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Abstract. In this paper, we will give sufficient conditions for the existence of the reflecting
diffusion process on a locally compact space. In constructing reflecting diffusion process,
we consider the corresponding Martin–Kuramochi boundary as the reflecting barrier and in-
troduce the notion of strong (E, u)-Caccioppoli set. Our method covers reflecting diffusion
processes with diffusion coefficient degenerating on the boundary.

1. Introduction

In this paper, we will present a sufficient condition for the existence of the reflecting
diffusion process on a general locally compact space. In constructing reflecting dif-
fusion process, we will consider the corresponding Martin–Kuramochi boundary
as the reflecting barrier.

In Sect. 2, as the first step to our goal, we will attach the Martin–Kuramo-
chi boundary to a locally compact Hausdorff space, starting with a Dirichlet space
(E,F). The method was originally established by M. Fukushima [F-1] for a bound-
ed Euclidean domain with the classical Dirichlet integral.

The definition of strong (E, u)-Caccioppoli set which is opted for the situation
with no coordinate functions will be introduced as an enhancement of strong Cac-
cioppoli set in [C-F-W]. In Sect. 3, we will reorganize the results in their paper
which gives sufficient and necessary condition for the reflecting Brownian motion
to be a quasi-martingale. To be more precise, the notion of strong (E, u)-Cacciop-
poli set which is dependent on function u in F provides a characterization for
u(X∗t ) to be an {Mt }-quasi-martingale, where {X∗t } stands for the reflecting diffu-
sion process on the state space compactified in Sect. 2 and {Mt }-quasi-martingale
is defined sightly differently from the quasi-martingale based upon the filtration
{Mt } generated by the reflecting diffusion process.

In Sect. 4, we will see the Green’s formula in [K] provides a criterion for domain
as to whether it is a strong (E, u)-Caccioppoli set. We will also have a generaliza-
tion of the well-known Minkowski content condition. In fact, in the Euclidean
space, this method covers reflecting diffusion processes with diffusion coefficient
degenerating on the reflecting barrier.
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For notations and full detail on Dirichlet space theory, the reader is referred
to the book [F-O-T]. Finally, the author extends his heartfelt thanks to Professor
M. Fukushima, Professor H. Kurata, Professor M. Takeda and the referee of the
paper for their helpful comments.

2. Martin–Kuramochi boundary

We denote a connected locally compact separable metric space byX and denote the
associate metric by d . Suppose thatX has a Radon measure m satisfying supp[m] =
X and m(X) = 1. We start with a Dirichlet space (E,F) on L2(X;m) satisfying
the following conditions:

the completion F0 of F ∩ C0(X) with respect to the inner product
E1(u, v) = E(u, v)+ (u, v)L2(X;m) is a regular Dirichlet form (E,F0)

on L2(X;m),

(1)

(E,F0) has the strong local property. (2)

To construct the Martin–Kuramochi boundary, we focus only on the case that the
absorbing diffusion process {X0

t ,M
0
t , P

0
x } corresponding to (E,F0) has continu-

ous representation kernel for α-resolvent, that is, there exists a continuous function
Gα(x, y) on (X ×X) \� (� = {(x, x) | x ∈ X}) such that

f ∈ L2(X;m)⇒ Gαf (x) =
∫
X

Gα(x, y)f (y)dm(y) ∈F0,

and Eα(Gαf, v) = (f, v) for all v ∈F0,

f ∈ C0(X)⇒ Gαf (x) = Ex[
∫ ζ

0
e−αtf (X0

t )dt],

where ζ is the life time of the diffusion process.

Here and elsewhere, we denote E(u, v) + α(u, v)L2(X;m) by Eα(u, v) and denote
(u, v)L2(X;m) simply by (u, v). In addition, we suppose that Gαf is continuous on
X for each f ∈ L∞comp(X) = {f ∈ L∞(X;m) | supp[f] is compact in X} and Gα1
is continuous on X.

The following representation of the bilinear formE by signed measures of finite
total variation will be crucially required:

• for any u, v ∈F, the associate co-energy measure µ<u,v> satisfies

E(u, v) = µ<u,v>(X).

To obtain the co-energy measure for the functions of the larger family F,
we set F0,loc = {u ∈ L2

loc(X;m) | for each domain D�X there exists uD ∈
F0 such that u|D = uD on D} and introduce Chen’s L2−reflected Dirichlet space
F = {u ∈ L2(X;m) | there exists a sequence of functions {un} ⊂F0,loc such that
lim
n→∞ un = u m-a.e. on X and {un} is an E-Cauchy sequence} so that E(u, v) is
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well defined for u, v in F ([C-1] and [K-T]). We put a basic assumption on E(u, v)
and (E,F):

F ⊂F, for any u, v ∈F the Dirichlet inner product E(u, v) coincides
with E(u, v) and 1 ∈F.

(3)

Then, it is easy to see from assumption (2) and Lemma 5.6.1 [F-O-T] that, for
any u, v ∈ F, µ<u,v> is well-defined as the weak limit of µ<un,vn>, where
{un}, {vn} ⊂ F0,loc are E-Cauchy sequences satisfying limn→∞ un = u and
limn→∞ vn = v m-a.e. on X. In sect. 3, an extended version of the Green’s formula
in [K] based on this co-energy measure will be utilized.

