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Abstract. Let φt be the stochastic flow of a stochastic differential equation on a compact
Riemannian manifold M . Fix a point m ∈ M and an orthonormal frame u at m, we will
show that there is a unique decomposition φt = ξtψt such that ξt is isometric, ψt fixes m
and Dψt(u) = ust , where st is an upper triangular matrix. We will also establish some
convergence properties in connection with the Lyapunov exponents and the decomposition
Dφt(u) = ut st with ut being an orthonormal frame. As an application, we can show that ψt
preserves the directions in which the tangent vectors at m are dilated at fixed exponential
rates.

1. Introduction

Consider an sde (stochastic differential equation) on a compact connected
d-dimensional Riemannian manfoldM of the following form.

dxt =
r∑
j=1

Xj(xt ) ◦ dwjt +X0(xt )dt, (1)

where X0, X1, . . . , Xr are (smooth) vector fields on M , wt = (w1
t , . . . , w

r
t ) is an

r-dimensional standard Brownian motion defined on a probability space (�,F, P ),
and ◦d denotes the Stratonovich stochastic differential. The sde (1) can also be writ-
ten more concisely as dxt =

∑r
j=0Xj(xt ) ◦ dwjt , where w0

t = t .
Let Diff(M) be the group of diffeomorphisms: M → M . A stochastic flow of

the sde (1) is a process φt in Diff(M) with φ0 = idM , the identity map onM , such
that ∀ x ∈ M , xt = φt (x) is a solution of (1). The process xt = φt (x) is called the
one point motion of φt and is a diffusion process onM .

Let Dφt be the differential of the random map φt : M → M . For x ∈ M ,
Dφt(x) is a linear map: TxM → Tφt (x)M . If u = (u1, . . . , ud) is a linear frame
at x, then Dφt(x)(u) = (Dφt (x)(u1), . . . , Dφt (x)(ud)) is a linear frame at φt (x).
For simplicity, we may writeDφt(u) forDφt(x)(u). For a d× d matrix g = {gij },
let ug = (∑i uigi1, . . . ,

∑
i uigid). This is a linear frame at x if g is non-singular.

Note that Dφt(ug) = Dφt(u)g.
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Let I (M) be the group of isometries onM . This is a Lie group.
Fix a point m ∈ M and an orthonormal frame u at m. Under an additional

hypothesis, which is automatically satisfied ifM is a sphere, we will show in Sec-
tion 3 that there is a unique decomposition of φt in the form φt = ξt ◦ ψt , where
ξt is a process in I (M) and ψt is a process in Diff(M) such that ξ0 = ψ0 = idM ,
ψt(m) = m andDψt(u) = ust for some process st in the group S of upper triangu-
lar matrices with positive diagonal elements. Moreover, ξt is a diffusion process in
I (M), and if the stochastic flow φt is invariant under I (M), ξt will be left invariant,
so the normalized Haar measure on I (M) will be a stationary measure for ξt .

Let λ1 ≥ λ2 ≥ · · · ≥ λd be the Lyapunov exponents of the stochastic flow
φt . It turns out that the component ψt not only fixes the point m, it also preserves
the directions in which the tangent vectors atm are dilated at the fixed exponential
rates λi . To show this, we will establish some convergence properties in connec-
tion to a decomposition of Dφt . This discussion given in sections 4 and 5 will be
independent of the decomposition φt = ξtψt .

LetO(M) be the bundle of orthonormal frames onM . Note that ut = Dξt (u) ∈
O(M) and Dφt(u) = ut st . In general, for any u ∈ O(M), let ut ∈ O(M) be ob-
tained from Dφt(u) by performing a standard Gram-Schmidt orthogonalization
procedure. Then Dφt(u) = ut st with st ∈ S.

Let G = GL(d,R)+ be the group of d × d real matrices of positive determi-
nants and letK = SO(d) be the subgroup of orthogonal matrices. Let st = pta+t kt
and st = atnt be respectively a polar and the Iwasawa decompositions of st , where
pt , kt ∈ K , and a+t , at are diagonal matrices and nt is an upper triangular matrix
with diagonal elements all equal to 1. By Oseledec’s multiplicative ergodic theorem
and a lemma in linear algebra, we show in Section 4 that if all the Lyapunov expo-
nents are simple, then almost surely, limt→∞(1/t) log at = limt→∞(1/t) log a+t =
diag(eλ1 , . . . , eλd ), and both kt andnt converge as t →∞. Some of these properties
have been mentioned in [6], we provide more complete proofs here.

The component ψt in the decomposition φt = ξtψt , defined by a given ortho-
normal frame u = (u1, . . . , ud) at m ∈ M , fixes the point m, so Dψt is a linear
map: TmM → TmM . From the convergence properties mentioned above, when t
is large,Dψt can be regarded as a fixed random linear map, followed by a dilation
along each axis ui at the exponential rate λi .

The case of multiple exponents requires more elaborate arguments and is treated
in Section 5.

2. Some geometric preliminaries

Let X be a vector field on M . The flow ηt of X is a smooth family of diffeomor-
phisms onM indexed by t ≥ 0 such that ∀ x ∈ M , yt = ηt (x) is a solution of the
ordinary differential equation (d/dt)yt = X(yt ) and η0 = idM . If ηt is an isometry
for all t ≥ 0, then X is called an infinitesimal isometry.

Let L(M) be the bundle of linear frames on M . A frame u ∈ L(M) at x ∈ M
is a basis (u1, . . . , ud) in TxM . We will let π : L(M) → M be the natural pro-
jection given by π(u) = x. Let G = GL(d,R)+ be the group of d × d real
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matrices of positive determinant. Its Lie algebra G is the space of d × d matrices
equipped with the Lie bracket [A,B] = AB−BA. For u = (u1, · · · , ud) ∈ L(M)
and g ∈ G, ug = (∑i uigi1, · · · ,

∑
i uigid) is a frame at π(u). Given A ∈ G, let

uA = (d/dt)[uetA]t=0, the tangent vector to the curve t �→ uetA inL(M) at t = 0.
Such vectors are called the vertical vectors and they form a subspace T vu L(M) of
TuL(M).

For X ∈ TxM , let zt be a curve in M with (d/dt)zt |t=0 = X and let ut be
the parallel displacement of u along zt . Let H(X)(u) = (d/dt)ut |t=0, called the
horizontal lift of X to L(M) at u. Then T hu L(M) = {H(X)(u); X ∈ TxM} is a
subspace of TuL(M) and any element in T hu L(M) is called a horizontal vector at
u. We have TuL(M) = T hu L(M)⊕ T vu L(M) (direct sum).

Let K = SO(d) be the subgroup of G formed by orthogonal matrices. Its Lie
algebra K is the space of skew-symmetric matrices. Let O(M) be the bundle of
orthonormal frames onM . Then O(M) ⊂ L(M). We will let πo: O(M)→ M be
the restriction of π : L(M) → M . For u ∈ O(M), X ∈ TxM and A ∈ K, both
H(X)(u) and uA are contained in TuO(M). In fact,

TuO(M) = {H(X)(u); X ∈ TxM} ⊕ {uA; A ∈K}.

