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Abstract. Let ¢, be the stochastic flow of a stochastic differentia equation on a compact
Riemannian manifold M. Fix a point m € M and an orthonormal frame u at m, we will
show that there is a unique decomposition ¢, = &, such that &, isisometric, v, fixesm
and Dy, (1) = us,, where s, is an upper triangular matrix. We will also establish some
convergence properties in connection with the Lyapunov exponents and the decomposition
D¢, (1) = u,s, with u, being an orthonormal frame. As an application, we can show that v,
preserves the directions in which the tangent vectors at m are dilated at fixed exponentia
rates.

1. Introduction

Consider an sde (stochastic differential equation) on a compact connected
d-dimensional Riemannian manfold M of the following form.

,
dx; =Y X;(x;) o dw] + Xo(x,)d, (1)

j=1
where Xg, X1, ..., X, are (smooth) vector fieldson M, w; = (w,l, .., wr)isan

r-dimensional standard Brownian motion defined onaprobability space (2, #, P),
and od denotesthe Stratonovich stochastic differential. The sde (1) can also bewrit-
ten more concisely asdx; = Z;:o Xj(x)o dw{, where w? =1.

Let Diff(M) be the group of diffeomorphisms: M — M. A stochastic flow of
the sde (1) isaprocess ¢; in Diff (M) with ¢g = idy,, the identity map on M, such
thatV x € M, x; = ¢, (x) isasolution of (1). The process x; = ¢, (x) iscalled the
one point motion of ¢, and isadiffusion process on M.

Let D¢, be the differential of the random map ¢,: M — M. For x € M,
D¢ (x) isalinear map: TxM — Ty, oM. f u = (ug, ..., uq) isalinear frame
at x, then D¢, (x) () = (D (x) (1), . .., Do, (x)(ug)) isalinear frame at ¢, (x).
For simplicity, we may write D¢, (1) for D¢, (x)(u). For ad x d matrix g = {g;;},
letug = (O, uigi1,.... Y ; uiga)- Thisisalinear frameat x if g isnon-singular.
Note that D¢, (ug) = D, (u)g.
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Let 7(M) bethe group of isometrieson M. ThisisaLie group.

Fix apoint m € M and an orthonormal frame u at m. Under an additional
hypothesis, which is automatically satisfied if M isasphere, we will show in Sec-
tion 3 that there is a unique decomposition of ¢; in the form ¢; = & o vy, where
& isaprocessin I (M) and v, isaprocess in Diff(M) such that &g = o = idy,,
Yy (m) = m and Dy, (u) = us; for some processs; inthegroup S of upper triangu-
lar matrices with positive diagona elements. Moreover, &, isadiffusion processin
I (M), andif the stochastic flow ¢, isinvariant under I (M), & will beleft invariant,
so the normalized Haar measure on I (M) will be a stationary measure for &;.

Let A1 > A2 > --- > Ay bethe Lyapunov exponents of the stochastic flow
¢, . It turns out that the component v, not only fixes the point m, it also preserves
the directions in which the tangent vectors at m are dilated at the fixed exponential
rates ;. To show this, we will establish some convergence properties in connec-
tion to a decomposition of D¢,. This discussion given in sections 4 and 5 will be
independent of the decomposition ¢, = &, ;.

Let O (M) bethebundleof orthonormal frameson M. Notethat u; = D&, (u) €
O(M) and D¢, () = uys,. Ingeneral, forany u € O(M), let u, € O(M) be ob-
tained from D¢, (1) by performing a standard Gram-Schmidt orthogonalization
procedure. Then D¢, (1) = u;s; withs; € S.

Let G = GL(d, R)+ bethegroup of d x d real matrices of positive determi-
nantsand let K = SO (d) bethe subgroup of orthogonal matrices. Lets; = p;a;"k;
and s; = a;n, berespectively apolar and the lwasawa decompositions of s;, where
pi ke € K, and a;', a; are diagonal matrices and n, is an upper triangular matrix
with diagonal elementsall equal to 1. By Oseledec’smultiplicative ergodic theorem
and alemmain linear algebra, we show in Section 4 that if all the Lyapunov expo-
nentsaresimple, thenamost surely, lim; _, o (1/1) loga; = lim; o (1/1) loga,” =
diag(e*1, ..., e*),andbothk, andn, convergeast — oo. Someof theseproperties
have been mentioned in [6], we provide more complete proofs here.

The component vy, in the decomposition ¢, = & ,, defined by a given ortho-
normal frameu = (u1,...,uy) & m € M, fixes the point m, so Dy, isalinear
map: T,,M — T,, M. From the convergence properties mentioned above, when ¢
islarge, D, can beregarded as afixed random linear map, followed by a dilation
along each axis u; at the exponentia rate A;.

The case of multiple exponentsrequiresmoreelaborate argumentsandistreated
in Section 5.

2. Some geometric preliminaries

Let X be avector field on M. The flow 5, of X isa smooth family of diffeomor-
phismson M indexed by t > OsuchthatV x € M, y, = n,(x) isasolution of the
ordinary differential equation (d/dt)y; = X (y;) and ng = idy,. If n; isanisometry
for all + > 0O, then X iscalled an infinitessimal isometry.

Let L(M) bethe bundle of linear frameson M. A frameu € L(M)atx e M
isabasis (u1,...,ug) in TyM. We will let 7: L(M) — M be the natural pro-
jection given by m(u) = x. Let G = GL(d, R)+ be the group of d x d rea
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matrices of positive determinant. Its Lie algebra ¢ is the space of d x d matrices
equipped withtheLiebracket[A, B] = AB— BA.Foru = (u1, ---,ug) € L(M)
andg € G,ug = (D uigi1, -+, ; uiga) isaframeat w(u). Given A € 9, let
uA = (d/dt)[ue'4],—o, thetangent vector tothecurver — ue' in L(M)att = 0.
Such vectors are called the vertical vectors and they form a subspace 7,” L(M) of
T,L(M).

For X € T\ M, let z; be acurve in M with (d/dt)z;];=0 = X and let u, be
the parallel displacement of u along z;. Let H(X)(u) = (d/dt)u;|;—0, caled the
horizontal lift of X to L(M) at u. Then Tlf’L(M) ={HX)(u); X € TyM}isa
subspace of 7, L(M) and any element in Tu”L(M) is called a horizontal vector at
u. We have T, L(M) = T"L(M) ® T L(M) (direct sum).