To show the pointwise convergence of α-harmonic functions from
Eα-convergence, we set the family of α-harmonic functions by

Hα(D) = {u ∈F | E(u, ϕ)+ α(u, ϕ)L2(D;m) = 0 for ∀ ϕ ∈F ∩ C0(D)},
and assume that

u ∈Hα(D) and D1 �D ⇒ sup
x,y∈D1

|u(x)− u(y)|
d(x, y)β

≤ C‖u‖L2(D;m) (4)

for some positive constants β and C depending on domains D1 and D. We suppose
that

m never charges on any point in X and inf
Bx(δ)⊂D

m(Bx(δ)) > 0 holds

for ∀ δ > 0,∀ D�X,

(5)

where Bx(δ) stands for the ball with center x and radius δ.

Lemma 1.

(i) If {un} converges to u in Hα(X) with respect to Eα , then {un} converges to
u uniformly on every compact set in X.

(ii) For any x ∈ X, there exists a unique element Rα,x ∈Hα(X) satisfying

Eα(Rα,x, v) = v(x) f orall v ∈Hα(X).

(iii) Rα,x(y) is continuous on X ×X as the function of (x, y).

Proof. (i) is a consequence of assumptions (4) and (5).

(ii) (i) implies the continuity of the functional 'x(v) = v(x) for v ∈ Hα(X)

with respect to Eα . (ii) is clear from this continuity on 'x .
(iii) We first note that the map Rα,· : X→Hα(X) is continuous. This is because

the estimate (4) shows

sup
Eα(w,w)≤1
w∈Hα(X)

|Eα(Rα,x − Rα,x′ , w)| ≤ sup
Eα(w,w)≤1
w∈Hα(X)

|w(x)− w(x′)| ≤ Cd(x, x′)β,

whenever x and x′ are both in some domain D�X. In the inequality
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lim
x′→x
y′→y

|Rα,x′(y
′)−Rα,x(y)| ≤ lim

x′→x
y′→y

(|Rα,x′(y
′)−Rα,x(y

′)| + |Rα,x(y
′)− Rα,x(y)|)

≤ lim
x′→x

sup
y′
|Rα,x′(y

′)− Rα,x(y
′)|

+ lim
y′→y

d(y′, y)β‖Rα,x‖L2(X;m),

it follows from (i) that the first term in the right-hand side vanishes. Since the second
term vanishes as well, the assertion has been proved. ��

For any open setG�X,Hα(G) is the orthogonal complement of {u ∈F | u =
0 quasi-everywhere on Gc} in F with respect to the inner product Eα . Therefore,
by using the orthogonal projection PG

α on Hα(G), the family SHα(X) of all
continuous α-subharmonic functions is defined by SHα(X) = {u ∈F ∩ C(X) |
PG
α u ≥ u quasi-everywhere on X, for every open set G�X}. Since the orthogo-

nal projection PG
α u takes the same value as u outside G for any function u ∈

F, PG
α u is non-negative for any non-negative u, otherwise by setting the non-

empty open set Gu = {x ∈ G | PG
α u(x) < 0} we are faced with a contradiction

0 > PG
α u = P

Gu
α PG

α u = 0 on Gu.

Lemma 2.

(i) u ∈SHα(X)⇒ Eα(Rα,x, u) ≥ u(x).
(ii) Rα,x is a non-negative function onX and symmetric in the sense thatRα,x(y)

= Rα,y(x) for ∀ x,∀ y ∈ X.

Proof. (i) For anyu∈F, any sequence {Dj }∞j=0 of domains satisfyingD0 �D1� · · ·
and ∪∞j=0Dj = X yields a Cauchy sequence {PDj

α u}∞j=0 with respect to the

inner product Eα , since we have j > * ⇒ Eα(P
Dj
α u, P

Dj
α u − P

D*
α u) = 0

and ‖PDj
α u‖Eα ≤ ‖PD*

α u‖Eα . The identity Eα(u − P
Dj
α u, h) = 0 for ∀h ∈

Hα(X) and ∀ j implies lim
j→∞

P
Dj
α u is the orthogonal projection Pαu of u on

Hα(X). From the definition of the subharmonicity, we deduce the following
inequality:

Eα(Rα,x, u) = Eα(Rα,x, Pαu) = Pαu(x) ≥ u(x)

for all u ∈SHα(X).
(ii) For any open set G�X, the orthogonal projection PG

α sends Rα,x ∨ 0
to a non-negative function which dominates Rα,x and consequently Rα,x ∨ 0 is
in SHα(X). On the other hand, thanks to the inequality in (i), it is easy to see
that Rα,x is a unique minimizer of the functional ,x(v) = Eα(v, v) − 2v(x) for
v ∈ SHα(X). This combined with the inequality Rα,x(x) = Eα(Rα,x, Rα,x) ≥ 0
implies thatRα,x ∨0 also minimizes the functional,x(v). ThereforeRα,x is a non-
negative function. The identity Rα,x(y) = Eα(Rα,y, Rα,x) = Rα,y(x) (∀x,∀y ∈
X) shows Rα,x(y) is symmetric. ��

For any disjoint sequence of topological Borel subsetsE1, · · · , En ofX satisfy-
ing ∪nk=1Ek�X, let us use a notation ‖{Ek}‖ to describe max

k
diam(Ek). Moreover,
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when a sequence x1, · · · , xn satisfies xk ∈ Ek (k = 1, · · · , n), we will denote
n∑

k=1

Rα,xk (·)u(xk)m(Ek) by R(E1,···,En)
α,x1,···,xn u.

Lemma 3. For any f ∈ L2(X;m), there exists a unique element Rαf ∈Hα(X)

satisfying

Eα(Rαf, v) = (f, v) f or every v ∈Hα(X), (6)

which has a continuous representation
∫
X
Rα,y(·)f (y)dm(y).

