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Abstract. We consider triangular arrays of Markov chains that converge weakly to a
diffusion process. Local limit theorems for transition densities are proved.

1. Introduction and results

In this paper we study triangular arrays of Markov chainsXn(k) (n ≥ 1, 0 ≤ k ≤ n)
that converge weakly to a diffusion process (for n → ∞). Our main result is that
the transition densities converges with rate O(n−1/2) to the transition density in the
diffusion model.

Weak convergence of the distribution of scaled discrete time Markov processes
to diffusions has been extensively studied in the literature. First general results have
been received by A.V. Skorohod in the early 60’s [see Skorohod (1965)]. In chap-
ter 6 of this monography he proves a general weak convergence theorem where
the limiting process consists of two components: a diffusion and a jump process.
The continuous diffusion is described by a stochastic Itô integral, the jump com-
ponent is a stochastic integral with respect to a Poissonian random measure. Later,
Strook and Varadhan (1979, chapter 11) developped an elegant “martingale prob-
lem” approach for continuous Markov processes. Probably, there the most general
results on weak convergence to a continuous diffusion can be found. The results in
Skorohod (1965) and in Strook and Varadhan (1979) are obtained by probabilistic
methods. In this paper, for the treatment of the convergence of transition densities
we will use an analytical approach. We will apply the parametrix method for par-
abolic PDEs and a modification of this method for discrete time Markov chains.
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Standard reference for the parametrix method are the books by A. Friedman (1964)
and O.A. Ladyz̆enskaja, V.A. Solonnikov and Ural´ceva (1968) on parabolic PDEs.
But for our purposes a slightly different version of the parametrix method used in
McKean and Singer (1967) is more appropriate. This method permits to obtain a
tractable representation of transition densities of diffusions that is based on Gauss-
ian densities, see Lemma 3.1. A similar representation is derived for the discrete
time Markov chain Xn, see Lemma 3.6. The parametrix method was used e.g. in
Kuznetsov (1998) to obtain bounds for Poisson kernels. But as far as we know for
Markov chains the parametrix method was not systematically developed before. A
description of the parametrix method is given in Subsection 3.1. Local limit theo-
rems for Markov chains were given in Kasymdzganova (1981) and Konakov and
Molchanov (1984). Kasymdzganova (1981) considered the case of a homogeneous
random walk on the lattice ZZp[with no drift, e.g. m ≡ 0]. Local limit theorems for
homogeneous Markov chains with continuous state space were given in Konakov
and Molchanov (1984).

We now give a more detailed description of the Markov chains and their diffu-
sion limit. For each n ≥ 1 we consider Markov chains Xn(k) where the time k runs
from 0 to n. The Markov chain Xn is assumed to take values in IRp. The dynamics
of the chain Xn is described by

Xn(k + 1) = Xn(k) + �n(k + 1)m{sn(k),Xn(k)}
+�n(k + 1)1/2εn(k + 1). (1.1)

Here �n(k) > 0 are real numbers with

n∑
k=1

�n(k) = 1.

The numbers sn(k) are defined as sn(0) = 0 and

sn(k) =
k∑

i=1

�n(i) for k ≥ 1.

Furthermore, m is a function m : [0, 1] × IRp → IRp. We make the Markov as-
sumption that the conditional distribution of the innovation εn(k+1) given the past
Xn(k),Xn(k−1), . . . depends only on the last value Xn(k). Given Xn(i) = x(i) for
i = 0, . . . , k the variable εn(k+1) has a conditional density q{sn(k), x(k), •}. The
conditional covariance matrix of εn(k+1) is denoted by �{sn(k), x(k)}. Here q is a
function mapping [0, 1]×IRp×IRp into IR+. Furthermore,� is a function mapping
[0, 1]×IRp into the set of positive definite p×p matrices. The conditional density
of Xn(n), given Xn(0) = x, is denoted by pn(x, •). Study of the transition densities
pn(x, y) is the topic of this paper. Conditions on �n(k),m, q{sn(k), x(k), •} and
�{sn(k), x(k)} will be given below.

By time change the Markov chain Xn defines a process Yn on [0, 1]. More pre-
cisely, put κn(t) = sup{k : sn(k) ≤ t, 0 ≤ k ≤ n}. This defines a monotone time
transform κn : [0, 1] → {0, . . . , n}. Using this time transform we get the following
process:
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Yn(t) = Xn{κn(t)}.
Under our assumptions, see below, the process Yn converges to a diffusion Y (t).
This follows for instance from Theorem 1, p. 82 in Skorohod (1987). The diffusion
is defined by Y (0) = x and

dY (t) = m{t, Y (t)}dt + �{t, Y (t)}dW(t),

where W is a p dimensional Brownian motion. The matrix �(t, z) is the unique
symmetric matrix defined by �(t, z)�(t, z)T = �(t, z). The conditional density
of Y (1), given Y (0) = x, is denoted by p(x, •). Note that the conditional density
of Yn(1), given Yn(0) = x, is denoted by pn(x, •).

For our result we use the following conditions.

(A1) For t ∈ [0, 1] and x ∈ IRp let q{t, x, •} be a density in IRp with∫
q{t, x, z}z dz = 0 for all t ∈ [0, 1], x ∈ IRp,

∫
q{t, x, z}zizj dz = σij (t, x) for all t ∈ [0, 1], x ∈ IRp

and i, j = 1, . . . , p.

The matrix with elements σij (t, x) is denoted by �(t, x).
(A2) There exist a positive integer S′ and a function ψ : IRp → IR with supx∈IRp

|ψ(x)| < ∞ and
∫
IRp ‖x‖S |ψ(x)| dx < ∞ for S = 2pS′ + 4 such that

|Dν
zq{t, x, z}| ≤ ψ(z) for all t ∈ [0, 1], x, z ∈ IRp, and |ν| = 0, . . . , 4,

|Dν
xq{t, x, z}| ≤ ψ(z) for all t ∈ [0, 1], x, z ∈ IRp and |ν| = 0, . . . , 2.

[For the case that S′ = 1 Theorem 2.1 can be shown under the weaker as-
sumption that (A2) holds for a function ψ with supx∈IRp |ψ(x)| < ∞ and∫
IRp ‖x‖k|ψ(x)| dx < ∞ for an integer k > p + 4.] Furthermore, for all

x ∈ IRp we assume that
∫ ∣∣q{t, x, z} − q{t ′, x, z}∣∣ dz → 0 for

∣∣t − t ′
∣∣ → 0.

[Under our assumptions this follows e.g. if q{t, x, z} is continuous in t for
fixed x and z.]

(A3) There exist positive constants c and C such that

c ≤ θT �(t, x)θ ≤ C

for all θ , ‖θ‖ = 1, t and x.
(A4) There exists a constant B with

B−1 <
�n(k)

�n(l)
< B

forn ≥ 1 and 1 ≤ k, l ≤ n. [Then it follows that�max = max1≤j≤n �n(j) =
O(n−1).]
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(A5) The functions m(t, x) and �(t, x) and their first derivatives with respect to x

and with respect to t are continuous and bounded (uniformly in t and x). All
these functions are Lipschitz continuous with respect to x (with a Lipschitz
constant that does not depend on t). Furthermore, ∂2/(∂xj ∂xk)�(t, x) exists
for 1 ≤ j, k ≤ p and is Holder continuous with respect to x (with positive
exponent δ and constant that do not depend on t).

The following theorem contains our main result. It gives a bound for the rate
of convergence of pn to p.

Theorem 1.1. Assume (A1) – (A5). Then the following estimate holds:

sup
x,y∈Rp

(
1 + ‖y − x‖2(S′−1)

)
|pn(x, y) − p(x, y)| = O(n−1/2),

where S′ is defined in Assumption (A2). The norm ‖ . . . ‖ is the usual Euclidean
norm.

2. Examples and extensions

(i) Approximation by diffusions that depend on n. The result can be extended to
the case that q, m and � depend on n. For this purpose conditions (A2), . . .,
(A5) have to be replaced by assumptions that hold uniformly in n. Then the
limiting fixed diffusion has to to replaced by a sequence of approximating
diffusions depending on n.

(ii) Unbounded drift function. Our result can be extended to the case of an un-
bounded drift functionm that is of the form b(t)x+a(t, x)where a fullfills the
conditions stated for m and where b(t) is a matrix that depends continuously
on t .

(iii) Unbounded one step transition density. Our results can be extended to un-
bounded transition densities if the transition density for a finite number of
steps is bounded, see e.g. (vii).

(iv) Functionals of Markov chains. Our theorem implies that the density of
(Yn(t1), . . . , Yn(tk)) converges to the density of (Y (t1), . . . , Y (tk)) in L1
norm for any tuple 0 ≤ t1 < · · · < tk ≤ 1. We conjecture that with the
approach of Davydov (1980, 1981) these results can be used to show that the
density of H(Yn(•)) converges to the density of H(Y(•)) for a wide range
of functionals H .

(v) Conditional Markov chains. In particular, our result can be used to show that
the conditional density of (Yn(t1), . . . , Yn(tk)) given Yn(1)) converges to the
conditional density of (Y (t1), . . . , Y (tk)) given Y (1)) (in L1 norm), where
tuple t1, . . . , tk is a tuple with 0 ≤ t1 < · · · < tk < 1.

(vi) Euler approximations. The case where q is a normal density corresponds to
Euler approximations that are the simplest strong Taylor approximations used
as numerical solutions to stochastic differential equations, see Kloeden and
Platen (1992). Rates of convergence for the distribution functions and den-
sities of transition probabilities can be found in Bally and Talay (1996a, b).
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A detailed discussion of new literature on numerical methods for SDE’s can
be found in Platen (1999).

(vii) Transport processes. Let us consider a symmetric and positive definite p ×
p matrix S(x) and vector m(x) = (m1(x), . . . , mp(x))

T where x ∈ IRp.
For a > 0 we consider independent variables Ra,1, Ra,2, . . . , Ua,1, Ua,2, . . .

where Ra,i have density a−1 exp(−r/a) and where Ua,i are uniformly dis-
tributed on the unit sphere in IRp. We define the following chain (transport
processes, see e.g. Pinsky, 1991):

Xa(0) = x,

Xa(i + 1) = Xa(i) + a2m(Xa(i)) + S(Xa(i))Ra,iUa,i ,

for 0 ≤ i ≤ [1/a2].

This process has no bounded one step transition density and it does not fulfill
the conditions of our theorem for this reason. However it is easy to show that
for a finite numbers k of steps the transition density of Xa(i+k) given Xa(i)

is bounded, so that we can apply our theorem to the process i → Xa(ik). This
shows that the density Xa([1/a2]) converges to the density of the diffusion
Y at time point t = 1 for a → 0 where

Y (0) = x,

dY (t) = cS(Y (t)) dW(t) + m(Y(t)) dt, for 0 ≤ t ≤ 1,

where c is an appropriate constant. The speed of convergence is of order
O(a).

