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Abstract. We consider triangular arrays of Markov chains that converge weakly to a
diffusion process. Local limit theorems for transition densities are proved.

1. Introduction and results

Inthispaper we study triangular arraysof Markov chains X, (k) (n > 1,0 < k < n)
that converge weakly to a diffusion process (for n — o). Our main result is that
the transition densities converges with rate O(n ~1/2) to the transition density in the
diffusion model.

Weak convergence of the distribution of scaled discrete time Markov processes
to diffusions has been extensively studied in theliterature. First general results have
been received by A.V. Skorohod in the early 60's [see Skorohod (1965)]. In chap-
ter 6 of this monography he proves a general weak convergence theorem where
the limiting process consists of two components: a diffusion and a jump process.
The continuous diffusion is described by a stochastic It6 integral, the jump com-
ponent is a stochastic integral with respect to a Poissonian random measure. L ater,
Strook and Varadhan (1979, chapter 11) developped an elegant “ martingal e prob-
lem” approach for continuous Markov processes. Probably, there the most general
results on weak convergence to a continuous diffusion can be found. Theresultsin
Skorohod (1965) and in Strook and Varadhan (1979) are obtained by probabilistic
methods. In this paper, for the treatment of the convergence of transition densities
we will use an analytical approach. We will apply the parametrix method for par-
abolic PDEs and a modification of this method for discrete time Markov chains.
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Standard reference for the parametrix method are the books by A. Friedman (1964)
and O.A. Ladyzenskaja, V.A. Solonnikov and Ural"ceva (1968) on parabolic PDEs.
But for our purposes a dightly different version of the parametrix method used in
McKean and Singer (1967) is more appropriate. This method permits to obtain a
tractable representation of transition densities of diffusionsthat is based on Gauss-
ian densities, see Lemma 3.1. A similar representation is derived for the discrete
time Markov chain X,,, see Lemma 3.6. The parametrix method was used e.g. in
Kuznetsov (1998) to obtain bounds for Poisson kernels. But as far as we know for
Markov chains the parametrix method was not systematically devel oped before. A
description of the parametrix method is given in Subsection 3.1. Local limit theo-
rems for Markov chains were given in Kasymdzganova (1981) and Konakov and
Molchanov (1984). Kasymdzganova (1981) considered the case of ahomogeneous
random walk on the lattice Z ”[with no drift, eg. m = 0]. Local limit theoremsfor
homogeneous Markov chains with continuous state space were given in Konakov
and Molchanov (1984).

We now give a more detailed description of the Markov chains and their diffu-
sion limit. For eachn > 1 we consider Markov chains X, (k) wherethetimek runs
from 0 ton. The Markov chain X, isassumed to take valuesin IR?. The dynamics
of the chain X, is described by

Xnlk+1) = X (k) + Ap(k + Dmisy(k), Xn(k)}
+Ank + DY, (k + 1). (1.2)

Here A, (k) > 0 arereal numberswith

Xn: An(k) = 1.
k=1

The numbers s, (k) are defined as s, (0) = 0 and

k
sp(k) = Z AnG) for k>1.
i=1

Furthermore, m isafunctionm : [0, 1] x IRP — IRP. We make the Markov as-
sumption that the conditional distribution of theinnovation ¢, (k + 1) given the past
X, k), X,,(k—1), ...dependsonly onthelast value X, (k). Given X,, (i) = x (i) for
i=0,...,kthevariableg, (k + 1) hasaconditiona density ¢{s, (k), x(k), ¢}. The
conditional covariance matrix of ¢, (k+ 1) isdenoted by X {s, (k), x(k)}. Hereq isa
functionmapping [0, 1] x IR” x IR into IR .. Furthermore, 3 isafunction mapping
[0, 1] x IR? intothe set of positive definite p x p matrices. The conditional density
of X, (n),given X,,(0) = x, isdenoted by p,, (x, ). Study of thetransition densities
pn(x, y) isthe topic of this paper. Conditionson A, (k), m, g{s, (k), x(k), e} and
S{sn k), x(k)} will be given below.

By time change the Markov chain X,, definesaprocessY,, on [0, 1]. More pre-
cisaly, put k, (1) = supik : s, (k) < t,0 < k < n}. This defines a monotone time
transformx,, : [0, 1] — {0, ..., n}. Using thistime transform we get the following
process:
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Y, () = Xulkn ()}

Under our assumptions, see below, the process Y,, converges to a diffusion Y (¢).
Thisfollowsfor instance from Theorem 1, p. 82 in Skorohod (1987). The diffusion
isdefined by Y (0) = x and

dY () =m{t, Y(t)}dt + A{t, Y ()} dW(2),

where W is a p dimensional Brownian maotion. The matrix A(z, z) is the unique
symmetric matrix defined by A(z, z)A(t, z)T = X(t, z). The conditional density
of Y (1), given Y (0) = x, isdenoted by p(x, e). Note that the conditional density
of ¥, (1), given Y,,(0) = x, isdenoted by p, (x, e).

For our result we use the following conditions.

(A1) Fort €[0,1] and x € IR” let ¢{¢, x, o} beadensity in IR” with

/q{t,x,z}z dz=0 fordlre]0,1],x € R?,

/q{t,x,z}zizl,' dz =o0;j(t,x) fordlre[0,1],x € R?
and i,j=1,...,p.

The matrix with elements o;; (¢, x) is denoted by X (z, x).
(A2) Thereexist apositiveinteger S’ and afunction vy : IR? — IR with Sup, ¢ g»
|¥ (x)| < oo and fm,, x5y (x)| dx < oo for § = 2pS’ + 4 such that

IDYq{t, x,z}| <y (z) foralte[0,1],x,z€ RP, and|v|=0,...,4,

IDYgf{t, x,z}| < ¥(z) foraltre[0,1],x,ze R’ and|v|=0,...,2.

[For the case that S” = 1 Theorem 2.1 can be shown under the weaker as-
sumption that (A2) holds for a function ¥ with sup, ¢ g» [¥ (x)| < oo and
szp Ix1¥|% (x)| dx < oo for aninteger k > p + 4.] Furthermore, for all
x € RP weassumethat [ |q{t, x, z} — ¢{t’, x, z}| dz — Ofor [t —¢'| > 0.
[Under our assumptions this follows e.g. if ¢{z, x, z} is continuous in ¢ for
fixed x and z.]

(A3) Thereexist positive constants ¢ and C such that

c<0T=@,x)0<C

foral 6, 0| =1, and x.
(A4) There exists aconstant B with

-1 Al
< <
An(D)

forn > land1 < k, ! < n.[Thenitfollowsthat A,qx = MaX1<j<p An(j) =
on 1]
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(A5) Thefunctionsm(t, x) and X (¢, x) and their first derivatives with respect to x
and with respect to ¢ are continuous and bounded (uniformly in¢ and x). All
these functions are Lipschitz continuous with respect to x (with a Lipschitz
constant that does not depend on ). Furthermore, 82/(dx 10X X (2, x) exists
for 1 < j, k < p and is Holder continuous with respect to x (with positive
exponent § and constant that do not depend on 7).

The following theorem contains our main result. It gives a bound for the rate
of convergence of p, to p.

Theorem 1.1. Assume (A1) — (A5). Then the following estimate holds:

sup (1 [y = x2S ) [pu(x, ) = plx, )| = 073,

X,yERP

where S’ is defined in Assumption (A2). The norm || ... || is the usual Euclidean
norm.

2. Examples and extensions

(i) Approximation by diffusions that depend on n. The result can be extended to
the case that ¢, m and X depend on n. For this purpose conditions (A2), . . .,
(A5) have to be replaced by assumptions that hold uniformly in n. Then the
limiting fixed diffusion has to to replaced by a sequence of approximating
diffusions depending on .

(if) Unbounded drift function. Our result can be extended to the case of an un-
bounded drift functionm thatisof theformb (7)) x+a(z, x) wherea fullfillsthe
conditions stated for m and where b(¢) isamatrix that depends continuously
ont.

(iii) Unbounded one step transition density. Our results can be extended to un-
bounded transition densities if the transition density for a finite number of
stepsis bounded, see e.g. (vii).

(iv) Functionals of Markov chains. Our theorem implies that the density of
(Yn(t1), ..., Y,(t)) converges to the density of (Y (z1),...,Y(f)) in L1
norm for any tuple 0 < 11 < --- < f < 1. We conjecture that with the
approach of Davydov (1980, 1981) these results can be used to show that the
density of H (Y, (e)) converges to the density of H (Y (e)) for awide range
of functionals H.

(v) Conditional Markov chains. In particular, our result can be used to show that
the conditional density of (Y, (r1), ..., Y, (%)) given Y, (1)) convergesto the
conditional density of (Y (¢1), ..., Y (#%)) given Y (1)) (in L1 norm), where
tuplers, ..., isatuplewith0<#n < --- < < 1.