Proof. The continuity of the functional '[f ](v) = (f, v) with respect to Eα im-
plies the existence of Rαf ∈ Hα(X) enjoying (6). To validate the continuous
representation for Rαf , let us start to prove lim

∪Ek↑X‖{Ek }‖↓0

‖R(E1,···,En)
α,x1,···,xn f −Rαf ‖Eα = 0,

particularly for f ∈ C0(X). For every v ∈ Hα(X) and every f ∈ C0(X), the
relation

Eα(R
(E1,···,En)
α,x1,···,xn f (·), v) =

n∑
k=1

f (xk)v(xk)m(Ek)

can be derived from Lemma 1 (ii). Hence, we obtain

Eα(R
(E1,···,En)
α,x1,···,xn f, R

(F1,···,Fm)
α,y1,···,ym f ) =

n∑
k=1

m∑
*=1

Rα(xk, y*)f (xk)f (y*)m(Ek)m(F*).

Since the Riemann sum in the right-hand side approximates∫
X×X Rα,y(x)f (y)f (x)dm(y)dm(x), the convergence

lim
(∪Ek)∩(∪F*)↑X||{Ek}||↓0,||{F*}||↓0

||R(E1,···,En)
α,x1,···,xn f − R(F1,···,Fm)

α,y1,···,ym f ||Eα = 0

can be justified by using this expression. As a result, the limit lim
∪Ek↑X||{Ek }||↓0

R(E1,···,En)
α,x1,···,xn f

exists in F, which clearly coincides with Rαf in L2(X;m). By applying simple
function approximation instead of the Riemann sum approximation, a similar argu-
ment works to verify that

∫
X
Rα,y(·)f (y)dm(y) is a continuous representation of

Rαf for any f ∈ L∞comp(X). SinceL∞comp(X) is dense inL2(X;m), the continuous

representation is extended to any function f in L2(X;m). ��
Lemma 4. For eachα > 0, we setKα(x, y)=Gα(x, y)+Rα,y(x), then {Kα(x, y)}
has the following properties:

(i) Kα(x, y) is non-negative continuous function on (X ×X) \�,
(ii) Kα(x, y) = Kα(y, x) for any distinct two points x, y ∈ X,

(iii) αKα1 = 1,
(iv) f ∈ L2(X;m) and v ∈F⇒ Eα(Kαf, v) = (f, v).
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Proof. (i) We first note that Gαu is a unique minimizer of the functional ,[u](v) =
Eα(v, v) − 2(v, u) for v ∈ F0. Now, we notice that Gαu ∨ 0 also minimizes the
functional,[u](v), whenever u is non-negative. ThereforeGα(x, ·) is non-negative
a.e. on X. Since we assumed the continuity of Gα(x, y) on (X×X)\�, (i) is clear
from Lemma 1 (iii) and Lemma 2 (ii).

(ii) (5) enables for us to take a sequence {fn} ⊂ C0(X) such that fn → δ{x} with
respect to the weak topology ofC0(X). Letting f → δ{x} and g → δ{y} in the iden-
tity (Gαf, g) = Eα(Gαf,Gαg) = (f,Gαg), we know that Gα(x, y) = Gα(y, x)

for any x �= y. Together this with Rα(x, y) = Rα(y, x) (for all x, y ∈ X), we
obtain (ii).

(iii) By an easy calculation, we get

Eα(1− αGα1, w) = α{(1, w)− Eα(Gα1, w)}.
The right-hand side vanishes, whenever w ∈F ∩ C0. This shows the Eα-harmo-
nicity of 1− αGα1. By putting w ∈Hα(X) in the equality, in view of Lemma 3,
we obtain that αRα1 = 1− αGα1.

(iv) It suffices to show that Eα(Kαf, u) = (f, u) for any f ∈ L2(X;m) and
any u ∈F described as u = w + v, w ∈F ∩ C0(X) and v ∈Hα(X). It follows
from the definition of the representation kernel of α-resolvent and Lemma 3 that

Eα(Kαf, u) = Eα(Gαf,w)+ Eα(Rαf, v)

= Eα(Gαf,w)+ Eα(Rαf, v)

= (f,w)+ (u, v)

= (f, u),

from whence we can deduce (iv). ��
Lemma 5. If K1 and K2 are compact sets satisfying K1 ∩ X \K2 = ∅, then

sup
x∈K1,y∈X\K2

Kα(x, y) <∞.

Proof. We take a domain D enjoying K1 ⊂ D and D ∩ X \K2 = ∅. We set
Eα,X\D(u, v) =

∫
X\D µ<u,v>+α(u, v)L2(X\D;m) and setUα = Kαf |X\D for non-

negative function f ∈ C0(X) satisfying supp[f] ⊂ K1 and
∫
K1 f (x)m(dx) = 1.

Then it turns out that

Eα,X\D(Uα,Uα − u) = Eα(Kαf,Kαf − u) = (f,Kαf − u) = 0

for all u ∈ F
[Kαf ]
K2 = {v ∈ Fb | v = Kαf on K2}. It follows from this identity

that
Eα,X\D(Uα,Uα) = Eα,X\D(u, u)− Eα,X\D(Uα − u,Uα − u),

for all u ∈F
[Kαf ]
K2 . Since min{Kαf (x), sup

y∈K2\D
Kαf (y)} coincides with Kαf (x)

on K2 \D, by taking a function φ ∈F such that

φ(x) =
{

1 , if x ∈ D

0 , if x ∈ X \K2,
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we can define a function Uα,D = φKαf + (1− φ)min{Kαf, sup
y∈K2\D

Kαf (y)} ∈

F
[Kαf ]
K2 .