(viii) Lattice distributions. Our approach can be extended to obtain local limit
theorems for a general class of nonhomogeneous random walks on a lat-
tice ZZp. A treatment of the homogeneous case can be found in Konakov
and Mammen (1999). This generalizes the results of Konovalov (1981) and
Kasymdzganova (1981).

(ix) Edgeworth expansions. We conjecture that Edgeworth expansions for Mar-
kov chains can be proved by our approach. This will be treated elsewhere.

(x) Statistical applications. This research was partially motivated by recent new
approaches in time series analysis. In a series of papers [see e.g. Robinson
(1983), Tjøstheim (1994), Franke, Kreiss and Mammen (1996)] it has been
proposed to use nonparametric approaches to model time series. In particular
nonparametric autoregression models have been considered:

X(k + 1) = m(X(k)) + σ(X(k))ε(k + 1), (2.1)

where the innovations ε(1), ε(2), . . . are typically assumed to be i.i.d. mean
zero variables. For the functions m and σ nonparametric smoothness assump-
tions are made and nonparametric smoothing methods are proposed for their
estimation. For a discussion of different nonparametric statistical problems in
these models we refer to the references above. Under regularity conditions on
m, σ and the distribution of ε(i), solutions of (2.1) are stationary processes.
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In Dahlhaus (1997) models are proposed for time series that are not sta-
tionary, however locally stationary. In particular he considers autoregressive
processes with time varying coefficients:

Xn(k + 1) = a(
k

n
)Xn(k) + ε(k + 1). (2.2)

Our model (1.1) is strongly related to the models (2.1)–(2.2). As in (2.2), we
observe a function on a finer grid for n → ∞. The main result of this pa-
per may be applied to discuss statistical nonparametric estimation problems
of the transition density and the shift function m under different smoothness
and structural assumptions. Our result reduces the discussion of some of such
problems in model (1.1) to the analysis of corresponding problems in diffu-
sion models. For the discussion of some nonparametric estimation problems
in diffusion models see Kutoyants (1997a, b).

3. Proofs

The proof of Theorem 1.1 is organized as follows. In the next two subsections we
will state series expansions for the transition densities of the limiting diffusion and
for the Markov chain. The series only depend on transition densities of “frozen”
processes. The “frozen” diffusion is a Gaussian process that has a Gaussian density
as transition density. For the “frozen” Markov chain we get transition densities that
are densities of sums of independent variables. The difference between these den-
sities and the Gaussian densities can be treated by Edgeworth expansions. This is
done in Subsection 3.3. These are the main steps of the proof of Theorem 1.1. The
remaining steps of the proof of Theorem 1.1 are given in Subsection 3.4. Longer
proofs of some lemmas are given in Subsection 3.5.

3.1. The parametrix method

In this subsection we will state an infinite series expansion of the transition den-
sity p of the limiting diffusion process Y , see Lemma 3.1. We will give a similar
expansion for the Markov chain in the next subsection, see Lemma 3.6. Our proof
of Theorem 1.1 will be based on the comparison of these two series. The series for
the transition densities will be derived by the parametrix method. We will give a
description of the parametrix method below.

For the statement of the expansion of p in Lemma 3.1 we have to introduce
additional diffusion processes. For 0 < s < 1 and x, y ∈ IRp we define diffusions
Ỹ = Ỹs,x,y that are defined for s ≤ t ≤ 1 by

Ỹ (s) = x

and
dỸ (t) = m{t, y}dt + �{t, y}dW(t).

The processes Ỹ are called “frozen” diffusions. We define p̃(s, t, x, y) as the con-
ditional density of Ỹ (t)[= Ỹs,x,y(t)] at the point y, given Ỹ (s) = x. Note that the
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variable y acts here twice: as the argument of the density and as a defining quantity
of the process Ỹ = Ỹs,x,y . Furthermore, we denote by p̃

y
j (x, z) the conditional den-

sity of Ỹ (sn(j + 1))[= Ỹsn(j),x,y(sn(j + 1))] at the point z, given Ỹ (sn(j)) = x.
The process Ỹ is a simple Gaussian process. Its transition densities p̃ are given
explicitely. By definition, we have that

p̃(s, t, x, y) = (2π)−p/2(det �(s, t, y))−1/2

× exp[−1

2
{y − x − m(s, t, y)}′

�(s, t, y)−1{y − x − m(s, t, y)}],
(3.1)

where

�(s, t, y) =
∫ t

s

�(u, y) du,

m(s, t, y) =
∫ t

s

m(u, y) du.

Let us introduce the following differential operators L and L̃:

Lf (s, t, x, y) = m(s, x)T
∂f (s, t, x, y)

∂x
+ 1

2
tr[�(s, x)T

∂2f (s, t, x, y)

(∂x)2
�(s, x)]

and

L̃f (s, t, x, y) = m(s, y)T
∂f (s, t, x, y)

∂x
+ 1

2
tr[�(s, y)T

∂2f (s, t, x, y)

(∂x)2
�(s, y)].

Note that L and L̃ corresponds to the infinitesimal operators of Y or of the frozen
process Ỹs,x,y , respectively, i.e.

Lf (s, t, x, y) = lim
h→0

h−1{E [f (s, t, Y (s + h), y)|Y (s) = x] − f (s, t, x, y)},
(3.2)

L̃f (s, t, x, y) = lim
t→0

t−1{E[f (s, t, Ỹs,x,y(s+h), y)]−f (s, t, x, y)}. (3.3)

We put

H = (L − L̃)p̃.

Then

H(s, t, x, y) = 1

2

p∑
i,j=1

(σij (s, x) − σij (s, y))
∂2p̃(s, t, x, y)

∂xi∂xj

+
p∑

i=1

(mi(s, x) − mi(s, y))
∂p̃(s, t, x, y)

∂xi
. (3.4)
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Now we define the following convolution type binary operation ⊗:

(f ⊗ g)(s, t, x, y) =
∫ t

s

du

∫
IRp

f (s, u, x, z)g(u, t, z, y)dz.

We write g ⊗ H(0) for g and for r = 1, 2, . . . we denote the r-fold “convolution”
(g ⊗ H(r−1)) ⊗ H by g ⊗ H(r). With these notations we can state our expansion
for p.

Lemma 3.1. For 0 ≤ s < t ≤ 1 the following formula holds:

p(s, t, x, y) =
∞∑
r=0

(p̃ ⊗ H(r))(s, t, x, y).

A proof of Lemma 3.1 can be found in McKean and Singer (1967). It is based
on application of the parametrix method. We give now a description of this ap-
proach. It is well-known [see e.g. Dynkin (1965)] that the transition density p is
the fundamental solution of Kolmogorov’s backward differential equation:

∂p

∂s
+ Lp = 0.

Moreover under Condition (A5)p satisfies Kolmogorov’s forward differential equa-
tion (or the Fokker-Plank equation)

−∂p

∂t
+ L∗p = 0,

where

L∗f (s, t, x, y)=−
p∑

i=1

∂[mi(t, y)f (s, t, x, y)]

∂yi
+1

2

p∑
i,j=1

∂2[σi,j (t, y)f (s, t, x, y)]

∂yi ∂yj
.

We use now

p̃(t, t, x, y) = δ(x − y), (3.5)

p(t, t, x, y) = δ(x − y), (3.6)∫
IRp p̃(u, t, z, y)L∗p(s, u, x, z)dz = ∫

IRp p(s, u, x, z)Lp̃(u, t, z, y)dz, (3.7)

where δ is the Dirac delta function. Equations (3.5) and (3.6) are the initial con-
ditions of the processes Y and Ỹ , respectively. Equation (3.7) follows by partial
integration (or this is just the property that, as is well known, L and L∗ correspond
to adjoint operators.) With (3.5)–(3.7) we can write the basic parametrix equation

p(s, t, x, y) − p̃(s, t, x, y)

=
∫ t

s

du
∂

∂u

[∫
IRd

p(s, u, x, z)p̃(u, t, z, y)dz

]

=
∫ t

s

du

∫
IRd

[
p̃(u, t, z, y)L∗p(s, u, x, z) − p(s, u, x, z)L̃p̃(u, t, z, y)

]
dz

=
∫ t

s

du

∫
IRd

p(s, u, x, z)
[
L − L̃

]
p̃(u, t, z, y)dz. (3.8)
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This equation can be rewritten as

p = p̃ + p ⊗ H. (3.9)

Iterative application of (3.9) gives

p =
r∑

i=0

p̃ ⊗ H(i) + p ⊗ H(r+1). (3.10)

Lemma 3.1 follows by taking the limit r → ∞ in (3.10).
We will make use of the bounds on H and p̃ ⊗ H(r) that are stated in the fol-

lowing lemma. Proofs of these bounds can be found again in McKean and Singer
(1967). For a more detailed proof of Lemma 3.2 see also Ladyz̆enskaja, Solonnikov
and Ural´ceva (1968).

Lemma 3.2. There exist constants C and C1 (that do not depend on x and y) such
that the following inequalities hold:

|H(s, t, x, y)| ≤ C1ρ
−1φC,ρ(y − x),

and

|p̃ ⊗ H(r)(s, t, x, y)| ≤ Cr+1
1

ρr

<(1 + r
2 )

φC,ρ(y − x),

where ρ2 = t − s, φC,ρ(u) = ρ−pφC(u/ρ) and

φC(u) = exp(−C‖u‖2)∫
exp(−C‖v‖2) dv

.

In the proof of Theorem 1.1 we will need bounds on the derivatives of H , p̃
and p̃ ⊗ H(r). These are stated in the next three lemmas.

Lemma 3.3. There exist constants C and C1 such that the following estimate holds∣∣∣∣∂H(s, t, x, y)

∂s

∣∣∣∣ ≤ C1ρ
−3φC,ρ(y − x),

where ρ and φC,ρ are defined as in Lemma 3.2.

Proof of Lemma 3.3. By Assumption (A5), σij (s, x) and mi(s, x) have partial de-
rivatives with respect to s that are Lipschitz continuous with respect to x. Using
(3.4), one sees that for the statement of the lemma it suffices to show for some
constants C′

1 and C′
2 that∣∣∣∣∂2p̃(s, t, x, y)

∂xi∂xj

∣∣∣∣ ≤ C′
1ρ

−2φC′
2,ρ

(y − x),

∣∣∣∣ ∂∂s ∂2p̃(s, t, x, y)

∂xi∂xj

∣∣∣∣ ≤ C′
1ρ

−4φC′
2,ρ

(y − x).

These claims follow from Assumption (A5) by taking partial derivatives of p̃, see
(3.1). ��
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Lemma 3.4. There exist constants C1 and C such that the following estimates hold
for 1 ≤ k ≤ p∣∣∣∣ ∂

∂yk
H(s, t, x, y) + ∂

∂xk
H(s, t, x, y)

∣∣∣∣ ≤ C1ρ
−1φC,ρ(y − x), (3.11)∣∣∣∣ ∂∂sH(s, t, x, y) + ∂

∂t
H(s, t, x, y)

∣∣∣∣ ≤ C1ρ
−1φC,ρ(y − x), (3.12)

where ρ and φC,ρ are defined as in Lemma 3.2.