Let S be the subgroup of G formed by upper triangular matrices with positive
diagonal elements. Its Lie algebra S is the space of all upper triangular matrices.
Any g ∈ G can be written uniquely as g = ks with k ∈ K and s ∈ S. Indeed, this
decomposition can be obtained by performing a Gram-Schmidt orthogonalization
procedure on the set of column vectors of g. At the Lie algebra level, any A ∈ G
can be written uniquely as A = AK + AS with AK ∈K and AS ∈S.

Let uS = {uA; A ∈S}. For u ∈ O(M), we have

TuL(M) = TuO(M)⊕ uS. (2)

For Y ∈ TuL(M), let YO be the TuO(M)-component of Y in the above decompo-
sition.

For a vector fieldX onM with flow ηt , its natural lift toL(M) is a vector field on
L(M) defined by δX(u) = (d/dt)Dηt (u)|t=0. For Y ∈ TxM , let ∇YX = ∇X(Y)
be the covariant derivative defined by the Riemannian connection. We may write
∇X(u) = (∇X(u1), . . . ,∇X(ud)). Then there is a unique matrix X̃(u) ∈ G such
that ∇X(u) = u X̃(u). If u ∈ O(M), then

[X̃(u)]jk = 〈uj ,∇X(uk)〉, (3)

where 〈·, ·〉 is the Riemannian metric.

Lemma 1. Let X be a vector field onM and u ∈ L(M). Then

δX(u) = H(X)(u)+ uX̃(u) = H(X)(u)+ u[X̃(u)]K + u[X̃(u)]S. (4)

Consequently, if u ∈ O(M), then [δX(u)]O = H(X)(u)+ u[X̃(u)]K.
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Proof. Let ηt be the flow of X. We may construct a frame field U in a neighbor-
hood of x = π(u) with U = u at x such that Dηt(U(x)) = U(ηt (x)). Then the
Lie bracket [X, U ](x) = (d/dt)Dη−1

t [U(ηt (x))]|t=0 = (d/dt)U(x)|t=0 = 0 and
∇XU = ∇UX + [X, U ] = ∇UX at x. Let 4t denote the parallel displacement
along the curve t �→ ηt (x). We have Dηt(u) = 4t(u)gt for some gt ∈ G with g0
equal to the identity matrix, and

δX(u) = d

dt
[4t(u)gt ]t=0 = d

dt
[4t(u)]t=0 + d

dt
(ugt )|t=0.

The first term on the right hand side of above is H(X)(u) and the second term is

d

dt
[4−1
t (Dηt (u))]t=0 = d

dt
[4−1
t (U(ηt (x)))]t=0 = ∇XU(x) = ∇UX(x) = ∇uX.

��
Recall that I (M) is the isometry group onM . Let I be its Lie algebra. This is

a space of vector fields on M which are infinitesimal isometries. It is clear that if
X ∈ I and u ∈ O(M), then δX(u) ∈ TuO(M).
Lemma 2. Foru ∈ O(M), the linear map:I→ TuO(M) defined byX �→ δX(u)

is injective. Moreover, ifM is a sphere, then it is also surjective.

Proof. If X, Y ∈ I and δX(u) = δY (u), then X − Y is an infinitesimal isometry
which fixes u, so its flow ηt will leave all the geodesics starting at πo(u) invariant.
By the connectedness ofM , ηt = idM and X − Y = 0. This proves the injectivity.
IfM is a sphere, then the differentials of isometries onM are transitive on O(M),
hence,O(M) = {Dξ(u); ξ ∈ I (M)}. From this it follows that TuO(M) = {δX(u);
X ∈ I}.

3. Decomposition of the stochastic flow

Let m ∈ M and u ∈ O(M) with πo(u) = m be fixed in this section. Recall that φt
is the stochastic flow of the sde (1) which contains vector fields X0, X1, . . ., Xr ,
and for Y ∈ TuL(M), YO is the TuO(M)-component of Y in the decomposition
(2). Let δI(u) = {δX(u); X ∈ I}, the image of the map given in Lemma 2. Note
that if X is a vector field on M and η ∈ Diff(M), then Dη(X) is a vector field on
M given by Dη(X)(x) = Dη(X(η−1(x)) for x ∈ M . We will assume

∀ i = 0, 1, . . . , r and ∀ ξ ∈ I(M), [δDξ(Xj )(u)]O ∈ δI(u). (5)

This hypothesis is automatically satisfied ifM is a sphere because then by Lemma 2,
δI(u) = TuO(M).
Theorem 1. Under the hypothesis (5), the stochastic flow φt of the sde (1) has a
unique decomposition φt = ξtψt , where ξt is a process in I (M) andψt is a process
in Diff(M) such that ξ0 = ψ0 = idM , ψt(m) = m and Dψt(u) = ust for some
process st ∈ S. Moreover, ξt is a diffusion process in I (M) and ψt is the stochastic
flow of an sde onM with random and time dependent vector fields.
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Proof. Let J be the linear space of the vector fieldsX onM such that [δX(u)]O ∈
δI(u). By (5), J contains Dξ(Xj ) for j = 0, 1, . . . , r and ξ ∈ I (M). By Lem-
ma 2, for any X ∈ J, there is a unique J (X) ∈ I such that

δJ (X)(u) = [δX(u)]O. (6)

Note that J (X)(m) = X(m). By (6) and Lemma 1,

δX(u) = δJ (X)(u)+ u[X̃(u)]S. (7)

By Section I.4 in [3] (see also [6]), the derivative process Dφ(u) satisfies the
following sde on L(M).

dDφt (u) =
r∑
j=0

δXj (Dφt (u)) ◦ dwjt . (8)

Note that the term δX0(Dφt (u))dt is absorbed in the summation with w0
t = t .

The equation (8) can be derived from (1) with xt replaced by φt (x) and taking
derivatives with respect to x under local coordinates.

For ξ ∈ I (M) and Y ∈ I, let ξY and Yξ be respectively the tangent vectors
at Tξ I (M) obtained by left and right translations of Y . Thus ξ �→ ξY (Yξ ) may be
regarded as a left (right) invariant vector field on I (M).

We may writeXJ for J (X). Let ξt be the solution of the following sde on I (M)
with ξ0 = idM .

dξt =
r∑
j=0

ξt [Dξ
−1
t (Xj )]

J ◦ dwjt . (9)

Since the vector fields involved in the above sde depend only on ξt , we see that ξt
is a diffusion process on I (M).

Since ξ−1
t ξt = idM , (◦dξ−1

t )ξt + ξ−1
t (◦dξt ) = 0. By (9), we obtain an sde for

ξ−1
t .

dξ−1
t = −

r∑
j=0

[Dξ−1
t (Xj )]

J ξ−1
t ◦ dwjt . (10)

For x ∈ M , let xt = φt (x) and yt = ξ−1
t (xt ). By (1) and (10), we have

dyt = Dξ−1
t (◦dxt )+ (◦dξ−1

t )(xt )

=
r∑
j=0

{Dξ−1
t (Xj (xt ))− [Dξ−1

t (Xj )]
J (ξ−1

t (xt ))} ◦ dwjt

=
r∑
j=0

{Dξ−1
t (Xj )− [Dξ−1

t (Xj )]
J }(yt ) ◦ dwjt .

