσ

]
= 0,

and so expanding with Eq. [3.5] we see that∫ 1

0

∣∣x′ (s)∣∣2
ds =

∫ 1

0

∣∣y′ (s)∣∣2
ds.

If x ⊥ Im T , then for any y ∈ H (�)

0 =
∫ 1

0
x′ (s) ·

[
y′ (s)−

∫ s

0

y′(σ )
1− σ

dσ

]
ds

⇐⇒
∫ 1

0
x′ (s) · y′ (s) ds =

∫ 1

0
(x (1)− x (σ )) · y

′(σ )
1− σ

dσ

⇐⇒
∫ 1

0

[
x′ (s)+ x (s)

1− s

]
· y′ (s) ds = 0.

Since y′ can be any arbitrary element of L2 ([0, 1] → �), we must have

x′ (s) = −x (s)

1− s
⇐⇒ x (s) = x (ε)

1− s

1− ε
.

Letting ε → 0 and using x (0) = 0, we see that x is identically 0. Thus T is
surjective and so provides an isometry between H (�) and H0 (�).

Now we find the inverse of T . Let x in H (�), y = T (x) in H0 (�) and
zs = Ss (y) so that zs = Ss ◦ T (x). Since x (0) = z0 = 0 and

d

ds
zs = y′ (s)+ y (s)

1− s

= x′ (s)−
∫ s

0

x′ (σ ) dσ
1− σ

+ y (s)

1− s

= x′ (s)− T (x) (s)

1− s
+ y (s)

1− s

= x′ (s) ,

we conclude that Ss ◦ T (x) = x (s) for any x in H (�).
Define S : H0 (�) → H (�) so that S (y) (s) = Ss (y) for any s < 1 and

S (y) (1) = lims→1 S (y) (s). Then by definition, S is the inverse of T . ��
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Proof of Theorem 3.7. First we show that

E 〈bts, A〉� 〈bτσ , B〉� = (t ∧ τ)G (s, σ ) 〈B,A〉�
Recall bAts ≡ 〈bts, A〉� and XA

ts ≡ 〈Xts, A〉�. Let

ls (x) ≡
∫ 1

0
duαs (u) x (u) ,

where

duαs (u) =
[
δ (u− s)+ 1[0,s]

1

1− u

]
du

is a positive measure on [0, 1]. Here δ denotes the Dirac delta measure. Then

ls (x) = x (s)+
∫ 1

0
x (u)

du

1− u
= Ss (x) .

Define bts ≡ Ss (Xt ·) as in Definition 3.5. So

EbAtsb
B
τσ = E

∫
duαs (u) dvασ (ν)XA

tuX
B
τν. (3.6)

By Tonelli’s Theorem and Hölder’s inequality, we have

E

∫
duαs (u) dvασ (ν)

∣∣∣XA
tuX

B
τν

∣∣∣
≤

∫
duαs (u) dvασ (ν)

√
E

(
XA

tu

)2
E

(
XB

τν

)2

=
∫

duαs (u) dvασ (ν)
√
tτG0 (u, u)G0 (ν, ν) <∞.

Thus applying Fubini to Eq. [3.6] we see that

EbAtsb
B
τσ =

∫
duαs (u) dvασ (ν)EXA

tuX
B
τν

= (t ∧ τ) 〈A,B〉�
∫

duαs (u)

∫
dvασ (ν)G0 (u, ν) . (3.7)

Since G0 (u, ν) is the reproducing kernel for H0 (�), we have for any orthonormal
basis h of H0 (�) ,

G0 (u, ν) =
∑

h (u) h (ν) .

Returning to Eq. [3.7] we get

E 〈bts, A〉� 〈bτσ , B〉� = (t ∧ τ) 〈A,B〉�
∑ ∫

h (u) duαs (u)

∫
h (ν) dvασ (ν)

= (t ∧ τ) 〈A,B〉�
∑

Ss (h) Sσ (h)

= (t ∧ τ) 〈A,B〉�
∑

S (h) (s) S (h) (σ ) .
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By Lemma 3.8, S (h) runs through an orthonormal basis of H (�) . This, together
with the fact that G(s, σ ) is the reproducing kernel for H (�) yields,∑

S (h) (s) S (h) (σ ) = G(s, σ ) = s ∧ σ.

