
Digital Object Identifier (DOI) 10.1007/s004400000061
Probab. Theory Relat. Fields 117, 515–531 (2000)
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Abstract. Let W be a standard Brownian motion, and define Y (t) = ∫ t

0 ds/W(s) as Cau-
chy’s principal value related to local time. We determine: (a) the modulus of continuity of
Y in the sense of P. Lévy; (b) the large increments of Y .

1. Introduction

Let {W(t); t ≥ 0} be a one-dimensional Brownian motion with W(0) = 0, and
let {L(t, x); t ≥ 0, x ∈ R} denote its local time process. That is, for any Borel
function f ≥ 0,∫ t

0
f (W(s)) ds =

∫ ∞

−∞
f (x)L(t, x) dx, t ≥ 0.

We are interested in the process

Y (t) =
∫ t

0

ds

W(s)
, t ≥ 0. (1.1)

Rigorously speaking, the integral
∫ t

0 ds/W(s) should be considered in the sense
of Cauchy’s principal value, i.e., Y (t) is defined by

Y (t) = lim
ε→0+

∫ t

0

ds

W(s)
1{|W(s)|≥ε} =

∫ ∞

0

L(t, x)− L(t,−x)
x

dx. (1.2)
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Since x → L(t, x) is Hölder continuous of order ν, for any ν < 1/2, the integral
on the extreme right in (1.2) is almost surely absolutely convergent.

The study of Cauchy’s principal value of Brownian local time goes back at
least to Itô and McKean [12], and has become very active since the late 70s, due
to applications in various branches of stochastic analysis. For example, it is a nat-
ural example in Fukushima [10]’s theory for Dirichlet processes and zero-energy
additive functionals (these processes cannot be treated in the frame of the usual Itô
calculus techniques). Another important fact is that principal values of local times
can be represented as the Hilbert transform, or more generally, fractional deriva-
tives, of local times. The latter plays an important role in a class of limit theorems
for occupation times of Brownian motion, discovered by Papanicolaou, Stroock
and Varadhan [14]. Also, the principal values of Brownian local times are the key
ingredient in establishing Bertoin [1]’s excursion theory for Bessel processes of
small dimensions. For a detailed account of various motivations, historical facts
and general properties of principal values of local times, we refer to the recent
collection of research papers in Yor [18], to Chapter 10 of the lecture notes by Yor
[19], and to the survey paper by Yamada [17].

The process Y (·) defined in (1.1)–(1.2) is continuous, having zero quadratic
variation. Although it is not used in this paper, we mention an interesting prop-
erty: stopped at some suitably chosen random times, the principal values give all
the possible symmetric stable processes (cf. Biane and Yor [3], Fitzsimmons and
Getoor [9], Bertoin [2]).

It is easily seen that Y (·) inherits a scaling property from Brownian motion,
namely, for any fixed a > 0, t → a−1/2Y (at) has the same law as t → Y (t).
Although the aforementioned zero quadratic variation property distinguishes Y (·)
from Brownian motion (in particular, Y (·) is not a semimartingale), it is a kind of
folklore that Y behaves somewhat like a Brownian motion. Let us first recall (cf.
[11]) the global and local almost sure asymptotics of Y (·):

lim sup
t→∞

Y (t)√
t log log t

=
√

8, a.s. (1.3)

lim sup
t→0

Y (t)√
t log log(1/t)

=
√

8, a.s. (1.4)

Comparing (1.3)–(1.4) with the corresponding laws of the iterated logarithm (LIL’s)
for Brownian motion, we see that 1

2Y (t) and W(t) satisfy exactly the same global
and local LIL’s.

The aim of this paper is to get a uniform version of (1.3)–(1.4) for the incre-
ments of Y (t). Our first result characterizes its modulus of continuity in the sense
of P. Lévy.

Theorem 1.1. With probability one,

lim
h→0

sup
0≤t≤1

sup
0≤s≤h

|Y (t + s)− Y (t)|√
h log(1/h)

= 2.
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Remark 1.1.1. So 1√
2
Y (t) and W(t) have the same moduli of continuity (and the

same remark applies to Theorem 1.2 below). We have already seen that 1
2Y (t) and

W(t) satisfy the same LIL’s. Heuristically speaking, that a factor
√

2 is missing in
the modulus of continuity comes from the fact that the Hausdorff dimension of the
zero set of W is 1

2 .
Our second result concerns the large increments of Y (·). The length of time

window, in which the increments are considered, denoted by aT , will be supposed
to satisfy the following condition:

0 < aT ≤ T ,

T → aT and T → T/aT are both non-decreasing,

lim
T→∞

log(T /aT )

log log T
= ∞.