Proof of Lemma 3.4. The statements of the lemma can be seen from the definition
of H(s, t, x, y), well-known properties of Gaussian densities and (A5). ��
Lemma 3.5. There exist constants C1 and C such that the following estimate holds
for r ≥ 0

|∂p̃ ⊗ H(r)(s, t, x, y)

∂t
| ≤ Cr+1

1
ρr−2

<(1 + r
2 )

φC,ρ(y − x), (3.13)

where ρ and φC,ρ are defined as in Lemma 3.2.

The proof of Lemma 3.5 is deferred to subsection 3.5.

3.2. Application of the parametrix method to Markov chains

In this subsection we derive a finite series expansion of the transition density
pn(s, t, x, y) of the Markov chain, see Lemma 3.6. Here, pn(s, t, x, •) denotes
the conditional density of Yn(t), given Yn(s) = x (in particular, pn(0, 1, x, y) =
pn(x, y)). We proceed similarly as in the last subsection. Again we apply the par-
ametrix method and for this purpose we introduce additional “frozen” Markov
chains. These are defined as follows. For all 0 ≤ j ≤ n and x, y ∈ IRp we define
the Markov chains X̃n = X̃n,j,x,y . For fixed j, x and y, the chain is defined for i

with j ≤ i ≤ n. The dynamics of the chain is described by

X̃n(j) = x

and

X̃n(i + 1) = X̃n(i) + �n(i + 1)m{sn(i), y} + �n(i + 1)1/2ε̃n(i + 1).

The stochastic structure of the IRp valued innovations ε̃n(i) is described as follows.
Given X̃n(l) = x(l) for l = j, . . . , i the variable ε̃n(i + 1) has a conditional densi-
ty q{sn(i), y, •}. Note that the conditional distribution of X̃n(i + 1) − X̃n(i) does
not depend on the past X̃n(l) for l = j, . . . , i. Let us call X̃n the Markov chain
frozen at y. We put Ỹn(t) = X̃n{κn(t)} and we write p̃n(sn(j), sn(k), x, y) for the
conditional density of X̃n(k)[= X̃n,j,x,y(k)] at the point y, given X̃n(j) = x. Note
that, as in the case of a “frozen” diffusion the variable y acts here twice: as the
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argument of the density and as a defining quantity of the process X̃n = X̃n,j,x,y .
Let us introduce the following infinitesimal operators Ln and L̃n:

Ln f (sn(j), sn(k), x, y)

=
∫
pn,j (x, z)f (sn(j + 1), sn(k), z, y)dz − f (sn(j + 1), sn(k), x, y)

�n(j + 1)
,

L̃n f (sn(j), sn(k), x, y)

=
∫
p̃
y
n,j (x, z)f (sn(j + 1), sn(k), z, y)dz − f (sn(j + 1), sn(k), x, y)

�n(j + 1)
,

where we write pn,j (x, z) = pn(sn(j), sn(j + 1), x, z) and where p̃
y
n,j (x, •) de-

notes the conditional density of X̃n(j + 1)[= X̃n,j,x,y(j + 1)] given X̃n(j) = x.
Note that Ln and L̃n are defined in analogy with the definition of L and L̃, see
(3.2)-(3.3). We remark that for some technical reasons on the right hand side of
the definitions of Ln f and L̃n f the terms f (sn(j + 1), . . .) appear instead of
f (sn(j), . . .). The reasons will become apparent in the development of the proof
of Theorem 1.1. For k > j we put in analogy with the definition H

Hn = {Ln − L̃n}p̃n.

In the following we use the following convolution type binary operation ⊗n:

(g ⊗n f )(sn(j), sn(k), x, y)

=
k−1∑
i=j

�n(i + 1)
∫
IRp

g(sn(j), sn(i), x, z)f (sn(i), sn(k), z, y)dz,

where 0 ≤ j < k ≤ n. In this definition the convention is used that
∑k−1

i=j . . . = 0

if j ≥ k. We write g ⊗n H
(0)
n for g and for r = 1, 2, . . . , n, we denote the r fold

“convolution” (g ⊗n H
(r−1)
n ) ⊗n Hn by g ⊗n H

(r)
n . Note that ⊗n is a discretized

version of ⊗.
The next lemma gives the “parametrix” expansion of pn.

Lemma 3.6. For 0 ≤ j < k ≤ n the following formula holds:

pn(sn(j), sn(k), x, y) =
k−j∑
r=0

(p̃n ⊗n H(r)
n )(sn(j), sn(k), x, y),

where in the calculation of p̃n ⊗n H
(r)
n we define

pn(sn(j), sn(j), x, y) = p̃n(sn(k), sn(k), x, y) = δ(x − y).

Here δ denotes the Dirac function.
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Proof of Lemma 3.6. Note that by definition:

Hn(sn(j), sn(k), x, y)

=
∫

[pn,j (x, z) − p̃
y
n,j (x, z)]p̃n(sn(j + 1), sn(k), z, y)dz

�n(j + 1)
. (3.14)

Using the Markov property we get the following identity:

pn(sn(j), sn(k), x, y) − p̃n(sn(j), sn(k), x, y)

=
k−1∑
i=j

�n(i + 1)
∫

pn(sn(j), sn(i), x, z)

×
∫ [pn,i(z, z

′) − p̃
y
n,i(z, z

′)]p̃n(sn(i + 1), sn(k), z′, y)
�n(i + 1)

dz′ dz

=
k−1∑
i=j

�n(i + 1)
∫

pn(sn(j), sn(i), x, z)Hn(sn(i), sn(k), z, y)dz

= (pn ⊗n Hn)(sn(j), sn(k), x, y).

The lemma follows by iterative application of this identity. ��

3.3. Bounds on p̃n − p̃ based on Edgeworth expansions

In this subsection we will develop some tools that are helpful for the comparison
of the expansion of p (see Lemma 3.1) and the expansion of pn (see Lemma 3.6).
These expansions are simple expressions in p̃ or p̃n, respectively. Recall that p̃ is
a Gaussian density, see (3.1), and that p̃n is the density of a sum of independent
variables. The densities p̃ and p̃n can be compared by application of Edgeworth
expansions. This is done in Lemma 3.8. This is the essential step for the comparison
of the expansions of p and pn. The other lemmas of this subsection give bounds for
several quantities. In the next lemma bounds will be given for derivatives of p̃n. The
proof of this lemma also makes essential use of Edgeworth expansions. In Lemma
3.9 we give an approximation for Hn = (Ln − L̃n)p̃n. We show that this term can
be approximated by Kn + Mn, where Kn = (L − L̃)p̃n and where Mn is defined
in Lemma 3.9. Bounds on Hn, Kn, Mn and p̃n ⊗n H

(r)
n are given in Lemmas 3.10

and 3.11. These bounds will be used in the proof of Lemma 3.12 to show that in
the expansion of pn the terms p̃n ⊗n H

(r)
n can be replaced by p̃n ⊗n (Mn +Kn)

(r).
Finally, in Lemma 3.13 we use our Gaussian approximation p̃ for the transition
density p̃n of the Markov chain and we show that in the expansion of pn, the density
p̃n can be replaced by p̃.

Lemma 3.7. The following bound holds:

|Dν
up̃n(sn(j), sn(k), x, y)| ≤ Cρ−|ν| ξρ(y − x) (3.15)
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for all j < k, for all x and y and for all ν with 0 ≤ |ν| ≤ 2. Here, ρ = [sn(k) −
sn(j)]1/2 [for simplicity the indices n, j and k are suppressed in the notation],
ξρ(•) = ρ−pξ(•/ρ) and

ξ(z) = [1 + ‖z‖S−2]−1∫
[1 + ‖z′‖S−2]−1 dz′ .

The constant S has been defined in Assumption (A2).

Proof of Lemma 3.7. We first note that p̃n(sn(j), sn(k), x, •) is the density of the
vector

x + µj,k +
k−1∑
i=j

ηi,

where µj,k = ∑k−1
i=j �n(i + 1)m{sn(i), y} is deterministic, where ηi = [�n(i +

1)]1/2ε̃n(i + 1), [i = j, . . . , k − 1], and where, as above in the definition of the
“frozen” Markov chain Ỹn, ε̃n(i+1) is a sequence of independent variables with den-
sities q(sn(i), y, •). Let fn(•) be the density of the normalized sum V

−1/2
j,k

∑k−1
i=j ηi

where

Vj,k =
k−1∑
i=j

�n(i + 1)�(sn(i), y).

It follows from (A3) that for some constants c1, . . . , c4 > 0 the following inequal-
ities hold for all θ with ‖θ‖ = 1 and all j < k

c1ρ
−1 ≤ θT V

−1/2
j,k θ ≤ c2ρ

−1 (3.16)

and
c3ρ

−p ≤ det V −1/2
j,k ≤ c4ρ

−p. (3.17)

Clearly, we have

p̃n(sn(j), sn(k), x, •) = det V −1/2
j,k fn{V −1/2

j,k (• − x − µj,k)}.
We now argue that an Edgeworth expansion holds for fn. Because of (3.16) and
(3.17) this implies the following expansion for p̃n(sn(j), sn(k), x, •).

p̃n(sn(j), sn(k), x, •)

= det V −1/2
j,k

[S−3∑
r=0

(k − j)−r/2Pr(−φ : {χ̄β,r})(V −1/2
j,k [• − x − µj,k])

+O([k − j ]−(S−2)/2[1 + ‖V −1/2
j,k (• − x − µj,k)‖S]−1)

]
(3.18)

with standard notations, see Bhattacharya and Rao (1976), p. 53. In particular, Pr

denotes a product of a standard normal density with a polynomial that has coeffi-
cients depending only on cumulants of order ≤ r + 2.

We now argue that expansion (3.18) follows from Theorem 19.3 in Bhattach-
arya and Rao (1976). For this claim we have to show that for the sum

∑k−1
i=j ηi the
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conditions (19.27), (19.29) and (19.30) of Theorem 19.3 are verified. The matrix Bn

on page 194 of Bhattacharya and Rao (1976) corresponds toBj,k = (k−j)1/2 ·Vj,k .
Now because of (3.16) we have for some constants C1 and C2

E‖Bj,kηi‖S = E‖(k − j)1/2Vj,kηi‖S

≤ C�
−S/2
max E‖ρVj,kηi‖S

≤ C�
−S/2
max ‖ρVj,k‖SE‖ηi‖S

≤ C1�
−S/2
max ‖Eηi‖S

≤ C1

∫
‖z‖Sq(sn(i), y, z)dz

≤ C2

∫
‖z‖Sψ(z)dz

< ∞,

see (A2). This shows (19.27).
Next, we show (19.29) with p = 2. We write ϕX(u) = E exp(iuT X) for

the characteristic function of a random variable X. Using the substitution s =
u · (k − j)1/2V

−1/2
j,k we get for a constant C3

γ = sup
i=j,...,k−2

∫
|E exp{iuT (k − j)1/2V

−1/2
j,k ηi}|

·|E exp{iuT (k − j)1/2V
−1/2
j,k ηi+1}|du

≤ sup
i=j,...,k−2

[det((k − j)1/2V
−1/2
j,k )]−1 sup

i=j,...,k−2

∫
|ϕηi (s)||ϕηi+1(s)|ds

≤ C3�
p/2
max sup

i=j,...,k−2

∫
|ϕηi (s)| |ϕηi+1(s)|ds

≤ C3 sup
i=j,...,k−2

∫
|ϕε̃n(i+1)(s)||ϕε̃n(i+2)(s)|ds

≤ C3 sup
i=j,...,k−2

‖ϕε̃n(i+1)‖2‖ϕε̃n(i+2)‖2

= C3 sup
i=j,...,k−2

‖q(sn(i), y)‖2‖q(sn(i + 1), y‖2

≤ C3‖ψ‖2
2 < ∞.