On the other hand, an equality in [O] shows that µ<Uα∧sup
y∈K2\D Kαf (y)> =

1{Uα≤sup
y∈K2\D Kαf (y)}µ<Uα>, which implies Uα = Uα ∧ sup

y∈K2\D
Kαf (y)=Uα,D

onX\D. Consequently, we obtainKαf (y)≤ sup
y∈K2\D

Kαf (y) ≤ sup
x∈K1,y∈K2\D

Kα(x, y)

< ∞, whenever y is in X \ D. For any x ∈ K1, by letting u → δ{x} with re-
spect to the weak topology of C0(K

1), we can deduce sup
x∈K1,y∈X\K2

Kα(x, y) ≤
sup

x∈K1,y∈K2\D
Kα(x, y). The assertion has been proved. ��

Lemma 6.

(i) For each f ∈ Cb(X), Kαf is bounded continuous on X and
Kαf −Kβf + (α − β)KαKβf = 0, for any α, β > 0.

(ii) f ∈ Cb(X)⇒ lim
α→∞αKαf (x) = f (x), for all x ∈ X.

Proof. (i) Because of Lemma 3 and the assumption that Gαf is continuous on X
for f ∈ L∞comp(X), we know thatKαf is continuous onX for f ∈ L∞comp(X). From
Lemma 4 and Lemma 5, we obtain the boundedness and the continuity of Kαf for
all f ∈ Cb(X). The remainder part can be verified by the following identity

Eα(Kαf−Kβf+(α−β)KαKβf, u)= (f, u)−Eα(Kβf, u)+ (α − β)(Kβf, u)

= (f, u)− Eβ(Kβf, u)

= 0

for ∀f ∈ Cb(X) and ∀u ∈F.
(ii) We write for {X0

t ,M
0
t , P

0
x } the diffusion corresponding to the regular Di-

richlet space (E,F0), then we have

f ∈ Cb(X)⇒ lim
α→∞αGαf (x) = lim

α→∞αEx[
∫ ζ

0
e−αtf (X0

t )dt]

= lim
t→0

Ex[f (X0
t )]

= f (x) (∀ x ∈ X),

where ζ is the life time of the diffusion process. On the other hand, Rα,x(·) is a
non-negative function on X. This implies that

lim
α→∞ |αRαf (x)| ≤ ‖f ‖∞ lim

α→∞αRα1(x)

= ‖f ‖∞ lim
α→∞(1− αGα1(x))

= 0 (∀x ∈ X), for all f ∈ Cb(X).

The assertion is proved. ��
By Lemma 5, every sequence {xn} with no accumulation point in X provides

us with the family of 1-resolvent kernels {K1(xn, ·)} which is uniformly bounded



540 H. Kaneko

on every compact set. Here it turns out that {K1(xn, ·)} is equi-continuous. In fact,
the equation E1(K1u, v) = (u, v) shows that Kαu is 1-harmonic on X \ supp[u].
By letting u → δ{x} in the weak topology of C0(X), it follows that K1(x, ·) is
1-harmonic on X \ {x} and that the assumption (4) implies the equi-continuity of
{K1(xn, ·)}.

A sequence {xn} with no accumulation point in X is called fundamental, if
lim
n→∞K1(xn, z) exists for each z ∈ X. We can introduce an equivalence rela-

tion between two fundamental sequences: {xn},{x′n} are said to be equivalent if
lim
n→∞K1(xn, z) = lim

n→∞K1(x
′
n, z). Then the collection of equivalent classes ∂M−KX

of fundamental sequences is called Martin-Kuramochi boundary ofX and the 1-re-
solvent kernels K1(x, ·) are extended by K1(x, z) = lim

n→∞K1(xn, z), where z ∈ X

and x stands for a point in ∂M−KX represented by a fundamental sequence {xn}.
For x, y ∈ X = X ∪ ∂M−KX, we define a two point function

ρ(x, y) =
∫
X

|K1(x, z)−K1(y, z)|
1+ |K1(x, z)−K1(y, z)|dm(z),

which is then clearly a metric on X. Martin’s proof works to deduce that

(X, ρ) is a compactification of X, (7)

K1(x, y) is ρ-continuous in x on X \ {y}, (8)

the family of functions {K1(x, y)}y∈X separates points of X. (9)

Since we proved that K1f is continuous on X for f ∈ L∞comp(X), we see

f ∈ L∞comp(X)⇒ K1f ∈ C(X) (10)

from the same argument in the proof of Lemma 3.2 in [C-F-W].

Remark. As for the relation between ideal reflecting boundaries and the relative
boundary of Euclidean domains, the reader is referred to the papers [B-H], [C-1]
and [C-2].

3. Characterization of quasi-martingale for reflecting diffusion

In this section, we start with the state space X and the Dirichlet space (E,F)

considered in Sect. 2. It follows from (9) and Stone-Weierstrass theorem that
{p(K1g1(x), · · · ,K1g*(x)) | p is polynomial and g1, · · · , g* ∈ C0(X)} is dense
in C(X). Consequently, (F,E) can be regarded as a regular Dirichlet space on
L2(X,m) by extending the measure m so that it satisfies m(∂M−KX) = 0. Let
X∗ = (X∗t ,Mt , Px) denote the corresponding conservative diffusion.

Definition 1. For u ∈F, if there exists a positive constant C(u) such that

|E(u, g)| ≤ C(u) sup
x∈X

|g(x)| for all g ∈F ∩ Cb(X),

then the state space X is called a strong (E, u)-Caccioppoli set.
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Definition 2. A continuous 1-dimensional process Z is called an {Ft }-quasi-
martingale, if it admits a decomposition of the form

Zt = Z0 +Mt +Nt (∀t ≥ 0),

where M is a continuous {Ft }-martingale satisfying

sup{E[|MT∧τ |] | τ is a stopping time] <∞ for each T ≥ 0,

andN is an {Ft }-adapted continuous process whose total variation on any compact
time interval is integrable.