(1.5)

Here is our main result concerning the large increments of Y (·).
Theorem 1.2. Under (1.5),

lim
T→∞

sup
0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s)− Y (t)|√
aT log(T /aT )

= 2, a.s.

We note that in Csáki et al. [5], we have already proved the upper bounds in
Theorems 1.1 and 1.2 with a different constant, and assuming only the first two
conditions of (1.5). In particular, under these conditions, we established

lim sup
h→0

sup
0≤t≤1−h

sup
0≤s≤h

|Y (t + s)− Y (t)|√
h log(1/h)

≤ 3 · 27/6, a.s.

lim sup
T→∞

sup
0≤t≤T−aT

sup
0≤s≤aT

|Y (t + s)− Y (t)|√
aT log(T /aT )

≤ 3 · 27/6, a.s.

These bounds were proved using estimates for local times. The reason for which
we are able to get lower bounds and the exact constants is that we shall be using
different techniques, based on fine analysis of Bessel processes. Also, due to third
condition of (1.5), presently we have as well aT /T → 0 as T → ∞. Hence we
could have stated Theorem 1.2 with sup0≤t≤T instead of sup0≤t≤T−aT in its present
form. The proof of the latter version of Theorem 1.2 would require only a few slight
changes in its current proof. We prefer to keep the present form of Theorem 1.2,
for it could be still true as an exact lim supT→∞ statement under only the first two
conditions of (1.5).

The rest of the paper is organized as follows. The upper bounds in Theorems 1.1
and 1.2 are proved in Section 2, and the lower bounds in Section 3. The proof of the
upper bounds is the harder part, requiring careful analysis on path decompositions
and deep properties of three-dimensional Bessel processes. The proof of the lower
bounds mainly consists in choosing some “nice” random stopping times.
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Notation. Throughout the paper, the letter c with subscripts denotes some finite
and positive universal constants. When the constants depend on a parameter, say
p, they are denoted by c(p) with subscripts.

2. Upper bounds

The upper bounds in Theorems 1.1 and 1.2 are based on some key probability
estimates which are stated below as Lemmas 2.7 and 2.8. Let us first recall some
known results. Recall that W(·) is a standard Brownian motion, and that Y (·) is
defined in (1.1).

The first useful result concerns the distribution of Y (s) for any fixed s. This was
evaluated by Biane and Yor [3].

Fact 2.1. The density function of Y (s) is given by: for s > 0 and x > 0,

P(Y (s) ∈ dx)

dx
=
√

2

π3s

∞∑
k=0

(−1)k exp

(
− (2k + 1)2x2

8s

)
.

Comment 2.1.1. From Fact 2.1 it follows that

lim
λ→∞

1

λ2
log P(Y (1) > λ) = −1

8
. (2.1)

Moreover, for s > 0 and λ > 0,

P(|Y (s)| > λ
√
s) ≤ c1 exp

(
−λ2

8

)
, (2.2)

where c1 is a universal constant (cf. [11]). ��
The second theorem we shall make use of in the proof of the upper bounds

is time-reversal for Bessel processes, cf. Exercise XI.1.23 in Revuz and Yor [16].
We recall that a three-dimensional Bessel process is the Euclidean modulus of an
R3-valued Brownian motion.

Fact 2.2. Let T0 = inf{t > 0 : W(t) = 0}, the first hitting time of W at 0. Then
for any x > 0,

{W(t); 0 ≤ t ≤ T0 | W(0) = x} law= {R(Lx − t); 0 ≤ t ≤ Lx} , (2.3)

where R(·) is a three-dimensional Bessel process starting from 0, and Lx =
sup{t > 0 : R(t) = x}, the last exit time from x.

Comment 2.2.1. Observe that (2.3) also guarantees the identity in law between T0
(given W(0) = x) and Lx . Thus

P(u < Lx ≤ v) =
∫ v

u

x

(2πy3)1/2
exp

(
− x2

2y

)
dy ≤ (v − u)x

u3/2
, (2.4)

for any v > u > 0 and x > 0. ��
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The next identity in law, due to Pitman and Yor [15], relates a particular additive
functional of the three-dimensional Bessel process and the range of one-dimension-
al Brownian motion. This will be frequently applied to our situation.