Hence, (19.29) holds with p = 2.
To check (19.30) we prove that for any b > 0

sup
t∈[0,1],‖u‖>b

|ϕε̃(t)(u)| < 1 (3.19)

where ε̃(t) is a random variable with density q(t, y, •). Suppose that this does not
hold. Then there exists b0 > 0 with

sup
t∈[0,1],‖u‖>b0

|ϕε̃(t)(u)| = 1.
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Hence, there exist sequences {uk} and tk with |ϕε̃(tk)(uk)| → 1. For constant B0
it must hold that b0 ≤ ‖uk‖ ≤ B0 because, under our conditions, |ϕε̃(t)(u)| →
0, ‖u‖ → ∞ uniformly in t ∈ [0, 1]. Hence there exist u0 ≥ b0 �= 0 and t0 such

that for subsequences ukj

j→∞−→ u0 and tkj
j→∞−→ t0. This implies ϕε̃(t0)(u0) = 1.

Define e = u0
‖u0‖ and consider

E exp{iseT ε̃(t0)} = E exp{iseT ε̃(t0)} = ϕPrε̃(t0)(s).

ϕP rε̃(t0)(s) is the characteristic function of the projection of ε̃(t0) onto e. We have
ϕPrε̃(t0)(0) = ϕPrε̃(t0)(‖u0‖) = 1. This implies that the distribution of this projec-
tion is purely discrete. Clearly this is impossible because it contradicts our assump-
tion that ε(t0) has a density. Therefore (3.19) holds.

Our setting is slightly different from that of Theorem 19.3 in Bhattacharya and
Rao (1976). We consider triangular arrays of independent random vectors instead
of a sequence of independent random vectors. But the same proof applies because
in our setting the conditions (19.27), (19.29) and (19.30) hold uniformly.

We now argue that, for C large enough it holds that

p̃n(sn(j), sn(k), x, •) ≤ Cξρ(• − x).

For seeing this note that for all c there exists a constant C′ with

exp(−c‖z‖2) ≤ C′ 1

1 + ‖z‖S
.

This shows the lemma for |ν| = 0.
For |ν| = 1, 2 one again proceeds simlarly as in the proof of Theorem 19.3

in Bhattacharya and Rao (1976) to obtain Edgeworth expansions for Dν
up̃n(sn(j),

sn(k), u, y). Note that differentiation Dν of the density and of the terms of the
Edgeworth expansion corresponds to multiplication of their Fourier transforms
with tν . Hence, after obvious modifications the estimates of Theorem 9.11 and
Lemma 14.3 from Bhattacharya and Rao (1976) apply for these derivatives. Then
with these bounds one simply has to copy the proof of Theorem 19.3. Proceeding
as above one gets (3.15). ��

Lemma 3.8. The following bound holds with a constant C

|p̃n(sn(j), sn(k), x, y) − p̃(sn(j), sn(k), x, y)| ≤ C�
1/2
maxρ

−1ζρ(y − x) (3.20)

for all j < k, x and y. Here again ρ denotes the term ρ = [sn(k) − sn(j)]1/2. We
write ζρ(•) = ρ−pζ(•/ρ) where

ζ(z) = [1 + ‖z‖S−4]−1∫
[1 + ‖z′‖S−4]−1 dz′ .
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Proof of Lemma 3.8. It follows from the proof of Lemma 3.7 (see (3.18)) and from
Condition (A4) that

|p̃n(sn(j), sn(k), x, y) − p̂n(sn(j), sn(k), x, y)|
≤ C�

1/2
maxρ

−1ζρ(y − x), (3.21)

where with Vj,k and µj,k as in the proof of Lemma 3.7

p̂n(sn(j), sn(k), x, y) = det V −1/2
j,k (2π)−p/2

× exp{−1

2
(y − x − µj,k)

T V −1
j,k (y − x − µj,k)}.

Note that by (A5) we easily get∥∥µj,k − m(sn(j), sn(k), y)
∥∥ ≤ C�maxρ

2,∥∥Vj,k − �(sn(j), sn(k), y)
∥∥ ≤ C�maxρ

2.

This implies

|p̂n(sn(j), sn(k), x, y) − p̃(sn(j), sn(k), x, y)| ≤ C�maxζρ(y − x)

≤ C�
1/2
maxρ

−1ζρ(y − x). (3.22)

The lemma follows from (3.22) and (3.21). ��
In the next lemma we compare the infinitesimal operators Ln and L̃n with the

differential operators L and L̃. We give an approximation for the error if, in the
definition of Hn, the terms Ln and L̃n are replaced by L or L̃, respectively.

Lemma 3.9. The following bound holds with a constant C

|Hn(sn(j), sn(k), x, y) − Kn(sn(j), sn(k), x, y) − Mn(sn(j), sn(k), x, y)|
≤ C�

1/2
maxρ

−1ζρ(y − x) (3.23)

with ζρ as in Lemma 3.8 for all j < k, x and y. Here again ρ denotes the term
ρ = [sn(k) − sn(j)]1/2. For j < k − 1 the function Kn is defined as

Kn = (L − L̃)p̃n.

Furthermore, for j < k − 1 we define

Mn(sn(j), sn(k), x, y)=3�n(j+1)1/2
∑
|ν|=3

∑
|µ|=1

∫
IRp

∫ 1

0
Dµ

y q(sn(j), y, θ)(x−y)µ

θν

ν!
Dν

xp̃n(sn(j + 1), sn(k), x + δθ�n(j + 1)1/2, y)(1 − δ)2dδdθ.

For j = k − 1 we define

Kn(sn(j), sn(k), x, y) = Mn(sn(j), sn(k), x, y) = 0.



Local limit theorems of Markov chains 567

The proof of Lemma 3.9 is based on some lengthy elementary calculations. It
is deferred to Subsection 3.5.

Lemma 3.10. The following bound holds with a constant C

|Kn(sn(j), sn(k), x, y)| ≤ Cρ−1 ζρ(y − x), (3.24)

|Hn(sn(j), sn(k), x, y)| ≤ Cρ−1 ζρ(y − x), (3.25)

|Mn(sn(j), sn(k), x, y)| ≤ Cρ−1 ζρ(y − x), (3.26)

with ζρ as in Lemma 3.8 for all j < k, x and y. Here again, ρ = [sn(k)−sn(j)]1/2.

Proof of Lemma 3.10. Note first that (3.25) follows from (3.24) with Lemma 3.9
and (A4). Claim (3.26) follows from the fact that �max ≤ cρ for a constant c and
from simple estimates. It remains to show (3.24). We have that

|Kn(sn(j), sn(k), x, y)| ≤ |f ′(u)T [m(sn(j), x) − m(sn(j), y)]|
+1

2
tr
{
[�(sn(j), x) − �(sn(j), y)]

×f ′′(x)[�(sn(j), x) + �(sn(j), y)]
}
, (3.27)

where f (x) = p̃n(sn(j + 1), sn(k), x, y). It follows from (A2) and (A3) that for
C′ large enough

‖m(sn(j), x) − m(sn(j), y)‖ ≤ C′ρ
[‖y − x‖

ρ
+ 1

]
(3.28)

and

‖�(sn(j), x) − �(sn(j), y)‖ ≤ C′ρ
[‖y − x‖

ρ
+ 1

]
. (3.29)

Now the lemma follows from Lemma 3.7, (3.27) – (3.29) and (A4). ��

Lemma 3.11. There exists a constant C1 (that does not depend on x and y) such
that the following inequality holds:

|p̃n ⊗n H(r)
n (sn(j), sn(k), x, y)| ≤ Cr+1

1 ρr

<(1 + r
2 )

χρ(y − x)

for 0 < j < k ≤ n, where

χ(z) = [1 + ‖z‖2S′−2]−1∫
[1 + ‖z′‖2S′−2]−1 dz′

and ρ = [sn(k) − sn(j)]1/2.
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Proof of Lemma 3.11. With the help of Lemmas 3.10 and 3.7 [note that ξ/ζ is
bounded] we get

|p̃n ⊗n Hn(sn(j), sn(k), x, z)|

≤
k−1∑
i=j

�n(j + 1)
∫
IRp

p̃n(sn(j), sn(i), x, z
′)|Hn(sn(i), sn(k), z

′, z)| dz′

≤ C2
k−1∑
i=j

�n(i + 1)[sn(k) − sn(i)]
−1/2ζ 2,j,k(z − x),

where we put

ζ l,j,k(x) = max{ζρ1 ∗ . . . ∗ ζρl
(x) : ρ1 ≥ 0, . . . , ρl ≥ 0,

ρ2
1 + . . . + ρ2

l = ρ2}. (3.30)

Here ζ0 denotes the δ-function. We use now that
∑k−1

i=j �n(i+1)[sn(k)−sn(i)]−1/2 ≤∫ sn(k)

sn(j)
[sn(k) − v]−1/2 dv = ρB(1, 1

2 ), where B(α, β) = ∫ 1
0 tα−1(1 − t)β−1 dt is

the beta function. We get

|p̃n ⊗n Hn(sn(j), sn(k), x, z)| ≤ C2ρB(1,
1

2
)ζ 2,j,k(z − x). (3.31)

Using (3.31) and (3.25) we get∣∣∣p̃n ⊗n H(2)
n (sn(j), sn(k), x, z)

∣∣∣
≤

k−1∑
i=j

�n(i + 1)
∫
IRp

|p̃n ⊗n Hn(sn(j), sn(i), x, z
′)||Hn(sn(i), sn(k), z

′, z)|dz′

≤ C3ρ2ζ 3,j,k(z − x)B(1,
1

2
)B(

3

2
,

1

2
),

where it has been used that
∫ sn(k)

sn(j)
[sn(k) − v]1/2[v − sn(j)]−1/2 dv = ρ2B( 3

2 ,
1
2 ).