(vi) Euler approximations. The case where g isanormal density corresponds to
Euler approximationsthat are the simplest strong Taylor approximationsused
as numerical solutions to stochastic differential equations, see Kloeden and
Platen (1992). Rates of convergence for the distribution functions and den-
sities of transition probabilities can be found in Bally and Talay (1996a, b).
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(vii)

(viii)

(ix)
)

A detailed discussion of new literature on numerical methods for SDE’s can
be found in Platen (1999).

Transport processes. Let us consider a symmetric and positive definite p x
p matrix S(x) and vector m(x) = (mi(x),...,my(x))T wherex € IR?.
For a > Owe consider independent variables R, 1, Ry.2, ..., Ua1, Us 2, - ..
where R, ; have density a~Yexp(—r/a) and where U,.; are uniformly dis-
tributed on the unit sphere in IR?. We define the following chain (transport
processes, see e.g. Pinsky, 1991):

Xa(o) =X,
Xa(i + 1) = Xa(i) + azm(Xa(i)) + S(Xa(i))Ra,an,is
for 0<i<[1/a?].

This process has no bounded one step transition density and it does not fulfill
the conditions of our theorem for thisreason. However it is easy to show that
for afinite numbers k of stepsthetransition density of X, (i + k) given X, (i)
isbounded, so that we can apply our theoremto theprocessi — X, (ik). This
shows that the density X, ([1/a?]) converges to the density of the diffusion
Y at timepoint r = 1for a — 0 where

Y(0) = x,
dY () = cSY @) dW(@) +m(Y (@) dr, for 0<t<1,

where ¢ is an appropriate constant. The speed of convergence is of order
0(a).

Lattice distributions. Our approach can be extended to obtain local limit
theorems for a general class of nonhomogeneous random walks on a lat-
tice ZP. A treatment of the homogeneous case can be found in Konakov
and Mammen (1999). This generalizes the results of Konovalov (1981) and
Kasymdzganova (1981).

Edgeworth expansions. We conjecture that Edgeworth expansions for Mar-
kov chains can be proved by our approach. Thiswill be treated el sewhere.
Satistical applications. This research was partially motivated by recent new
approaches in time series analysis. In a series of papers [see e.g. Robinson
(1983), Tjestheim (1994), Franke, Kreiss and Mammen (1996)] it has been
proposed to use nonparametric approachesto model time series. In particular
nonparametric autoregression models have been considered:

Xk +1) =m(Xk)) + o (X(k)ek + 1), 2.1)

where theinnovations (1), £(2), . . . are typically assumed to bei.i.d. mean
zerovariables. For thefunctionsm and o nonparametric smoothness assump-
tions are made and nonparametric smoothing methods are proposed for their
estimation. For adiscussion of different nonparametric statistical problemsin
these model swerefer to thereferences above. Under regularity conditionson
m, o and the distribution of (i), solutions of (2.1) are stationary processes.
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In Dahlhaus (1997) models are proposed for time series that are not sta-
tionary, however locally stationary. In particular he considers autoregressive
processes with time varying coefficients:

X,k +1) = a(S)X,, (k) + e(k + 1). 2.2)

Our model (1.1) isstrongly related to the models (2.1)—(2.2). Asin (2.2), we
observe a function on afiner grid for n — oco. The main result of this pa-
per may be applied to discuss statistical nonparametric estimation problems
of the transition density and the shift function m under different smoothness
and structural assumptions. Our result reducesthe discussion of some of such
problemsin model (1.1) to the analysis of corresponding problemsin diffu-
sion models. For the discussion of some nonparametric estimation problems
in diffusion models see Kutoyants (19974, b).

3. Proofs

The proof of Theorem 1.1 is organized as follows. In the next two subsections we
will state series expansionsfor the transition densities of the limiting diffusion and
for the Markov chain. The series only depend on transition densities of “frozen”
processes. The“frozen” diffusion isaGaussian processthat has a Gaussian density
astransition density. For the “frozen” Markov chain we get transition densities that
are densities of sums of independent variables. The difference between these den-
sities and the Gaussian densities can be treated by Edgeworth expansions. Thisis
done in Subsection 3.3. These are the main steps of the proof of Theorem 1.1. The
remaining steps of the proof of Theorem 1.1 are given in Subsection 3.4. Longer
proofs of some lemmas are given in Subsection 3.5.

3.1. The parametrix method

In this subsection we will state an infinite series expansion of the transition den-
sity p of the limiting diffusion process Y, see Lemma 3.1. We will give a similar
expansion for the Markov chain in the next subsection, see Lemma 3.6. Our proof
of Theorem 1.1 will be based on the comparison of these two series. The seriesfor
the transition densities will be derived by the parametrix method. We will give a
description of the parametrix method below.

For the statement of the expansion of p in Lemma 3.1 we have to introduce
additional diffusion processes. For 0 < s < 1and x, y € IR” we define diffusions
Y = Y, ., that are defined for s < r < 1 by

?(s):x

and 5
dY (1) = m{t, y}dt + A{t, y}dW ().

The processes Y are called “frozen” diffusions. We define p(s, 7, x, y) asthe con-
ditional density of Y (t)[= Y ., (t)] at the point y, given Y (s) = x. Note that the
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variable y acts heretwice: asthe argument of the densty and as a defining quantity
of theprocessY = Y .. y. Furthermore, we denote by p p; Y(x, z) the conditional den-

Sty of Y(sn(] + 1))[— s,,(]),x,y(sn (J+ 1))] at the pOInt Z, glven Y(sn(])) = X.
The process Y is a simple Gaussian process. Its transition densities p are given
explicitely. By definition, we have that

s, 1, x,y) = (27) " P/2(det S (s, 1, y)) " ¥?

1 /
X exp[_é{y - X —m(s, t, Y)} E(S,t, )’)_l{y - X — m(s, t, )’)}],

(31)
where
t
(s, t,y) = / Y (u,y) du,
St
m(s, t,y) = / m(u, y) du.
N
Let us introduce the following differential operators L and L:
2
Lf(s,t,x,y) =m(s, )TM tr[A( )TMA(S,X)]
ax (9x)2
and
- of (s, t,x, 92 s, t,x,
Lfts tox.y) = m(s, y? LEL00) 1 5 UlAG, o LG L 2D (.

ax (9x)2

Note that L and L corresponds to the infinitesimal operators of Y or of the frozen
process Yy ..y, respectively, i.e.

Lf(s,t,x,y) = mhfl{E [f(s, 2, Y (s +h), MIY(s) =x] — f(s,,x, ¥},

(3.2)
Lf(s,t,x,y) = Jmfl{gms, t, Yy x,y(s+h), W= f(s,t,x, V). (33
We put
=(L—L)p.
Then

1L azﬁ(s,t,x,y)

H(s, t,x,y) = éijzlw,y(s,x) — 0jj (s, ”)Tax,-
+Z<ml<s x) = mis, y))M (34)

i=1 ‘
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Now we define the following convol ution type binary operation ®:

t
(f®g)(s,t,x,y)=/ du/ fG u,x,2)gu,t,z,y)dz.
s IRP

Wewrite g ® H© for g and for r = 1, 2, ... we denote the r-fold “convolution”
(g ® H" D) ® H by g @ H®™. With these notations we can state our expansion
for p.

Lemma3.1. For 0 < s <t < 1thefollowing formula holds:

(0,¢]
ps,1,x, ) =Y (F®H)(s,1,x, ).
r=0
A proof of Lemma 3.1 can be found in McKean and Singer (1967). It is based
on application of the parametrix method. We give now a description of this ap-
proach. It is well-known [see e.g. Dynkin (1965)] that the transition density p is
the fundamental solution of Kolmogorov’s backward differential equation:
d
L +Lp=0.
as
Moreover under Condition (A5) p satisfiesKolmogorov’sforward differential equa
tion (or the Fokker-Plank equation)

op
—— +L*p=0
at+ p ,
where
p P a2
mi(t, ) f(s,t,x, )] 1 0%oi j(t,y) f (s, 1, x,9)]
L*f(s,t =— - - : .
fls,t,x,y) Z 5 +24Z 1 )
i=1 i,j=1
We use now
ﬁ(tstvxvy)=5(x_y)7 (35)
p(t’tvxvy)z(s('x_y)v (36)

S P 2,2, YIL*p(s, u, x,2)dz = [pp, p(s,u, x, 2)Lp(u, 1, z, y)dz, (3.7)

where § is the Dirac delta function. Equations (3.5) and (3.6) are the initial con-
ditions of the processes ¥ and Y, respectively. Equation (3.7) follows by partial
integration (or thisisjust the property that, asiswell known, L and L* correspond
to adjoint operators.) With (3.5)—(3.7) we can write the basic parametrix eguation

p(s,t,x,y) — p(s,t,x,y)

t a .
=/ du— [/ p(s,u,x,z)p(u,t,z,y)dz}
s 8u R4

t
=/ du/d [ﬁ(u,t,z,y)L*p(s,u,x,z)—p(s,u,x,z)Lﬁ(u,t,z,y)] dz
s IR

t
= / duf p(s,u, x,z2) [L — I:] pu,t,z, y)dz. (3.8
K R4
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This equation can be rewritten as
p=p+p®H. (3.9
Iterative application of (3.9) gives

p=Y pPRHV +p@ H"*Y. (3.10)
i=0
Lemma 3.1 follows by taking the limit » — oo in (3.10).