Fact 2.3. Let R(·) be as before a three-dimensional Bessel process starting from
0. The following identity in law holds:∫ 1

0

ds

R(s)

law= sup
0≤s≤1

W(s)− inf
0≤s≤1

W(s).

Comment 2.3.1. It is an immediate consequence of Fact 2.3 and Feller’s exact
distribution function of the range of Brownian motion (cf. [8]) that

P

(∫ 1

0

ds

R(s)
> λ

)
≤ c2 exp

(
−λ2

2

)
, λ > 0, (2.5)

with some absolute constant c2. By applying the diffusion comparison theorem
stated in Theorem XI.3.7 of Revuz and Yor [16] to squared Bessel processes, we
deduce the intuitively clear fact that a three-dimensional Bessel process starting
from x > 0 is stochastically greater than a three-dimensional Bessel process start-
ing from 0. Consequently, for any x > 0 and λ > 0,

P

(∫ 1

0

ds

R(s)
> λ

R(0) = x

)
≤ P

(∫ 1

0

ds

R(s)
> λ

)
.

By means of the Markov and scaling properties we arrive at:

P

(∫ v

u

ds

R(s)
> λ

)
≤ c2 exp

(
− λ2

2(v − u)

)
, (2.6)

for v > u ≥ 0 and λ > 0. ��
We start the proof of the upper bounds in Theorems 1.1 and 1.2 with an ele-

mentary estimate.

Lemma 2.4. Let M and N be independent random variables such that for all
x ≥ 0,

P(M > x) ≤ µ exp(−αx2), P(N > x) ≤ ν exp(−βx2), (2.7)

for some positive constants µ, ν, α and β. Then for all x ≥ 0,

P(M +N > x) ≤ c3 (1 + x2) exp

(
− αβx2

α + β

)
,

where c3 = c3(µ, ν, β) = µ+ 2ν + 2βµν.

Remark. We note that the term in the exponential here is sharp.
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Proof. We have

P(M +N > x) ≤ P(M > x)+ P(N > x)+ P(N > x −M, 0 ≤ M ≤ x).

Observe that the last probability term on the right hand side is

≤ E
(
νe−β(x−M)2 1{0≤M≤x}

)
= −ν

∫
y∈[0,x]

e−β(x−y)2 dyP(M > y)

≤ νe−βx2 + 2βν
∫
y∈[0,x]

(x − y)e−β(x−y)2 P(M > y) dy

≤ νe−βx2 + 2βµνx
∫
y∈[0,x]

e−β(x−y)2−αy2
dy.

Since β(x − y)2 + αy2 ≥ αβx2/(α + β), this yields,

P(M +N > x) ≤ µe−αx2 + 2νe−βx2 + 2βµνx2 exp

(
− αβx2

α + β

)
,

as desired. ��
It is intuitively clear that, if we want Y (·) to get extraordinarily large increments,

the Brownian motionW(·) should be close to 0. However, due to the fact that Y (·) is
defined only as a principal value, we have to treat it carefully. The next preliminary
estimates (Lemmas 2.5 and 2.6) concern the two different situations: (i) W(·) is
away from 0; and (ii) W(·) is close to 0. The tail probability of the increment of
Y (·) in the second situation is greater, as expected.

Lemma 2.5. For any positive δ, t , h, and any λ ≥ 1 and a ≥ 1,

P

(
|Y (t + h)− Y (t)| > λh1/2, inf

s∈[t,t+h]
|W(s)| > 0

)
≤ c4(δ) a

2 h1/2

(t + h)1/2
exp

(
− λ2

6(1 + δ)

)
+ 4 exp

(
− (a − λ−1)2

2

)
. (2.8)

Proof. Let t > 0, h > 0 and λ ≥ 1. Write I1 = I1(t, h, λ) for the probability
expression on the left hand side of (2.8). Then

I1 = P

(
|Y (t + h)− Y (t)| > λh1/2, inf

s∈[t,t+h]
|W(s)| > 0

)
= P

(
|Y (t/h+ 1)− Y (t/h)| > λ, inf

s∈[t/h,t/h+1]
|W(s)| > 0

)
.

Define

f (λ, x) = P

( ∣∣∣∣∣
∫ 1

0

ds

W(s)

∣∣∣∣∣ > λ, T0 > 1
W(0) = x

)
.
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It follows from symmetry and the Markov property that

I1 = 2
∫ ∞

0
P(W(t/h) ∈ dx) f (λ, x). (2.9)

Let us now estimate f (λ, x). According to (and in the notation of) Fact 2.2,

f (λ, x) = P

(∫ Lx

Lx−1

ds

R(s)
> λ, Lx > 1

)
.