Using iteratively similar bounds we get∣∣∣p̃n ⊗n H(r)
n (sn(j), sn(k), x, z)

∣∣∣
≤ Cr+1ρrζ r+1,j,k(z − x)B(1,

1

2
)B(

3

2
,

1

2
) × . . . × B(

r + 1

2
,

1

2
).

≤ Cr+1<(
1

2
)rρrζ r+1,j,k(z − x)

1

<( r2 + 1)
. (3.32)

For the statement of the lemma it suffices to show that [1+‖x/ρ‖2S′−2]ρpζ r+1,j,k(x)

is bounded by (C′)r+1 for a constantC′. For this purpose note that due to our choice
of S′, see Assumption (A2), with constants C1, C2

ζ(x) = C1

1 + ‖x‖2pS′ ≤ C2

p∏
i=1

λ(xi),
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where λ(x) = [1+x2S′
]−1{∫ [1+u2S′

]−1 du}−1. This shows that for ρ1, ..., ρr+1,

ρ2
1 + ... + ρ2

r+1 = ρ2,

ζρ1 ∗ ... ∗ ζρr+1(x) ≤ Cr+1
2

p∏
i=1

η(xi), (3.33)

where η(u) = λρ1 ∗ ...∗λρr+1(u). Let us denote the Fourier transform of a function
γ by γ̂ (t) = ∫

exp(itu)γ (u)du. Furthermore, here ‖•‖1 is the usual L1−norm in
R1. We will show that ∥∥η̂∗∥∥

1 ≤ Cr+1
3 ρ−1, (3.34)

where η∗(u) = [1 + (u/ρ)2S′−2]η(u) and where C3 is a constant that does not de-
pend on the special choice of ρ1, ..., ρr+1. [Note that the function η∗ is in L1(R

1),
and that for this reason its Fourier transform is well defined.]

From (3.34) we get by the Fourier Inversion Theorem

|η(u)| ≤ Cr+1ρ−1

1 + (u/ρ)2S′−2
.

Because of
p∏

i=1

1

1 + x2S′−2
i

≤ C4

1 + ‖x‖2S′−2

[with some constant C4] we therefore get from (3.33) that

ζ r+1,j,k(x) ≤ Cr+1
5 ρ−p 1

1 + ‖x/ρ‖2S′−2

with some constant C5, i.e. (3.34) holds and the lemma is proved.
It remains to show claim (3.34).

Proof of (3.34). Note first that

∥∥η̂∗∥∥
1 ≤ ∥∥η̂∥∥1 + 1

ρ2S′−2

∥∥∥η̂(2S′−2)
∥∥∥

1
(3.35)

where η̂(2S′−2) means the derivative of order 2S′ − 2 of the Fourier transform η̂ of
η. We now show that ∥∥η̂∥∥1 ≤ (r + 1)1/2ρ−1

∥∥∥λ̂∥∥∥
1
. (3.36)

For the proof of claim (3.36) note first that there exists an i∗ with ρ2
i∗ ≥ ρ2/(r +1).

We get the following inequality:∫
|η̂(t)|dt ≤

∫
|λ̂(tρ1)| · . . . · |λ̂(tρl)|dt

≤
∫

|λ̂(tρi∗)|dt

≤ (r + 1)1/2ρ−1
∫

|λ̂(t)|dt.
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Note now that
∫ |λ̂(t)|dt is bounded, see Lemma 3.10. This shows (3.36).

To estimate ‖η̂(2S′−2)‖1 note first that |λ̂ρi
(t)| = |λ̂(ρi t)| ≤ 1 and

|λ̂(k)
ρi

(t)| ≤ ρk
i

∫
|u|kλ(u)du < ∞

for k = 1, . . . , 2S′ − 2. Furthermore, for
∑r+1

i=1 = 2S′ − 2 we have with some
constants C6 and C7∫

|λ̂(k1)
ρ1

(t)| · . . . · |λ̂(kr+1)
ρr+1 (t)|dt ≤ Cr

6

∏
i �=i∗

ρ
ki
i

∫
|λ̂(ki∗ )

ρi∗ (t)| dt

≤ Cr
6ρ

2S′−2−ki∗
∫

ρ
ki∗
i∗ |λ̂(ki∗ )(u)| dt

ρi∗

≤ Cr+1
7 ρ2S′−3‖λ̂(ki∗ )‖1. (3.37)

Using Leibnitz formula for η(u) = λρ1 ∗ ...∗λρr+1(u) we get the following estimate
from (3.37) with a constant C8∥∥∥η̂(2S′−2)

∥∥∥
1

≤ C8ρ
2S′−3

(∥∥∥λ̂(1)
∥∥∥

1
+ ... +

∥∥∥λ̂(2S′−2)
∥∥∥

1

)
. (3.38)

It is well known that
∥∥∥λ̂(q)

∥∥∥
1

is uniformly bounded for q = 0, 1, ..., 2S′ − 2,

see e.g. Lemma 1 in Gel’fand and Shilov (1958), p. 236. Claim (3.34) now follows
from (3.35)–(3.38). ��
Lemma 3.12. For 0 ≤ j < k ≤ n the following formula holds:

pn(sn(j), sn(k), x, y) =
k−j∑
r=0

(p̃n ⊗n (Mn + Kn)
(r))(sn(j), sn(k), x, y) + R,

where

|R| ≤ C�
1
2
maxχρ(y − x)

for some constant C. The function χ has been defined in Lemma 3.11. Here again
ρ = [sn(k) − sn(j)]1/2.

Proof of Lemma 3.12. By Lemma 3.6 we have that

pn(sn(j), sn(k), x, y) =
k−j∑
r=0

(p̃n ⊗n H(r)
n )(sn(j), sn(k), x, y).

For r = 0 we have that

(p̃n ⊗n H(r)
n )(sn(j), sn(k), x, y) = (p̃n ⊗n (Mn + Kn)

(r))(sn(j), sn(k), x, y),

by definition. For r = 1 we have by Lemmas 3.7 and 3.9 that

(p̃n⊗nH
(r)
n )(sn(j), sn(k), x, y) = (p̃n⊗n (Mn+Kn)

(r))(sn(j), sn(k), x, y)+R1,
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where

|R1| ≤
k−1∑
i=j

�n(i + 1)
∫
IRp

p̃n(sn(j), sn(i), x, z)

×|Hn − Mn − Kn|(sn(i), sn(k), z, y)dz

≤ C2ζ 2,j,k(y − x)�
1/2
max

k−1∑
i=j

�n(i + 1)ρ−1, (3.39)

where the function ζ l,j,k was defined in (3.30). For the proof of (3.39) we use
Lemma 3.9. We now apply that

k−1∑
i=j

�n(i + 1)[sn(k) − sn(i)]
−1/2 ≤

∫ sn(k)

sn(j)

[sn(k) − v]−1/2 dv

= ρ B(1, 1/2).

Therefore we get from (3.39) that

|R1| ≤ C2ζ 2,j,k(y − x)�
1
2
maxρ B(1, 1/2).

With similar arguments we get

(p̃n⊗nH
(2)
n )(sn(j), sn(k), x, y) = (p̃n⊗n (Mn+Kn)

(2))(sn(j), sn(k), x, y)+R2,

where

|R2| ≤ 2C3ζ 3,j,k(y − x)�
1
2
maxρ

2 B(1, 1/2)B(3/2, 1/2).

For arbitrary r it holds that

(p̃n⊗nH
(r)
n )(sn(j), sn(k), x, y) = (p̃n⊗n (Mn+Kn)

(r))(sn(j), sn(k), x, y)+Rr,

where

|Rr | ≤ Cr+1
1 ζ r+1,j,k(y − x)�

1
2
maxρ

r <(1/2)r

<([r + 3]/2)
.

In the proof of Lemma 3.11 we have shown that

ζ r+1,j,k(y − x) ≤ Cr+1ρ−p 1

1 + ‖(y − x)/ρ‖2S′−2
.

This gives

pn(sn(j), sn(k), x, y) =
k−j∑
r=0

p̃n ⊗n (Mn + Kn)
(r)(sn(j), sn(k), x, y) + R,
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where

[
1 + ‖(y − x)/ρ‖2S′−2

]
|R| ≤

∞∑
r=1

[
1 + ‖(y − x)/ρ‖2S′−2

]
|Rr |

≤ �
1
2
maxρ

−p
∞∑
r=1

ρrCr
2

<(1/2)r

<([r + 3]/2)
.

Because this is bounded by C�
1
2
maxρ

−p for some constant C, this shows the state-
ment of the lemma. ��

We now show that in the expansion of Lemma 3.12 for pn the densities p̃n can
be replaced by the Gaussian densities p̃.

Lemma 3.13. For 0 ≤ j < k ≤ n the following formula holds:

pn(sn(j), sn(k), x, y) =
k−j∑
r=0

(p̃ ⊗n (Mn + Kn)
(r))(sn(j), sn(k), x, y) + R,

where

|R| ≤ C�
1
2
maxχρ(y − x)

for some constant C. The function χ has been defined in Lemma 3.11. Here again
ρ = [sn(k) − sn(j)]1/2.

Proof of Lemma 3.13. The lemma follows from Lemma 3.12 and

k−j∑
r=0

([p̃ − p̃n] ⊗n (Mn + Kn)
(r))(sn(j), sn(k), x, y) ≤ C′�

1
2
maxχρ(y − x)

(3.40)

for some constant C′.
It remains to show (3.40) Mimicking the proof of Lemma 3.11 with Lemma

3.8 instead of Lemma 3.7 we get

∣∣∣(p̂n − p̃n

)⊗n (Mn + Kn)
(r)(sn(j), sn(k), x, y)

∣∣∣
≤ Cr+1ρr�

1/2
maxB(1/2, 1/2)B(1, 1/2)...B(r/2, 1/2)ζ r+1,j,k(y − x).

The lemma follows by application of this bound. ��
We now come to the proof of our theorem.
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3.4. Proof of Theorem 1.1

The main steps of the proof of Theorem 1.1 have been given in Subsections 3.1 –
3.3. We will now prove some technical bounds for the infinite series expansion of
transition denities for diffusions. We will show that in this expansion the “convo-
lution” ⊗ can be replaced by the “convolution” ⊗n and that the kernel H can be
replaced by the the kernel Mn + Kn, see below. This will be done by some careful
estimates. First we argue that this will imply the theorem.

From Lemmas 3.1 and 3.2 we get

p(s, t, x, y) =
n∑

r=0

(p̃ ⊗ H(r))(s, t, x, y) + O(�
1/2
max exp

(
−C ‖y − x‖2

t − s

)
).