We will make use of the boundson H and p @ H" that are stated in the fol-
lowing lemma. Proofs of these bounds can be found again in McKean and Singer
(1967). For amoredetailed proof of Lemma 3.2 see also L adyzenskaja, Solonnikov
and Ural"ceva (1968).

Lemma 3.2. Thereexist constants C and C1 (that do not depend on x and y) such
that the following inequalities hold:

|H (s, 1, %, y)| < C1p"Ypc p(y — x),

and
1P H(s.t.x, )| < c;“m”—_;g)qsc,p(y —x),
where p2 =t — s, ¢c, (1) = p~Ppc(u/p) and
exp(—Clu]?)

dc(u) =

Jexp(=Clv|?) dv’

In the proof of Theorem 1.1 we will need bounds on the derivatives of H, p
and p ® H™). These are stated in the next three lemmas.

Lemma 3.3. Thereexist constants C and C; such that thefollowing estimate holds

‘ OH (s, t,x,y)

-3
35 < C1p "¢c,p(y — x),

where p and ¢, are defined asin Lemma 3.2.

Proof of Lemma 3.3. By Assumption (A5), o;; (s, x) and m; (s, x) have partial de-
rivatives with respect to s that are Lipschitz continuous with respect to x. Using
(3.4), one sees that for the statement of the lemma it suffices to show for some
constants C; and C5, that

azﬁ(s, t,x,y) _
W < Cip 2¢Cé,p(y —X),
i0Xj
3 9%p(s, 1,x,) . a4
— < Cip” / —X).
as 0x;0x =t1p ¢C2’p(y )

These claims follow from Assumption (A5) by taking partia derivatives of p, see
(3.1). O
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Lemma 3.4. Thereexist constants C1 and C such that the following estimates hold
for 1<k<p

< C1p Yc,(y —x), (311)

0 ad
—H(s, t,x,y)+ —H(s, t,x,y)
Yk dxk

<C1p Yc,(y —x), (312

d d
'aH(s,t,x,y) + EH(S,I,X,Y)

where p and ¢, , are defined asin Lemma 3.2.

Proof of Lemma 3.4. The statements of the lemma can be seen from the definition
of H(s, t, x, y), well-known properties of Gaussian densities and (A5). O

Lemma 3.5. Thereexist constants C; and C such that the following estimate holds
forr >0

|aﬁ®H(”(s,t,x,y)|< 1 P2

ot -~ Ta+y)

¢c.p(y —x), (313

where p and ¢c , are defined asin Lemma 3.2.

The proof of Lemma 3.5 is deferred to subsection 3.5.

3.2. Application of the parametrix method to Markov chains

In this subsection we derive a finite series expansion of the transition density
pn(s, t, x,y) of the Markov chain, see Lemma 3.6. Here, p, (s, ¢, x, o) denotes
the conditional density of Y,(¢), given Y,,(s) = x (in particular, p, (0,1, x, y) =
pn(x,y)). We proceed similarly asin the last subsection. Again we apply the par-
ametrix method and for this purpose we introduce additional “frozen” Markov
chains. These are defined asfollows. For al 0 < j < n and x, y € IRP we define
the Markov chains X, = X, ;... For fixed j, x and y, the chain is defined for i
with j <i < n. Thedynamics of the chain is described by

)N(n(j) =X
and
Xn(i +1) = Xn(i) + Ap(i + Dmisn (i), v} + An(i + DY?8,6 + 1).

Thestochastic structure of the IR” valued innovations€,, (i) isdescribed asfollows.
Given X, (1) = x(I) forl = j, ..., i thevariable &, (i + 1) hasaconditional densi-
ty g{sn(i), v, o}. Note that the conditional distribution of X, (i + 1) — X, (i) does
not depend on the past X,,(/) for I = j,...,i. Let uscal X, the Markov chain
frozen at y. We put ¥, (1) = X, {k, ()} and we write p, (s, (), sa (k), x, y) for the
conditional density of X,,(k)[= X,.;.».,(k)] a thepoint y, given X,,(j) = x. Note
that, as in the case of a “frozen” diffusion the variable y acts here twice: as the
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argument of the density and as a defining quantity of the process X, = X, j x.y-
Let usintroduce the following infinitesimal operators L, and L,:

Ly f(sn()), sn(k), x,y)
P D fGa(+ D), s k), 2, v)dz = fsa(f+ 1), 5,(k), x, y)
B A+ 1) ’

Ly f(sn(j), sn(k), X, ¥)
P @ G+ D sa(R). 2, )dz = fsn(G A+ D), su(k), x, )
- An(j+ 1) ’

where we write p, j(x,z) = pa(sa(j), sn(j + 1), x, z) and where ﬁrf’j(x, o) de-
notes the conditional density of X, (j + 1)[= X, j.«.,(j + 1] given X, (j) = x.
Note that L, and L, are defined in analogy with the definition of L and L, see
(3.2)-(3.3). We remark that for some technical reasons on the right hand side of
the definitionsof L, f and L, f theterms f(s,(j + 1), ...) appear instead of
f (s, (j), ...). The reasons will become apparent in the development of the proof
of Theorem 1.1. For k > j we put in analogy with the definition H

Hn = {Ln - in}ﬁw
In the following we use the following convol ution type binary operation ®,,:

(& ®n s ()), sn(k), x, y)
k-1

= Z Api+1) /IR 8(n(j)s $n (@), X, 2) f (50(D), s (K), 2, y)dz,

i=j

where0 < j < k < n. Inthisdefinition the convention is used that Zf:_jl ...=0

if j > k. Wewrite g ®, H,SO) forgandforr =1,2,...,n, wedenote the r fold

“convolution” (g ®, HY ) ®, H, by g ®, H". Note that ®,, is a discretized
version of ®.
The next lemma gives the “ parametrix” expansion of p,,.

Lemma3.6. For 0 < j < k < n thefollowing formula holds:
k—j
Pu(sn(i)s sn (k). %, 3) = Y (Fn @n H) (52 (). u (k). x, ),
r=0
where in the calculation of 5, ®, H," we define

Pn(Sn () sn(J), X, ¥) = Pu(sn(k), sp(k), x, y) = 8(x — y).

Here § denotes the Dirac function.
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Proof of Lemma 3.6. Note that by definition:

Hn(sl’l(j)vsn(k)v-xv y)
_ f[pl’l,j(-xv Z) - ﬁ;{’j('x’ Z)]ﬁn(sn(] + 1)7 Sn(k)v 2, y)dZ
B An(j+ 1) '

(3.14)

Using the Markov property we get the following identity:
Pn(sn(j)s sn(k), X, ¥) = pn(su(j), sn(k), x, y)

k-1
=Y A+ / Pu(sn (), $a (i), x, 2)

i=j
/ [pn,i(z’ ) — la,)ly,,'(zs D Pl + 1), su(k), 2/, y) ,
X . dz dz
Ay + 1)
k—1
= ZAn(l +1 / DPn(5n (7)), $0(0), x, ) Hyp (5, (i), sp(k), z, y)dz
i=j
= (pn ®n Hl’l)(sn(j)7 Sﬂ(k)7xv y)

The lemma follows by iterative application of thisidentity. O

3.3. Boundson p,, — p based on Edgeworth expansions

In this subsection we will develop some tools that are helpful for the comparison
of the expansion of p (see Lemma 3.1) and the expansion of p,, (see Lemma 3.6).
These expansions are simple expressionsin p or p,, respectively. Recal that p is
a Gaussian density, see (3.1), and that p, is the density of a sum of independent
variables. The densities p and p, can be compared by application of Edgeworth
expansions. Thisisdonein Lemma3.8. Thisisthe essentia step for the comparison
of theexpansionsof p and p,,. The other lemmas of this subsection give boundsfor
severa quantities. Inthe next lemmaboundswill be givenfor derivativesof p,,. The
proof of thislemma also makes essential use of Edgeworth expansions. In Lemma
3.9 we give an approximation for H, = (L, — Zn)ﬁ,,. We show that thisterm can
be approximated by K, + M,,, where K,, = (L — Z)ﬁn and where M,, is defined
inLemma3.9. Boundson H,, K,,, M,, and p,, ®, H,Y) aregivenin Lemmas 3.10
and 3.11. These bounds will be used in the proof of Lemma 3.12 to show that in
the expansion of p, theterms j, ®, H\" canbereplaced by p, ®, (M, + K,)".
Finally, in Lemma 3.13 we use our Gaussian approximation p for the transition
density p,, of the Markov chain and we show that in the expansion of p,,, thedensity
P Can bereplaced by p.

Lemma 3.7. The following bound holds:

|D;ﬁn(sn(])a sp(k), x, y>| < C,O_‘V| ‘Ep(y —Xx) (315)
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for all j < k, for all x and y and for all v withQ < |v| < 2. Here, p = [s, (k) —
sn(j)]Y/2 [for simplicity the indices n, j and k are suppressed in the notation],
&p(e) = p~PE(e/p) and
14 [lz)5721
fo = L1F 1 ||H]_l |
S+ 1P az
The constant S has been defined in Assumption (A2).