Fix a θ ∈ (0, 1]. Then

f (λ, x) =
∞∑
k=1

P

(∫ Lx

Lx−1

ds

R(s)
> λ, (k − 1)θ + 1 < Lx ≤ kθ + 1

)

≤
∞∑
k=1

P

(∫ kθ+1

(k−1)θ

ds

R(s)
> λ, (k − 1)θ + 1 < Lx ≤ kθ + 1

)
. (2.10)

By (2.6),

P

(∫ kθ+1

(k−1)θ

ds

R(s)
> λ

)
≤ c2 exp

(
− λ2

2(θ + 1)

)
,

whereas by (2.4),

P
(
(k − 1)θ + 1 < Lx ≤ kθ + 1

)
≤ θx

(1 + (k − 1)θ)3/2
≤ x

k3/2θ1/2
.

Going back to (2.10) and using Hölder’s inequality, we get that, for any p > 1 and
q > 1 with 1/p + 1/q = 1,

f (λ, x) ≤
∞∑
k=1

c
1/p
2 exp

(
− λ2

2(θ + 1)p

)
x1/q

k3/(2q)θ1/(2q)

= c
1/p
2 exp

(
− λ2

2(θ + 1)p

)
x1/q

θ1/(2q)
ζ

(
3

2q

)
,

where ζ(·) denotes the Riemann zeta function.
Now let a ≥ 1 and δ > 0. We first treat the situation when x ≤ a. Note that

ζ(3/(2q)) < ∞ for q < 3/2. We can choose θ = θ(δ) ∈ (0, 1] and p = p(δ) > 3
such that q ∈ [1, 3/2) and that (θ + 1)p = 3(1 + δ). Accordingly,

f (λ, x) ≤ c5(δ) a exp

(
− λ2

6(1 + δ)

)
, for x ≤ a. (2.11)

The other situation is x > a. By definition,

f (λ, x) ≤ P

(
inf

s∈[0,1]
W(s) < λ−1

W(0) = x

)
≤ P

(
inf

s∈[0,1]
(W(s)−W(0)) < −(a − λ−1)

)
≤ 2 exp

(
− (a − λ−1)2

2

)
. (2.12)
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Plugging (2.11)–(2.12) into (2.9), we see that

I1 ≤ 2c5(δ) a exp
(

− λ2

6(1 + δ)

)
P

(
0 < W

(
t

h

)
≤ a

)
+4 exp

(
− (a − λ−1)2

2

)
≤ 2c5(δ) a

2 h1/2

(t + h)1/2
exp

(
− λ2

6(1 + δ)

)
+ 4 exp

(
− (a − λ−1)2

2

)
,

proving the lemma. ��

Lemma 2.6. For any positive δ, t , h, λ, and any b ≥ 1,

P

(
|Y (t + h)− Y (t)| > λh1/2, inf

s∈[t,t+h]
|W(s)| = 0

)
≤ c6

bh1/2

(t + h)1/2
exp

(
− λ2

8(1 + δ)

)
+ 4 exp

(
−b2

2

)
. (2.13)

Proof. Write I2 = I2(t, h, λ) for the probability on the left hand side of (2.13). It
is easy to estimate I2 when t = 0. Indeed, in this situation, we can use (2.2) to see
that

I2 = P

(
|Y (h)| > λh1/2, inf

s∈[0,h]
|W(s)| = 0

)
≤ c1 exp

(
−λ2

8

)
, when t = 0. (2.14)

Now assume t > 0. Note that

I2 = 2
∫ ∞

0
P(W(t/h) ∈ dx) g(λ, x), (2.15)

where

g(λ, x) = P

( ∣∣∣∣∣
∫ 1

0

ds

W(s)

∣∣∣∣∣ > λ, inf
s∈[0,1]

|W(s)| = 0
W(0) = x

)
.

RecallT0 from Fact 2.2. Combining Fact 2.2 (in its notation) with the strong Markov
and scaling properties, we obtain:

g(λ, x) = P

(∣∣∣∣∣
∫ 1

0

ds

W(s)

∣∣∣∣∣ > λ, T0 ≤ 1
W(0) = x

)

≤ P

(
Lx ≤ 1,

∫ Lx

0

ds

R(s)
+
√

1 − Lx |Y (1)| > λ

)
,
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where R and Y (1) are assumed to be independent. Now fix an integer n ≥ 1.
Clearly,

g(λ, x) ≤
n∑

k=1

P

(∫ k/n

0

ds

R(s)
+
√

1 − k − 1

n
|Y (1)| > λ

)

=
n∑

k=1

P

(√
k

n

∫ 1

0

ds

R(s)
+
√

1 − k − 1

n
|Y (1)| > λ

)
.