Let K = SO(d) be the subgroup of G formed by orthogonal matrices. ItsLie
algebra .7 is the space of skew-symmetric matrices. Let O (M) be the bundle of
orthonormal frameson M. Then O(M) c L(M). Wewill let z,: O(M) — M be
the restriction of 7: L(M) — M.Foru € O(M), X € TyM and A € ¢, both
H(X)(u) anduA arecontained in 7, O (M). In fact,

T,OM) ={H(X)u); X e .M} ®{uA; Ae A}

Let S be the subgroup of G formed by upper triangular matrices with positive
diagonal elements. Its Lie algebra . is the space of al upper triangular matrices.
Any g € G can bewritten uniquely as g = ks withk € K and s € S. Indeed, this
decomposition can be obtained by performing a Gram-Schmidt orthogonalization
procedure on the set of column vectors of g. At the Lie algebralevel, any A € 4
can bewrittenuniquely asA = Ay + Ay WithAy € X and Ay € .

Letu¥ ={uA; A e ¥}.Foru e O(M),wehave

T,L(M)=T,0M)®us. 2

ForY e T,L(M), let Yy bethe T, O (M)-component of Y in the above decompo-
sition.

For avector field X on M withflow »,, itsnaturd liftto L(M) isavector field on

L(M) defined by §X (1) = (d/dt)Dn;(u)|;—0. FOrY € T, M, let Vy X = VX (Y)

be the covariant derivative defined by the Riemannian connection. We may write

VX(u) = (VX(u1), ..., VX(ugq)). Then thereis a unique matrix X(u) € % such
that VX (u) = u X(u). If u € O(M), then

[X@)]jx = (uj, VX i), €)
where (-, -) isthe Riemannian metric.

Lemmal. Let X beavector fieldon M andu € L(M). Then
$X(u) = HX) () +uX ) = HX)w) + u[X@)]x +ulXW]y. (4

Consequently, if u € O(M), then [§X ()]0 = H (X)) + u[X )]
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Proof. Let n, bethe flow of X. We may construct a frame field U in a neighbor-
hood of x = 7 (u) with U = u at x such that Dn, (U (x)) = U(n,;(x)). Then the
Liebracket [X, U](x) = (d/dt) Dy; U (i ())]li=0 = (d/d)U (x)];=0 = 0 and
VxU = VyX + [X, U] = VyX at x. Let T1, denote the parallel displacement
aong the curvet — n,(x). We have Dn, (1) = T1;(u)g, for some g, € G with gg
equal to the identity matrix, and

68X = d I1 = d I1 d
() = E[ ((U)gili=0 = E[ +()]i=0 + E(“gz)b:o-

The first term on the right hand side of aboveis H (X)(x) and the second term is

d.__, d.__,
E[H‘ (Dny(u)]i=0 = E[H’ Um:N]i=0o = VxUx) = VyX(x) =V, X.
O

Recall that I (M) istheisometry groupon M. Let .7 beitsLieagebra. Thisis
a space of vector fields on M which are infinitesimal isometries. It is clear that if
X e Jandu € OM),thensX (u) € T,0(M).

Lemma2. Foru € O(M),thelinear map: .# — T,0(M) definedby X +— §X (u)
isinjective. Moreover, if M isa sphere, then it isalso surjective.

Proof. If X, Y € .# and §X (u) = §Y (u), then X — Y isan infinitesimal isometry
which fixesu, soitsflow »; will leave all the geodesics starting at 7, (1) invariant.
By the connectedness of M, n; = idy and X — Y = 0. This proves the injectivity.
If M isasphere, then the differentials of isometrieson M are transitive on O (M),
hence, O(M) = {D&(u); € € I(M)}. Fromthisitfollowsthat T, O (M) = {§ X (u);
X e s}

3. Decomposition of the stochastic flow

Letm e M andu € O(M) with ,(u) = m befixed in this section. Recall that ¢,
is the stochastic flow of the sde (1) which contains vector fields Xo, X1, ..., X,,
and for Y € T,L(M), Yo isthe T, O (M)-component of Y in the decomposition
(2). Let§.7(u) = {8X (u); X € #}, theimage of the map given in Lemma 2. Note
that if X isavector field on M and n € Diff(M), then Dn(X) isavector field on
M givenby Dn(X)(x) = Dn(X (n~1(x)) for x € M. We will assume

Vi=0,1....,r and V& € S (M), [§DEX))w)]o €85 (u). (5)

Thishypothesisisautomatically satisfied if M isasphere becausethen by Lemma2,
8Iw) =T, 0(M).

Theorem 1. Under the hypothesis (5), the stochastic flow ¢, of the sde (1) has a
unique decomposition ¢, = &1, where&; isaprocessin I (M) and v, isa process
in Diff(M) such that &g = Yo = idy, ¥ (m) = m and Dy, (u) = us; for some
processs; € S. Moreover, & isadiffusion processin I (M) and v, isthe stochastic
flow of an sde on M with random and time dependent vector fields.
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Proof. Let # bethelinear space of the vector fields X on M suchthat [§ X (u)]o €
8.7 (u). By (5), # contains D&(X;) for j =0,1,..., rand& € I1(M). By Lem-
ma2, forany X € ¢, thereisaunique J(X) € .# such that

SJ(X) () =[6Xw]o- (6)
Notethat J(X)(m) = X (m). By (6) and Lemma1,
8X (u) = 8J (X)) + u[X )]s ™

By Section 1.4 in [3] (see also [6]), the derivative process D¢ (1) satisfies the
following sdeon L(M).

dDy(u) = Y 8X;(Dey(w)) o dwj. ®)

j=0

Note that the term § Xo(D¢; (1))dt is absorbed in the summation with wlo = 1.
The equation (8) can be derived from (1) with x; replaced by ¢,(x) and taking
derivatives with respect to x under local coordinates.

Foré e I(M)andY € 7, let £Y and Y& be respectively the tangent vectors
at T: 1 (M) obtained by left and right translations of Y. Thus& — &Y (Y£) may be
regarded as a left (right) invariant vector field on 7 (M).