Proposition 1. Suppose that u(X∗t ) is an {Mt }-quasi-martingale for u ∈ F and
with respect to the probability measure Pm, then X is a strong (E, u)-Caccioppoli
set.

Before the proof, we should note that Lemma 2.1 in [C-F-W] holds as the
statement on u, g ∈F in our situation:

Lemma 7. For given u ∈F, we assume that N [u]
t in Fukushima’s decomposition

u(X∗t )−u(X∗0) = M
[u]
t +N [u]

t has an associated finite smooth signed measureµ[u].

Then N [u]
t is of bounded variation and its variation on each compact time interval

is Pm−integrable, if and only if the finite smooth signed measure µ[u] satisfies

E(u, g) = −
∫
X

g(x)µ[u](dx) ∀g ∈F ∩ L∞(X).

Thanks to this lemma, we can mimic the discussion in the proof of Theorem 2.1 in
[C-F-W] for giving the proof of Proposition 1.

Proof of Proposition 1. In Fukushima’s decomposition u(X∗t )− u(X∗0) = M
[u]
t +

N
[u]
t , the assumption in the proposition implies that the total variation of N [u] on

each compact interval is Pm-integrable. Let V [u]
t denote the total variation of N [u]

on [0, t]. Then V [u] is a positive continuous additive functional and since pt is
m-symmetric, there exists a constant C(u) such that

Em[V [u]
t ] = C(u)t for each t ≥ 0. (11)

We consider the excessive function ρ(x) = Px(V
[u]
t = ∞) for X∗ restricted to

X \U , where U stands for an exceptional set for Fukushima’s decomposition. (11)
implies that ρ vanishes m-a.e. and consequently ρ(x) = 0 for quasi-everywhere x.
Hence we may assume

Px(V
[u]
t <∞) = 1, t ≥ 0 for every x /∈ U.

By (11), the functionφ(x)=Ex[
∫∞

0 e−tV [u]
t dt] which coincides withEx[

∫∞
0 e−t d

V
[u]
t ] outside U satisfies∫

X

φ(x)m(dx) = Em[
∫ ∞

0
e−tV [u]

t dt] = C(u).
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We know φ is finitem-a.e. onX. Since φ is excessive forX∗ restricted toX\U ,
φ is finite quasi-everywhere on X. By (11), there exists a finite smooth measure
associated with the total variation process V [u], therefore N [u] also associates a
finite smooth signed measure µ[u] satisfying |µ[u]|(X) = Em[V [u]

1 ] = C(u) <∞.
It turns out from Lemma 7 that

E(u, g) =
∫
X

g(x)µ[u](dx) ≤ |µ[u]|(X) sup
x∈X

|g(x)| = C(u) sup
x∈X

|g(x)|

for any g ∈F∩C(X). SinceF∩C(X) is dense inF, one can derive the inequality
in Definition 1. ��

Since the Dirichlet space (F,E) is regular, we have the following assertion as
in [C-F-W]:

Lemma 8. If X is a strong (E, u)-Caccioppoli set for u ∈ F, then there exists
measure µ[u] satisfying |µ[u](X)| <∞ and

E(u, g) = −
∫
X

g(x)µ[u](dx), ∀g ∈F ∩ C(X).

Proposition 2. Suppose X is a strong (E, u)-Caccioppoli set for u ∈ F, then
u(X∗t ) is an {Mt }-quasi-martingale with respect to Pm.

This proposition can be proved in the same way as in Proof of Theorem 3.2 in
[C-F-W]. Thanks to the property (10), the following assertion holds in our situation
as in [C-F-W]:

Lemma 9. If there exists a finite signed measure ν on X satisfying

E(u, g) =
∫
X

g(x)ν(dx), ∀g ∈F ∩ C(X),

then ν is a smooth measure on X.

4. Sufficient condition for strong (E, u)-Caccioppoli set

In this section, we will deal with the case thatX has an exhaustion function and give
criteria as to whetherX is a strong (E, u)-Caccioppoli set.X is said to be exhausted
by a continuous function ρ satisfying sup ρ = 0, if {x ∈ X | ρ < α}�X for any
α < 0 and X = ∪α<0{x ∈ X | ρ(x) < α}.
Theorem 1. Suppose that the state space X is exhausted by a continuous function
ρ ofF0 satisfying sup ρ = 0. ThenX is a strong (E, u)-Caccioppoli set for u ∈F,
if and only if there exists a finite signed measure µ[u]

1 on X such that

E(u, g) = −
∫
X

g(x)µ
[u]
1 (dx), ∀g ∈F ∩ C0(X)

and there exists a finite signed measure µ[u]
2 on ∂M−KX such that

lim
ε→0

1

ε

∫
{−ε<ρ<0}

g dµ<u,ρ> = −
∫
∂M−KX

g(x)µ
[u]
2 (dx), ∀g ∈F ∩ Cb(X).
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Remark. In terms of Fukushima’s decomposition u(X∗t )− u(X∗0) = M [u] + N [u],

µ
[u]
1 is given as the smooth measure corresponding to IX ·N [u].

Proof. Since we assumed F ⊂F, from Theorem 1.4.2, Lemma 3.2.5 and Lemma
5.6.1 in[F-O-T], we can deduce

µ<u,gρ−ε,0> = ρ−ε,0µ<u,g> + gµ<u,ρ−ε,0>

for any u ∈F, g ∈F∩Cb(X) and ρ−ε,0 = ε−(ρ+ε)∨0 with ε > 0. Therefore,
we see that the procedure in the proof of Main Lemma in [K] works to derive the
Green’s formula in [K] for these functions:∫ 0

−ε

∫
{ρ<s}

dµ<u,g>ds =
∫
X

dµ<u,gρ−ε,0> +
∫
{−ε<ρ<0}

gdµ<u,ρ>.