We want to apply Lemma 2.4 toM=√
k/n

∫ 1
0 ds/R(s),N=√

1−(k−1)/n |Y (1)|.
In view of (2.5) and (2.2), it is seen that (2.7) is satisfied with µ = c2, α = n/(2k),
ν = c1 and β = 1/8(1 − (k − 1)/n). It follows from Lemma 2.4 that

g(λ, x) ≤ c7

n∑
k=1

1 + λ2

1 − (k − 1)/n
exp

(
− λ2

8 + (8 − 6k)/n

)

≤ c7 n
2(1 + λ2) exp

(
− λ2

8(1 + 1/n)

)
.

Let δ > 0. We can choose n = n(δ) such that n−1 ≤ δ/2. Therefore,

g(λ, x) ≤ c8(δ) (1 + λ2) exp

(
− λ2

8(1 + δ/2)

)
≤ c9(δ) exp

(
− λ2

8(1 + δ)

)
, (2.16)

the last inequality following from the fact that (1 + λ2) exp
(

λ2

8(1+δ) − λ2

8(1+δ/2)

)
is

uniformly bounded in λ > 0.
The estimate (2.16), which holds uniformly in x, is not accurate enough when

x is large. Let b ≥ 1. When x ≥ b, we have

g(λ, x) ≤ P

(
inf

s∈[0,1]
(W(s)−W(0)) ≤ −b

)
≤ 2 exp

(
−b2

2

)
. (2.17)

Using (2.16) for x ∈ [0, b] and (2.17) for x ∈ (b,∞), and in view of (2.15),
we obtain that, for t > 0,

I2 ≤ c9(δ) exp

(
− λ2

8(1 + δ)

)
P(0 ≤ W(t/h) ≤ b)+ 4 exp

(
−b2

2

)
≤ c9(δ)

h1/2b

(t + h)1/2
exp

(
− λ2

8(1 + δ)

)
+ 4 exp

(
−b2

2

)
.

This, together with (2.14), completes the proof of Lemma 2.6. ��
The next two probability estimates (Lemmas 2.7 and 2.8) are the main ingre-

dient in the proof of the upper bounds in Theorems 1.1 and 1.2. More precisely,
Lemma 2.7 is our key probability estimate, which will be reinforced later in Lemma
2.8 into a maximal inequality.
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Lemma 2.7. For all positive numbers δ, t and h, and all λ ≥ 1,

P
(
|Y (t + h)− Y (t)| > λh1/2

)
≤ c10(δ)

(
h

t + h

)1/2

exp

(
− λ2

8(1 + δ)

)
+ 8 exp

(
−λ2

2

)
.

Proof. Take δ = 1/6 and a = λ+ λ−1 in (2.8) to see that, for λ ≥ 1,

P

(
|Y (t + h)− Y (t)| > λh1/2, inf

s∈[t,t+h]
|W(s)| > 0

)
≤ c11 λ

2 h1/2

(t + h)1/2
exp

(
−λ2

7

)
+ 4 exp

(
−λ2

2

)
≤ c12 h

1/2

(t + h)1/2
exp

(
−λ2

8

)
+ 4 exp

(
−λ2

2

)
. (2.18)

On the other hand, replacing δ by 2δ and taking b = λ in (2.13), we get that

P

(
|Y (t + h)− Y (t)| > λh1/2, inf

s∈[t,t+h]
|W(s)| = 0

)
≤ c6 λ h

1/2

(t + h)1/2
exp

(
− λ2

8(1 + 2δ)

)
+ 4 exp

(
−λ2

2

)
≤ c13(δ) h

1/2

(t + h)1/2
exp

(
− λ2

8(1 + δ)

)
+ 4 exp

(
−λ2

2

)
. (2.19)

Combining (2.18) with (2.19) yields the lemma, with c10(δ) = c12 + c13(δ). ��
Lemma 2.8. For δ > 0, x > 0 and T > 0, h > 0,

P

(
sup

0≤t≤T
sup

0≤s≤h
|Y (t + s)− Y (t)| > x

√
h

)

≤ c14(δ)

(√
T + h

h
exp

(
− x2

8(1 + δ)

)
+ T + h

h
exp

(
− x2

2(1 + δ)

))
.