Wemay write X7 for J(X). Let & bethe solution of thefollowing sdeon I (M)
with &g = idy,.

g =Y &[DETH X)) 0 dw]. ©)
j=0

Since the vector fields involved in the above sde depend only on &, we see that &,
isadiffusion processon I (M).

Since £, 1 = idy, (od&1g + £ (odE,) = 0. By (9), we obtain an sde for
g

r

dg7t = = Y [Dg X ) g7 o dw. (10)
j=0

Forx € M, letx, = ¢;(x) and y, = £ *(x,). By (1) and (10), we have

dy, = D& Y(odx,) + (od& 1) (x,)

= > (D&7HX, () — [DETHX NN (€ 00)) 0 dw]

j=0

= > (DE7HX)) — [DETHX NI HOn) 0 duw.

j=0
ForX € #,let X = X — X/. Then X (m) = 0, and by (7),

X (u) = u[ X))o (12)
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We have proved that y, isasolution of the the following sde on M.

dy, =Y [DEX )M () 0 dw. (12)
j=0

The vector fields [Dgt‘l(X D] H of the above sde are random and time dependent,
whose natural lifts 5[ Dg,*(X ;)] can still be defined by fixing ¢ and w. Since
XH(m) = Oforany X € ¢, it follows that [Dg, (X ;)]¥ (m) = O, hence, if
yo=m,theny, =mforal ¢ > 0.

Lety, = 5,‘1¢,. Then v, isaprocessin Diff (M) and is the stochastic flow of
(12) inthesensethat y, = v, (y) isasolution of (12) for any y € M. Thederivative
process D, (1) satisfies the sde

dDY(u) =Y S[DEHX NI (DY (w)) o dw] . (13)

j=0

This can be proved by the same method used to prove (8).
Since v, (m) = m, Dy, (u) = us, for some process s; € G. By (13) and (11),
we obtain an sdefor ;.

ds; = Y (D& XN )y 51 0 dw. (14)
j=0

Since the vector fields in the above sde are contained in . and sg is the identity
matrix, it followsthat s; isaprocessin S.

It remains to prove the uniqueness of the decomposition. Since D¢, (1) =
D& (Dyr;(u)) = D& (u)s, and s; € S, we see that the orthonormal frame Dé&; (1)
= (D& (u1), ..., D& (ug)) can be obtained by performing a standard Gram-Sch-
midt orthogonalization procedureto D¢, (1) = (D¢, (u1), . . ., Doy (uy)). It follows
that D&, (1) isuniquely determined by D¢, (u). Since & € 1 (M) isdetermined by
Dé&(u), the theorem is proved. O

Remark 1. The uniqueness part of the proof for Theorem 1 in fact shows the
uniqueness of decomposition ¢, = &, without assuming &g = o = idy. Con-
versely, given any &g € I (M) and ¥ € Diff(M) with ¥o(m) = m and Dyrg(u) =
us for some s € §, we can obtain a decomposition ¢, = &, which has all the
properties stated in Theorem 1 except &g = Yo = idyy, just by solving (9) with &
astheinitial point and then setting v, = & 1¢;.

Let M = S"~1 bethe (n — 1)-dimensional sphere. Then J(X) given by (6) is
defined for any vector field X on M. We will now obtain an explicit expression for
J(X). Consider §"~1 asthe unit sphereembedded in R” and let (x1, xo, .. ., x,) be
the standard coordinates of R". Let 9; = (8/0x;). Fix thepointm = (0,...,0,1)
onS" L Letu = (d1,...,0,_1). Thisisan orthonormal frame at m for $"~1. We
may express X as

X(x) =) a;(x)d; (15)
j=1
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for some smooth functions a;(x) on §m=1 satisfying Zn_lx]a] (x) = 0. For
1<i<j<nletZ=x;9;—x;0;.Theflow of thlsvectorf|eld|stheun|tspeed
rotation in the coordinate plane (x;, x;). Infact, {Z;;; 1 <1 < j < n} isabasis
for the Lie algebra.# of infinitesimal isometries on $”~1. We will show

n—1
JX)==>"aimZin+ Y. = dajm)Zi. (16)

i=1 1<i<j<(n—-1)

Notethat for 1 < i < (n — 1), & € T,,8" 1, 50 9;a;(m) iswell defined.
We extend X to a neighborhood of $”~1in R” by setting X (x) = X (x/|x]).
Then Y ; xja;(x) = 0for x in this neighborhood, hence,

ap(m)=0 and a;(m)+ d;a,(m)=0forl<i<(n-—1). a7

Let n(t, x) beflow of X. For the moment, assume X (m) = 0. Then § X (1) isthe
same as its vertical component [ X (u)]”. We have

Dn(u) = (Dn(), ..., Dn@p-1) = 910 &> ., Y dp1ni )

i=1

Since(d/dt)n; = a;(n),(d/dt)djn; = Y ;4 da;(m)d;mx and (d/d1)d;n; (0, m) =
dja;(m). By (17), 9;a,(m) = —aj(m) =0for1 < j < (n — 1), we have

d n—1 n—1
OX () = —-Dn(li=o = (3 drai(m) ..., Y dy-1ai(m)3;) = uA,
i=1 i=1
where A isthe (n — 1) x (n — 1) matrix givenby A;; = 9;a;(m). It followsthat if
X =xj0; fori < j,thenéX(u) e u?.
We now removetheassumptionthat X (m) = 0. Withx, = /1 — """ 11x12,we

may consider X asafunctionof x’ = (x1, ..., x,—1) andwill find its Taylor expan-

sion at m up to the second order. Let O (|x’|?) denote any function on $”~1 which
convergesto 0 as x’ — O (that is, asx — m) inthe order of |x'|2 = Y7 P x2.
We will also use O(|x'|2) to denote any vector field on $”~1 whose components
are such functions. Note that if X = O(|x’|?), then §X (u) = 0. Moreover, x,, =

14 0(|x"1?), 8ixy = —x; /x,, and

dilaj(xt, ..., xp—1, /1= [x/|®)]x=m = dia;(m)

forl<i < (n — 1). By these comments and (17), we have

X(x) = Za,-(x)a,-

n—1n—1

—Za (m)d; + Y Y diaj(m)x;d; +Za an(m)x 9, + O(|x'|?)

j=1 i=1j=1 j=1
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n—1
= Zaj (m)[x,,aj — )Cjan] + Z 3,'611' (m)[xi 3.,' —Xj 3,’]
j=1

1<i<j<(n—1)
n—1
+ Z djaj(m)x;d; + Z [0ja;(m) + d;a;(m)]x;d; + 0(x'1?)
i1 l<i<j<(n-1)
n—1 n—1
==Y aimZp+ Y. diajmZj+ Y da;(m)x;d;
j=1 1<i<j<(n—1) j=1
+ Y [Baim) + diaj(m)]x;8; + O (x|
1<i<j<(n-1)

Now (16) follows from the above and the fact that 5 (x;9;) (1) € us fori < j.