By dividing both sides with ε and letting ε→ 0, the left-hand side yields

lim
ε→0

∫ 0
−ε
∫
{ρ<s} dµ<u,g>ds

ε
= E(u, g).

The assumptions in the theorem ensure that

lim
ε→0

1

ε
(

∫
X

dµ<u,gρ−ε,0> +
∫
{−ε<ρ<0}

gdµ<u,ρ>)

= lim
ε→0

1

ε
(E(gρ−ε,0, u)+

∫
{−ε<ρ<0}

gdµ<u,ρ>)

= −
∫
X

g(x)µ
[u]
1 (dx)−

∫
∂M−KX

g(x)µ
[u]
2 (dx).

Therefore, we have

|E(u, g)| ≤ sup
x∈X

|g(x)|(|µ[u]
1 | + |µ[u]

2 |),

for any g ∈ F ∩ Cb(X). Hence, we can conclude that X is a strong (E, u)-Cac-
cioppoli set. Conversely, if X is a strong (E, u)-Caccioppoli set, then Proposition 2
and Lemma 7 assure that there exists a finite smooth measure µ[u] on X satisfying
|µ[u](X)| <∞ and

E(u, g) = −
∫
X

g(x)µ[u](dx), ∀g ∈F ∩ Cb(X).

This shows thatµ[u]
1 in the theorem is obtained as the signed measureµ[u]|X. Again

by the Green formula in [K], we have

−
∫
∂M−KX

g(x)µ[u](dx) = E(u, g)+
∫
X

g(x)µ[u](dx)

= lim
ε→0

1

ε
(

∫ 0

−ε

∫
{ρ<s}

dµ<u,g>ds −
∫
X

dµ<u,gρ−ε,0>)

= lim
ε→0

1

ε

∫
{−ε<ρ<0}

gdµ<u,ρ>, ∀g ∈F ∩ Cb(X).

Accordingly, µ[u]
2 is equal to µ[u]|∂M−KX. ��
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Let DL2(X;m)(L) denote the domain of the generator L in L2(X;m) of the
absorbing diffusion process corresponding to (E,F0). We pick a function u out
from the extended domain D(L) of the generator L which is defined by

D(L) = {u ∈F | for any compact set K in X there exists ϕK ∈F ∩ C0(X)

such that ϕK = 1 on K and ϕKu ∈ DL2(X;m)(L)}.
Then, the strong local property shows that

E(g, u) = E(g, ϕKu) = −(g, L(ϕKu)), g ∈ C0(D),

wheneverD is a relatively compact open set satisfyingD ⊂ K . Again by the strong
local property, we easily see that, for u ∈ D(L), Lu can be defined as a unique
function Lu of L2

loc(X;m) such that, for any relatively compact open set D,

Lu = L(ϕKu) is valid on D

independently of the choice of compact set K containing D. If Lu is in L1(X;m),
then we obtain

E(g, u) = −(g, Lu),
for any g ∈F ∩ C(X) vanishing on ∂M−KX.

Theorem 2. If the state space X is exhausted by a continuous function ρ of F0
enjoying sup ρ = 0 and

lim inf
ε→0

µ<ρ,ρ>(−ε < ρ < 0)

ε
<∞,

then X is a strong (E, u)-Caccioppoli set for any u ∈ D(L) satisfying Lu ∈
L1(X;m) and

lim inf
ε→0

µ<u,u>(−ε < ρ < 0)

ε
<∞.

Proof. Lemma 5.6.1 in [F-O-T] implies

|µ<u,ρ>|(−ε < ρ < 0) ≤ √
µ<ρ,ρ>(−ε < ρ < 0)µ<u,u>(−ε < ρ < 0)

≤ µ<ρ,ρ>(−ε < ρ < 0)+ µ<u,u>(−ε < ρ < 0)

2
.

By dividing both sides with ε > 0 and letting ε→ 0, we have

lim inf
ε→0

|µ<ρ,u>|(−ε < ρ < 0)

ε
<∞.

By the extended version of the Green’s formula in [K] shown in the proof of
Theorem 1, we obtain∫ 0

−ε

∫
{ρ<s}

dµ<u,g>ds −
∫
X

dµ<u,gρ−ε,0> =
∫
{−ε<ρ<0}

g dµ<u,ρ>
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for any g ∈ F ∩ Cb(X), where ρ−ε,0 = ε − (ρ + ε) ∨ 0. By dividing both sides
with ε and letting ε→ 0, it turns out from

lim
ε→0

∫ 0
−ε
∫
{ρ<s} dµ<u,g>ds

ε
= E(u, g)

and

lim
ε→0

∫
X
dµ<u,gρ−ε,0>

ε
= lim

ε→0
− (gρ−ε,0, Lu)

ε

= −(g, Lu)
that

|E(u, g)| ≤ |(g, Lu)| + sup
x∈X

|g(x)| lim inf
ε→0

|µ<ρ,u>|(−ε < ρ < 0)

ε

≤ sup
x∈X

|g(x)|(‖Lu‖L1(X;m) + lim inf
ε→0

|µ<ρ,u>|(−ε < ρ < 0)

ε
),

for any g ∈F ∩ Cb(X). This shows that X is a strong (E, u)-Caccioppoli set. ��

5. Application to reflecting diffusion process on a domain in Rn

The result of Sections 2, 3 and 4 will now be applied to obtain a large class of
reflecting diffusions. In this section, we study the reflecting diffusion on a bound-
ed domain D in Rn whose diffusion coefficient is determined by a symmetric
matrix-valued function A = (ai,j ) on Rn. In what follows, we assume that each
of the functions ai,j is twice continuously differentiable on D and that there are
measurable functions ρ1 and ρ2 on Rn such that