For X ∈ J, let XH = X −XJ . Then XH(m) = 0, and by (7),

δXH (u) = u[X̃(u)]S. (11)
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We have proved that yt is a solution of the the following sde onM .

dyt =
r∑
j=0

[Dξ−1
t (Xj )]

H (yt ) ◦ dwjt . (12)

The vector fields [Dξ−1
t (Xj )]H of the above sde are random and time dependent,

whose natural lifts δ[Dξ−1
t (Xj )]H can still be defined by fixing t and ω. Since

XH(m) = 0 for any X ∈ J, it follows that [Dξ−1
t (Xj )]H (m) = 0, hence, if

y0 = m, then yt = m for all t > 0.
Let ψt = ξ−1

t φt . Then ψt is a process in Diff(M) and is the stochastic flow of
(12) in the sense that yt = ψt(y) is a solution of (12) for any y ∈ M . The derivative
process Dψt(u) satisfies the sde

dDψt(u) =
r∑
j=0

δ[Dξ−1
t (Xj )]

H (Dψt(u)) ◦ dwjt . (13)

This can be proved by the same method used to prove (8).
Since ψt(m) = m, Dψt(u) = ust for some process st ∈ G. By (13) and (11),

we obtain an sde for st .

dst =
r∑
j=0

{[Dξ−1
t (Xj )]̃ (u)}S st ◦ dwjt . (14)

Since the vector fields in the above sde are contained in S and s0 is the identity
matrix, it follows that st is a process in S.

It remains to prove the uniqueness of the decomposition. Since Dφt(u) =
Dξt (Dψt(u)) = Dξt (u)st and st ∈ S, we see that the orthonormal frame Dξt (u)
= (Dξt (u1), . . ., Dξt (ud)) can be obtained by performing a standard Gram-Sch-
midt orthogonalization procedure toDφt(u)= (Dφt (u1), . . .,Dφt(ud)). It follows
that Dξt (u) is uniquely determined by Dφt(u). Since ξ ∈ I (M) is determined by
Dξ(u), the theorem is proved. ��
Remark 1. The uniqueness part of the proof for Theorem 1 in fact shows the
uniqueness of decomposition φt = ξtψt without assuming ξ0 = ψ0 = idM . Con-
versely, given any ξ0 ∈ I (M) and ψ0 ∈ Diff(M) with ψ0(m) = m and Dψ0(u) =
us for some s ∈ S, we can obtain a decomposition φt = ξtψt , which has all the
properties stated in Theorem 1 except ξ0 = ψ0 = idM , just by solving (9) with ξ0
as the initial point and then setting ψt = ξ−1

t φt .

Let M = Sn−1 be the (n− 1)-dimensional sphere. Then J (X) given by (6) is
defined for any vector field X onM . We will now obtain an explicit expression for
J (X). Consider Sn−1 as the unit sphere embedded inRn and let (x1, x2, . . . , xn) be
the standard coordinates of Rn. Let ∂i = (∂/∂xi). Fix the point m = (0, . . . , 0, 1)
on Sn−1. Let u = (∂1, . . . , ∂n−1). This is an orthonormal frame at m for Sn−1. We
may express X as

X(x) =
n∑
j=1

aj (x)∂j (15)
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for some smooth functions aj (x) on Sn−1 satisfying
∑n
j=1 xjaj (x) = 0. For

1 ≤ i < j ≤ n, letZij = xi∂j −xj ∂i . The flow of this vector field is the unit speed
rotation in the coordinate plane (xi, xj ). In fact, {Zij ; 1 ≤ 1 < j ≤ n} is a basis
for the Lie algebra I of infinitesimal isometries on Sn−1. We will show

J (X) = −
n−1∑
i=1

ai(m)Zin +
∑

1≤i<j≤(n−1)

∂iaj (m)Zij . (16)

Note that for 1 ≤ i ≤ (n− 1), ∂i ∈ TmSn−1, so ∂iaj (m) is well defined.
We extend X to a neighborhood of Sn−1 in Rn by setting X(x) = X(x/|x|).

Then
∑n
i=1 xjaj (x) = 0 for x in this neighborhood, hence,

an(m) = 0 and ai(m)+ ∂ian(m) = 0 for 1 ≤ i ≤ (n− 1). (17)

Let η(t, x) be flow of X. For the moment, assume X(m) = 0. Then δX(u) is the
same as its vertical component [δX(u)]v . We have

Dη(u) = (Dη(∂1), . . . , Dη(∂n−1)) = (
n∑
i=1

∂1ηi ∂i, . . . ,

n∑
i=1

∂n−1ηi ∂i)

Since (d/dt)ηi = ai(η), (d/dt)∂jηi =
∑n
k=1 ∂kai(η)∂jηk and (d/dt)∂jηi(0,m) =

∂jai(m). By (17), ∂jan(m) = −aj (m) = 0 for 1 ≤ j ≤ (n− 1), we have

δX(u) = d

dt
Dη(u)|t=0 = (

n−1∑
i=1

∂1ai(m) ∂i, . . . ,

n−1∑
i=1

∂n−1ai(m)∂i) = uA,

where A is the (n− 1)× (n− 1) matrix given by Aij = ∂jai(m). It follows that if
X = xj ∂i for i ≤ j , then δX(u) ∈ uS.

We now remove the assumption thatX(m) = 0. With xn =
√

1−∑n−1
i=1 x

2
i , we

may considerX as a function of x′ = (x1, . . . , xn−1) and will find its Taylor expan-
sion at m up to the second order. Let O(|x′|2) denote any function on Sn−1 which
converges to 0 as x′ → 0 (that is, as x → m) in the order of |x′|2 = ∑(n−1)

i=1 x2
i .

We will also use O(|x′|2) to denote any vector field on Sn−1 whose components
are such functions. Note that if X = O(|x′|2), then δX(u) = 0. Moreover, xn =
1+O(|x′|2), ∂ixn = −xi/xn, and

∂i[aj (x1, . . . , xn−1,

√
1− |x′|2)]x=m = ∂iaj (m)

for 1 ≤ i ≤ (n− 1). By these comments and (17), we have

X(x) =
n∑
j=1

aj (x)∂j

=
n−1∑
j=1

aj (m)∂j +
n−1∑
i=1

n−1∑
j=1

∂iaj (m)xi∂j +
n−1∑
j=1

∂jan(m)xj ∂n +O(|x′|2)
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=
n−1∑
j=1

aj (m)[xn∂j − xj ∂n]+
∑

1≤i<j≤(n−1)

∂iaj (m)[xi∂j − xj ∂i]

+
n−1∑
j=1

∂jaj (m)xj ∂j +
∑

1≤i<j≤(n−1)

[∂jai(m)+ ∂iaj (m)]xj ∂i +O(|x′|2)

= −
n−1∑
j=1

aj (m)Zjn +
∑

1≤i<j≤(n−1)

∂iaj (m)Zij +
n−1∑
j=1

∂jaj (m)xj ∂j

+
∑

1≤i<j≤(n−1)

[∂jai(m)+ ∂iaj (m)]xj ∂i +O(|x′|2).