(3.41)
Furthermore, Lemma 3.13 implies that

pn(0, 1, x, y) =
n∑

r=0

(p̃ ⊗n (Mn + Kn)
(r))(0, 1, x, y)

+O(�
1/2
max

1

1 + ‖y − x‖2S′−2
). (3.42)

Because of (3.41) and (3.42) for the statement of the theorem it remains to show
that ∣∣∣∣∣

n∑
r=0

(
p̃ ⊗ H(r)(0, 1, x, y) − p̃ ⊗n (Mn + Kn)

(r)(0, 1, x, y)
)∣∣∣∣∣

= O(�
1/2
max

1

1 + ‖y − x‖2S′−2
). (3.43)

For the proof of (3.43) note that∣∣∣ n∑
r=0

[
p̃ ⊗ H(r)(0, 1, x, y) − p̃ ⊗n (Mn + Kn)

(r)(0, 1, x, y)
]∣∣∣

≤
∣∣∣ n∑
r=0

[
p̃ ⊗ H(r)(0, 1, x, y) − p̃ ⊗n H(r)(0, 1, x, y)

]∣∣∣
+
∣∣∣ n∑
r=0

[
p̃ ⊗n H(r)(0, 1, x, y) − p̃ ⊗n (Mn + H)(r)(0, 1, x, y)

]∣∣∣
+
∣∣∣ n∑
r=0

[
p̃ ⊗n (Mn + H)(r)(0, 1, x, y) − p̃ ⊗n (Mn + Kn)

(r)(0, 1, x, y)
]∣∣∣

= T1 + T2 + T3. (3.44)

For T1, T2 and T3 we will show the following estimates

Tk = O(�
1/2
max

1

1 + ‖y − x‖2S′−2
), (3.45)

where k = 1, . . . , 3. This shows (3.43). It remains to show (3.45).
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Proof of (3.45) for k = 1. We conjecture that under additional smoothness assump-
tions on m and � it can be shown with the methods of Bally and Talay (1996b) that
T1 is of order O(�max). We have

T1 ≤
n∑

r=1

∣∣∣∣∣
∫ 1

0
dsr

∫
Nr(0, sr , x, z)H(sr , 1, z, y)dz

−
n−1∑
j=0

�n(j + 1)
∫

Nr(0, sn(j), x, z)H(sn(j), 1, z, y)dz

∣∣∣∣∣∣
+

n∑
r=2

∣∣∣∣∣∣
n−1∑
j=0

�n(j + 1)
∫ (

Nr(0, sn(j), x, z) − N�
r (0, sn(j), x, z)

)

× H(sn(j), 1, z, y)dv

∣∣∣∣∣∣
where

N1(s, t, x, y) = p̃(s, t, x, y),

Nr(s, t, x, y) = p̃ ⊗ H(r−1)(s, t, x, y),

N�
1 (0, sn(j), x, z) = p̃(0, sn(i), x, z),

N�
r (0, sn(j), x, z) =

j−1∑
i=0

�n(i + 1)
∫

N�
r−1(0, sn(i), x, z

′)

×H(sn(i), sn(j), z
′, z)dz′,

for r ≥ 2.
Denote Ar(0, 0, x, v) = 0 and

Ar(0, sn(k), x, z) =
∫ sn(k)

0
dsr

∫
Nr(0, sr , x, z

′)H(sr , sn(k), z
′, z)dz′

−
k−1∑
j=0

�n(j + 1)
∫

Nr(0, sn(j), x, z
′)

×H(sn(j), sn(k), z
′, z)dz′.

Then we can rewrite our inequality in the form

T1 ≤
n∑

r=1

|Ar(0, 1, x, y)| +
n∑

r=2

∣∣((Nr − N�
r

)⊗n H
)
(0, 1, x, y)

∣∣ . (3.46)

Note that for r ≥ 2

Nr(0, sn(j), x, z) − N�
r (0, sn(j), x, z)

= Ar−1(0, sn(j), x, z) + ((
Nr−1 − N�

r−1

)⊗n H
)
(0, sn(j), x, z). (3.47)
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We now apply Lemma 3.5 to estimate Ar(0, sn(j), x, z). Let us consider the
function

�r(t) =
∫

Nr(0, t, x, z
′)H(t, s, z′, z)dz′.

Let t, t + �t ∈ (0, s). We have by Lemmas 3.3, 3.5 and 3.2 for �t ≥ 0 with
constants C1, C2, . . .

|�r(t + �t) − �r(t)|
= �t |

∫ ∫ 1

0

∂

∂t
[Nr(0, t + h�t, x, z′)H(t + h�t, s, z′, z)]dhdz′ |

= �t

∣∣∣∣∣
∫ 1

0
dh

[∫
H(t + h�t, s, z′, z)

∂

∂t
Nr(0, t + h�t, x, z′)

+Nr(0, t + h�t, x, z′)
∂

∂t
H(t + h�t, s, z′, z)dz′

]∣∣∣∣
≤ �t

∫ 1

0
dh

{∫
Cr

1
(t + h�t)

r−1
2 −1− p

2

<(1 + r−1
2 )

exp

(
−C2

∣∣z′ − x
∣∣2

t + h�t

)

× (s − t − h�t)−
p
2 − 1

2 exp

(
− C3

∣∣z − z′∣∣2
s − t − h�t

)

+Cr
4
(t + h�t)

r−1
2 − p

2

<(1 + r−1
2 )

exp

(
−C5

∣∣z′ − x
∣∣2

t + h�t

)

×C6(s − t − h�t)−
p
2 − 3

2 exp

(
− C7

∣∣z − z′∣∣2
s − t − h�t

)
dz′
}

≤ Cr
8�t

<(1 + r−1
2 )

s−p/2 exp

(
−C9 |z − x|2

s

)

×
∫ 1

0
dh
(
(s − t − h�t)−

3
2 + (t + h�t)−

3
2

)
.

This gives

|�r(t + �t) − �r(t)|

≤ Cr
8

<(1 + r−1
2 )

s−p/2 exp

(
−C9 |z − x|2

s

)(
�t

t3/2
+ �t

(s − t − �t)3/2

)

and hence (with s = sn(k))∣∣∣∣∣
∫ sn(j+1)

sn(j)

�r(t)dt − �n(j + 1)�r(sn(j))

∣∣∣∣∣
≤
∫ sn(j+1)

sn(j)

max
t∈[sn(j),sn(j+1)]

|�r(t) − �r(sn(j))|dt
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≤ Cr
8

<(1 + r−1
2 )

s
−p/2
n (k) exp

(
−C9 |z − x|2

sn(k)

)

×
(
�2

n(j + 1)

s
3/2
n (j)

+ �2
n(j + 1)

(sn(k) − sn(j + 1))3/2

)
.

Suppose now that sn(k) ≥ 2�1/2
max. We put

B =
[
0,�1/2

max

]
∪ [sn(k) − �max, sn(k)] ,

Bn =
{
j : 0 ≤ sn(j) ≤ �

1/2
max or sn(k) − �max ≤ sn(j) ≤ sn(k)

}
.

Then

|Ar(0, sn(k), x, z)|

=
∣∣∣∣∣∣
∫ sn(k)

0
�r(t)dt −

k−1∑
j=0

�n(j + 1)�r(sn(j))

∣∣∣∣∣∣
≤
∫
B

|�r(t)|dt +
∑
j∈Bn

�n(j + 1) |�r(sn(j))|

+ Cr
8

<(1 + r−1
2 )

s
−p/2
n (k) exp

(
−C9 |z − x|2

sn(k)

)
(S1+S2+S3+S4) , (3.48)

where

S1 =
∑

{j :�1/3
max≤sn(j)≤sn(k)}

�2
n(j + 1)

s
3/2
n (j)

,

S2 =
∑

{j :�1/2
max≤sn(j)≤�

1/3
max}

�2
n(j + 1)

s
3/2
n (j)

,

S3 =
∑

{j :0≤sn(j+1)≤sn(k)−�
1/3
max}

�2
n(j + 1)

(sn(k) − sn(j + 1))3/2
,

S4 =
∑

{j :sn(k)−�
1/3
max≤sn(j+1)≤sn(k)−�max}

�2
n(j + 1)

(sn(k) − sn(j + 1))3/2
.

We have

S1 ≤ �
−1/2
max �maxsn(k) = �

1/2
maxsn(k), (3.49)

S2 ≤ �
−3/4
max �max�

1/3
max = o(�

1/2
max), (3.50)

S3 ≤ �
−1/2
max �maxsn(k) = �

1/2
maxsn(k), (3.51)

S4 = �max

∑
{j :sn(k)−�

1/3
max≤sn(j+1)≤sn(k)−�max}

�n(j + 1)

(sn(k) − sn(j + 1))3/2

≤ C�max

∫ sn(k)−�max

sn(k)−�
1/3
max

(sn(k) − v)−3/2 dv ≤ C1�
1/2
max. (3.52)
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From the estimates of Lemma 3.2 we obtain (remind that now sn(k) ≥ 2�1/2
max)∫

B

|�r(t)|dt ≤ Cr
1

<(1 + r−1
2 )

s
−p/2
n (k) exp

(
−C2 |z − x|2

sn(k)

)

×
(∫ �

1/2
max

0
(sn(k)−t)−1/2t (r−1)/2 dt+

∫ sn(k)

sn(k)−�max

(sn(k)−t)−1/2 dt

)

≤ Cr
1

<(1 + r−1
2 )

s
−p/2
n (k) exp

(
−C2 |z − x|2

sn(k)

)
�

1/2
maxsn(k)

0∧(r−3/2),

(3.53)∑
j∈Bn

�n(j + 1) |�r(sn(j))|

≤ Cr
1

<(1 + r−1
2 )

s
−p/2
n (k) exp

(
−C2 |z − x|2

sn(k)

)

×
∑
j∈Bn

�n(j + 1)
s
(r−1)/2
n (j)

(sn(k) − sn(j))
1/2

≤ Cr
1

<(1 + r−1
2 )

s
−p/2
n (k) exp

(
−C2 |z − x|2

sn(k)

) ∑
j∈Bn

�n(j + 1)

≤ Cr
3

<(1 + r−1
2 )

s
−p/2
n (k) exp

(
−C2 |z − x|2

sn(k)

)
�

1/2
maxsn(k)

0∧(r−3/2). (3.54)

We now get from (3.48)–(3.54) for r ≥ 1

|Ar(0, sn(k), x, z)|

≤ Cr
3

<(1 + r−1
2 )

s
−p/2
n (k) exp

(
−C2 |z − x|2

sn(k)

)
�

1/2
maxsn(k)

−1/2. (3.55)

It follows from the inequalities of Lemma 3.2 that the same estimate (3.55) holds
for sn(k) ≤ 2�1/2

max. Now, iterative application of (3.46) and (3.47) gives
n∑

r=2

∣∣((Nr −N�
r

)⊗nH
)
(0, 1, x, y)

∣∣≤ ∞∑
r=1

∞∑
l=1

∣∣∣(Ar ⊗nH
(l)
)
(0, 1, x, y)

∣∣∣ . (3.56)

From (3.55) just as in Lemma 3.11 we obtain
∞∑
r=1

∞∑
l=1

∣∣∣(Ar ⊗n H(l)
)
(0, 1, x, y)

∣∣∣
≤
( ∞∑

r=1

Cr
3

<(1 + r
2 )

)( ∞∑
l=1

Cl
4

<(1 + l
2 )

)
exp

(
−C5(y − x)2

)
�

1/2
max. (3.57)

The desired estimate for T1 follows from (3.46), (3.55), (3.56) and (3.57).