Proof of Lemma 3.7. We first note that p,, (s, (j), s, (k), x, e) isthe density of the

vector
k-1

X+ ikt > ni.
i=j
where 1 = Zi-:jl An(i + Dm{s, (i), y} is deterministic, where n; = [A, (i +
DIY28,( + 1),[i = j,....k — 1], and where, as above in the definition of the
“frozen” Markov chainY,,, £, (i +1) isasequenceof independent variabl eswith den-
sitiesg (s, (i), v, »). Let f,(e) bethedensity of the normalized sum ijkl/z Sy,

i=j '
where
k—1

Vik =Y Al +DE(sa(0), y).
i=j

It follows from (A3) that for some constantsci, ..., ¢4 > 0 thefollowing inequal-
itieshold for al 6 with |0 = 1anddl j < k

clp_l < GTVJTkl/ZQ < czp_l (3.16)
and

c3p P < det ijkl/z <cap P (317)

Clearly, we have

Busn (7). sn (k). x, @) = det V. 2 £V 20 — x — ).
We now argue that an Edgeworth expansion holds for f,,. Because of (3.16) and
(3.17) thisimplies the following expansion for p,, (s, (j), s, (k), x, e).

ﬁl’l(sl’l(j)’ Sn(k)a .X, .)

§-3
= det V; [tk = TP (g DOV e = = kD)
r=0

+O([k = 17572214 V0 = x = 01 1Y) (318)

with standard notations, see Bhattacharya and Rao (1976), p. 53. In particular, P,
denotes a product of a standard normal density with a polynomial that has coeffi-
cients depending only on cumulants of order < r + 2.

We now argue that expansion (3.18) follows from Theorem 19.3 in Bhattach-
aryaand Rao (1976). For this claim we have to show that for the sum Y"/_7 ; the
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conditions(19.27), (19.29) and (19.30) of Theorem 19.3 are verified. Thematrix B,
on page 194 of Bhattacharyaand Rao (1976) correspondsto B x = (k— j)Y/2-V; .
Now because of (3.16) we have for some constants C; and Cz
EllBjamill® = Ellk — Y2V mil®
-s/2
< CARatEllpVjsnill®
-s/2
< CAmatlpViklSEllni 1S
-s/2
< C18pat IEni |8

< clf 12154 a D), v, 2)diz

<G / 1215w (2)dz

< 00,

see (A2). This shows (19.27).

Next, we show (19.29) with p = 2. We write ¢x(u) = Eexp(iu’ X) for
the characteristic function of a random variable X. Using the substitution s =
u-(k—jHY 2V;k1/ 2 we get for a constant C

. . -1/2
sup 2f|Eexp{zuT<k—J)1/2vj,kl/ i)l
i=j,...k—

14

. . —-1/2
(Eexpliu” (k — HM2V 041 ldu

. -1/2.1—
< sup [det(k — HYAV AT sup [ 1y 0)lI@n,, (5)lds
i=j,.. k=2 ' i=j,.. k=2
p/2
< C3Ajax SJp |(pn,' ()] |(ﬂn,-+1(s)|ds

i=j,...k=2

<C3z sup , |9z, i+ () |@z,i+2) (s)|ds
i=j, o k—

=C3 sup 2||(05n(i+l)||2||(/’§n(i+2)||2

i=j,...k—
=C3 sup llg(sn (@), M2llgCs, @+ 1), yll2
i=j,.. k=2

2
= G3ll¥ |2 < oo.

Hence, (19.29) holds with p = 2.
To check (19.30) we prove that forany b > 0

sup )| <1 (3.19)
te[0,1], |lul|>b

where £(¢) isarandom variable with density ¢ (z, y, e). Suppose that this does not
hold. Then there exists bg > 0 with

sup lpz ()| = 1.
1€[0,1, lull>bo
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Hence, there exist sequences {u;} and 7 with |@z(,)(ux)| — 1. For constant Bg
it must hold that b < |luxll < Bo because, under our conditions, |@z)(u)| —
0, lull — oo uniformly in¢ € [0, 1]. Hence there exist ug > bg # 0 and rg such

that for subsequences Uuk; zZ ug and t; 1z to. Thisimplies gz (uo) = 1.

Definee = ﬁ and consider

E explise’ &(tg)} = Eexplise’ (t0)} = ¢prz(g) (s)-

©Pri() (s) 1S the characteristic function of the projection of £(zp) onto e. We have
©prrio) (0) = ©przqg) (luoll) = 1. Thisimplies that the distribution of this projec-
tionispurely discrete. Clearly thisisimpossible becauseit contradicts our assump-
tion that £(#p) has a density. Therefore (3.19) holds.

Our setting is dightly different from that of Theorem 19.3 in Bhattacharya and
Rao (1976). We consider triangular arrays of independent random vectors instead
of asequence of independent random vectors. But the same proof applies because
in our setting the conditions (19.27), (19.29) and (19.30) hold uniformly.

We now argue that, for C large enough it holds that

ﬁn(srl(j)’ sp(k), x, ®) < Cép(' - Xx).

For seeing this note that for all ¢ there exists a constant C” with

exp(—c||z||?) < €' ——.
1+ )zIS

This shows the lemmafor [v| = 0.

For |[v| = 1, 2 one again proceeds simlarly as in the proof of Theorem 19.3
in Bhattacharya and Rao (1976) to obtain Edgeworth expansions for D}, 5, (s, (j),
sn(k), u, y). Note that differentiation DV of the density and of the terms of the
Edgeworth expansion corresponds to multiplication of their Fourier transforms
with ¢V. Hence, after obvious modifications the estimates of Theorem 9.11 and
Lemma 14.3 from Bhattacharya and Rao (1976) apply for these derivatives. Then
with these bounds one simply has to copy the proof of Theorem 19.3. Proceeding
as above one gets (3.15). O

Lemma 3.8. The following bound holds with a constant C
B () sn (k) %, 3) = Blsu (). su(k). x, Y)| < CAtiep ™Y, (y =) (3.20)

for all j < k, x and y. Here again p denotestheterm p = [s, (k) — s, (;)]¥/2. We
write ¢,(e) = p~?¢(e/p) where

SR ¢ . 4
ST+ 121574 dz
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Proof of Lemma 3.8. It follows from the proof of Lemma 3.7 (see (3.18)) and from
Condition (A4) that

|ﬁn(sn(.])v Sl‘l(k)v-xa )’) - lan(sn(J)’ sn(k)’x» y)l

< CANZP Y, (y — ), (321)

wherewith V; ; and u ; x asin the proof of Lemma3.7

Du(sn (). sn(k), x,y) = det v, 2 @2m)=r/2

1 Ty, -1
x exp{—é(y =X = wjk) Vi (v —x — i}
Note that by (A5) we easily get
|k = msu (i) su®). )| < CAmaxp?,
[Vik = Sn () sn ), Y| < CAmaxp®.
Thisimplies

|ﬁn(sn(j)7sl’l(k)7x7 y) - ﬁ(sn(j)ssn(k)sxv )’)| S CAmaxfp(y —)C)

<CAZp Y, —x). (322

The lemma follows from (3.22) and (3.21). O

In the next lemmawe compare the infinitesimal operators L,, and L, with the
differential operators L and L. We give an approximation for the error if, in the
definition of H,, theterms L,, and L, are replaced by L or L, respectively.

Lemma 3.9. The following bound holds with a constant C

[ Hy (50(7), sn(k), x,¥) — Ky (sp(j), Sn(k), x, ) — My (5,(j), sn(k), x, y)|

< CAYEPp Y, (y — x) (323

with ¢, asin Lemma 3.8 for all j < k, x and y. Here again p denotes the term
p = [sn(k) — s.(j)]¥2. For j < k — 1thefunction K,, is defined as

Ky = (L — Zf)ﬁn
Furthermore, for j < k — 1 we define
1

My (sn (7). su (k). x, ) =38, G+DY2 Y Z/ /D§%q(sn(j),y,9)(x—y)“

=3 |ul=1" R"~O
O pvs (sn(j + 1), sp(k 80A,(j + D2, y)(1 — §)%dsdo
bl xPnSnJ L Sp(k), x + n(Jj + > ¥)( .
For j = k — 1 wedefine

Kn(sn(]), Sn(k)a xv y) == Mn(sn(j)a Sl’l(k)’-xﬂ J’) = 0
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The proof of Lemma 3.9 is based on some lengthy elementary calculations. It
is deferred to Subsection 3.5.

Lemma 3.10. The following bound holds with a constant C

1K (50 (7)s s (k), x, V)| < Cp™ ¢,p(y — ), (3.24)
|Hy (50 (j)s sn(k), x, )| < Co™ L £,(y — x), (3.25)
| Moy (50 (7)), s (k), x, V)| < Cp~ L £,(y — x), (3.26)

with ¢, asinLemma3.8 for all j < k, x andy. Hereagain, p = [s, (k) —s, (j)]Y/2.