Proof. Lemma 2.8 is a consequence of Lemma 2.7. The dyadic approximation ar-
gument we are using here is not new, and can be found for example in the proofs
of Lemma 1.1.1 in Csörgő and Révész [7], and of Lemma 2.2 in Csáki et al. [4].
The main ideas go back to Lévy [13].

For positive real number s and integer n put sn = 2−n�2ns�. We have

|Y (t + s)− Y (t)| ≤ |Y ((t + s)n)− Y (tn)|

+
∞∑
j=0

|Y ((t + s)n+j+1)− Y ((t + s)n+j )|

+
∞∑
j=0

|Y (tn+j+1)− Y (tn+j )|. (2.20)
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Consider t ∈ [0, T ] and s ∈ [0, h]. Clearly |(t + s)n − tn| ≤ h + 2−n. Therefore,
by Lemma 2.7, for any λ ≥ 1,

P
(

|Y ((t + s)n)− Y (tn)| > λ
√
h+ 2−n

)
≤ c10(δ)

√
h+ 2−n

(t + s)n
exp

(
− λ2

8(1 + δ)

)
+ 8 exp

(
−λ2

2

)
. (2.21)

Note that there exists an i with 0 ≤ i ≤ (T + h)2n, such that (t + s)n = i2−n, i.e.
t + s ∈ [i2−n, (i + 1)2−n). If i = 0, then the probability on the left hand side of
(2.21) is simply 0. For each i with 1 ≤ i ≤ (T + h)2n, there are at most 2nh + 3
different values of (t)n such that (t + s)n = i2−n. Therefore, by (2.21),

P

(
sup

0≤t≤T
sup

0≤s≤h
|Y ((t + s)n)− Y (tn)| > λ

√
h+ 2−n

)

≤ (2nh+ 3)
∑

1≤i≤(T+h)2n

(
c10(δ)

√
h+ 2−n

√
i2−n exp

(
− λ2

8(1 + δ)

)
+ 8 exp

(
−λ2

2

))
.

Since
∑

1≤i≤a i−1/2 ≤ 2
√
a for any a ≥ 1, we arrive at:

P

(
sup

0≤t≤T
sup

0≤s≤h
|Y ((t + s)n)− Y (tn)| > λ

√
h+ 2−n

)
≤ φ1(n), (2.22)

where

φ1(n) = c15(δ)
√
(T + h)2n (2nh+ 3)3/2 exp

(
− λ2

8(1 + δ)

)
+8(2nh+ 3)(T + h)2n exp

(
−λ2

2

)
.

Similarly, for any u ∈ [0, T + h] and integer j ≥ 0, since |un+j+1 − un+j | ≤
2−(n+j+1), we have, by Lemma 2.7, for any λj > 0,

P
(
|Y (un+j+1)− Y (un+j )| > λj2−(n+j+1)/2

)
≤ c10(δ)

√
2−(n+j+1)

un+j+1
exp

(
−

λ2
j

8(1 + δ)

)
+ 8 exp

(
−
λ2
j

2

)
,

which leads to:

P

(
sup

0≤u≤T+h
|Y (un+j+1)− Y (un+j )| > λj2−(n+j+1)/2

)

≤
∑

1≤i≤(T+h)2n+j+1

(
c10(δ)√

i
exp

(
−

λ2
j

8(1 + δ)

)
+ 8 exp

(
−
λ2
j

2

))
(2.23)

≤ φ2(n, j),
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with

φ2(n, j)

= c16(δ)
√
(T +h)2n+j+1 exp

(
−

λ2
j

8(1+δ)

)
+ 8(T + h)2n+j+1 exp

(
−
λ2
j

2

)
.

Collect (2.20), (2.22) and (2.23) to see that,

P

 sup
0≤t≤T

sup
0≤s≤h

|Y (t + s)− Y (t)| > λ
√
h+ 2−n + 2

∞∑
j=0

λj2−(n+j+1)/2


≤ φ1(n)+ 2

∞∑
j=0

φ2(n, j).

Let µ = µ(δ) ∈ (0, 1) be such that
√

1 + 2µ + c20
√

8µ ≤ 1 + δ, where c20
is the absolute constant defined in (2.24) below. Choose λj =

√
λ2 + 4j , and let

n = n(h, δ) be such that 2−n ∈ [µh, 2µh]. Then

φ1(n)+ 2
∞∑
j=0

φ2(n, j)

≤ c17(δ)

(√
T + h

h
exp

(
− λ2

8(1 + δ)

)
+ T + h

h
exp

(
−λ2

2

))
.