The diffusion process & on I(M) is caled left invariant if for any & € (M),
&g, isequa in distribution to the same diffusion process starting at £&p. It iswell
known that if & is left invariant, then the normalized Haar measure on [ (M) isa
stationary measure of &;. Recall that a stationary measure of a Markov processis
a probability measure on the state space such that if the process started with this
measure astheinitial distribution, then it will have the ssme distribution at all time.

The stochastic flow ¢, will be called invariant under 1(M) if for any & € (M),
£~ = ¢, (equal in distribution as processes in Diff(M)). Note that £¢,& 1 is
the stochastic flow of the sde dx, = 3o D&(X ;) (x) o dw!. If Xo = 0 and if
forany & € (M), DE(X;) = YI_j o] (§)X;, where a(§) = {of (§)}isanr x r
orthogonal matrix, then thissde can bewrittenasdx; = Z;:l Xj(x) odB;] ,where

B: = a(&)w; isan r-dimensional Brownian motion. Therefore, in this case, ¢, is
invariant under 1(M).

Theorem 2. Assume ¢, isinvariant under 1 (M). Then &, isleft invariant.

Proof. It suffices to show that for any & € I (M), if & isthe solution of (9) (re-
placing & by &) with &y = &, then &/ = £&; (equal in distribution as processes in
I(M)). By Remark 1, we have the unique decomposition ¢,;& = &/v;, where ¢/ is
aprocess in Diff (M) such that y/(m) = m and Dy/(u) = us; for somes; € S.
On the other hand, £&,v;, = £¢, = E¢& 16 = ¢,&. This proves £ = &/ and
Y E . O

4. Lyapunov exponents

The discussion in this and the next sections will shed light on the decomposi-
tion given in Theorem 1, but it will be independent of this decomposition and the
hypothesis (5) will not be assumed.

As before, let ¢, be the stochastic flow of the sde (1). We will assume that
its one point motion has an ergodic stationary measure p. This assumption is
implied by the following Hormander type condition: the Lie algebraLie(Xy, ...,
X,) generated by the vector fields X1, ..., X, in (1) spans T, M forany x € M.
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By applying the Oseledec Multiplicative Ergodic Theorem to stochastic flows
(see[1] or [2]), we can show that for p x P-almost all (x, w),

[Dé: (x)* Dy (x)]Y? = A(x, w) ast — oo, (18)

where D¢ (x)*: Tg,yM — T, M is the adjoint operator of D¢, (x): TyM —
Ty, (x)M defined relative to the Riemannian metric (-, -), and A(x, w) is a self-
adjoint operator on T, M with eigenvalues

)‘1>e)h2>,,,>e)‘d

e

independent of (x, w). Let I be the number of distinct eigenvalues. Let 0 = ip <
i1 <iz2 <---<i;=dbetheindicessothat A; jumpsat i, for 1 <k < (I — 1),
that is,

A= =Ry > hig 1= = Aiy > Aipgl e Mipy > hip_gt1 =+ = Ad.
19

Let E;(x, w) be the eigenspace of A(x, w) corresponding to the eigenvalue ¢*i
andlet Vi(x, w) = ', E;(x, ») (direct sum). Thenfor 1 < k <1,

1
VY € [Vilx, ) = Viralx, )], [Im n log | D (X)) = Aiy., (20)

where || - | = (-, )¥2 and Vi41(x, ) = {0}.

Note that under the Hormander type condition mentioned earlier, the one point
motion x; = ¢;(x) has a positive smooth transition density with respect to the
Riemannian measure on M. In this case, using the Markov property of x;, we can
show that the conclusions of the last paragraph in fact hold for al x € M amost
surely.

The numbers 11 > A2 > --- > A, are called the Lyapunov exponents of the
stochastic flow ¢,, which are exponential rates at which the lengths of the tangent
vectorschange under theflow and arein fact independent of the Riemannian metric.
The number of times an exponent repeatsitself in the above list is called its multi-
plicity. An exponent will be called simpleif its multiplicity isequal to 1. Note that
thesubspaces Vi (x, w) formanested sequence T, M = Vi(x, w) D --- D Vi(x, w),
called thefiltration of T\, M determined by the Lyapunov exponents.

We now recall some basic facts about the matrix group G = GL(d, R),.Fora
general semisimple Lie group, these properties are discussed in great detail in [5],
seealso[4]. Although G isnot semisimple, G isadirect product of the semisimple
group SL(d, R) andthemultiplicationgroup R4+ = (0, co), where SL(d, R) isthe
subgroup of G consisting of thed x d real matrices of determinant 1. Therefore, al
these properties hold also for G with R absorbed by the subgroup A to be defined
below.

Let A be the subgroup of G formed by the diagonal matrices with positive
diagonal elements. Thisis an abelian group and its Lie algebra .« is the space of
all diagonal matrices. Fora € A, wewill letloga be the unique element of .«# such
that exp(loga) = a. Let o7 be the subset of .o/ consisting of diagonal matrices
with strictly descending diagonal elements and let .7 beits closure.
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Let K = SO(d), thesubgroup of G consisting of orthogonal matrices of deter-
minant 1. Any g € G has apolar decomposition g = pa™k witha™ € exp(+/ )
and p, k € K. Althougha™ isuniquely determined by g, (p, k) isnot. All possible
choicesfor (p, k) are given by (pm, m~1k) with m ranging over the centralizer of
atinK,thatis, m € K withmatm1=at.

Let ® beasubset of {1,2,...,(d —D}andletiy < i» < --- < i; bethe
integersin{l, 2, ..., d} which arenot contained in ®. Theni; = d. Let Kg bethe
subgroup of K which leaves the following subspaces of R? invariant.