578 V. Konakov, E. Mammen

Proof of (3.45) for k = 2. For r = 1 we have

p̃ ⊗n H(r)(0, sn(k), x, y) − p̃ ⊗n (Mn + H)(r)(0, sn(k), x, y)

= p̃ ⊗n M(r)
n (0, sn(k), x, y)

=
k−1∑
j=0

�n(j + 1)3/2
∑

|µ|=1

∑
|ν|=3

aµ,ν(j),

where

aµ,ν(j) = 3
∫
IRp

∫
IRp

∫ 1

0
p̃(0, sn(j), x, z)D

µ
y q(sn(j), y, θ)(y − z)µ

θν

ν!
Dν

z p̃n(sn(j + 1), sn(k), z + δθ�n(j + 1)1/2, y)(1 − δ)2 dδ dθ dz.

We consider the index sets J1 = {j ≤ k : sn(j) ≤ sn(k)/2} and J2 = {j ≤
k : sn(j) > sn(k)/2}. For j ∈ J1 we get the following bound for aµ,ν(j) with
constants C1, C2 and with κ2 = sn(k), λ

2 = sn(k) − sn(j)

|aµ,ν(j)| ≤ C1

∫
p̃(0, sn(j), x, z)λ

−2ζλ(y − z)dz

≤ C2λ
−2ζκ(y − x).

This gives with a constant C3∣∣∣∣∣∣
∑
j∈J1

�n(j + 1)3/2
∑

|µ|=1

∑
|ν|=3

aµ,ν(j)

∣∣∣∣∣∣
≤ C3

∑
j∈J1

�n(j + 1)3/2[sn(k) − sn(j)]
−1ζκ(y − x)

≤ C3�
1/2
maxζκ(y − x)

∫ sn(k)/2

0
[sn(k) − u]−1 du

≤ C3�
1/2
maxζκ(y − x) [ln(sn(k)) − ln(sn(k)/2)]

≤ C3 ln(2)�1/2
maxζ

2,0,k(y − x).

We now consider aµ,ν(j) for j ∈ J2. Denote the index l with µl = 1 by l(µ). We
first consider the case that νl(µ) < 3. Then there exists an l∗ �= l(µ) with νl∗ ≥ 1.
Define ν∗

l = νl for l �= l∗ and ν∗
l = νl − 1 for l = l∗. By integration by parts we

get

aµ,ν(j) = 3
∫
IRp

∫
IRp

∫ 1

0

∂

∂zl∗
p̃(0, sn(j), x, z)D

µ
y q(sn(j), y, θ)(y − z)µ

θν

ν!
Dν∗

z p̃n(sn(j+1), sn(k), z + δθ�n(j + 1)1/2, y)(1 − δ)2 dδ dθ dz.

Using this equation we get the following bound for aµ,ν(j) [with νl(µ) < 3]

|aµ,ν(j)| ≤ C4

∫
∂

∂zl∗
p̃(0, sn(j), x, z)λ

−1ζλ(y − z)dz,
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where C4 is a constant and where again λ2 = sn(k) − sn(j).
By calculating ∂/∂zl∗ p̃(0, sn(j), x, z) using the explicite definition (3.1) one

can show that
|aµ,ν(j)| ≤ C5ι

−1λ−1ζ 2,0,k(y − x),

where C5 is a constant and where ι2 = sn(j) and again λ2 = sn(k) − sn(j). For
a definition of ζ 2,0,k see (3.30). For aµ,ν(j) with νl(µ) = 3 note that after partial
integration aµ,ν(j) is of the form∫

f (z)zg(3)(z)dz.

By integration by parts one gets under conditions on the tails of f and g that∫
f (z)zg(3)(z)dz =

∫
f (z)[(zg(z))(3) − 3g(2)(z)]dz

= −
∫

f ′(z)[(zg(z))(2) − 3g′(z)]dz.

By application of this equality one can show that for a constant C6

|aµ,ν(j)| ≤ C6

[
ι−2 + ι−1λ−1

]
ζ 2,0,k(y − x).

Application of these bounds gives for j ∈ J2 with some constant C7∣∣∣∣∣∣
∑
j∈J2

�n(j + 1)3/2
∑

|µ|=1

∑
|ν|=3

aµ,ν(j)

∣∣∣∣∣∣
≤ C7�

1/2
maxsn(k)

−1/2ζ 2,0,k(y − x).

This gives that for r = 1 it holds with some constant C8∣∣∣p̃ ⊗n H(r)(0, sn(k), x, y) − p̃ ⊗n (Mn + H)(r)(0, sn(k), x, y)
∣∣∣

≤ C8�
1/2
maxsn(k)

−1/2ζ 2,0,k(y − x).

We now claim that for r ≥ 1 it holds that∣∣∣p̃ ⊗n H(r)(0, sn(k), x, y) − p̃ ⊗n (Mn + H)(r)(0, sn(k), x, y)
∣∣∣

≤ Cr
8

<([r + 2]/2)
�

1/2
maxsn(k)

(r−2)/2ζ r+1,0,k(y − x). (3.58)

This claim can be proved similarly as for the case r = 1. An essential tool is Lemma
3.4. The first statement of this lemma implies the following bound

∂

∂wl

(p̃ ⊗n H(s))(0, sn(k), x, z) ≤ Cs+1
9 κs−1ζ s+1,0,k(z − x)

<([s + 1]/2)
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for s < r . This inequality can be shown by iterative application of integration by
parts. With the help of this inequality and with Lemma 3.10 claim (3.58) follows
with similar arguments as in the proof of Lemma 3.12.

Proof of (3.45) for k = 3. First note that our conditions imply that (formal) differ-
entiation with respect to x up to second order is possible in both sides of (3.18).
After calculations similar to the ones presented in the proofs of Lemmas 3.7 and
3.8 this gives

|H(sn(i), sn(k), x, y) − Kn(sn(i), sn(k), x, y)|
≤ C�

1/2
max(sn(k) − sn(i))

−1/2ζρ(y − u). (3.59)

Proceeding as in the proof of Lemma 3.11 we get with a constant C [in the
following arguments we will suppose that C is sufficiently large]

|p̃ ⊗n [(H + Mn) − (Kn + Mn)](0, sn(k), x, y)|

≤
k−1∑
j=0

�n(j + 1)
∫

p̃(0, sn(j), x, z)(H − Kn)(sn(j), sn(k), z, y)dz

≤ C2�
1/2
max

k−1∑
j=0

�n(j + 1)(sn(k) − sn(j))
−1/2ζ 2,0,k(y − x)

≤ C2�
1/2
maxs

1/2
n (k)B(1, 1/2)ζ 2,0,k(y − x). (3.60)

Now

p̃ ⊗n (H + Mn) ⊗n (H + Mn)(0, sn(k), x, y)

−p̃ ⊗n (Kn + Mn) ⊗n (Kn + Mn)(0, sn(k), x, y)

= (p̃ ⊗n H − p̃ ⊗n Kn) ⊗n (Kn + Mn)(0, sn(k), x, y)

+p̃ ⊗n (H + Mn) ⊗n (H − Kn)(0, sn(k), x, y)

= I + II. (3.61)

From (3.60) and (3.24) we get

|I | ≤ C3�
1/2
maxB(1, 1/2)

k−1∑
j=0

�n(j + 1)s1/2
n (j)(sn(k) − sn(j))

−1/2ζ 3,0,k(y − x)

≤ C3�
1/2
maxB(1, 1/2)B(3/2, 1/2)sn(k)ζ

3,0,k(y − x). (3.62)

Proceeding as in the proof of Lemma 3.11 and using Lemma 3.2 instead of Lemma
3.10 we have analogously to (3.32)

|II | ≤ C3�
1/2
max<

2(1/2)sn(k)ζ
3,0,k(y − x). (3.63)

From (3.61), (3.62) and (3.63) we get

|p̃ ⊗n (H + Mn) ⊗n (H + Mn)(0, sn(k), x, y)

−p̃ ⊗n (Kn + Mn) ⊗n (Kn + Mn)(0, sn(k), x, y)|
≤ (2C)3�

1/2
maxB(1, 1/2)B(3/2, 1/2)sn(k)ζ

3,0,k(y − x). (3.64)
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Iterative application of analogous arguments gives

p̃ ⊗n (H + Mn)
(r)(0, sn(k), x, y) − p̃ ⊗n (Kn + Mn)

(r)(0, sn(k), x, y)

=
(
p̃ ⊗n (H + Mn)

(r−1) − p̃ ⊗n (Kn + Mn)
(r−1)

)
⊗n(Kn + Mn)(0, sn(k), x, y)

+p̃ ⊗n (H + Mn)
(r−1) ⊗n (H − Kn)(0, sn(k), x, y), (3.65)

where∣∣∣p̃ ⊗n (H + Mn)
(r−1) ⊗n (H − Kn)(0, sn(k), x, y)

∣∣∣
≤ 2Cr+2�

1/2
max<

r+1(1/2)s(r+1)/2
n (k)ζ r+2,0,k(y − x)/<((r + 2)/2) (3.66)

and∣∣∣(p̃ ⊗n (H + Mn)
(r−1) − p̃ ⊗n (Kn + Mn)

(r−1)
)

⊗n (Mn + Kn)(0, sn(k), x, y)
∣∣∣

≤ 2rCr+1�
1/2
maxB(1, 1/2)...B((r + 1)/2, 1/2)sr/2

n (k)ζ r+1,0,k(y − x). (3.67)

Claim (3.45) follows from (3.65) – (3.67). ��

3.5. Additional proofs

Proof of Lemma 3.5. It suffices to prove (3.13) for r = 1 and the following recursion
formula for r ≥ 1

∂

∂t
p̃ ⊗ H(r)(s, t, x, y) =

∫ t

s

du

∫
∂

∂u

[
p̃ ⊗ H(r−1)(s, u, x, z)

]
· H(u, t, z, y)dz

+ δ1,rH(s, t, x, y) + Rr(s, t, x, y), (3.68)

where δ1,r is Kronecker’s delta [i.e. δ1,1 = 1 and δ1,r = 0 for r �= 1] and where
for some constants C′

1 and C′
2

|Rr(s, t, x, y)| ≤ [C′
1]r

<(1 + r
2 )

ρrφC′
2,ρ

(y − x). (3.69)

These claims imply the statement of the lemma: iterating (3.68) we get (3.13).
We now prove (3.68). From (3.12) we have for u ∈ (s, t) and r ≥ 1

∂

∂t

(∫
p̃ ⊗ H(r−1)(s, u, x, z) · H(u, t, z, y)dz

)

=
∫

p̃ ⊗ H(r−1)(s, u, x, z) · ∂

∂t
H(u, t, z, y)dz

= −
∫

p̃ ⊗ H(r−1)(s, u, x, z) · ∂

∂u
H(u, t, z, y)dz + Rr(s, u, t, x, y), (3.70)

where

|Rr(s, u, t, x, y)| ≤ Cr
1(u − s)

r−1
2 · (t − u)−1/2

<( 1+r
2 )

φC2,ρ(y − x).
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Note now that

∂

∂u

∫
p̃ ⊗ H(r−1)(s, u, x, z) · H(u, t, z, y)dz

=
∫

∂

∂u

[
p̃ ⊗ H(r−1)(s, u, x, z)

]
· H(u, t, z, y)dz

+
∫

p̃ ⊗ H(r−1)(s, u, x, z) · ∂

∂u
H(u, t, z, y)dz. (3.71)

Comparing (3.70) and (3.71) we get

∂

∂t

∫
p̃ ⊗ H(r−1)(s, u, x, z) · H(u, t, z, y)dz

+ ∂

∂u

∫
p̃ ⊗ H(r−1)(s, u, x, z) · H(u, t, z, y)dz

=
∫

∂

∂u

[
p̃ ⊗ H(r−1)(s, u, x, z)

]
·H(u, t, z, y)dz+Rr(s, u, t, x, y).