On the other hand, since λj ≤ λ+ 2j1/2 and λ ≥ 1, we have,

∞∑
j=0

λj2−(j+1)/2 ≤
∞∑
j=0

(λ+ 2j1/2)2−(j+1)/2 = c18 λ+ c19 ≤ c20 λ, (2.24)

(with c18 = ∑∞
j=0 2−(j+1)/2, c19 = 2

∑∞
j=0 j

1/22−(j+1)/2 and c20 = c18 + c19),
which implies

λ
√
h+ 2−n + 2

∞∑
j=0

λj2−(n+j+1)/2 ≤
√

1 + 2µλ
√
h+ c20

√
8µλ

√
h.

Since
√

1 + 2µ+ c20
√

8µ ≤ 1 + δ, we have proved that

P

(
sup

0≤t≤T
sup

0≤s≤h
|Y (t + s)− Y (t)| > (1 + δ)λ

√
h

)

≤ c17(δ)

(√
T + h

h
exp

(
− λ2

8(1 + δ)

)
+ T + h

h
exp

(
−λ2

2

))
.

This holds actually for all λ > 0 (when λ ∈ (0, 1), we only have to take an enlarged
value of c17(δ) if necessary). Taking x = (1 + δ)λ, and since δ > 0 is arbitrary,
this yields the lemma. ��
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Proof of the upper bounds in Theorems 1.1 and 1.2. To check the upper bound
in Theorem 1.1, we write

-(h) = sup
0≤t≤1

sup
0≤s≤h

|Y (t + s)− Y (t)|.

Let δ > 0 and hk = hk(δ) = k−3/δ . Applying Lemma 2.8 to T = 1, h = hk and
x = 2(1 + δ)

√
log(1/hk) gives that

P
(
-(hk) > 2(1 + δ)

√
hk log(1/hk)

)
≤ 2c14(δ)

(
1√
hk

exp

(
−1 + δ

2
log

1

hk

)
+ 1

hk
exp

(
−2(1 + δ) log

1

hk

))
= 2c14(δ) (h

δ/2
k + h1+2δ

k ),

which is summable in k. By the Borel–Cantelli lemma, almost surely for all large
k, -(hk) ≤ 2(1 + δ)

√
hk log(1/hk). Now let h ∈ [hk+1, hk]. We have

-(h)√
h log(1/h)

≤ -(hk)√
hk+1 log(1/hk)

≤ 2(1 + δ)

√
hk√
hk+1

.

Since
√
hk+1 /

√
hk → 1 (as k → ∞), we obtain that

lim sup
h→0

-(h)√
h log(1/h)

≤ 2(1 + δ), a.s.

This yields the upper bound in Theorem 1.1, as δ can be as close to 0 as possible.
The upper bound in Theorem 1.2 is proved using exactly the same

argument, considering -̃(T ) = sup0≤t≤T−aT sup0≤s≤aT |Y (t + s)− Y (t)| instead
of -(h). ��

3. Lower bounds

As before, W(·) is a standard Brownian motion, and Y (·) denotes the principal
value defined in (1.1)–(1.2). The proof of the lower bounds in Theorems 1.1 and
1.2 relies on the following estimate.

Lemma 3.1. For T ≥ 2a > 0, ε ∈ (0, 1), δ > 0 and λ > 0,

P

(
sup

0≤t≤T−a
(Y (t + a)− Y (t)) ≤ λ

√
a

)

≤ 5
( a
T

)ε/2 + exp

(
−c21(δ)

(
T

a

)(1−ε)/2

e−(1+δ)λ2/8

)
.



528 E. Csáki et al.

Proof. Let us construct an increasing sequence of stopping times {ηk = ηk(a)}k≥0
by: η0 = 0 and

ηk+1 = inf{t > ηk + a : W(t) = 0}, k ≥ 0.

Let
νT = νT (a) = max{i ≥ 0 : ηi ≤ T − a}.