E1=9pan(es, ..., e;;), Ez=9span(ej+1,...,¢€i,), ..,
E; = span(e;;_y+1. - - -, €a), (21)
where {eq, ea, . .., ey} isthe standard basis of R¢. The non-zero elements of ama-

trix in K are contained in / sub-matrices arranged along the diagonal. Note that
if ® c ®,then Kg C K¢/, and Ky isthe subgroup of K formed by the diagonal
matrices with diagonal elements equal to +1, where ¢ is the empty set.

From now on, unless explicitly stated otherwise, we will let ® be the set of
integersi with1 <i < (d — 1) suchthat A; = ;1. Then Kg isthe centralizer of
diag(e’, ..., ¢*) in K, and the integers i, coincide with those given by (19).

Letu € L(M) withx = 7 (u). We may think u asalinear map: R? — T, M
defined by n = (91, ..., na) = un =) ; u;n;. The adjoint map u*: M — R4
is defined by (u*Y, n)o = (Y, un) for Y € T, M and n € R, where (-, -)o isthe
usual Euclideaninner product. It iseasy to check thatif u € O (M), thenu* = u=2.

Foru € O(M),theframe D¢, (u) isingeneral not orthonormal, but by perform-
ing a standard Gram-Schmidt orthogonalization procedure to D¢, (), we obtain
D¢, (u) = ussy, whereu, € O(M) and s; € S. We may regard the matrix s, as
alinear map: RY — R asusud. Then D¢, (x) = D¢, (w)u~t = u;s,u~?t. Let
s; = pra;k, be a polar decomposition of s;. We may write U, (u, o), s; (u, ),
a (u, w) and k; (u, ) for u,, s;, a;” and k, to indicate their dependence on the
initial frame u and w. Note that although ; (1, @) is not uniquely determined by
s¢(u, w), the left coset Kok, (1, w) iswhen ¢ islarge because then K¢ containsthe
centralizer of a;" in K.

Lemma3. For aimostall (x,w) € M x Qandall u € ;1 (x),

1
Jim - logat (u, w) = diag{r1, A2, ..., Aa}, (22)
— 00

and Kek; (u, ) > Kekoo(u, w) intheleft coset space K\ K ast — oo for some
koo(u, w) € K. Moreover, themap A: TxM — T, M defined by (18) is given by

Au, ®) = uk’ (u, w) diag(e™, . .., koo, @)u~t,

Proof. Since D¢, (x) = uys;u™t, D (x)* = (u*)~Ls}u¥, where s} is the matrix
transpose of s,. It followsthat D¢, (x)* D, (x) = u(s; s, )u~L. By (18), for p x P-
amost al (x,w) and al u € 7;1(x), [s/(u, w)* s, (u, w)]*/? converges to some
symmetric matrix with eigenvalues{e*1, ¢*2, . . ., ¢*}. Thissymmetric matrix may
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be diagonalized with an orthogonal matrix, we have, [s; (1, w)* s; (u, w)]¥% —
Kz, diag(e™t, ..., e*) ko ast — oo, for someky € K.

Since s s, = k*(a;")%k,, we have [s;" 5,]%% = k* exp[(1/7)loga; k. Let b
and k, be respectively limiting points of (1/¢) loga;” and k, ast — oo. Then

kX exp(b)kl, = ki, expldiag(ri, . .., Aa)lkk.

By the uniqueness of the polar decomposition, b =diag(A1, ..., Aq) and k., €
Kokoo. 0

Corollary 1. For p x P-almost all (x,») and all u € 7, Y(x), the eigenspace
of A(x,w) corresponding to the eigenvalue exp(};,) is given by Ei(x, w) =
uku, ) Ex for 1 <k <1, where Ej are subspaces of R given by (21).

The process u; isadiffusion processin O(M). Asin [6], using Lemma 1 and
(8), we can write down sde’s satisfied by u, and s;,

r

duy = Y (HX ) +u[X;wo)la o dw (23)
j=0
and .
ds; = Y [Xj )]s odw]. (24)

Jj=0

Note that [ X j(ur)].os; may be regarded as amatrix product.

Let N bethe subgroup of G formed by the upper triangular matrices with diag-
onal elementsall equal to 1. We havethe lwasawadecomposition G = K AN inthe
sense that the map (h, a, n) — g = han isadiffeomorphism: K x A x N — G.
Notethat S = AN, s0if s € S, then its Iwasawa decomposition s = an does not
have a K -component. We will let s, = a;n, be the lwasawa decomposition of the
Process s; .

Let N be the subgroup of G formed by the lower triangular matrices with di-
agonal elements all equal to 1. Both N and N are nilpotent subgroups of G. It is
knownthat Po = N AKg isaclosed subgroup of G, called aboundary subgroup or
parabolic subgroup. Note that the non-zero elements of amatrix in Pg are confined
intheregion on and below the“ stairs' along the diagonal as shown in the following
figure, where 0 = ig < i1 < i2 < -+ < ij—1 < i; = d aretheindices given by

(19).
T ir+1=1
’Tl i1 +1
i2

i+l

ip=d
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Itisknown that Pg N isan open subset of G whose complement has a positive
co-dimension. Moreover, Qg = {k € K; k € PgN} is an open subset of K (in
relative topology) whose complement has alower dimensionin K.

The following lemmais just Lemme (2.23) in [4] which is valid for a general
non-compact type semisimple Lie group G. Note that a different Iwasawa decom-
position, namely G = NAK, isused in [4]. To get the lemmain the present form,
we just need to take an inverse.

Lemma4. Letg; beasequencein G withapolar decompositiong; = pjafkj and
the Iwasawa decomposition g; = hja;n;. Assume Kegk; — Kekso in (Ke\K)
for some ks € Qo, Vi € O, (Ll;r)i/((l;_)i+]_ < C for some constant C > 0, and
Vigoewithl<i<(@d-1),a])i/@])it1— ooasj — oo, where (a});
is the i-th diagonal element of a . Then Pon; — Pekoo in (Po\G), a,-(a;r)_1
is contained in a compact subset of A, and i; = pjp} with p} € K satisfying
p}K@ — Ko inK/Kg.