ρ1(x)|ξ |2 ≤ (A(x)ξ, ξ) ≤ ρ2(x)|ξ |2, ∀x,∀ξ ∈ Rn, (12)

ρ2 is continuous on D and inf
x∈D1

ρ1(x) > 0 for any domainD1 � D. (13)

By assuming
∫
D
ρ2(x)V (dx) = 1 for Lebesgue measure V , we consider the mea-

sure m(dx) = ρ2(x)V (dx) on Rn which is normalized on D as before. Then, we
can introduce a symmetric bilinear form E(u, v) = ∫

D
(A∇u,∇v)dV for u, v ∈

C∞b (D) which is closable in L2(D;m), where C∞b (D) is the family of all smooth
functions on D whose all partial derivatives are bounded. We denote the smallest
extension of the bilinear form by (E,F). From the definition, it is included in
Chen’s reflected Dirichlet space (E,F). All notations introduced in the earlier sec-
tions will now serve the analogous roles, except substituting D for the state space
X and LA for the generator L. For any g ∈ L∞(D;V ), we know from Theorem
8.24 in [G-T] that each function u ∈F satisfying

E(u, ϕ)+ α(u, ϕ)L2(D1;m) = (g, ϕ)L2(D1;m),
for all ϕ ∈ C∞0 (D) with supp[u] ⊂ D1,
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for subdomain D1�D has a version enjoying

sup
x,y∈D0

|u(x)− u(y)|
|x − y|β ≤ C(‖u‖L2(D1;V ) + ‖g‖L∞(D1;V )) (14)

for some positive constants β andC depending on domainsD1 andD0�D1. Recall
that the function ρ1 is away from zero on every compact subset in D. According-
ly, the assumption (4) in sect. 2 is satisfied. Other assumptions from (1) to (5) in
sect. 2 are evidently fulfilled. In order to obtain continuous representation kernel
for α-resolvent with properties in sect. 2, we further put some assumptions on ρ1
and ρ2:

∫
Bx(2r)

ρ2(x)V (dx) ≤ C1

∫
Bx(r)

ρ2(x)V (dx) <∞, r > 0, x ∈ Rn, (15)

sup
x∈Rn,r>0

( 1

V (Bx(r))

∫
Bx(r)

ρ1(x)V (dx)
)( 1

V (Bx(r))

∫
Bx(r)

1

ρ1(x)
V (dx)

)
<∞,

(16)

(
ρ1

ρ2
)kρ2 ∈ L1

loc(R
n, V ) for some k >

2q

q − 2
, where q > 4, (17)

s

r

(∫
Bx(s)

ρ2(x)V (dx)∫
Bx(r)

ρ2(x)V (dx)

) 1
q

≤ C2

(∫
Bx(s)

ρ1(x)V (dx)∫
Bx(r)

ρ1(x)V (dx)

) 1
2

,

∀ r > ∀ s > 0,∀ x ∈ Rn. (18)

By arguing exactly same as in [C-W], we see the α-resolvent of the correspond-
ing absorbing diffusion has the representation kernel Gα(x, y) which is obtained
as the limit lim

ε→0
G(ε)
α (x, y) in L2

loc(D \ {x};m1), where m1(dx) = ρ1(x)V (dx)

and G(ε)
α (x, y) is a unique element in F0 satisfying

E(G(ε)
α , ϕ)+ α(G(ε)

α , ϕ)L2(D1;m) =
1∫

Bx(ε)
ρ2(y)V (dy)

∫
Bx(ε)

(ϕρ2)(y)V (dy)

for all ϕ ∈ C∞0 (D).

Proposition 3.

(i) Gα(x, y) is continuous on (D ×D) \� and satisfies the following estimate
where the Green function GBy(2R) with R = diam(D) is involved:

sup
x∈D

r/2<|x−y|<r

Gα(x, y) ≤ ess sup x∈D
r/2<|x−y|<r

GBy(2R)(x, y)

≤ C2

∫ 2R

r

(∫
Bx(t)

ρ2(x)V (dx)∫
Bx(t)

ρ1(x)V (dx)

) q
p(q−2)

t∫
Bx(t)

ρ1(x)V (dx)
dt.
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(ii) For each f ∈ L2(D;m), there is an element uf ∈F0 satisfying

E(uf , ϕ)+ α(uf , ϕ)L2(D;m) = (f, ϕ)L2(D;m) for all ϕ ∈ C∞0 (D),

which is equal to Gαf a.e. on D. In particular, if f ∈ L∞(D;m) then uf is
continuous and uf = Gαf on D.

(iii) Gα is the representation kernel for the absorbing diffusion process
{X0

t ,M
0
t , P

0
x }, i.e.,

f ∈ Cb(D)⇒ Gαf (x) = Ex[
∫ ζ

0
e−αtf (X0

t )dt], ∀x ∈ D.

Proof. (i) By the observation in [C-W], our hypotheses (15)–(18) imply that

ess sup
x∈D

r/2<|x−y|<r
Gα(x, y) ≤

ess sup
x∈D

r/2<|x−y|<r
GBy(2R)(x, y)

≤ C2

∫ 2R

r

(∫
Bx(t)

ρ2(x)V (dx)∫
Bx(t)

ρ1(x)V (dx)

) q
p(q−2)

× t∫
Bx(t)

ρ1(x)V (dx)
dt.