Now (16) follows from the above and the fact that δ(xj ∂i)(u) ∈ uS for i ≤ j .

The diffusion process ξt on I(M) is called left invariant if for any ξ ∈ I(M),
ξξt is equal in distribution to the same diffusion process starting at ξξ0. It is well
known that if ξt is left invariant, then the normalized Haar measure on I(M) is a
stationary measure of ξt . Recall that a stationary measure of a Markov process is
a probability measure on the state space such that if the process started with this
measure as the initial distribution, then it will have the same distribution at all time.

The stochastic flow φt will be called invariant under I(M) if for any ξ ∈ I(M),
ξφt ξ

−1 ∼= φt (equal in distribution as processes in Diff(M)). Note that ξφt ξ−1 is
the stochastic flow of the sde dxt =

∑r
j=0Dξ(Xj )(xt ) ◦ dwjt . If X0 = 0 and if

for any ξ ∈ I(M), Dξ(Xj ) =
∑r
i=1 α

j
i (ξ)Xi , where α(ξ) = {αji (ξ)} is an r × r

orthogonal matrix, then this sde can be written as dxt =
∑r
j=1Xj(xt )◦dβjt , where

βt = α(ξ)wt is an r-dimensional Brownian motion. Therefore, in this case, φt is
invariant under I(M).

Theorem 2. Assume φt is invariant under I (M). Then ξt is left invariant.

Proof. It suffices to show that for any ξ ∈ I (M), if ξ ′t is the solution of (9) (re-
placing ξt by ξ ′t ) with ξ ′0 = ξ , then ξ ′t ∼= ξξt (equal in distribution as processes in
I(M)). By Remark 1, we have the unique decomposition φtξ = ξ ′t ψ ′t , where ψ ′t is
a process in Diff(M) such that ψ ′t (m) = m and Dψ ′t (u) = us′t for some s′t ∈ S.
On the other hand, ξξtψt = ξφt = ξφt ξ

−1ξ ∼= φtξ . This proves ξξt ∼= ξ ′t and
ψt ∼= ψ ′t . ��

4. Lyapunov exponents

The discussion in this and the next sections will shed light on the decomposi-
tion given in Theorem 1, but it will be independent of this decomposition and the
hypothesis (5) will not be assumed.

As before, let φt be the stochastic flow of the sde (1). We will assume that
its one point motion has an ergodic stationary measure ρ. This assumption is
implied by the following Hörmander type condition: the Lie algebra Lie(X1, . . . ,

Xr) generated by the vector fields X1, . . . , Xr in (1) spans TxM for any x ∈ M .
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By applying the Oseledec Multiplicative Ergodic Theorem to stochastic flows
(see [1] or [2]), we can show that for ρ × P -almost all (x, ω),

[Dφt(x)
∗Dφt(x)]1/2t → >(x, ω) as t →∞, (18)

where Dφt(x)∗: Tφt (x)M → TxM is the adjoint operator of Dφt(x): TxM →
Tφt (x)M defined relative to the Riemannian metric 〈·, ·〉, and >(x, ω) is a self-
adjoint operator on TxM with eigenvalues

eλ1 ≥ eλ2 ≥ · · · ≥ eλd

independent of (x, ω). Let l be the number of distinct eigenvalues. Let 0 = i0 <
i1 < i2 < · · · < il = d be the indices so that λi jumps at ik for 1 ≤ k ≤ (l − 1),
that is,

λ1 = · · · = λi1 > λi1+1 = · · · = λi2 > λi2+1 · · · · · · λil−1 > λil−1+1 = · · · = λd.
(19)

Let Ek(x, ω) be the eigenspace of >(x, ω) corresponding to the eigenvalue eλik
and let Vk(x, ω) =

∑l
j=k Ej (x, ω) (direct sum). Then for 1 ≤ k ≤ l,

∀ Y ∈ [Vk(x, ω)− Vk+1(x, ω)], lim
t→∞

1

t
log ‖Dφt(x)(Y )‖ = λik , (20)

where ‖ · ‖ = 〈·, ·〉1/2 and Vl+1(x, ω) = {0}.
Note that under the Hörmander type condition mentioned earlier, the one point

motion xt = φt (x) has a positive smooth transition density with respect to the
Riemannian measure on M . In this case, using the Markov property of xt , we can
show that the conclusions of the last paragraph in fact hold for all x ∈ M almost
surely.

The numbers λ1 ≥ λ2 ≥ · · · ≥ λd are called the Lyapunov exponents of the
stochastic flow φt , which are exponential rates at which the lengths of the tangent
vectors change under the flow and are in fact independent of the Riemannian metric.
The number of times an exponent repeats itself in the above list is called its multi-
plicity. An exponent will be called simple if its multiplicity is equal to 1. Note that
the subspacesVk(x, ω) form a nested sequenceTxM = V1(x, ω) ⊃ · · · ⊃ Vl(x, ω),
called the filtration of TxM determined by the Lyapunov exponents.

We now recall some basic facts about the matrix groupG = GL(d,R)+. For a
general semisimple Lie group, these properties are discussed in great detail in [5],
see also [4]. AlthoughG is not semisimple,G is a direct product of the semisimple
group SL(d,R) and the multiplication groupR+ = (0, ∞), where SL(d,R) is the
subgroup ofG consisting of the d×d real matrices of determinant 1. Therefore, all
these properties hold also forGwith R+ absorbed by the subgroupA to be defined
below.

Let A be the subgroup of G formed by the diagonal matrices with positive
diagonal elements. This is an abelian group and its Lie algebra A is the space of
all diagonal matrices. For a ∈ A, we will let log a be the unique element of A such
that exp(log a) = a. Let A+ be the subset of A consisting of diagonal matrices
with strictly descending diagonal elements and let A+ be its closure.
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LetK = SO(d), the subgroup ofG consisting of orthogonal matrices of deter-
minant 1. Any g ∈ G has a polar decomposition g = pa+k with a+ ∈ exp(A+)
and p, k ∈ K . Although a+ is uniquely determined by g, (p, k) is not. All possible
choices for (p, k) are given by (pm,m−1k) with m ranging over the centralizer of
a+ in K , that is, m ∈ K with ma+m−1 = a+.

Let B be a subset of {1, 2, . . . , (d − 1)} and let i1 < i2 < · · · < il be the
integers in {1, 2, . . . , d} which are not contained inB. Then il = d. LetKB be the
subgroup of K which leaves the following subspaces of Rd invariant.

E1 = span(e1, . . . , ei1), E2 = span(ei1+1, . . . , ei2), . . . ,

El = span(eil−1+1, . . . , ed), (21)

where {e1, e2, . . . , ed} is the standard basis of Rd . The non-zero elements of a ma-
trix in KB are contained in l sub-matrices arranged along the diagonal. Note that
if B ⊂ B′, then KB ⊂ KB′ , and K∅ is the subgroup of K formed by the diagonal
matrices with diagonal elements equal to ±1, where ∅ is the empty set.