Proof of Lemma 3.10. Note first that (3.25) follows from (3.24) with Lemma 3.9
and (A4). Claim (3.26) follows from the fact that A, < cp for aconstant ¢ and
from simple estimates. It remains to show (3.24). We have that
|Kn (50 (7)., sn (), x, 0 < 1/ @) [m(sa (), x) = m(su (), W]
1
+5tr{IA G (), ) = Alsn (), 9]
X [ @[A(sn (). %) + Alsn (). W]} (3.27)

where f(x) = pp(sp(j + 1), s, (k), x, y). It follows from (A2) and (A3) that for
C’ large enough

Im(sa (), x) — misu (), Y < C’p[”yp+x” +1] (3.28)
and

1A G2 (), x) = Alsa (), Y| < C’p[@ +1]. (3.29)
Now the lemmafollows from Lemma 3.7, (3.27) — (3.29) and (A4). O

Lemma 3.11. There exists a constant C; (that does not depend on x and y) such
that the following inequality holds:

r+l r

|Pn ®n H (50(j), sn(k), x, y)| < r<1+ )xp(y—x)
2

for 0 < j <k < n,where

[1+ )z)125 22
SO+ 1213727t dz

x(2) =

and p = [s, (k) — 5, (/)]¥2.
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Proof of Lemma 3.11. With the help of Lemmas 3.10 and 3.7 [note that £/¢ is
bounded] we get

|Pn ®n Hy(sn(j), sn(k), x, 2)|
k—1

= ZA (J+1)/ Pn($n(j) 80 (D), X, 2 Hy (50(0), 80 (k), 2, 2)| d2’
i=j
k—1
< C?Y " Anli + Dlsa (k) — 5, (D] H2¢2 Kz — ),
i=j
where we put
¢k () =max{gp, ... % Cp(x) i p1>0,..., 0 >0,
PZ+ ...+ p? =02 (3.30)

Here ¢o denotesthes-function. Weusenowthat Y1 Ay, (i++1)[s, (k) —s, ()] 742 <

[ sn k) — v] Y2 dv = pB(L, 3), where B(a, ,3) = [fr i1 —nfLaris
the f)etafunction. We get

1 )
|Pn ®n Hu(sn(j), sn(k), x, 2)| < C?pB(L, §>¢2»J’k<z - X). (3:31)

Using (3.31) and (3.25) we get

Dn ®n H, (Sn(.]) sn(k), x, Z)‘
k-1
<Y A +1)/ | Pn ®n Hu(sn(j), $n (D), %, 2D Hy (50 (D), 50 (K), 2, 2)|dZ
i=j
: 1 1
< C%p%¢37 Kz - 0B, —)B(f’, =%
2 2
where it has been used that f"’(k)[sn(k) —]Y2[v — s, (N2 dv = p?B3, D).
Using iteratively similar bounds we get

Pr @0 B 0()) 50 (6), %,2)|

. 131 1 1
< Cr—&-:l.pré‘r+1,,/,k(Z —x)B(1, E)B(E’ E) X ... X B(r + )

1 ; 1
Iy et Lk, oy = 30
=CTTG) P (z x)l“(§+1) (332

For thestatement of thelemmait sufficesto show that [1+|x /o |25 2] pP "+ 17k (x)
isbounded by (C”)"*1 for aconstantC’. For this purpose note that dueto our choice
of §’, see Assumption (A2), with constants C1, C>

= -t Ax;
£(x) 1+” T = zH (xi).
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where A (x) = [14 x5 [[14 4]~ du} 1. Thisshowsthat for p1, ..., pr+1,
o7+ ..+ /orz+l = p?,

14
Cpy % Ly (¥) < C5TH ] [ i), (3.33)
i=1

wheren(u) = A, *...x A, (). Let usdenote the Fourier transform of afunction
y by () = [ exp(itu)y (u)du. Furthermore, here ||e||; isthe usual L1—normin
R™. We will show that

N, <C3p 7, .
|| *” C+1p 1 (334)

where n*(u) = [1+ (u/p)%> =25 (u) and where Cs is a constant that does not de-
pend on the special choice of p1, ..., pr+1. [Note that the function n* isin L1(RY,
and that for this reason its Fourier transform is well defined.]
From (3.34) we get by the Fourier Inversion Theorem
r+1,-1
0
<

Because of

P 1 Cy
l_[ 28'-2 = 28 -2
i 1+ x 1+ x|l

[with some constant C4] we therefore get from (3.33) that
1
1+ lx/plI?2

with some constant Cs, i.e. (3.34) holds and the lemmaiis proved.
It remains to show claim (3.34).
Proof of (3.34). Note first that

¢k < cgttpr

N A 1
il < Vil + 252

7252 H . (3.35)

where /5'~2) means the derivative of order 25’ — 2 of the Fourier transform # of
n. We now show that

lilly = ¢+ Y2072 [4] . (3.36)

For the proof of claim (3.36) notefirst that there existsan .. with p?2 > p?/(r +1).
We get the following inequality:

/WMWS/@WMww@WMﬁ
s/ﬁwmm

<@+ 1)1/2,0_1/ 1A ()|dt.
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Note now that [ |A(#)|dt is bounded, see Lemma 3.10. This shows (3.36).
To estimate |72 =2 || notefirst that |4, ()| = |A(pit)| < 1and

Ay O] < pf / lul*a(u)du < o0

fork = 1,...,25" — 2. Furthermore, for Y711 = 25’ — 2 we have with some
constants Cg and C7
N > (ky ki N ki*
/ R @) - olde < ¢ T ol / i (1)) dt
iiy
. o L. Kig 2 (ki dt
< Cgp®S 2 / pil 3.5 ()| —
Ly
< P B . (337)

Using Leibnitzformulafor n(u) = A, *...% A, (1) weget thefollowing estimate
from (3.37) with a constant Cg

] e (] s 0.

It is well known that HX(‘” H is uniformly bounded for ¢ = 0,1, ..., 25" — 2,

1
seee.g. Lemmalin Gel’'fand and Shilov (1958), p. 236. Claim (3.34) now follows
from (3.35)—3.38). O

Lemma3.12. For 0 < j < k < n thefollowing formula holds:

k—j
Pr(sn () (), %, ¥) = (P ®@n (My + K) ) (52 (j), 50 (K), X, ) + R,
r=0

where .
|R| < CArglaxXp(y —Xx)

for some constant C. The function x has been defined in Lemma 3.11. Here again
p = [su(k) — 52 (NIY2.

Proof of Lemma 3.12. By Lemma 3.6 we have that

k—j
Pa(sn(i)s 52 K), %, 3) = Y (B ®n H) (52 (j), 50 (k). X, ¥).
r=0

For r = 0 we have that

(Pn ®n H)($0(J), 50 (k), %, ) = (Pn @ (M 4 Kn) ) (50(j), 50 (K), X, ¥),

by definition. For r = 1 we have by Lemmas 3.7 and 3.9 that

(Pn®@n H") (50 (), 50(0), %, ¥) = (Pn ®@n (M + K1) ) (50(j), 52 (K), x, ¥) 4+ Ra,
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where

k—1
|R1| < ZAn(l + 1)/ ﬁn(sn(j)s sp(i),x,2)
.. IRP
i=j
x|Hy — My — Kyl(sn (@), sn(k), 2, y)dz

k-1
< C%2Ik(y — ) AJlE Y Anli+Dp 7Y, (3.39)
i=j

where the function ¢%/** was defined in (3.30). For the proof of (3.39) we use
Lemma 3.9. We now apply that

k—1

sn (k)
Y Anli 4 Dlsa(k) = su (]2 < / L5 (k) — v] Y2 dv

i=j sn(J)
— p B(1,1/2).

Therefore we get from (3.39) that

. 1
IR1| < C2¢27K(y — x) A2 uxp B(L,1/2).
With similar arguments we get
(Pn ®n H2)(50(j), 50(k), X, ¥) = (Pn ®n (M4 K1) @) (50 (), 50 k), x, )+ Ra,
where
. 1
IR2| < 2C3¢3 7K (y — x)A2uxp® B(1,1/2)B(3/2,1/2).
For arbitrary r it holds that
(P ®n H)Y (50(j), 50 (k), X, ¥) = (P @ (M + K1) ) (50 (7), 50 (K), x, ¥)+ Ry,

where

» ! r(/2’
Rr < Cr+1 r+1,j.k _ Algwx r )
R | < C177¢ (y —x) P T +3/2

In the proof of Lemma 3.11 we have shown that

1

é.r-i-l,j,k(y _ x) < Cr+1p—p —
1+ (v —x)/plI® 2

Thisgives

k—j
Pu(su i)y sn (), %, 9) =Y Pu ®n (M + Kn) " (52 (), (k). x, ) + R,
r=0
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where

o]

(2410 =x/012 2] 1R = Y[+ 10 = x)/01% 2] IR,
r=1

Aoy I'(1/2)"
Aot ,,Z “re+am

I/\

1
Because thisis bounded by CAZ2,, o7 for some constant C, this shows the state-
ment of the lemma. O

We now show that in the expansion of Lemma3.12 for p, the densities p,, can
be replaced by the Gaussian densities p.