For x € M, thefiber no_l(x) may beidentified with K viathe map k > uk for
somefixedu € no‘l(x), hence, the normalized Haar measure on K induces amea-
sureon no_l(x), whichisindependent of the choice of u. Inthe sequel, when we say
something holds for aimost al u € 7, 1(x), it is this measure we are referring to.

Theorem 3. For u € O(M), let D¢, (u) = u,s;, whereu, € O(M) withug = u
ands;, € S. Lets; = p,a;rkl and s; = a;n, be respectively a polar and the lwasa-
wa decompositions of s;. Assume all the Lyapunov exponents are simple. Then for
o x P-amogtall (x,w) € M x Q and almost all u € 7, 1(x),

1 1
lim Zloga, (u, w) = lim =loga, (u, w) = diag(e™, ..., e*). (25)
f—oo t f—oo t

Moreover, ast — 0o, Kgpki(u, w) — Kpkoo(u, ) for some koo (1, w) € Qy,
ny(u, w) = neo(u, ®) for somens (1, ) € Pykoo(u, ), and p; (u, w) Ky — K.

Proof. For any k € K, s;k = k;s; for k; € K and s, € S. On the other hand,
stk = pia; kik, hence, s/ = (k| p;)a;" (k;k) isapolar decomposition of s/. Since
D¢(uk) = uisik = (urky)s; and uk; € O(M), it follows that &, (uk, w) =
k¢ (u, w)k. Because all the Lyapunov exponents are simple, ® = ¢J. By Lemma 3,
1/t loga;" (u, w) — diag{ri, ..., Aq} and Kpk,(u, ®) — Kypkeo(u, ) ast —
00. Then Kpkoo (uk, w) = Kykoo (1, w)k. Because the complement of Qg in K has
alower dimension, it follows that for amost al k € K, koo (uk, ) € Qp. Now
Lemma 4 with ® = ¢ can be applied to prove all the remaining claims. We note
that Pyn; — Pykso implies the convergence of n, because N N Py contains only
the identity matrix, and p; Ky — Ky isequivalent to Kyp, — Ky because both
mean that any limiting point of p; ast — oo belongsto K. O

Remark 2. Because Ky is finite, we may choose the k, component properly so
that t — k; iscontinuousand k; — ko in Theorem 3.
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Remark 3. If thevector fieldsof the sde (23) satisfy the Hormander type condition
mentioned earlier, then i, has asmooth transition density. Using the Markov prop-
erty of u;, we can show that the conclusions of Theorem 3 hold for al u € O (M)
almost surely.

Now let ¢, = &, and Dy, (u) = us,, Withu = (uy, ..., ug) € 7~1(m) and
m € M, be the decompositions given by Theorem 1. Then Dy, (m) = us,u™t =
uanu~t with a, ~ diag(e*Y, ..., e*") andn, — ns ast — oo. Therefore, for
largetimet > 0, the linear map Dy, (m): T,,M — T,,M may be regarded as a
fixed random linear map unsou 1, followed by ua,u~1 which is a dilation along
each axisu; at an exponential rate A;.

5. Multiple exponents

Wewill provein this section aversion of Theorem 3 when the Lyapunov exponents
are not simple. The main task is to prove the convergence of Pgn, when ® is not
empty. Note that we cannot directly apply Lemma4 when ® # ¢ because we do
not know how to verify the conditionthat vV i € ®, (a;r)i/(a;r),-ﬂ is bounded. If
such i is excluded from ©, then the condition Kgk; — Keke Can no longer be
verified withasmaller ®. Although we may extract asequence of ¢ going toinfinity
for thisto hold as in the proof of Lemma 6 below, but it will not be good enough
to prove the convergence of Pon;,, for which amore direct method will be used.

Let 4" bethe Lie algebraof N. Then ./ is the space of the upper triangular
matrices with zero diagonal elements. For Y € 4,letY =Y, + Y., + Y bethe
direct sum decomposition 9 = 4" @ o/ @ A". Sinceds, = (oda;)n; + a;(odn;),
we obtain the sde’s satisfied by a; and n;.

da; = Y (X)) a0 dw] (26)
j=0
and
dn; =Y Ada; X @)l g o dw, (27)
j=0

wherefor h € G, Ad(h): 9 — % isthe differentia of the map g — hgh~! from
G to G at theidentity. Infact, for Y € ¢, Ad(h)Y = hYh~1 may beregarded asa
matrix product. Notethat fora € AandY € A", Ad(a)Y € A".

From (26) and the fact that A is abelian, we obtain an sde for loga;.

dloga, = [X ;)]s o dw] +[Xo(u)].s dt.
j=1

Using the stochastic calculus, we may write down the 1t0 integral equation for the
above Stratonovich sde as follows.

t o . t
loga, =/ E [Xj(us)],Q/dw{+/ F(ug)ds,
0 “ 0
j=1
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where F(u) € .o/ is bounded, whose explicit expression is given in [6] and is not
needed here. Divide the above by r and then let 1 — oo. Thefirst term on the right
will converge to 0, whereas by the ergodic theory the second term will converge
amost surely if ug has a stationary distribution. As before, we may write a, (u, w)
for a, to indicate its dependence on (1, w). Let p be a stationary measure for u;.
Notethat p = p o no‘l. We have proved the following result.

Lemmab. For p x P-almost all (1, w) € O(M) x Q, lim;_oo(1/t)a;(u, w)
exists.

Lemma6. Let p be a stationary measure for «, which has a continuous density
on O(M). Thenfor p x P-almost all (1, w) € O(M) x £, (25) holds.