From now on, unless explicitly stated otherwise, we will let B be the set of
integers i with 1 ≤ i ≤ (d − 1) such that λi = λi+1. Then KB is the centralizer of
diag(eλ1 , . . . , eλd ) in K , and the integers ik coincide with those given by (19).

Let u ∈ L(M) with x = π(u). We may think u as a linear map: Rd → TxM

defined by η = (η1, . . . , ηd) �→ uη = ∑
i uiηi . The adjoint map u∗: TxM → Rd

is defined by 〈u∗Y, η〉0 = 〈Y, uη〉 for Y ∈ TxM and η ∈ Rd , where 〈·, ·〉0 is the
usual Euclidean inner product. It is easy to check that if u ∈ O(M), then u∗ = u−1.

Foru ∈ O(M), the frameDφt(u) is in general not orthonormal, but by perform-
ing a standard Gram-Schmidt orthogonalization procedure to Dφt(u), we obtain
Dφt(u) = ut st , where ut ∈ O(M) and st ∈ S. We may regard the matrix st as
a linear map: Rd → Rd as usual. Then Dφt(x) = Dφt(u)u

−1 = ut stu
−1. Let

st = pta
+
t kt be a polar decomposition of st . We may write Ut(u, ω), st (u, ω),

a+t (u, ω) and kt (u, ω) for ut , st , a
+
t and kt to indicate their dependence on the

initial frame u and ω. Note that although kt (u, ω) is not uniquely determined by
st (u, ω), the left cosetKBkt (u, ω) is when t is large because thenKB contains the
centralizer of a+t in K .

Lemma 3. For almost all (x, ω) ∈ M ×� and all u ∈ π−1
o (x),

lim
t→∞

1

t
log a+t (u, ω) = diag{λ1, λ2, . . . , λd}, (22)

andKBkt (u, ω)→ KBk∞(u, ω) in the left coset spaceKB\K as t →∞ for some
k∞(u, ω) ∈ K . Moreover, the map >: TxM → TxM defined by (18) is given by

>(u, ω) = uk∗∞(u, ω) diag(eλ1 , . . . , eλd )k∞(u, ω)u−1.

Proof. Since Dφt(x) = ut stu−1, Dφt(x)∗ = (u∗)−1s∗t u∗t , where s∗t is the matrix
transpose of st . It follows thatDφt(x)∗Dφt(x) = u(s∗t st )u−1. By (18), for ρ×P -
almost all (x, ω) and all u ∈ π−1

o (x), [st (u, ω)∗ st (u, ω)]1/2t converges to some
symmetric matrix with eigenvalues {eλ1 , eλ2 , . . . , eλd }. This symmetric matrix may
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be diagonalized with an orthogonal matrix, we have, [st (u, ω)∗ st (u, ω)]1/2t →
k∗∞ diag(eλ1 , . . . , eλd ) k∞ as t →∞, for some k∞ ∈ K .

Since s∗t st = k∗t (a+t )2kt , we have [s∗t st ]1/2t = k∗t exp[(1/t) log a+t ]kt . Let b
and k′∞ be respectively limiting points of (1/t) log a+t and kt as t →∞. Then

k′∗∞ exp(b)k′∞ = k∗∞ exp[diag(λ1, . . . , λd)]k
∗
∞.

By the uniqueness of the polar decomposition, b =diag(λ1, . . . , λd) and k′∞ ∈
KBk∞. ��

Corollary 1. For ρ × P -almost all (x, ω) and all u ∈ π−1
o (x), the eigenspace

of >(x, ω) corresponding to the eigenvalue exp(λik ) is given by Ek(x, ω) =
u k−1∞ (u, ω)Ek for 1 ≤ k ≤ l, where Ek are subspaces of Rd given by (21).

The process ut is a diffusion process in O(M). As in [6], using Lemma 1 and
(8), we can write down sde’s satisfied by ut and st ,

dut =
r∑
j=0

{H(Xj )(ut )+ ut [X̃j (ut )]K} ◦ dwjt (23)

and

dst =
r∑
j=0

[X̃j (ut )]Sst ◦ dwjt . (24)

Note that [X̃j (ut )]Sst may be regarded as a matrix product.
LetN be the subgroup ofG formed by the upper triangular matrices with diag-

onal elements all equal to 1. We have the Iwasawa decompositionG = KAN in the
sense that the map (h, a, n) �→ g = han is a diffeomorphism: K × A×N → G.
Note that S = AN , so if s ∈ S, then its Iwasawa decomposition s = an does not
have a K-component. We will let st = atnt be the Iwasawa decomposition of the
process st .

Let Ñ be the subgroup of G formed by the lower triangular matrices with di-
agonal elements all equal to 1. Both N and Ñ are nilpotent subgroups of G. It is
known that P̃B = ÑAKB is a closed subgroup ofG, called a boundary subgroup or
parabolic subgroup. Note that the non-zero elements of a matrix in P̃B are confined
in the region on and below the “stairs" along the diagonal as shown in the following
figure, where 0 = i0 < i1 < i2 < · · · < il−1 < il = d are the indices given by
(19).

· · ·

i0 + 1 = 1

i1
i1 + 1

i2

il−1 + 1

il = d
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It is known that P̃BN is an open subset ofG whose complement has a positive
co-dimension. Moreover, QB = {k ∈ K; k ∈ P̃BN} is an open subset of K (in
relative topology) whose complement has a lower dimension in K .

The following lemma is just Lemme (2.23) in [4] which is valid for a general
non-compact type semisimple Lie group G. Note that a different Iwasawa decom-
position, namely G = NAK , is used in [4]. To get the lemma in the present form,
we just need to take an inverse.

Lemma 4. Letgj be a sequence inGwith a polar decompositiongj = pja+j kj and
the Iwasawa decomposition gj = hjajnj . Assume KBkj → KBk∞ in (KB\K)
for some k∞ ∈ QB, ∀ i ∈ B, (a+j )i/(a

+
j )i+1 ≤ C for some constant C > 0, and

∀ i "∈ B with 1 ≤ i ≤ (d − 1), (a+j )i/(a
+
j )i+1 → ∞ as j → ∞, where (a+j )i

is the i-th diagonal element of a+j . Then P̃Bnj → P̃Bk∞ in (P̃B\G), aj (a+j )−1

is contained in a compact subset of A, and hj = pjp
′
j with p′j ∈ K satisfying

p′jKB→ KB in K/KB.

For x ∈ M , the fiber π−1
0 (x)may be identified withK via the map k �→ uk for

some fixed u ∈ π−1
o (x), hence, the normalized Haar measure onK induces a mea-

sure on π−1
o (x), which is independent of the choice of u. In the sequel, when we say

something holds for almost all u ∈ π−1
o (x), it is this measure we are referring to.