Thus
E 〈bts, A〉� 〈bτσ , B〉� = (t ∧ τ) 〈A,B〉� (s ∧ σ) .

Thus b is a �-valued Brownian sheet.
It remains to show that Ts (bt ·) = Xts . Let x ∈ L (�). Then for any ε > 0, can

choose a δ so that sup[0,δ]∪[1−δ,1] |x| < ε. There is an x̃ on C∞ ((δ, 1− δ)→ �)

so that
∥∥x̃ − x ↓(δ,1−δ)

∥∥∞ < ε. Define x by setting

x (s) = s

δ
x̃ (δ) 1[0,δ] + x̃ (s) 1(δ,1−δ) + 1− s

δ
x̃ (1− δ) 1[1−δ,1].

Then

‖x − x‖∞ <

(
2 sup

[0,δ]∪[1−δ,1]
|x| + ε

)
∨ ε < 3ε.

Furthermore, x ∈ H0 (�).
So now take x ∈ H0 (�) so that ‖x −Xt ·‖∞ < ε. Then Ts (bt ·) =

Ts (bt · − S (x))+ x (s).

|Ts(bt · − S (x))| ≤ sup
[0,s]

|bt · − S (x)|
(

1+
∫ s

0

(1− s)

(1− σ)2
dσ

)
.

sup
[0,s]

|bt · − S (x)| ≤ sup
u∈[0,s]

∣∣∣∣Xtu − x (u)+
∫ u

0

Xtσ − x (σ )

(1− σ)
dσ

∣∣∣∣
≤ sup

u∈[0,s]
|Xtu − x (u)|

(
1+

∫ s

0

dσ

(1− σ)

)
.

Thus as ε→ 0 we have Ts (bt ·) = Xts and we are done. ��

4. Semi martingale properties of gT .

Let X be the Brownian bridge sheet from subsection 3.1. In this section we shall
show thatX is a semimartingale in the sense of Norris (see [24]) and then proceed to
find

∫ ·
0 ∂sgT sg

−1
T s using his powerful two-parameter calculus methods. Throughout

this section we shall use the term “semimartingale” to mean “semimartingale in the
sense of Norris”. We shall also stick to Norris’ notation as far as possible in this
section.

Theorem 4.1. (Semimartingale properties of gT ·). Let g be our L (K)-valued
Brownian motion. Then:-

1. g is a semimartingale.
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2. There is a �-valued Brownian sheet b̃ with the same law as b so that∫ s

0
∂σ gT σ g

−1
T σ = b̃T s −

∫ s

0

dσ

1− σ

∫ T

0
Adgtσ dtXtσ .

We defer the proof of this Theorem to the end of the section.

Theorem 4.2. (X is a semimartingale). On the domain � ≡ {(t, s) ∈ [0,∞) ×
[0, 1)}, X is a uniform semimartingale satisfying the equation

∂t∂sX = ∂t∂sb − 1

1− s
∂tX∂s with X0s = Xt0 = 0. (4.1)

Proof. First we show X is a uniform (s, t)-semimartingale in the sense of Norris.
By Theorem 3.7 we have

Xts = bts −
∫ s

0
btσ

(1− s)

(1− σ)2
dσ.

Since b is clearly a semimartingale, it will suffice to show that the expression

Cts =
∫ s

0
btσ

(1− s)

(1− σ)2
dσ

is an (s, t)-semimartingale. Differentiating, we see that

Cts =
∫ s

0
dσ

[
btσ

(1− σ)
−

∫ σ

0
btu

1

(1− u)2
du

]
. (4.2)

By Ito

btσ
1

(1− σ)
=

∫ σ

0
btu

1

(1− u)2
du+

∫ σ

0
dubtu

1

(1− u)
,

and so

Cts =
∫ s

0
dσ

∫ σ

0

1

(1− u)
dubtu

=
∫ t

−1

∫ s

0

[∫ t

0

∫ s

−1

1

(1− u′)
1[0,u]

(
u′

)
1[−1,0]

(
r ′

)
drdu′bru′

]
dr ′du.