Clearly,

sup
0≤t≤T−a

(Y (t + a)− Y (t)) ≥ max
0≤i≤νT

(Y (ηi + a)− Y (ηi)),

which yields

P

(
sup

0≤t≤T−a
(Y (t + a)− Y (t)) ≤ λ

√
a

)

≤ P

(
max

0≤i≤νT
(Y (ηi + a)− Y (ηi)) ≤ λ

√
a

)
≤ P

(
νT <

(
T

a

)(1−ε)/2
)

+P

(
max

0≤i≤(T /a)(1−ε)/2
(Y (ηi + a)− Y (ηi)) ≤ λ

√
a

)
. (3.1)

It was shown in Csáki and Földes [6] that for T ≥ 2a and ε ∈ (0, 1),

P

(
νT <

(
T

a

)(1−ε)/2
)

≤ 3
√

2
( a
T

)ε/2
. (3.2)

On the other hand, by the strong Markov property, {Y (ηi + a)− Y (ηi)}i≥0 are iid
variables, having the same law as Y (a). Hence,

P

(
max

0≤i≤(T /a)(1−ε)/2
(Y (ηi + a)− Y (ηi)) ≤ λ

√
a

)
= (

1 − P(Y (a) > λ
√
a )
)�(T /a)(1−ε)/2�

.

In view of (2.1), we have, for any δ > 0 and λ > 0,

P(Y (1) > λ) ≥ c22(δ) e−(1+δ)λ2/8,

which implies that

P

(
max

0≤i≤(T /a)(1−ε)/2
(Y (ηi + a)− Y (ηi)) ≤ λ

√
a

)

≤
(

1 − c22(δ) e−(1+δ)λ2/8
)�(T /a)(1−ε)/2�

≤ exp
(
−�(T /a)(1−ε)/2� c22(δ) e−(1+δ)λ2/8

)
, (3.3)
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the last inequality following from the relation that 1 − x ≤ e−x (for x ≥ 0).
Assembling (3.1)–(3.3) yields the lemma. ��
Proof of the lower bounds in Theorems 1.1 and 1.2. Again, these bounds are
proved using the same argument. For the upper bounds, we chose to prove Theo-
rem 1.1 (cf. Section 2), so we give the proof of the lower bound in Theorem 1.2
here. The corresponding proof for Theorem 1.1 is similar and easier.

Let aT be a function satisfying (1.5). Since log(T /aT )
log log T → ∞, we have T ≥ 2aT

for all large T , say T ≥ n0. Consider

/(T ) = sup
0≤t≤T−aT

(Y (t + aT )− Y (t)), T > 0.

Let δ > 0 and ε ∈ (0, 1/2). Define Tk = Tk(δ) = (1 + δ)k . Apply Lemma 3.1 to

T = Tk , a = aTk and λ = 2
√

1−2ε√
1+δ

√
log(T /aTk ), to see that for T ≥ n0,

P

(
/(Tk) ≤ 2

√
1 − 2ε√
1 + δ

√
aTk log(Tk/aTk )

)

≤ 5

(
aTk

Tk

)ε/2

+ exp

(
−c21(δ)

(
Tk

aTk

)(1−ε)/2

exp
(

− (1 − 2ε) log(Tk/aTk )

2

))

= 5

(
aTk

Tk

)ε/2

+ exp

(
−c21(δ)

(
Tk

aTk

)ε/2
)
.

Since log(T /aT )
log log T → ∞, we haveT/aT ≥ (log T )3/ε for largeT . Therefore,

∑
k(aTk /

Tk)
ε/2 < ∞ and

∑
k exp(−c21(δ) (Tk/aTk )

ε/2) < ∞. By the Borel–Cantelli lem-
ma, almost surely for all large k,

/(Tk) >
2
√

1 − 2ε√
1 + δ

√
aTk log(Tk/aTk ).

Let
/0(T ) = sup

0≤t≤T−aT
sup

0≤s≤aT
(Y (t + s)− Y (t)).

Clearly T → /0(T ) is non-decreasing, such that /0(T ) ≥ /(T ). Therefore, for
T ∈ [Tk, Tk+1],

/0(T )√
aT log(T /aT )

≥ /0(Tk)√
aTk+1 log(Tk+1/aTk )

>
2
√

1 − 2ε√
1 + δ

√
aTk log(Tk/aTk )√

aTk+1 log(Tk+1/aTk )
.

Since log(T /aT ) → ∞ (cf. (1.5)),

log(Tk/aTk )

log(Tk+1/aTk )
= log(Tk/aTk )

log(Tk/aTk )+ log(1 + δ)
→ 1, k → ∞,

and since T → T/aT is non-decreasing,

aTk

aTk+1

≥ Tk

Tk+1
= 1

1 + δ
,
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we obtain:

lim inf
T→∞

/0(T )√
aT log(T /aT )

≥ 2
√

1 − 2ε

1 + δ
, a.s.

Sending ε and δ to 0 yields the lower bound in Theorem 1.2. ��
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