Theorem 3. For u ∈ O(M), let Dφt(u) = ut st , where ut ∈ O(M) with u0 = u
and st ∈ S. Let st = pta+t kt and st = atnt be respectively a polar and the Iwasa-
wa decompositions of st . Assume all the Lyapunov exponents are simple. Then for
ρ × P -almost all (x, ω) ∈ M ×� and almost all u ∈ π−1

o (x),

lim
t→∞

1

t
log a+t (u, ω) = lim

t→∞
1

t
log at (u, ω) = diag(eλ1 , . . . , eλd ). (25)

Moreover, as t → ∞, K∅kt (u, ω) → K∅k∞(u, ω) for some k∞(u, ω) ∈ Q∅,
nt (u, ω)→ n∞(u, ω) for some n∞(u, ω) ∈ P̃∅k∞(u, ω), and pt (u, ω)K∅ → K∅.

Proof. For any k ∈ K , st k = k′t s′t for k′t ∈ K and s′t ∈ S. On the other hand,
st k = pta+t kt k, hence, s′t = (k′−1

t pt )a
+
t (kt k) is a polar decomposition of s′t . Since

Dφt(uk) = ut st k = (utk
′
t )s
′
t and utk′t ∈ O(M), it follows that kt (uk, ω) =

kt (u, ω)k. Because all the Lyapunov exponents are simple, B = ∅. By Lemma 3,
(1/t) log a+t (u, ω) → diag{λ1, . . . , λd} and K∅kt (u, ω) → K∅k∞(u, ω) as t →
∞. ThenK∅k∞(uk, ω) = K∅k∞(u, ω)k. Because the complement ofQ∅ inK has
a lower dimension, it follows that for almost all k ∈ K , k∞(uk, ω) ∈ Q∅. Now
Lemma 4 with B = ∅ can be applied to prove all the remaining claims. We note
that P̃∅nt → P̃∅k∞ implies the convergence of nt because N ∩ P̃∅ contains only
the identity matrix, and ptK∅ → K∅ is equivalent to K∅pt → K∅ because both
mean that any limiting point of pt as t →∞ belongs to K∅. ��

Remark 2. Because K∅ is finite, we may choose the kt component properly so
that t → kt is continuous and kt → k∞ in Theorem 3.
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Remark 3. If the vector fields of the sde (23) satisfy the Hörmander type condition
mentioned earlier, then ut has a smooth transition density. Using the Markov prop-
erty of ut , we can show that the conclusions of Theorem 3 hold for all u ∈ O(M)
almost surely.

Now let φt = ξtψt and Dψt(u) = ust , with u = (u1, . . . , ud) ∈ π−1(m) and
m ∈ M , be the decompositions given by Theorem 1. Then Dψt(m) = ustu−1 =
uatntu

−1 with at ≈ diag(eλ1t , . . . , eλd t ) and nt → n∞ as t →∞. Therefore, for
large time t > 0, the linear map Dψt(m): TmM → TmM may be regarded as a
fixed random linear map un∞u−1, followed by uatu−1 which is a dilation along
each axis ui at an exponential rate λi .

5. Multiple exponents

We will prove in this section a version of Theorem 3 when the Lyapunov exponents
are not simple. The main task is to prove the convergence of P̃Bnt when B is not
empty. Note that we cannot directly apply Lemma 4 when B "= ∅ because we do
not know how to verify the condition that ∀ i ∈ B, (a+j )i/(a

+
j )i+1 is bounded. If

such i is excluded from B, then the condition KBkt → KBk∞ can no longer be
verified with a smallerB. Although we may extract a sequence of t going to infinity
for this to hold as in the proof of Lemma 6 below, but it will not be good enough
to prove the convergence of P̃Bnt , for which a more direct method will be used.

Let N be the Lie algebra of N . Then N is the space of the upper triangular
matrices with zero diagonal elements. For Y ∈ G, let Y = YK + YA + YN be the
direct sum decomposition G =K⊕A⊕N. Since dst = (◦dat )nt + at (◦dnt ),
we obtain the sde’s satisfied by at and nt .

dat =
r∑
j=0

[X̃j (ut )]A at ◦ dwjt (26)

and

dnt =
r∑
j=0

Ad(a−1
t )[X̃j (ut )]N nt ◦ dwjt , (27)

where for h ∈ G, Ad(h): G→ G is the differential of the map g �→ hgh−1 from
G to G at the identity. In fact, for Y ∈ G, Ad(h)Y = hYh−1 may be regarded as a
matrix product. Note that for a ∈ A and Y ∈N, Ad(a)Y ∈N.

From (26) and the fact that A is abelian, we obtain an sde for log at .

d log at =
r∑
j=1

[X̃j (ut )]A ◦ dwjt + [X̃0(ut )]A dt.

Using the stochastic calculus, we may write down the Itô integral equation for the
above Stratonovich sde as follows.

log at =
∫ t

0

r∑
j=1

[X̃j (us)]A dw
j
t +

∫ t

0
F(us)ds,
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where F(u) ∈ A is bounded, whose explicit expression is given in [6] and is not
needed here. Divide the above by t and then let t →∞. The first term on the right
will converge to 0, whereas by the ergodic theory the second term will converge
almost surely if u0 has a stationary distribution. As before, we may write at (u, ω)
for at to indicate its dependence on (u, ω). Let ρ̄ be a stationary measure for ut .
Note that ρ = ρ̄ ◦ π−1

o . We have proved the following result.

Lemma 5. For ρ̄ × P -almost all (u, ω) ∈ O(M) × �, limt→∞(1/t)at (u, ω)
exists.

Lemma 6. Let ρ̄ be a stationary measure for ut which has a continuous density
on O(M). Then for ρ̄ × P -almost all (u, ω) ∈ O(M)×�, (25) holds.

Proof. In the proof of Theorem 3, it is shown that KBkt (uk, ω) = KBkt (u, ω)k,
hence, for almost all k ∈ K , kt (uk, ω) has a limiting point contained in Q∅ as
t → ∞. It follows that for ρ̄ × P -almost all (u, ω), ktj (u, ω) converges to some
k(u, ω) ∈ Q∅ along some sequence tj →∞. Fix such (u, ω) and write kj , a

+
j and

aj respectively for ktj (u, ω),a
+
tj
(u, ω) andatj (u, ω). We may assume that for i ∈ B,

(a+j )i/(a
+
j )i+1 is bounded. Otherwise, by taking a subsequence if necessary, we

may assume (a+j )/(a
+
j )i+1 →∞ and we may exclude such an i fromB. The con-

ditions of Lemma 4 will be satisfied and we can conclude that aj (a
+
j )
−1 is contained

in a bounded subset ofA. This proves limj (1/tj ) log aj = limj (1/tj ) log a+j . Since

by Lemma 3 and Lemma 5, both limt→∞(1/t) log a+t and limt→∞(1/t) log at ex-
ist, the lemma is proved. ��
Lemma 7. Let zt = (z1

t , . . . , z
d
t ) be a process in Rd satisfying the Itô sde

dzit =
r∑
j=1

d∑
k=1

aijk(t, ·)zkt dwjt +
d∑
k=1

bik(t, ·)zkt dt,

where the coefficients aijk(t, ω) and bik(t, ω) are continuous processes adapted to
the filtration generated by the Browian motionwt . Assume almost surely aijk(t, ω)
and bik(t, ω) converge to 0 exponentially as t → ∞, that is, ∃δ > 0 such that
almost surely, |aijk(t, ·)| ≤ e−δt and |bik(t, ·)| ≤ e−δt for sufficiently large t > 0.
Then almost surely, zt converges in Rd as t →∞.