Proof. In the proof of Theorem 3, it is shown that Kek; (uk, w) = Kek:(u, w)k,
hence, for amost al k € K, k,(uk, w) has a limiting point contained in Qy as
t — oo. It followsthat for p x P-amost al (u, w), k;; (u, w) converges to some
k(u, w) € Qp along some sequencer; — oo. Fix such (1, ) and writek;, a;.L and
a; respectively fork;, (u, a)),afjr (u, w)anday; (u, w). Wemay assumethatfori € O,
(a;r),-/ (aj+),~+1 is bounded. Otherwise, by taking a subsequence if necessary, we
may assume (af)/(a}“)prl — oo and we may exclude such ani from ®. The con-
ditionsof Lemma4 will be satisfied and we can concludethat a ; (a]’f)‘1 iscontained
inabounded subset of A. Thisproveslim;(1/t;)loga; = Iimj(l/zj)loga;r.Since
by Lemma3 and Lemma5, both lim,_, oo (1/1) Ioga,+ andlim,_, o (1/7) loga, ex-
ist, thelemmais proved. O

Lemma?. Letz; = (z}, e zf) be a processin R? satisfying the td sde

rod d
dz =3 aii(t, )2k dw! + Y bt, )2k at,
k=1

j=1k=1

where the coefficients a; jx (1, w) and b (¢, w) are continuous processes adapted to
thefiltration generated by the Browian motion w;. Assume almost surely a; jx (7, @)
and b; (¢, w) converge to O exponentially as¢ — oo, that is, 36 > 0 such that
almost surely, |a;«(t, )] < e~® and |by(t, -)| < e~ for sufficiently large s > O.
Then almost surely, z; convergesin RY ast — oo.

Proof. Let A, = {(t,w); V' s < 1, |aij(s, )| < ne™® and |bjx (s, w)| < ne=%}
and let 7, (w) = inf{z; (z, w) & A,}. Itisclear that 7, form an increasing sequence
of stopping times and by the assumption, for amost al w, t,(w) = oo for suf-
ficiently large n. By stopping the process a t,,, we may assume the coefficients
aiji(t, -) and b (t, -) are uniformly bounded by Ce™% for some constant C > 0.
In this proof, C will be a positive constant which may change from formula to
formula.
The Itd sdeis equivalent to the following Itd integral equation.

t . !
7 = zb+/ E aiji(s, )z§ dwi +/ E bik(s, )zt ds.
0% 0
Jik k
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Let |z,| be the Euclidean norm of z; and let z; = supy— -, |z/|. Then

t

E[HY = Clizol + / P[] ds).
0

By Gronwall’s inequality, E[(z})?] < C exp(f, e~%*ds), hence, E[(z%,)?] < C.
Lety, = SUp,<s<p41 125 — 2l Itsufficestoshow ) y, < oo dmost surely. From

s . s
i = / 3 agitu, hdwi + / > b, 2k,
Jik ok

n

we obtain

n+1
P(yn Z e—Sn/Z) S e(SnE(y’%) S Cean/ 6—25L1E[(Z(>§0)2]du S Ce—én.
n

A

It followsthat Y, P(y, > e~%"/?) < 0o, and by Borel-Cantelli lemma, 3", v,
oo amost surely. O

For any matrix g € G, let |g| = m

Lemma8. For p x P-almostall (u, w) € O(M) x Qandanye > 0, |n;(u, )]
e for sufficiently large .

IA

Proof. Letn;;(¢) betheelement of n; = n,(u, w) a row i and column j. We want
to show that for p x P-amost al (1, w) and any ¢ > 0,

Inij(1)| < € for sufficiently larget > 0. (28)

For x = (x1, ..., xq) € R%. Consider the quadratic form

d d d
qr(x) = xs; s:x* =Y (@)Y nij(0)x;17 =Y (@)F(ni. (1), x)§,

i=1 j=1 i=1

where n;.(¢) isthe i-th row vector of n; and (-, -)o is the Euclidean inner product
on R?. Since g, (x) = xk;(a;")%kx*, the eigenvalues of ¢, are (a,")2 > (a;)3 >

> (a3, Let x1(1), x2(1), ..., x4 () be the associated orthonormal eigenvec-
torsandlet 0 < i1 < ip < --- < i; = d betheindices given by (19). Assume
i <i1.Sinceforl < j <d,

(a)?(ni. (1), X (1))3 < q:(x) 1)) < ()3 =~ (a])? ~ (a1)? ~ ?1!

for large t, it follows that V & > 0, (n;.(t), x/(1))3 < ' for sufficiently large r,
hence, (n;.(t), n;.(t))o = Z‘;zl(n,-.(t), xj(t))% < de® . Thisproves(28) fori < ij
andany j.

Suppose that we have proved (28) for i < ;. Let Dip(t) = det
[{xF (0)}i<p=d, iy <q<al- We will show that for any ¢ > 0,

|Dr(2)| = e for suficiently larget > 0. (29)
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If thisis not true, we can extract a sequence of ¢ going to infinity such that for some
e > 0, |Dr(t)] < e~ *" dong this sequence. We can then find a vector v(¢) of unit
length such that v(¢) is alinear combination of x**+1(¢), x*t2(r), ..., x4(¢) and
V j > ik, |vj(1)| < e *" dong that sequence of ¢. Sincefor p < ix, A, > Aj 41
and

20! (np. (1), V()G ~ (@)3(np. (1), V()5 < (1) < (@2 4 ~ it

we see that for p < iy, (n,.(t),v(t))o = Z?zlnpj(t)vj(t) must converge to
0 exponentially along that sequence of ¢. Set p = i;. Recal (28) is assumed to
hold for i < i and v;(r) — O exponentially for j > i. It follows that for
j > ik = p,npj(t)v;(t) must converge to O exponentialy. Since n;,;, = 1 and
n;j = 0for j < i, we see that v; (r) must converge to O exponentially. Set-
ting p =ix — L ix — 2,..., 1, we can successively prove that v;, _1(¢), vi,—2(),
-+, v1(¢) al converge to 0 exponentially. Thisisimpossible because v(¢) has unit
length. The contradiction proves (29).
Now assumei; < i < ixy1forl <k <. Define

d

hy(t) = Znij(t)x]’.’(t), forp=ir+1ixr+2....d. (30)

j=1

Then (a)2[h, ()] < q:(xP (1)) < (a;)2 4 ~ (a)? ~ e?', hence, V & > 0,
|hj(1)| < e for sufficiently large r > 0. Since n;;(r) = O for j < iy, we may
solvefor n;; (1), iy < j < d, from the linear system of equations (30). The deter-
minant in Cramer’s solution formulais just Dy. By (29), we see that n;; () must
have the desired bounds. O

Recall that the Lie algebra ./~ of N is the space of upper triangular matrices
with zero diagonal elements. It is known that exp: ./~ — N is a diffeomorphism
(seeCh. VIin[5])). Let 0 =ip < i1 < --- < i; = d betheindices given by (19).
Define

Ng={Y e N, Yij=0fori§ik<j,1§k<l} (31)

and
o={Ye; Yj=0foriy_1<i<igandj <ix, 1<k=<l}. (32

The non-zero elementsof amatrix in./"g are confined in several triangular regions
lying above and along the diagonal, whereas the non-zero elements of a matrix in
N are confined in the region above these triangles. Consult the figure for Pg
given in the last section.