We still need to check Eq. (2.15) of Norris; that for any p ∈ [1,∞), the expression

∫ t

−1

∫ s

0

[∫ t

0

∫ s

−1

∥∥∥∥ 1

(1− u′)
1[0,u]

(
u′

)
1[−1,0]

(
r ′

)∥∥∥∥2

Lp

drdu′
]1/2

dr ′du

is finite. A direct computation establishes that this is so for any (t, s) ∈ �. Thus
X is a uniform (s, t)-semimartingale. By Norris (see Pg 282 of [24]) we know
that a uniform (s, t)-semimartingale which is constant on both the t and s axes
is both a uniform t-semimartingale as well as a uniform s-semimartingale. Since
X0s = Xt0 = 0, we conclude that X is a uniform semimartingale.
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Now that we have shown X is a semimartingale, we can verify by direct com-
putation that X satisfies Eq. [4.1].

∂t∂sX − ∂t∂sb + 1

1− s
∂tX∂s

= ∂tX∂s − ∂t∂sCts .

From Eq. [4.2] we see that

∂t∂sX − ∂t∂sb + 1

1− s
∂tX∂s

= ∂tX∂s

1− s
−

[
∂tbts −

∫ s

0
∂tbtσ

1− s

(1− σ)2
dσ

]
∂s

1− s

= 0.

Hence we are done. ��

Lemma 4.3. (g is a semimartingale). Let g be our L (K)-valued Brownian motion
from Definition 2.17. Then on �, g is a semimartingale satisfying

Ds∂tψ = ψ∂t∂sb − 1

1− s
∂tψ∂s with g0s = gt0 = e.

Proof. Define ψ to be the solution of

Ds∂tψ = ψ∂t∂sb − 1

1− s
∂tψ∂s, (4.3)

where D denotes covariant differentiation with respect to the left connection on
K . Apply Theorem 3.2.6 of [24] to the � × K-valued process ψ̃ts ≡ (s, ψts). To
facilitate this define coordinate projections π1 : (s, x) → s and π2 : (s, x) → x.
Then we have

D̃s∂t ψ̃ =
(
0, π2

(
ψ̃

)
∂t∂sb

)− 1

1− s
∂t ψ̃∂s,

where D̃ denotes covariant differentiation with respect to the left connection on
�×K . In Norris notation, we would have

D̃s∂t ψ̃ = α 〈∂t∂sb〉 + β01
〈
∂t ψ̃∂s

〉
,

with
α 〈ω〉 = (0, π2 (x) ω) ∀ω ∈ �,

and

β01 〈ω〉 =
( −1

1− π1 (x)

)
ω ∀ω ∈ Tx (�×K) .

Thus ψ̃ is a semimartingale, and hence so is ψ .
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Define

χ·s =
∫ ·

0
ψ−1

ts ∂tψts

=
∫ ·

0
ψ−1

ts dtψts − 1

2

∫ ·

0

(
ψ−1

ts dtψts

) (
ψ−1

ts dtψts

)
= I − J.

The first term I is a semimartingale by Theorem 2.3.1 of [24], while the second
term J is a semimartingale by Theorem 2.3.2 of [24]. Thus χ is a semimartingale.
We will now show that χ satisfies Eq. [4.1]. Computing directly, we see that

∂t∂sχ + 1

1− s
∂tχ∂s = ∂s

(
ψ−1∂tψ

)
+ 1

1− s
ψ−1∂tψ∂s

= ψ−1Ds∂tψ + 1

1− s
ψ−1∂tψ∂s.

Applying Eq. [4.3], we see that

∂t∂sχ + 1

1− s
∂tχ∂s = ∂t∂sb.

Thus χ = X and ψ = g. Thus g is a semimartingale satisfying the equation

Ds∂tg = g∂t∂sb− 1

1− s
∂tg∂s. ��

We are now able to return to the proof of Theorem 4.1.

Proof of Theorem 4.1. We have already shown that g is a semimartingale. Let D
and D̂ denote covariant differentiation with respect to the left and right connections
on K respectively. Thus

D̂t ∂sg =
(
∂t

(
(∂sg) g

−1
))

g

= ∂t∂sg − (∂sg) g
−1 (∂tg)

= g∂s

(
g−1∂tg

)
= Ds∂tg

= g∂t∂sb − 1

1− s
∂tg∂s.