Proof. Let An = {(t, ω); ∀ s ≤ t , |aijk(s, ω)| ≤ ne−δs and |bik(s, ω)| ≤ ne−δs}
and let τn(ω) = inf{t ; (t, ω) "∈ An}. It is clear that τn form an increasing sequence
of stopping times and by the assumption, for almost all ω, τn(ω) = ∞ for suf-
ficiently large n. By stopping the process at τn, we may assume the coefficients
aijk(t, ·) and bik(t, ·) are uniformly bounded by Ce−δt for some constant C > 0.
In this proof, C will be a positive constant which may change from formula to
formula.

The Itô sde is equivalent to the following Itô integral equation.

zit = zi0 +
∫ t

0

∑
j,k

aijk(s, ·)zks dwjs +
∫ t

0

∑
k

bik(s, ·)zks ds.
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Let |zt | be the Euclidean norm of zt and let z∗t = sup0≤s≤t |zt |. Then

E[(z∗t )
2] ≤ C{|z0|2 +

∫ t

0
e−2δsE[(z∗s )

2] ds}.

By Gronwall’s inequality, E[(z∗t )2] ≤ C exp(
∫ t

0 e
−2δsds), hence, E[(z∗∞)2] ≤ C.

Let yn = supn≤s≤n+1 |zs−zn|. It suffices to show
∑
n yn <∞ almost surely. From

zis − zin =
∫ s

n

∑
j,k

aijk(u, ·)zkudwju +
∫ s

n

∑
k

bik(u, ·)zkudu,

we obtain

P(yn ≥ e−δn/2) ≤ eδnE(y2
n) ≤ Ceδn

∫ n+1

n

e−2δuE[(z∗∞)
2]du ≤ Ce−δn.

It follows that
∑
n P (yn ≥ e−δn/2) <∞, and by Borel-Cantelli lemma,

∑
n yn <

∞ almost surely. ��

For any matrix g ∈ G, let |g| =
√∑

i,j g
2
ij .

Lemma 8. For ρ̄×P -almost all (u, ω) ∈ O(M)×� and any ε > 0, |nt (u, ω)| ≤
eεt for sufficiently large t .

Proof. Let nij (t) be the element of nt = nt (u, ω) at row i and column j . We want
to show that for ρ̄ × P -almost all (u, ω) and any ε > 0,

|nij (t)| ≤ eεt for sufficiently large t > 0. (28)

For x = (x1, . . . , xd) ∈ Rd . Consider the quadratic form

qt (x) = xs∗t st x∗ =
d∑
i=1

(at )
2
i [

d∑
j=1

nij (t)xj ]
2 =

d∑
i=1

(at )
2
i 〈ni·(t), x〉20,

where ni·(t) is the i-th row vector of nt and 〈·, ·〉0 is the Euclidean inner product
on Rd . Since qt (x) = xk∗t (a+t )2ktx∗, the eigenvalues of qt are (a+t )21 ≥ (a+t )22 ≥
· · · ≥ (a+t )2d . Let x1(t), x2(t), . . . , xd(t) be the associated orthonormal eigenvec-
tors and let 0 < i1 < i2 < · · · < il = d be the indices given by (19). Assume
i ≤ i1. Since for 1 ≤ j ≤ d ,

(at )
2
i 〈ni·(t), xj (t)〉20 ≤ qt (xj (t)) ≤ (a+t )21 ≈ (a+t )2i ≈ (at )2i ≈ e2λi t

for large t , it follows that ∀ ε > 0, 〈ni·(t), xj (t)〉20 ≤ eεt for sufficiently large t ,

hence, 〈ni·(t), ni·(t)〉0 =
∑d
j=1〈ni·(t), xj (t)〉20 ≤ deεt . This proves (28) for i ≤ i1

and any j .
Suppose that we have proved (28) for i ≤ ik . Let Dk(t) = det

[{xpq (t)}ik<p≤d, ik<q≤d ]. We will show that for any ε > 0,

|Dk(t)| ≥ e−εt for suficiently large t > 0. (29)
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If this is not true, we can extract a sequence of t going to infinity such that for some
ε > 0, |Dk(t)| ≤ e−εt along this sequence. We can then find a vector v(t) of unit
length such that v(t) is a linear combination of xik+1(t), xik+2(t), . . ., xd(t) and
∀ j > ik , |vj (t)| ≤ e−εt along that sequence of t . Since for p ≤ ik , λp > λik+1
and

e2λpt 〈np·(t), v(t)〉20 ≈ (at )2p〈np·(t), v(t)〉20 ≤ qt (v(t)) ≤ (a+t )2ik+1 ≈ e2λik+1t ,

we see that for p ≤ ik , 〈np·(t), v(t)〉0 =
∑d
j=1 npj (t)vj (t) must converge to

0 exponentially along that sequence of t . Set p = ik . Recall (28) is assumed to
hold for i ≤ ik and vj (t) → 0 exponentially for j > ik . It follows that for
j > ik = p, npj (t)vj (t) must converge to 0 exponentially. Since nikik = 1 and
nikj = 0 for j < ik , we see that vik (t) must converge to 0 exponentially. Set-
ting p = ik − 1, ik − 2, . . . , 1, we can successively prove that vik−1(t), vik−2(t),
· · ·, v1(t) all converge to 0 exponentially. This is impossible because v(t) has unit
length. The contradiction proves (29).

Now assume ik < i ≤ ik+1 for 1 ≤ k < l. Define

hp(t) =
d∑
j=1

nij (t)x
p
j (t), for p = ik + 1, ik + 2, . . . , d. (30)

Then (at )2i [hp(t)]
2 ≤ qt (xp(t)) ≤ (a+t )2ik+1 ≈ (at )

2
i ≈ e2λi t , hence, ∀ ε > 0,

|hj (t)| ≤ eεt for sufficiently large t > 0. Since nij (t) = 0 for j ≤ ik , we may
solve for nij (t), ik < j ≤ d , from the linear system of equations (30). The deter-
minant in Cramer’s solution formula is just Dk . By (29), we see that nij (t) must
have the desired bounds. ��

Recall that the Lie algebra N of N is the space of upper triangular matrices
with zero diagonal elements. It is known that exp: N → N is a diffeomorphism
(see Ch. VI in [5]). Let 0 = i0 < i1 < · · · < il = d be the indices given by (19).
Define

NB = {Y ∈N; Yij = 0 for i ≤ ik < j, 1 ≤ k < l} (31)

and

N′
B = {Y ∈N; Yij = 0 for ik−1 < i ≤ ik and j ≤ ik, 1 ≤ k ≤ l}. (32)