Lemma3.13. For 0 < j < k < n thefollowing formula holds:
k—j

Pr(sn () (), %, ¥) = > (P @n (My + K) ) (50(j), 50(K), x, y) + R,
r=0

where
1
IR| < CAanxXp(y —Xx)

for some constant C. The function x has been defined in Lemma 3.11. Here again
p = [sn(k) = su (NI,

Proof of Lemma 3.13. The lemmafollows from Lemma3.12 and

k—j

> AP = Pn] ®n My + K) ) (52 (). su k), x, y) < C’ Adetpy = 1)
r=0
(3.40)

for some constant C’.
It remains to show (3.40) Mimicking the proof of Lemma 3.11 with Lemma
3.8 instead of Lemma 3.7 we get

|(Bn = B0) @0 My + K) (5, 000, %, 9)

< " AM2 B(1/2,1/2)B(1, 1/2)...B(r/2, 1/2)¢" LIk (y — x).

The lemmafollows by application of this bound. O

We now come to the proof of our theorem.
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3.4. Proof of Theorem1.1

The main steps of the proof of Theorem 1.1 have been given in Subsections 3.1 —
3.3. We will now prove some technical bounds for the infinite series expansion of
transition denities for diffusions. We will show that in this expansion the “convo-
lution” ® can be replaced by the “convolution” ®,, and that the kernel H can be
replaced by the the kernel M,, + K,,, see below. Thiswill be done by some careful
estimates. First we argue that thiswill imply the theorem.

From Lemmas 3.1 and 3.2 we get

. 12 Clly —xI?
pGs.t.x,y) =Y (p® HD)(s.1.x,y) + O(Anfax exp (——

),

t—=s
r=0
(3.41)
Furthermore, Lemma 3.13 implies that
n
P01, x,y) =Y " (F ®n (My + Kn))(0, 1, x, y)
r=0
1
T T — (3.42)

—)-
14 [ly —x|?2
Because of (3.41) and (3.42) for the statement of the theorem it remainsto show
that

Y (PO HYO1x.y) = 5, My + K01 x. )
r=0

12 1
= O(Ax——————5—5)- (3.43)
1+ |y — x||?5=2

For the proof of (3.43) note that

n ‘

b [5®HO© 1.5, — 5 & My + KO 1x, y)]|
r=0

< ‘Z [FeH”0 1.5, - F@ HOO 1.x,7)]|
p

n
+‘Z I:ﬁ ®n H(r)(ov 1,X, )’) - ﬁ@n (Mn + H)(V)(O’ 1,)6, y)]’
r=0

2[5 @ M+ DV, 1.5, ) = 5 @0 (Mo + K) (0,15, 1) ]|
r=0
=T1+ T2+ Ts. (3.44)

For Ty, T> and T3 we will show the following estimates

1/2
Ty = O(Amax ————————5—5)»
1+ ly —x)?52

wherek =1, ..., 3. Thisshows (3.43). It remains to show (3.45).

(3.45)
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Proof of (3.45) for k = 1. We conjecture that under additional smoothness assump-

tionsonm and X it can be shown with the methods of Bally and Talay (1996b) that
Ty isof order O (Amax). We have

n
< Z
r=1
n—1
= LG+ D [ DG Lz )z
j=0

1
/ dsr/\lfr(O, sry X, 2)H(sp, 1, z, y)dz
0

n—1

>80+ D) [ (#0055, 2) = PO, )

j=0

n

2

r=2

x H(sy(j), 1, z, y)dv

where
Wi(s, t,x,y) = p(s,t,x,),
W, (s, t,x,y) = p@H Vs, 1, x,y),
W0, 5, (), x,2) = (0, 5, (i), x, 2),
j-1
\IIVA(O’ sn(j)» X, Z) = Z An(l + 1) / lIJ}’A—]_(O’ s”(i)’ X, Z/)
i=0
XH(sn (l)v si’l(j)v Z/v Z)dz/v
forr > 2.

Denote A, (0, 0, x, v) = 0and

Sn(k)
A (0, s, (k), x, 2) =/ dsr/\IJr(O, srox, 2 )VH (sp, sn(k), 2, 2)d7’
0

k—1
> MG+ / W (0, 50 (/). %, 2)

j=0
x H(sn(j), sn(k), 2, 2)dz’.

Then we can rewrite our inequality in the form

n n
Ti< ) 1A Lx, I+ [((¥ - ¥2) @ H) 0, Lx, )| (346)
r=1 r=2

Note that for r > 2

W, (0, 5, (j), X, 2) — WA (0, 5,(j), x, 2)
= Ar_l(o, Sn(j), X, Z) + (("Ilr—l - "IIrA_l) ®n H) (09 sl’l(j)’ X, Z)' (347)
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We now apply Lemma 3.5 to estimate A, (0, s,,(j), x, z). Let us consider the
function

Ar(1) =/‘l’r(O,t,x,z’)H(t,s,z’,z)dz/.

Letr,t + Ar € (0,s). We have by Lemmas 3.3, 3.5 and 3.2 for At > 0 with
constants Cq, Co, . ..

[AF(t + A1) — Ap ()]
1
0
=At|// 5[‘1—’,(0,1‘—i—hAt,x,z’)H(t—i—hAt,s,z’,z)]dhdz’|
0

1
0
= At / dh |:/ H(t+ hAt,s, 7, z)E\I/r(O, t+hAt, x,7)
0

0
4+, (0,1 + hAt, x, z’)gH(t +hAt, s, 7, z)dz/iH

1 ﬂ_l_ﬁ 7 2
(t+hAt) 2 2 Co |z — x|

< At/ dh /C{ 1 P\~ A
0 rad+ =) t+ hAt

- /2
X (s —t—hAt ’zexp( M)

s —1t—hAt

C,(r+hAz)%—% ( Cs |7/ — x| )

4 -
ra+5h t+hAt
C7lz =7 ,
Ce(s —t — hAt 5= ex d
x Cols ) p( s—t—hAt) ¢
r 2
- CgAt P2 exp _Cg |z — x|
ra+5h s

1 _3 _3
x/ dh((s—t—hAt) 2+ (t + hAD z).
0

Thisgives

[Ar (2 + Af) — Ap (D)
ch B Colz —x|?\ [ At At
< ____° p/zex v ' S - -
“ra+5h p( s 2 == AR
and hence (with s = s, (k))

Sn(]"l‘l)
/(‘) Ar@®)dt — Ay (G + DA (s5n()))
Sn(J

sn(j+1)
< / max |AA(0) — A (su()ldr
sn(j) IE[S;«,(]) Sn(.]""l)]
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Cs Colz — x/?
F(l—{- rzl) ( )exp( sn (k) )

5 (Azu +1) AZG+D )

323y (alk) —su( + 1)
Suppose now that s, (k) > 2AMS
[0 Al/z] U [sn(k) — Amax, $,(K)]

By =170 =50) = Al 0r 500 = Amax = 50()) = 5 (k) |

. We put

Then
|A(O, s, (k), x, 2)|
50 (k) k-1
[ A = Y 800G+ DA
0 =0
/ A Ol + 3 Aaj + 1) 1A (52 ()]
JjE€By,
Cr Iz — x|2
8 9
—8 PPk yexp| ———————— | (S1+S2+S3+S1), (3.48)
ra+ ’21) ( sn (k)
where
AZG+ D)
eI T
A <, (1) <sa ) /
A2(j+1)
S2 = Z 3/2( ) ’
iAY2 <5, ()<l /
A2(j+1)
%= 2 (k) — 50 (j + 1)2
{j:0<s0 (1) <sn (k) — Ara )
A2(j 4+ 1)
Sa= Z - : 32"
. 1/3 , (Sn(k) —sn(j + 1)
{J-Sn(k)—Amaxfsn(]+1)§Sn(k)—Amax}
We have
1 < Amak Amaxsn () = Antescsn (k) (3.49)
S < Al Amax AX3 = o(AK2), (3.50)
S3 < Amak’ Amaxsn (k) = Afixsn (k) (351)
Ap(j+1)
S4 = Amax ;
. y3 Z (sn (k) — sp(j + 1))%/
{J:Sn(k)—AmaxSSn(J+1)§Sn(k)—Amax}
Sn (k) — Amax 1 2
< CAmaX/ (sn(k) — )32 dv < C1AL2 (3.52)
50 () — Aoy
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From the estimates of Lemma 3.2 we obtain (remind that now s, (k) > 2A1/ 2
cr _ Calz —x|?
/ A ()|dt < —11sn P2 (k) exp _Cole
B ri+59 sn (k)
Av su (k)
X / (sp (k) —1) Y20 D/2 gy 4 / (sn(k)—1)"Y2 dt
0 Sn(k)—Amax
o Calz —x|? AL2 On(r=3/2),

S —— eX - < n k r

< ra+ r21) 2 (k) p( 51 (0) Amaxsn (k)