Now define a process b̃ by setting

∂t∂s b̃ = Adg 〈∂t∂sb〉 with b̃0s = b̃t0 = 0.

Adg is previsible and preserves the inner product on � and so by Theorem 2.4.1 of
[24], we see that b̃ is a Brownian sheet on � (i.e. b̃ and b have the same distribution).
Therefore, (

∂t

(
(∂sg) g

−1
))

g = D̂t ∂sg =
(
∂t∂s b̃

)
g − ∂tg

ds

1− s
,
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which implies that

∂t

(
(∂sg) g

−1
)
= (

∂t∂s b̃
)− Adg 〈∂tX〉 ds

1− s
.

This means that ∫
0
(∂sg) g

−1 = b̃ −
∫

0

∫
0
Adg 〈∂tX〉 ds

1− s
.

Now using the fact that dtg = gdtX + 1
2gdtXdtX, we see that

Adg∂tX = AdgdtX + 1

2
(dtgdtX) g−1 − 1

2
g (dtX) g−1 (dtg) g

−1
ts

= AdgdtX.

Thus we have shown that∫
0
(∂sg) g

−1 = b̃ −
∫

0

ds

1− s

∫
0
Adg 〈dtX〉 . ��

5. HKM ↓�z
∼ PWM ↓�z

Let 5,P, and gt be as in Definition 2.17 and let �z be as in Theorem 2.21.
Then t → gt is an L (K)-valued Brownian motion and thus Law gt equals Heat
Kernel measure νt (e, ·). From Section 4 we know that

∫ s

0 ∂σ gtσ g
−1
tσ is a Brownian

semimartingale. In this Section we will show that
∫ s

0 ∂σ gtσ g
−1
tσ has a law equivalent

to that of a Brownian motion. We will then know that Pinned Wiener measure is
equivalent to Heat Kernel measure on �z for any z < 1, by the equivalence of
Wiener measure and Pinned Wiener measure.

Theorem 5.1. ν1 (e, ·)[Heat Kernel measure on L (K)] is equivalent to µ0
[Pinned Wiener Measure on L (K)] as measures on

(
L (K) ,�z

)
where �z ≡

σ 〈xt : t ∈ [0, z]〉, for any z < 1.

We supply the proof of this result after the statement of Lemma 5.4.

Definition 5.2. LetBts be defined to solve the Fisk-Stratonowicz equation ∂sBts =
∂sbtsBts with Bt0 = e where b is the Brownian sheet from Theorem 3.7.

Theorem 5.3. Let t �→ gt · be our L (K)-valued Brownian motion from Definition
2.17 and let s → Bts be the K-valued Brownian motion of Definition 5.2. Then
gT · and BT · have equivalent laws as measures on C ([0, s] → K) for any s <√

1+4T−1
2T .

We prove this result in Section 5.1.
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Lemma 5.4. If κ1 ∼ κ2 then κ1 ⊗ ν ∼ κ2 ⊗ ν, where κ1, κ, ν are probability
measures.

We prove this Lemma after the proof of Theorem 5.1 below.

Lemma 5.5. Let 0 < t1 < · · · < tk. Then B−1
ti−1·Bti · are independent �-valued

Brownian motions with parameters ti − ti−1.

The proof of this Lemma is supplied after the proof of Lemma 5.4

Proof of Theorem 5.1. Let µ0 be Pinned Wiener measure on L (K) and let µ

be Wiener measure on C ([0, 1] → K) as in Definitions 2.5 and 2.7. Then µ =
Law [B1·] since B1· is a standard K-valued Brownian motion by Definition 5.2. A
key fact that we shall exploit in this proof is µ0 is equivalent to µ on �z for any
z < 1.

Fix z < 1. Now

lim
T→0

√
1+ 4T − 1

2T
= 1

so there exists an N ∈ � large so that

z <

√
1+ 4/N − 1

2/N
.