(3.72)

Integrating (3.70) in u we have from (3.72)∫ t

s

du
∂

∂t

(∫
p̃ ⊗ H(r−1)(s, u, x, z) · H(u, t, z, y)dz

)

=
∫ t

s

du

∫
∂

∂u

[
p̃ ⊗ H(r−1)(s, u, x, z)

]
· H(u, t, z, y)dz

−
∫

p̃ ⊗ H(r−1)(s, u, x, z)H(u, t, z, y)dz
∣∣u=t
u=s + Rr(s, t, x, y), (3.73)

where Rr(s, t, x, y) satisfies (3.69). Now (3.68) immediately follows from (3.73)
if we take into account that∫

p̃ ⊗ H(r−1)(s, u, x, z)H(u, t, z, y)dz
∣∣
u=s = δ1,rH(s, t, x, y)

and

∂

∂t
p̃ ⊗ H(r)(s, t, x, y) =

∫ t

s

du
∂

∂t

(∫
p̃ ⊗ H(r−1)(s, u, x, z) · H(u, t, z, y)dz

)

+
∫

p̃ ⊗ H(r−1)(s, u, x, z) · H(u, t, z, y)dz |u=t .

For the statement of the lemma it remains to show that (3.13) holds for r = 1.
This follows from (3.68) and from arguments that are very similar to those in La-
dyz̆enskaja, Solonnikov and Ural´ceva (1968) [p. 378, formula (13.5) with n =
p, s = 0, r = 1, α = 1.] So we omit the details. This completes the proof. ��
Proof of Lemma 3.9. For j = k − 1 note that Hn(sn(j), sn(k), x, y) = 0. So it
remains to consider the case j < k − 1. First note that [see (3.14)]

Hn(sn(j), sn(k), x, y) = H 1
n (sn(j), sn(k), x, y)−H 2

n (sn(j), sn(k), x, y), (3.74)
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where

H 1
n (sn(j), sn(k), x, y)

= �n(j + 1)−1
∫

pn,j (x, z)

[p̃n(sn(j + 1), sn(k), z, y) − p̃n(sn(j + 1), sn(k), x, y)]dz (3.75)

and

H 2
n (sn(j), sn(k), x, y)

= �n(j + 1)−1
∫

p̃
y
n,j (x, z)

[p̃n(sn(j + 1), sn(k), z, y) − p̃n(sn(j + 1), sn(k), x, y)]dz. (3.76)

On the right hand side of (3.75) we now use the substitution θ = �n(j+1)−1/2(z−
x)−�n(j +1)1/2m{sn(j), x}. With the notation λ(z) = p̃n(sn(j +1), sn(k), z, y)
and h(θ) = m(sn(j), x)�n(j + 1) + θ�n(j + 1)1/2 this gives

H 1
n (sn(j), sn(k), x, y) = �n(j + 1)−1

∫
q(sn(j), x, θ)[λ{x + h(θ)} − λ(x)]dθ.

Remind that q(sn(j), x, •) denotes the conditional density of εn(j + 1). We now
use the expansion

λ{x + h(θ)} − λ(x) =
∑

1≤|ν|≤2

h(θ)ν

ν!
(Dνλ)(x)

+3
∑
|ν|=3

h(θ)ν

ν!

∫ 1

0
(1 − δ)2(Dνλ){x + δh(θ)} dδ.

Using now that εn(j) has conditional mean 0 we get that

H 1
n (sn(j), sn(k), x, y)

= λ′(x)T m(sn(j), x) + 1

2
tr[�{sn(j), x} λ′′(x)]

+�n(j + 1)
∑
|ν|=2

m(sn(j), x)
ν

ν!
(Dνλ)(x) + 3

∑
|ν|=3

�n(j + 1)−1

×
∫ ∫ 1

0
q(sn(j), x, θ)

h(θ)ν

ν!
(1 − δ)2(Dνλ){x + δh(θ)}dδ dθ. (3.77)

Note that the first two terms on the right hand side of (3.77) are equal to
Lp̃n(sn(j + 1), sn(k), x, y).

We now treat the term H 2
n (sn(j), sn(k), x, y). On the right hand side of (3.76)

we use the substitution θ = �n(j + 1)−1/2(z − x) − �n(j + 1)1/2m{sn(j), y}.
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With the notation h̃(θ) = m(sn(j), y)�n(j + 1) + θ�n(j + 1)1/2 this gives

H 2
n (sn(j), sn(k), x, y)

= L̃p̃n(sn(j), sn(k), x, y) + �n(j + 1)
∑
|ν|=2

m(sn(j), y)
ν

ν!
(Dνλ)(x)

+3
∑
|ν|=3

�n(j+1)−1
∫∫ 1

0
q(sn(j), y, θ)

h̃(θ)ν

ν!
(1−δ)2(Dνλ){x+δh̃(θ)}dδ dθ.

(3.78)

It remains to show that there exists a constant C with

�n(j + 1)|m(sn(j), x)
ν −m(sn(j), y)

ν | |(Dνλ)(x)| ≤ C�maxρ
−1ζρ(y − x)

(3.79)

for ν with |ν| = 2 and∣∣∣∣∣∣�n(j + 1)−1
∑
|ν|=3

3

ν!

∫ ∫ 1

0

[
q(sn(j), x, θ)h(θ)

ν(Dνλ){x + δh(θ)}

− q(sn(j), y, θ)h̃(θ)
ν(Dνλ){x + δh̃(θ)}

]
(1 − δ)2 dδ dθ

− Mn(sn(j), sn(k), x, y)

∣∣∣∣∣ ≤ C�
1/2
maxρ

−1ζρ(y − x). (3.80)

Proof of (3.79). Because of assumption (A3) we have that for a constant C it
holds that |m(sn(j), x)

ν −mn(sn(j), y)
ν | ≤ C‖x −y‖. Claim (3.79) follows from

Lemma 3.7, monotonicity of ζ(x) and (A4).

Proof of (3.80). Note that for |ν| = 3

max{|h̃(θ)ν |, |h(θ)ν |} ≤ C�
3
2
n (j + 1) (1 + ‖θ‖)3,

|h̃(θ)ν − h(θ)ν | ≤ C�2
n(j + 1) (1 + ‖θ‖)2 ‖x − y‖.

So the left hand side of (3.80) does not exceed the following sum

C�
1
2
n (j + 1)

∑
|ν|=3

∫
‖x − y‖2ψ(θ) (1 + ‖θ‖)3 |(Dνλ){x + δh(θ)}|dθ

+C�n(j + 1)
∑
|ν|=3

∫
‖x − y‖ψ(θ) (1 + ‖θ‖)2 |(Dνλ){x + δh(θ)}|dθ

+C�
1
2
n (j + 1)

∑
|ν|=3

∫
ψ(θ) (1 + ‖θ‖)3 |(Dνλ){x + δh(θ)}

−(Dνλ){x + δh̃(θ)}|dθ. (3.81)



Local limit theorems of Markov chains 585

We now use the following simple estimate. For an ε > 0 suppose that ‖v‖ ≤ ε.
Then

1

1 + ‖u + v‖s
≤ 1

1 + [‖u‖ − ε]s
≤ 1

1 + [ ‖u‖
2 ]s

≤ 2s

1 + ‖u‖s

for ‖u‖ ≥ 2ε and
1

1 + ‖u + v‖s
≤ 1 ≤ (2ε)s + 1

1 + ‖u‖s

for ‖u‖ < 2ε. Hence,

1

1 + ‖u + v‖s
≤ C(s, ε)

1 + ‖u‖s
(3.82)

with C(s, ε) = max{2s , (2ε)s + 1} for all u.
From assumptions (A2), (A4), (3.16), (3.17) and (3.18) it follows that for |ν| = 3

|(Dνλ){x + δh(θ)}|

≤ cρ−p−3
[
1 + ‖y − x − δm(sn(j), x)�n(j + 1) − θδ�n(j + 1)

1
2

ρ
‖s
]−1

.

Similarly we get that

|(Dνλ){x + δh̃(θ)}|

≤ cρ−p−3
[
1 + ‖y − x − δm(sn(j), y)�n(j + 1) − θδ�n(j + 1)

1
2

ρ
‖s
]−1

.

Applying (3.82) with v = [δm(sn(j), z)�n(j + 1) + θδ�n(j + 1)
1
2 ]/ρ, z = x or

y, and ε = C�n(j + 1)
1
2 + ‖θ‖ we get [note that ‖v‖ ≤ ε] for |ν| = 3 with a

constant C(s) depending on s

max{|(Dνλ){x + δh(θ)}|, |(Dνλ){x + δh̃(θ)}|} ≤ cρ−p−3 C(s)(1 + ‖θ‖s)

1 + ‖ y−x
ρ

‖s
.

(3.83)
Note now that for ν with |ν| = 4 and for κ with |κ| ≤ 1 we have [because of
|δh(θ) + κδ(h(θ) − h̃(θ))| ≤ C�n(j + 1) + ‖θ‖�n(j + 1)

1
2 ]

|(Dνλ){x + δh(θ) + κδ(h(θ) − h̃(θ))}| ≤ cρ−p−4 C(s)(1 + ‖θ‖s)

1 + ‖ y−x
ρ

‖s
. (3.84)

Furthermore we get for the difference in the integrand of the third term in (3.81)
that

|(Dνλ){x + δh(θ)} − (Dνλ){x + δh̃(θ)}|
≤ cρ−p−4�n(j + 1)‖x − y‖C(s)(1 + ‖θ‖s)

1 + ‖ y−x
ρ

‖s
. (3.85)

Substituting (3.83), (3.85) into (3.81) and taking s = S − 3 (see (A2)) we get that
the left hand side of (3.80) does not exceed

C�
1
2
maxρ

−1ζρ(y − x). ��
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