Note that 4" = '@ @ AN and A7y = {0}. Moreover, both ./"g and A",
are sub Lie algebras of ./". In fact, A4, isanidea of ./, thatis, VY € .4 and
Z e N Y. Z] € V. Let No = exp(AN'g) and N¢, = exp(A"g). Then both
Ng and N, are Lie subgroups of N with N¢, normal. We have the decomposition
N = N@Né) in the sense that the map (n1, n2) — niny is a diffeomorphism:
Ne x N§, — N.Weaso notethat No C Pe.
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Theorem 4. For u € O(M), let D¢, (u) = u,s;, whereu, € O(M) withug = u
ands, € S.Lets, = p,a;*kt ands; = atn, ber&spectivelyapolar and the lwasawa
decompositions of s;, and let n, = nPn) withn? € N and n, € Nj. Let 5 be
a stationary measure of u, which has a continuous density on O(M ). Then for
p x P-almost all (u, w) € O(M) x Q,

(@) Kek; > Kekoo @St — oo for some koo € K;

(b) lim,oo(1/1) loga, = lim; o (1/1)loga;” = diag(e™t, ..., e*);

(€) Ve >0,[n®| < e for sufficiently larger > 0;

(d) n, — nl,ast — oo for somen’, € Pokoo, consequently, Pon, — Pekoo;
(&) p;Ke — Kg ast — oc.

Proof. (a) and (b) areprovedin Lemma3and Lemmasé. Becausethemap (n©, n’) —
n = n® n’ isadiffeomorphism: Ng x N — N, (c) follows from Lemma8

The main task is to prove (d). From (27) and dn, = d(n® n)) = (cdn®)n} +
n?(odn;), we may obtain the sde'sfor n? andn,.ForY € 4,letY, = Yo +Y'be
the decomposition 4" = A"e & /. Notethat for a € A, the linear map Ad(a):
N — N leaves this decomposition invariant. We have

dn® = Z{Ad(a HIX,ju)lein® o dw! (33)

and .
dn; = > (Ad((n?)"HAd@ DX )] In) o dw . (34)

j=0

Let FP (1) =Ad(a, HiX;wnle and Fj (1) =Ad(a; HIX Y. Then FP (1) €
N e and Fi(t) € /g Notethat fora € Aand Y € 4, [Ad(a—l)Y],j =
a; a]Yl] By Lemma6, (a;); ~ ¢’ for larget > 0. It followsthat for ¥ € .1/,
[Ad(a Yyl ~ e @2ty 1F Y e A, theneither (A; — ;) > Oor Yi; =0,
hence, Ad(a; by converges to 0 exponentially ast — oo for ¥ e A7. This
implies that almost surely F;(r)" converges to O exponentially ast — oo. The
same thing can be said for the coefficients Ad((n )~ 1)F’ (t) of the Stratonovich
sde (34) because of (c). Before we can apply Lemma 7, We need to make sure that
the coefficients of the corresponding 1t6 equation also have this property.

Notethat the vector fieldsin the sde (34) may be considered as matrix products.
Using stochastic calculus, we may write down the 1t0 form of (34) as follows.

dn, =Y (Ad((n) ™) F} (1)} dw]

j=1

1< L o
+H3 XiAd((n?)‘l)F,-(t)Ad((n?) YFL()
j:

1¢ : , :
+3 2 A DIF (). FP0)

j=1
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1¢ : . R
+5 2 Ad) DA I @)l [X ol
j=1

1o N
+5 DA THAd@ Y X @] + Ad(n?) ™ Fo(@hy dt,
j=1

whereY;(u) = H(X;)(u) + u[f(,- (u)] 4 arethevector fieldsin the sde (23) for u,
on O(M). It iseasy to check that the coefficients of the above Itd sde converge to
0 exponentially. By Lemma7, n; — n,, ast — oo for somen;, € Ay.

In order to finish the proof of (d), it remainsto show that n/, € Pokso. Asinthe
proofsof Theorem 3and Lemmas, for p x P-amostal (u, ), wemay extract ase-
quencet; — oo suchthat the conditionsof Lemma4 aresatisfied for g; = g;; pos-
sibly with asmaller @.Applythislemmaoneobtainsﬁ@ntj — Pokso. Thisisalso
true for the original ©. Therefore, Ponl, = lim; f’@n;j = lim; Pon;; = Pokeo.
This proves (d).

To prove(e), it sufficesto show that any limiting point of p(¢) = p, iscontained
in Kg. If thisis not true, then along some sequence of t — oo, p(t) convergesto
somep € (K —Kg). Thenthereexistindicesi > j suchthat A; < A; and p;; # 0.
By (b) and Lemma 8, [s;k];j = [ank]ij = a;i(t) Y4_q nip()k;jp(r) grows at
the exponential rate ;. On the other hand, this is aso equal to [p,a;“k[k,*]ij =
[pia; )i = pl-j(t)ajf(t), which grows at the exponential rate A; > A;. Thisis
impossible. O

Remark 4. AsinRemark 2, if thevector fiel dsof the sde (23) satisfy the Hormand-
er type condition, then the conclusions of Theorem 4 holdfor all u € O (M) amost
surely.

Now let ¢, = &, and Dy (u) = us;, Withu = (us, ..., uq) € 7~ 1(m) and

m € M, be the decompositions given by Theorem 1. Then Dv/; (m) = us,u™t =

uamn®n,u~t with n, — nl_. Therefore, for large time r > O, the linear map
Dy, (m): T,,M — T,, M may be regarded as afixed random linear map ungou—l,

followed by another linear map ua,n?u—l which leaves the subspaces
Ul = Span(ul’ ey uil)’ U2 = Span(ui1+l’ ) uiz)v e
Ui = span(uiy_;+1, - - -, Uq)

of T,, M invariant and changes the length of vectorsin each Uy, at the exponential
rate A;, forl <k <.
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