(3.53)
D A+ DA (2 ()]
J€By
c Calz —x|?
< 1 lsn”/z(k)exp — 21z — |
ra+59) sn (k)
Z (r—l)/2( )
X An(] + ) . 1 2
et (sn (k) = sa (DY

C Calz — XIZ) .
< —L 5P e (—— Do AG+D

r=1
ra+55 su (k) 5,

C} —pj2 Calz —xf? AL2 OA(r—3/2
<3 k) ex el 21 L ()O3 (354
Tt oL 1) (k) p( 5, (6) Amaxsn (k) (354)

We now get from (3.48)—«3.54) forr > 1
|Ar(0’ Sn(k)vxs Z)'
Cs —p)2 Calz —xf AL2 12

_ k) ex _ n(k / 3.55

F(1+r21) (k) p( 57 () Amaxsn (k)™ (3.55)

It follows from the inequalities of Lemma 3.2 that the same estimate (3.55) holds
for s, (k) < 2A1/ 2 Now, iterative application of (3.46) and (3.47) gives

Z; (¥, —w2) ®, H) (0.1, x, y)| < ZZ’(A @ H")(0,1,%,y)]. (356)
r=2

From (3.55) just asin Lemma 3.11 we obtain

i i (4 @ HO) ©.1.x, )|

r=11=1

S Cs = Cft 2\ A1/2
- - Apiax- 3.57
(Gratp) (Gratp)=loo-o)si oo

The desired estimate for 77 follows from (3.46), (3.55), (3.56) and (3.57).
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Proof of (3.45) for k = 2. For r = 1 we have

P ®n H(0, 5,(k), x, y) — p @y (My, + H)7 (0, 5, (k), x, y)
= ﬁ ®n M0, s, (k), x, y)

—ZA GHD¥2D" > au(id.

lul=1v|=3

where
1
au,v(j)=3/ / f PO, 5,(j), x, 2) DY q(sn(j), ¥, 0)(y — )"
IRP JIRP JO

oV
ﬁD;p,,(sn(j + 1), 5,(k), 2+ 80 A, + DY?, y)(1 — 8)2d5 db dz.

We consider the index sets J1 = {j < k : sy(j) < sp(k)/2}and Jo = {j <
k @ s,(j) > sn(k)/2}. For j € J1 we get the following bound for a,, . (j) with
constants C1, C2 and with k2 = s, (k), A2 = s,(k) — 5,(j)

()] < C1 f 5O, 50 () x, 20 (y — 2)dz

=< CZ)\_ka O —x).
This gives with a constant C3

DAGHDYED T au()

jen lel=1]v|=3

<C3 Y A+ D¥2[sn (k) — 50 (D] Moy — x)
JE€N

sn(k)/z
< C3aH200(y — ) /0 [0 () — 1]~ du

< C3AMSL(y — x) [IN(sn (k) — IN(5,, (k) /2)]
< C3INQR)AYZ 20k (y — x).

We now consider a,, ,,(j) for j € Jo. Denotetheindex [ with u; = 1 by /(). We
first consider the case that v;(,) < 3. Then there exists an I* # I(u) with v« > 1.
Define v/ = v for I # I* and v/ = v, — 1for [ = I*. By integration by parts we
get

auv(j) —3flRp /IRP/O —p(O sn()s x, 2)DYqsn (), v, 0)(y — )"

V—D T Pn(sn(GAL), sp(k), 2 4+ 80 A, + D2, y) (L — 8)? ds db dz.

Using this equation we get the following bound for a,, , (j) [with v,y < 3]

J . . _
()] < c4f@p(o, 50(j) 2. DA Y05 (y — 2)dz,
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where C, is aconstant and where again A2 = s,, (k) — s, (j).
By calculating 8/9z;« p(0, s, (j), x, z) using the explicite definition (3.1) one
can show that
lap.v ()] < Cst A2 (y — ),

where Cs is a constant and where :2 = s,,(j) and again A2 = s, (k) — s,(j). For
adefinition of ¢%9k see (3.30). For a,,_,(j) with vy, = 3 note that after partial
integration a,,,, (j) is of the form

/ f@28® (2)dz.
By integration by parts one gets under conditions on thetails of f and g that
/ f@28%()dz = / F@lzg@)® — 3@ (2)dz
=- / ' @lg@)? - 3¢'@)]dz.
By application of this equality one can show that for a constant Cg
a0 ()] = Co 72+ 6204y =),

Application of these bounds givesfor j € J, with some constant C7

DSAGHDYEY T D aun()

Jj€J2 lel=1]v|=3

1/2 _
< C7ANEsn (k)" Y220k (y — x),

This givesthat for r = 1 it holds with some constant Cg

|5 @ HO (0. 500), %, ) = 5 8 My + H)V (0,5, (0, x, )|
< CgAmbesn ()~ H2¢20K(y — x).
We now claim that for » > 1 it holds that

P @1 HY (0.5, . ) = p ® (My + H) (0, 5K, x. )|

Cg 12 2
<8 A 2 (k (r=2)/2,r+10.k ¢y _ 1y 358
=T@+2/2 maxSn (K) ¢ (y ) ( )

Thisclaim can be proved similarly asfor thecaser = 1. Anessential tool isLemma
3.4. Thefirst statement of this lemmaimplies the following bound

C5+1KS_1§S+1’0’]((Z o X)

(s +1]/2)

I
—(p ®n H)(0, 5, (k), x,2) <
Jwy
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for s < r. Thisinequality can be shown by iterative application of integration by
parts. With the help of this inequality and with Lemma 3.10 claim (3.58) follows
with similar arguments as in the proof of Lemma 3.12.

Proof of (3.45) for k = 3. First note that our conditionsimply that (formal) differ-
entiation with respect to x up to second order is possible in both sides of (3.18).
After calculations similar to the ones presented in the proofs of Lemmas 3.7 and
3.8thisgives

|H (5,(i), 5n(k), x, ¥) — K (52 (i), 50 (K), x, )|
< CAFE(sa (k) = 5,()) Y20, (v — w). (3.59)

Proceeding as in the proof of Lemma 3.11 we get with a constant C [in the
following arguments we will suppose that C is sufficiently large]

|ﬁ ®n [(H + Mn) - (Kn + Mn)](ov sn(k),x, y)|
k-1

=< ZA G +1)fp(0 $n(J), X, 2)(H = Kn) (50 (), s (k), 2, y)dz

k-1
D AnG A+ Disa (k) — s, ()220 (y = x)
j=0

< C2ApEsy (k) B(L, 1/2) 2%k (y — x). (3.60)

<C A1/2

Now

P ®n (H + My) ®n (H + My)(0, sn(k), x, y)
—P ®n (Kn + My) ®n (Kn + M) (0, s (k), x, y)
= (p®n H — p ®n Ky) ®n (Ky + Mp)(0, sn(k), x, y)
+p Qn (H + Mp) ®n (H — Ky)(0, 5,(k), x, y)
=I1+11I (3.62)
From (3.60) and (3.24) we get

k-1

1] = CPARKB(L,1/2) Y Au(j + D5 2() 65 k) = 52 () V230 (y = 1)
j=0

M B(L, 1/2)B(3/2, 1/2)5, (k)¢ 3% (y — x). (362)

< C3A

Proceeding asin the proof of Lemma 3.11 and using Lemma 3.2 instead of Lemma
3.10 we have analogously to (3.32)

11| < C]ARAT2(1/2)5, (k)¢ 30K (y — x). (3.63)
From (3.61), (3.62) and (3.63) we get
[P ®n (H+ M) ®, (H+ My)QO,s,(k),x,y)
—p ®n (K + My) ®, (K, + Mp)(0, s,(k), x, y)|
< 20)3AY2 B(1,1/2)B(3/2, 1/2)s,(k)c3%% (y —x).  (3.64)
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Iterative application of analogous arguments gives
P ®n (H + M) (0, 5,(k), x, y) = p ®n (Kn + My) " (0, 5,(k), x, y)
= (5 ®n (H +M)"™ = 5 &, (Ko + M) )

®n (K + MO, 5,(k), %, )
+5 ®n (H + M) ™Y @y (H = Kn) (0, 5,(K), x, ), (3.65)
where
|5 @0 (H + M) @, (H = Ku)(©, 5,0, %, )|
< 20" 2 AT (1/2)s TRt (y — 0/ T((r +2)/2)  (3.66)
and

(7 @ (H + M) = 5@, (Ko + M) ) @, (My + Ki)(©,50(6), x, 7)

< 2 CAY2Z B(1,1/2)...B((r + 1)/2, 1/2)st (k)¢ HE0k(y — x).  (3.67)
Claim (3.45) follows from (3.65) — (3.67). O

3.5. Additional proofs

Proof of Lemma 3.5. It sufficesto prove (3.13) for » = 1 and thefollowing recursion
formulaforr > 1
P t Ll PP
—pRHY(s,t,x,y) = du —[p®H (s,u,x,z)]'H(u,t,Z,y)dz
at s ou

+01,H(s, t,x,y) + R (s,t,x,), (3.68)

where 81, is Kronecker's deltafi.e. §11 = 1 and 81, = O for r # 1] and where
for some constants C; and C,