Let T ≡ 1/N . We know that t → gt · is an L (K)-valued Brownian motion and
so has independent increments. Suppose we can show for t2 > t1 that B−1

t1s
Bt2s is

independent of �t11. Then letting A′ = {(k1, · · · , kn) : k1 · · · kN ∈ A} we have

ν1 (e, A) = P {g1· ∈ A}
= P

{
g(1/N)·

(
g−1
(1/N)·g(2/N)·

)
· · ·

(
g−1
(N−1/N)·g1·

)
∈ A

}
=

(
⊗N

i=1LawgT ·

) (
A′

)
,

while

µ (A) = P {B1· ∈ A}
= P

{
B(1/N)·

(
B−1
(1/N)·B(2/N)·

)
· · ·

(
B−1
(N−1/N)·B1·

)
∈ A

}
=

(
⊗N

i=1LawBT ·

) (
A′

)
.

Now by Theorem 5.3 gT · has a law equivalent to that of BT ·, on the restricted
σ -algebra �z. Invoking Lemma 5.4 repeatedly, we see that ⊗N

i=1LawgT · ∼ ⊗N
i=1

LawBT · , on the restricted σ -algebra �z. Thus if A is �z-measurable, A′ ∈ �⊗N
z

and

ν1 (e, A) =
(
⊗N

i=1LawgT ·

) (
A′

)
. = 0

⇐⇒ µ (A) =
(
⊗N

i=1LawBT ·

) (
A′

) = 0.

Hence we are done if we show that B−1
t1s

Bt2s is independent of �t11.
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By Lemma 5.5, if τ ≤ t1 < t2 then Bτ · and B−1
t1· Bt2· are independent Brownian

motions and so B−1
t1· Bt2· is independent of σ 〈Bts : t ≤ t1 and s ≤ 1〉 . However

since bts =
∫ s

0 BtδuB
−1
tu , we see that

�t11 = σ 〈bts : t ≤ t1 and s ≤ 1〉
⊂ σ 〈Bts : t ≤ t1 and s ≤ 1〉 .

Therefore B−1
t1· Bt2· is independent of �t11 and we are finished. ��

Proof of Theorem 5.4. It will suffice to show that if κ1 & κ2 then κ1⊗ν & κ2⊗ν.
For rectangles, it is clear that (κ1 ⊗ ν)(1A(x)1B(y)) = (κ2 ⊗ ν)

(1A(x)f (x)1B(y)). This extends to linear combinations of rectangles by linearity
and all bounded measurable functions by dominated convergence. Thus
d (κ1 ⊗ ν) /d (κ2 ⊗ ν) (x, y) = dκ1/d (κ2) (x). Thus κ1 ⊗ ν & κ2 ⊗ ν. ��

Proof of Theorem 5.5. From Definition 5.2 we see that

∂s

(
B−1
ti−1s

Bti s

)
=

[
Ad

B−1
ti−1s

∂s
(
bti s − bti−1s

)]
B−1
ti−1s

Bti s . (5.1)

Let b̃i ≡
∫ ·

0 Ad
B−1
ti−1s

∂s
(
bti s − bti−1s

)
. Then

b̃i =
∫ ·

0
Ad

B−1
ti−1s

ds
(
bti s − bti−1s

)+ 1

2

∫ ·

0
Ad

B−1
ti−1s

[
ds

(
bti s − bti−1s

)
, dsbti−1s

]
=

∫ ·

0
Ad

B−1
ti−1s

ds
(
bti s − bti−1s

)
.

Thus since the Adjoint action is norm preserving, we have that b̃i is a Brownian
motion on �. Computing quadratic variations, we see that

dsb̃i (s)⊗ dsb̃j (s)

= Ad
B−1
ti−1s

ds
(
bti s − bti−1s

)⊗ Ad
B−1
tj−1s

ds
(
btj s − btj−1s

)
=

∑
A

(
Ad

B−1
ti−1s

A⊗ Ad
B−1
tj−1s

A

)
ds

(
bAtj s − bAtj−1s

)
ds

(
bAti s − bAti−1s

)
= δij

(∑
A

A⊗2

)
(ti − ti−1) ds. ��

5.1. Proof of Theorem 5.3

Theorem 5.6. Let YT s be defined to be
∫ s

0 ∂σ gT σ g
−1
T σ as in Theorem 4.1. ThenLaw

YT · ∼ Law bT · as measures on C ([0, s] → �) for any s <
√

1+4T−1
2T .