The non-zero elements of a matrix in NB are confined in several triangular regions
lying above and along the diagonal, whereas the non-zero elements of a matrix in
N′
B are confined in the region above these triangles. Consult the figure for P̃B

given in the last section.
Note that N = NB ⊕N′

B and N∅ = {0}. Moreover, both NB and N′
B

are sub Lie algebras of N. In fact, N′
B is an ideal of N, that is, ∀ Y ∈ N and

Z ∈ N′
B, [Y,Z] ∈ N′

B. Let NB = exp(NB) and N ′B = exp(N′
B). Then both

NB and N ′B are Lie subgroups of N with N ′B normal. We have the decomposition
N = NBN

′
B in the sense that the map (n1, n2) �→ n1n2 is a diffeomorphism:

NB ×N ′B→ N . We also note that NB ⊂ P̃B.
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Theorem 4. For u ∈ O(M), let Dφt(u) = ut st , where ut ∈ O(M) with u0 = u
and st ∈ S. Let st = pta+t kt and st = atnt be respectively a polar and the Iwasawa
decompositions of st , and let nt = nBt n′t with nBt ∈ NB and n′t ∈ N ′B. Let ρ̄ be
a stationary measure of ut which has a continuous density on O(M). Then for
ρ̄ × P -almost all (u, ω) ∈ O(M)×�,
(a) KBkt → KBk∞ as t →∞ for some k∞ ∈ K;
(b) limt→∞(1/t) log at = limt→∞(1/t) log a+t = diag(eλ1 , . . . , eλd );
(c) ∀ ε > 0, |nBt | ≤ eεt for sufficiently large t > 0;
(d) n′t → n′∞ as t →∞ for some n′∞ ∈ P̃Bk∞, consequently, P̃Bnt → P̃Bk∞;
(e) ptKB→ KB as t →∞.

Proof. (a) and (b) are proved in Lemma 3 and Lemma 6. Because the map (nB, n′) �→
n = nB n′ is a diffeomorphism: NB ×N ′B→ N , (c) follows from Lemma 8.

The main task is to prove (d). From (27) and dnt = d(nBt n′t ) = (◦dnBt )n′t +
nBt (◦dn′t ), we may obtain the sde’s for nBt and n′t . For Y ∈ G, let YN = YB+Y ′ be
the decomposition N =NB ⊕N′

B. Note that for a ∈ A, the linear map Ad(a):
N→N leaves this decomposition invariant. We have

dnBt =
r∑
j=0

{Ad(a−1
t )[X̃j (ut )]B}nBt ◦ dwjt (33)

and

dn′t =
r∑
j=0

{Ad((nBt )
−1)Ad(a−1

t )[X̃j (ut )]
′}n′t ◦ dwjt . (34)

LetFBj (t) =Ad(a−1
t )[X̃j (ut )]B andF ′j (t) =Ad(a−1

t )[X̃j (ut )]
′. ThenFBj (t) ∈

NB and F ′j (t) ∈ N′
B. Note that for a ∈ A and Y ∈ G, [Ad(a−1)Y ]ij =

a−1
i ajYij . By Lemma 6, (at )i ≈ eλi t for large t > 0. It follows that for Y ∈ N,

[Ad(a−1
t )Y ]ij ≈ e−(λi−λj )tYij . If Y ∈N′

B, then either (λi − λj ) > 0 or Yij = 0,
hence, Ad(a−1

t )Y converges to 0 exponentially as t → ∞ for Y ∈ N′
B. This

implies that almost surely Fj (t)′ converges to 0 exponentially as t → ∞. The
same thing can be said for the coefficients Ad((nBt )

−1)F ′j (t) of the Stratonovich
sde (34) because of (c). Before we can apply Lemma 7, we need to make sure that
the coefficients of the corresponding Itô equation also have this property.

Note that the vector fields in the sde (34) may be considered as matrix products.
Using stochastic calculus, we may write down the Itô form of (34) as follows.

dn′t =
r∑
j=1

{Ad((nBt )
−1)F ′j (t)}n′t dwjt

+{1
2

r∑
j=1

Ad((nBt )
−1)F ′j (t)Ad((nBt )

−1)F ′j (t)

+1

2

r∑
j=1

Ad((nBt )
−1)[F ′j (t), F

B
j (t)]
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+1

2

r∑
j=1

Ad((nBt )
−1)Ad(a−1

t )[[X̃j (ut )]
′, [X̃j (ut )]A]

+1

2

r∑
j=1

Ad((nBt )
−1)Ad(a−1

t )[Yj X̃j (ut )]
′ + Ad((nBt )

−1)F ′0(t)}n′t dt,

where Yj (u) = H(Xj )(u)+ u[X̃j (u)]K are the vector fields in the sde (23) for ut
on O(M). It is easy to check that the coefficients of the above Itô sde converge to
0 exponentially. By Lemma 7, n′t → n′∞ as t →∞ for some n′∞ ∈N′

B.
In order to finish the proof of (d), it remains to show that n′∞ ∈ P̃Bk∞. As in the

proofs of Theorem 3 and Lemma 6, for ρ̄×P -almost all (u, ω), we may extract a se-
quence tj →∞ such that the conditions of Lemma 4 are satisfied for gj = gtj pos-

sibly with a smallerB. Apply this lemma one obtains P̃Bntj → P̃Bk∞. This is also

true for the original B. Therefore, P̃Bn′∞ = limj P̃Bn′tj = limj P̃Bntj = P̃Bk∞.
This proves (d).

To prove (e), it suffices to show that any limiting point ofp(t) = pt is contained
in KB. If this is not true, then along some sequence of t →∞, p(t) converges to
some p ∈ (K−KB). Then there exist indices i > j such that λi < λj and pij "= 0.
By (b) and Lemma 8, [st k∗t ]ij = [atntk∗t ]ij = ai(t)

∑d
b=1 nib(t)kjb(t) grows at

the exponential rate λi . On the other hand, this is also equal to [pta
+
t kt k

∗
t ]ij =

[pta
+
t ]ij = pij (t)a

+
j (t), which grows at the exponential rate λj > λi . This is

impossible. ��
Remark 4. As in Remark 2, if the vector fields of the sde (23) satisfy the Hörmand-
er type condition, then the conclusions of Theorem 4 hold for all u ∈ O(M) almost
surely.

Now let φt = ξtψt and Dψt(u) = ust , with u = (u1, . . . , ud) ∈ π−1(m) and
m ∈ M , be the decompositions given by Theorem 1. Then Dψt(m) = ustu−1 =
uatn

B
t n

′
t u
−1 with n′t → n′∞. Therefore, for large time t > 0, the linear map

Dψt(m): TmM → TmM may be regarded as a fixed random linear map un′∞u−1,
followed by another linear map uatnBt u

−1 which leaves the subspaces

U1 = span(u1, . . . , ui1), U2 = span(ui1+1, · · · , ui2), . . . ,
Ul = span(uil−1+1, . . . , ud)

of TmM invariant and changes the length of vectors in each Uk at the exponential
rate λik for 1 ≤ k ≤ l.
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