The α-harmonicity of Gα(x, y) in {x ∈ D | r/2 < |x − y| < r} and property (14)
imply Gα has a continuous version. As a result, the version enjoys the estimate
in (i).

(ii) It is easy to check that there is uf satisfying the equation in (ii). Conse-
quently, we see that

E(G(ε)
α (x, ·), uf )+ α(G(ε)

α (x, ·), uf )L2(D;m)

= 1∫
Bx(ε)

ρ2(y)V (dy)

∫
Bx(ε)

(uf ρ2)(y)V (dy).

Note that the left-hand side is equal to (G(ε)
α (x, ·), f )L2(D;m) and pass to the limit as

ε→ 0. Since the exponents in (17) and (18) are determined by the factor q > 4, the
weak convergence G(ε)

α (x, ·)→ Gα(x, ·) (ε→ 0) in L2(D;m) is established as
in [C-W]. Thus, we observe that uf (x) =

∫
D
Gα(x, y)f (y)m(dy) a.e. in D. In

particular, if f ∈ L∞(D;m), then we know from (14) that uf is continuous in D.
The continuity of uf and ρ2 ensures that 1∫

Bx(ε)
ρ2(y)V (dy)

∫
Bx(ε)

(uf ρ2)(y)V (dy)→
uf (x) as ε→ 0 for all x ∈ D. Accordingly, uf = Gαf holds everywhere on D.

(iii) The basic theory of stochastic differential equation (see e.g., [I-W]) shows
the existence of the absorbing diffusion process {X0

t ,M
0
t , P

0
x }. The hypothesis (12)

and (13) ensure that each domain D′�D admits Green’s function GD′
α satisfying

GD′
α f (x) = Ex[

∫ τD′

0
e−αtf (X0

t )dt] (∀x ∈ D′)
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for any non-negative function f ∈ Cb(D), where τD′ is the exit time from D′. The
monotone convergence theorem allows us to pass to the limit as D′ ↑ D, to obtain
(iii). ��

We are now ready for our main result.

Theorem 3. If a bounded domain D satisfies

lim inf
ε→0

∫
{x∈D|dist(x,∂D)<ε} traceA(x)V (dx)

ε
<∞, (19)

thenX is a strong (E, u)-Caccioppoli set for any function u in the extended domain
D(LA) of the L2-generator LA of the corresponding absorbing diffusion enjoying

lim inf
ε→0

µ<u,u>({x ∈ D|dist(x, ∂D) < ε})
ε

<∞.

Proof. From [St] we know that every bounded domainD admits a smooth function
dD and positive constants c1 , c2 and C3 satisfying

c1dist(x, ∂D) ≤ dD(x) ≤ c2dist(x, ∂D) for all x ∈ D and sup
x∈D

‖∇u‖ ≤ C3

(see also Lemma 2.4 in [C-2]). By combining this with (19), it turns out that
dD ∈F0 and that

lim inf
ε→0

µ<dD,dD>(0 < dD < ε)

ε
<∞.

Since the bounded domain D is exhausted by the smooth Lemma function −dD ,
the assertion immediately follows from Theorem 2. ��

Theorem 4. If a domain D satisfies (19), moreover if ai,j ∈ L2(D;V ) and
∂ai,j
∂xj

∈
L1(D;V ) (i, j = 1, · · · , n), then D is a strong (E, xi)-Caccioppoli set for every
component xi of the canonical Euclidean coordinate (x1, · · · , xn), and for quasi-
everywhere x ∈ D we have

X
∗,i
t −X

∗,i
0 =

n∑
j=1

∫ t

0
γi,j (X

∗
s )dB

j
s +

n∑
j=1

∫ t

0

∂ai,j

∂xj
(X∗s )ds + Li

A,t ,

t ≥ 0, i = 1, · · · , n, Px − a.s.

Here (X∗,1t , · · · , X∗,nt ) = (x1(X∗t ), · · · , xn(X∗t )), B = (B1, · · · , Bn) is a Brown-
ian motion martingale additive functional of X∗, γi,j (x) is the symmetric positive
definite n× n matrix whose square is ai,j (x), and Li

A,t is the positive continuous

additive functional of D with associated smooth measure 1∂M−KDµ
[xi ].
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Proof. If ai,j ∈ L2(D;V ) and
∂ai,j
∂xj

∈ L1(D;V ) (i, j = 1, . . . , n), then for bound-

ed function g in F ∩ C(X) we have

E(xi, g) = 1

2

n∑
j=1

∫
D

ai,j
∂g

∂xi
dV

= 1

2

n∑
j=1

∫
D

∂(ai,j g)

∂xi
dV − 1

2

n∑
j=1

∫
D

g
∂ai,j

∂xi
dV . (20)

The first term in the right-hand side vanishes whenever g is in C0(D). Therefore
xi ∈ D(LA) and LAx

i ∈ L1(D;V ) (i = 1, · · · , n). From (19), we know that

lim inf
ε→0

µ<xi,xi>({x ∈ D|dist(x, ∂D) < ε})
ε

<∞, i = 1, · · · n.

Theorem 3 assures that D is a strong (E, xi)-Caccioppoli set for every component

xi , i.e., we getE(xi, g) =
∫
D

gdµ[xi ], (i = 1, · · · , n) for all g ∈F∩C(X). It turns

out that from (20) that 1
2

∑n

j=1

∫
D

∂(ai,j g)

∂xi
dV coincides with

∫
∂M−KD

g dµ[xi ]

and so we get − 1
2

∑n

j=1

∫
D

g
∂ai,j

∂xi
dV =

∫
D

gdµ[xi ]. By applying the same

argument in the proof of Theorem 4.2 in [C-F-W], we can prove the formula in
our theorem. ��
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