The proof of Theorem 5.6 is given in Section 5.1.1.
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Proof of Theorem 5.3 Fix s. Pick T so that s <
√

1+4T−1
2T .

Let xσ be the evaluation map at σ on C ([0, s] → �). Define the probability
spaces 5b (resp. 5Y ) as the set C ([0, s] → �) as equipped with Law

(
bT · ↓[0,s]

)
(resp.Law

(
YT · ↓[0,s]

)
) and filtration generated by x. Let ηb and ηY be the solutions

to the stochastic differential equation

∂η = η∂x with η0 = 1 (*)

in the probability spaces5b and5y respectively. Then Proposition 8.3 of [9] implies
that ηb

(
bT · ↓[0,s]

) = BT · ↓[0,s] and ηY
(
YT · ↓[0,s]

) = gT · ↓[0,s]. Theorem 5.6
implies that bT · ↓[0,s] and YT · ↓[0,s] have equivalent laws and hence η ≡ ηb = ηY

a.s. Thus if

E1A

(
gT · ↓[0,s]

) = 0

⇐⇒ E1A ◦ η
(
YT · ↓[0,s]

) = 0

⇐⇒ E1A ◦ η
(
bT · ↓[0,s]

) = 0

⇐⇒ E1A

(
BT · ↓[0,s]

) = 0.

Hence by the Radon-Nikodym Theorem Law gT · is equivalent to Law BT · as
measures on C ([0, s] → K). ��

5.1.1. Proof of Theorem 5.6

Remark 5.7. Let πs : C ([0, 1] → L) → C ([0, s] → L) ;πs (x·) (r) = x (r) for
any r ≤ s. We make no distinction between a measure ν1 on (C([0, s] → L),

σ 〈xr : r ≤ s〉) and a measure ν2 on (C ([0, 1] → L) , σ 〈xr : r ≤ s〉) so long as
ν1 (F ◦ πs) = ν2 (F ) for any F : C ([0, s] → L)→ �. where L stands for either
K or �.

Remark 5.8. (Theorem 5.6 is not obvious). Since for s < 1, Law XT. ∼ Law

bT. (as measures on C ([0, s] → �)), one might suspect Law X ∼ Law b (as
measures on C ([0, 1]× [0, s] → �)) which should then indicate that

Law (YT .) = Law

∫
RT ·

Adgtσ dtdσXtσ

∼ Law

∫
RT ·

Adgtσ dtdσ btσ = Law (bT ·) .

Unfortunately in the t-variable, X.s and b.s are Brownian motions with param-
eters s − s2 and s respectively. Thus LawX ⊥ Lawb since

PX

(∑
i

|Oiω(s)|2 → s − s2

)
= 1,

while

Pb

(∑
i

|Oiω(s)|2 → s

)
= 1.

Hence these two measures live on different sets.
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Theorem 5.9. (Girsanov, see [19]). Let (5,�, {�·} , P ) be a filtered probability
space. Let β· be a d-dimensional Brownian motion and let Z· be an �d -valued

adapted process so that E exp 1
2

∫ S

0 |Zs |2 ds is finite and
∫ S

0

(
Zi
s

)2
ds <∞ almost

surely for any i ∈ {1, · · · , d}. Define

Z̃· ≡ exp

[∫ ·

0
Zs · dsβs − 1

2

∫ ·

0
|Zs |2 ds

]
.

Define a new measure P̃S on �S by setting P̃ (A) = E1AZ̃S . Then P̃S is a prob-
ability equivalent to P and the process {Yt ,�t ; 0 ≤ s ≤ S} is a d-dimensional
Brownian motion on

(
5,�S, P̃

)
where Y· ≡ β· +

∫ ·
0 Zsds.

We will use the following two Lemmas which are proven in Section 5.1.2.

Lemma 5.10. Let X be the �-valued Brownian bridge sheet of Theorem 2.18.
Then the expression X̃tσ ≡

∫ t

0 Adguσ duXuσ has the same law as Xtσ .

Lemma 5.11. Let X be the �-valued Brownian bridge sheet of Theorem 2.18.
Then

P exp

[
1

2

∫ s

0
dσ

∣∣∣∣∫ T

0
Adgtσ

dtXtσ

1− σ

∣∣∣∣2

�

]
<∞, if s <

√
1+ 4T − 1

2T
.