[Cy]"
ra+s)

These claims imply the statement of the lemma: iterating (3.68) we get (3.13).
We now prove (3.68). From (3.12) we haveforu € (s,¢t) andr > 1

[R (s, t,x,y)| < P dcy p(y = x). (3.69)

d
o (/ POH" V(s u,x,2)- Hau,1,z, y)dz)
=Y 9
= | pRH (s,u,x,z)-EH(u,t,z,y)dz

d
= —/ﬁ@H("l)(s,u,x,z) F o H G 12 )dz 4 Re(s,ust, %, y), (370)
u

where

Clu—s)7 - (t —u)~Y2

Ry (s, u,t,x,y)| <
I

bCap(y — X).
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Note now that
a%/ﬁ@ H" Vs, u,x,2) - Hu, 1, z, y)dz
= / % [ﬁ Q H" Vs, u, x, z)] -H(u,t,z, y)dz
+/ POH" V(s u,x,2)- %H(u, t,z,y)dz. (3.71)
Comparing (3.70) and (3.71) we get
%/ﬁ @H " V(s,u,x,2)- H(u,1,z, y)dz
+% / POH" (s, u,x,2)  H(u, 1,2, y)dz

T _
= / P [p Q H" Vs, u,x, z)]-H(u, t,z,y)dz+R-(s,u,t, x, ).
(3.72)
Integrating (3.70) in u we have from (3.72)

! 0
/ du </ﬁ®H(f—1>(s,u,x,z)-H(u,t,z,y)dz>
A
! 0T -1
:/ dufa—[p®H (S,M,X,Z)]'H(u,f’z,)’)dz
s u

- / POH V(s u,x, DHu, 1,2, y)dz "=, + Ry (s, 1, x,y),  (3.73)

where R, (s, 1, x, y) satisfies (3.69). Now (3.68) immediately follows from (3.73)
if we take into account that

/ﬁ@ H(r_l)(svuv-xﬂ Z)H(H,t, Zv y)dZ |M=S - Sl,rH(Syta .x, )’)

and

9 5o HO "l ([ 5o D
§P®H (S,t,x,y)=f dug /P®H (s,u,x,2)- H(u,t,z, y)dz
N

+/ﬁ QH" V(s,u,x,2)- Hu, 1,2, y)dz lu=: .

For the statement of the lemmait remains to show that (3.13) holdsfor r = 1.
This follows from (3.68) and from arguments that are very similar to those in La-
dyzenskaja, Solonnikov and Ural ceva (1968) [p. 378, formula (13.5) with n =
p,s =0,r =1, a = 1] Soweomit the details. This completes the proof. O

Proof of Lemma 3.9. For j = k — 1 note that H, (s, (j), sy (k), x,y) = 0. So it
remains to consider the case j < k — 1. First note that [see (3.14)]

Hy (50 (7)), sn(k), x, ¥) = HX(50(j), 50 (k) x, Y) = H2 (50 (), 50 (K), x, ¥), (3.74)
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where
Hy¥ (5 (), $u k), X, ¥)
= An(j +1)‘1fpn,j(x,z)
[ (sn (G + 1), 50 (K), 2, 9) = pusn (G + D, su(k), x, ldz (375)

and

H2(5,), (k). x. )
- An(j+1)_1/Pn,(x 2)
[Pn(n G+ D5 (k). 2. ) = usn (i + . sn(k). . )]z (376)

Ontheright hand side of (3.75) wenow usethe substitutiond = A, (j+1)"1/2(z—
x) — A (G +DY2m{s,(j), x}. Withthenotation 1(z) = pn(sn(j + 1), sp(k), z, y)
and h(0) = m(sy(j), X)An(j + 1) + 0A,(j + 1)Y? thisgives

HX(sn(j)s sn (), x,¥) = Mg (G + D71 / q(sn(j), x, O)[Ax + h(©)} — Ar(x)]d6.

Remind that ¢ (s, (j), x, @) denotes the conditional density of ¢, (j + 1). We now
use the expansion

(9)”

Mr+h©O)}—rx) = Y (D" (x)

1<|v|<2

+3)° h(e)vf (1= 8)%(D" ) {x + 8h(0)} db.
v/=3

Using now that &, (j) has conditional mean O we get that

H,:ll'(sn(]), Sn(k)a X, y)

/ T . 1 . 1
=) (x) " m(s,(j), x)+ —tr[E{sn(J),x} A(x0)]

aG+D Y M(D”M(x) 3% A+
[v|=2 v|=3
// q(sn(j ( ) (x +5h©))ds db. (377

Note that the first two terms on the right hand side of (3.77) are equal to
Lﬁn(sn(j + 1), Si’l(k)a -x7 )’)

We now treat the term an(s,, (), sn(k), x, ¥). On theright hand side of (3.76)
we use the substitution 8 = A, (j + 1)~ Y2(z — x) — An(G + DY2m{s,(j), y}.
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With the notation 7(8) = m(s,(j), Y)An(j + 1) + 0 A, (j + 1)Y/? this gives

an(sn(.])’ S)’l(k)’ X, y)
m(sn(j), y)"

= Lin(sn () sn (k) 2, ) + An( +1) Y === (0" H()
lv|=2 ’

1 I v
B A+ / /0 q(sn(jxy,e)h(f,) (1—8)2(D" 1) {x+8h(6)}d5 do.
v|=3 ’

(3.78)

It remains to show that there exists a constant C with

An(j + DImsu (), x)" —m(sp(j), 9’1 D VD)) < CAmaxp 2p(y — x)
(3.79)

for v with |[v] = 2 and

3 1
A+ D7 Z o //o [q(sn(j). x,0)h ()" (D" M) {x + 8h(6)}

lv|=3

— q(sn(j), y, O)(O)’ (D" M) {x + 8}3(9)}](1 —8)%ds do

172 1

- Mn(sn(])v Sn(k)v-xa )’) S CAmaxp é-p(y - 'x)' (380)

Proof of (3.79). Because of assumption (A3) we have that for a constant C it
holdsthat |m (s, (), x)" —m, (s, (j), ¥)'| < C|lx — y||. Claim (3.79) followsfrom
Lemma 3.7, monotonicity of ¢ (x) and (A4).

Proof of (3.80). Note that for |[v| = 3

- 3
max{[i(6)"], [h(©)"1} < CAZ(j + 1) A+ 01D,
h(0)" —h(©)"| < CAZG +1) (L4 1017 IIx — ylI.

So the left hand side of (3.80) does not exceed the following sum

1
CAZG+D Y. / e — Y179 0) L+ 1161)% [(D¥2){x + 8h(6)}|d6

v|=3
+CA, G+ D Z / Ix = ylly () A+ 101)2 [(D"A){x + 8h(0)}|do
[v|=3
1
+CAZ(j+ 1) Z /1//(9) A+ 161D (D" M) {x + 8h(0))
v|=3

—(D"M){x + 8h(6)}|d6. (3.81)
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We now use the following simple estimate. For an ¢ > 0 suppose that |jv| < e.

Then
1 1 1 25

= = =
T+ fu+olb = 1+ [ull —el¥ = 14 [l = 14 Jul
for |lu|| > 2¢ and

1 (2e)* +1
_— < 1 < —
14 lu+oll* 1+ flull®
for |lu|| < 2¢. Hence,
1
PG (3.82)

I+ Ju+vll* = 1+ Jlull®
with C(s, &) = max{2*, (2¢)% + 1} for all u.
Fromassumptions(A2), (A4),(3.16),(3.17) and(3.18) it followsthat for |v| = 3
[(D” M) {x + 8h(6)}]
x = 8m(sn(j), X)An(j +1) —08A,(j + 1)% ”S]—l

< cp—P—3[1+ 2= ;

Similarly we get that
[(DY2){x + 8h(0)}]

1
—p— —x = 3m(sp(j), Y)An(j+1) —05A,(j + D2 -1
<o 1412 1 P e
o
Applying (3.82) with v = [8m (s, (j), ) An(j + 1) +68A,(j + 1)2]/p, z = x Or
1
v,ande = CA,(j +1)2 + ||0| we get [note that ||v| < ¢] for |[v] = 3witha
constant C (s) depending on s
3CEA+(0]°)
1+1550°
(3.83)
Note now that for v with |v| = 4 and for « with || < 1 we have [because of

18h(8) + k8(h(O) — hO))] < CALG + 1) + 1011 An(j + D2]
—p—aCs)A+ ||9||S)_
1+ 1550

Furthermore we get for the difference in the integrand of the third term in (3.81)
that

max{|(D"2){x + 8h(O)}], (D) {x + 8h©)}} < cp™?

(D" M) {x + 8h(8) + k8 (h(0) — h(©))}] < cp (3.84)

|(D"M){x 4+ 8h(0)} — (DY) {x + 8h(6)}|
C)@A+0]*
< o7 4a, () + Dlx -y SLCED 5
T+ 11==1°
Substituting (3.83), (3.85) into (3.81) and taking s = S — 3 (see (A2)) we get that
the left hand side of (3.80) does not exceed

1
C Ao e, (y — x). o
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