Proof of Theorem 5.6. Define

ZT (σ) ≡ −1

(1− σ)

∫ T

0
Adgtσ dtXtσ .

By definition of YT · in Theorem 4.1

YT · ≡ b̃T · +
∫ ·

0
dσZT (σ ) .

By Lemma 5.11,

E exp
∫ S

0
|ZT (σ)|2� dσ <∞ whenever S <

√
1+ 4T − 1

2T
.

Thus the measure

dP̃S ≡ exp

[∫ S

0
ZT (s) · dsb̃T s − 1

2

∫ S

0
|ZT (s)|2 ds

]
dP

is a probability on �T S and the process {YT s,�T s; 0 ≤ s ≤ S} is a P̃S-Brownian
motion on �. Thus for any set A ⊂ (C [0, S] → �)

E1A ◦ b̃T · = 0 ⇐⇒ Ẽ1A ◦ YT · = 0 ⇐⇒ E1A ◦ YT · = 0,

since the measures P̃S and P are equivalent on �T S . [Note:- it is essential that A
only depend on the path to time S or else 1A◦YT · will cease to be �T S-measurable.]

��
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5.1.2. Proofs of Lemmas 5.10 and 5.11

Proof of Theorem 5.10. X̃tσ is a �tσ martingale. To show X·s and X̃·s have the
same law it will suffice to show X̃·σ is a �-valued Brownian motion with parameter
σ − σ 2. To this end, let {A} run through an orthonormal basis of �. Then

dt X̃tσ ⊗ dt X̃tσ = Adgtσ dtXtσ ⊗ Adgtσ dtXtσ

=
(
σ − σ 2

)
dt

∑
A,B

δABAdgtσ A⊗ Adgtσ B

=
(
σ − σ 2

)
dt

∑
A

(
Adgtσ A

)⊗2

=
(
σ − σ 2

)
dt

∑
A

A⊗2.

Thus we are done.

Proof of Theorem 5.11. By using Jensen’s inequality on the probability 1[0,s]
dσ
s

we have

exp

[
1

2

∫ s

0
dσ

∣∣∣∣∫ T

0
Adgtσ

dtXtσ

1− σ

∣∣∣∣2

�

]

= exp

[∫ s

0

dσ

s

s

2

∣∣∣∣∫ T

0
Adgtσ

dtXtσ

1− σ

∣∣∣∣2

�

]

≤
∫ s

0

dσ

s
exp

[
s

2

∣∣∣∣∫ T

0
Adgtσ

dtXtσ

1− σ

∣∣∣∣2

�

]
.

Thus

J ≡ P exp

[
1

2

∫ s

0
dσ

∣∣∣∣∫ T

0
Adgtσ

dtXtσ

1− σ

∣∣∣∣2

�

]

≤
∫ s

0

dσ

s
P exp

[
s

2 (1− σ)2

∣∣∣∣∫ T

0
Adgtσ dtXtσ

∣∣∣∣2

�

]
.

Now by Lemma 5.10, X̃· =
∫ ·

0 Adgtσ dtXtσ is a Brownian motion on � with pa-

rameter G0 (σ, σ ). Thus in the expectation, we can replace
∣∣∣∫ T

0 Adgtσ dtXtσ

∣∣∣2

�
by

TG0 (σ, σ ) |N |2�, where N is a standard normal �-valued random variable. So we
get

J ≤
∫ s

0

dσ

s
P exp

sT σ

2 (1− σ)
|N |2� .
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So we see that

J <∞ ⇐⇒ sT σ

(1− σ)
<∞ for σ ∈ [0, s]

⇐⇒ σ

1− σ
<

1

sT
for σ ∈ [0, s]

⇐⇒ s

1− s
<

1

sT

⇐⇒ T s2 + s − 1 < 0

⇐⇒ s ∈
[

0,

√
1+ 4T − 1

2T

)
. ��
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1983/84, pages 177–206, Springer, Berlin-New York, 1985

5. Bakry, D., Emery, M.: Hypercontractivité de semi-groupes de diffusion. C. R. Acad.
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