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Abstract. LetXi, i ∈ N, be i.i.d. B-valued random variables, whereB is a real separable
Banach space. LetU be a mappingB → R. Under a central limit theorem assumption, an
asymptotic evaluation ofZn = E

(
exp

(
nU(

∑n

i=1Xi/n)
))

, up to a factor(1 + o(1)), has
been gotten in Bolthausen [1]. In this paper, we show that the same asymptotic evaluation
can be gotten without the central limit theorem assumption.

1. Introduction

LetB be a real separable Banach space with norm‖ · ‖,µ be a probability measure
onB. We assume that the smallest closed affined space that contains suppµ is B.
Moreover we assume

(A1) ∫
B

exp(t‖x‖)µ(dx) < ∞ , for all t ∈ R .

Let U : B → R be a three times continuously Fréchet differentiable function
satisfying the following:

(A2) There exist constantsC1, C2 > 0, such that

U(x) ≤ C1 + C2‖x‖, for anyx ∈ B .

Let Xn and Sn, n ∈ N, be the random variables defined byXn(x) = xn and
Sn(x) = ∑n

k=1 xk for anyx = (x1, x2, x3, · · ·) ∈ BN.
By Donsker-Varadhan [3], we have that

lim
n→∞

1

n
logEµ

⊗∞
[
exp

(
nU

(
Sn

n

))]
= sup
x∈B

{U(x)− h(x)} ,

whereh is the entropy function ofµ:

h(x) = sup
φ∈B∗

{φ(x)− logM(φ)} , x ∈ B ,

B∗ is the dual Banach space ofB andM(φ) = ∫
B
eφ(x)µ(dx) for anyφ ∈ B∗.
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It has been shown by Bolthausen [1] that there is at least onex∗ ∈ B with
U(x∗) − h(x∗) = supx∈B{U(x) − h(x)}. Also, we assume the following as in
Bolthausen [1]:

(A3) There is a uniquex∗ ∈ B with U(x∗)− h(x∗) = supx∈B{U(x)− h(x)}.
We will usex∗ exclusively for this point.
Let ν be the probability measure onB given by

ν(dx) = exp(DU(x∗)(x))µ(dx)
M(DU(x∗))

.

As it has been shown by Bolthausen [1], the following proposition holds.

Proposition 1.1. Under the assumptions(A1), (A2), (A3),

x∗ =
∫
B

xν(dx), (1.1)

h(x∗) = DU(x∗)(x∗)− logM(DU(x∗)) . (1.2)

Let ν0 be the 0-centeredν, i.e. ν0 = νθ−1
x∗ , whereθa : B → B is defined by

θa(x) = x − a, x ∈ B.
Let 0(ϕ,ψ) = ∫

B
ϕ(x)ψ(x)ν0(dx) be the covariance ofϕ andψ for any

ϕ,ψ ∈ B∗. Then0 becomes an inner product onB∗. LetH ≡ (B∗0)∗, whereB∗0

means the completion ofB∗ with respect to0. Then we can show thatH can be
regarded as a dense subset ofB. (See Proposition 2.1.)

In this paper, we assume the following, which is a little stronger than (A1):
(A1′) There exists a constantC3 > 0, such that

∫
B

exp
(
C3‖x‖2

)
µ(dx) < ∞.

It has been shown by Bolthausen [1] that the following holds:

0(φ, φ) ≥ D2U(x∗)(ι(φ), ι(φ)), for anyφ ∈ B∗,

whereι(φ) ≡ ∫
B
φ(x)xν0(dx), φ ∈ B∗. From this, we see that all of the eigenval-

ues of the operatorD2U(x∗)|H×H are smaller than or equal to 1. Furthermore we
assume the following

(A4) All of the eigenvalues ofD2U(x∗)|H×H are smaller than 1.
(A5) There exist constantsC4 > 0 andδ > 0, and a continuous bilinear function

K : B × B → R, such that

|D3U(x)(y, y, y)| ≤ C4‖y‖K(y, y)

for anyy ∈ B and anyx ∈ B with ‖x − x∗‖ < δ.
The following is our main result:
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Theorem 1.2. Under the assumptions(A1′), (A2) ∼ (A5) above, we have

lim
n→∞ exp(−n(U(x∗)− h(x∗)))Eµ

⊗∞
[
exp

(
nU

(
Sn

n

))]

= exp

(
1

2

∫
B

D2U(x∗)(x, x)ν0(dx)

)
· det2

(
IH −D2U(x∗)

)− 1
2
.

Remark.The fact thatD2U(x∗)|H×H is a Hilbert-Schmidt function, which ensures
that the factor det2

(
IH −D2U(x∗)

)
above is well-defined, can be gotten from

Proposition 2.2 later.
Bolthausen [1] studied the same problem under the different assumption. He

showed the following

Theorem 1.3. Assume the following
(B) ν0 satisfies central limit theorem, i.e., νn defined byνn(A) = ν∗n

0 (
√
nA)

converges weakly to a Gaussian measureγ onB.
Furthermore, assume(A1) ∼ (A4), then

lim
n→∞ exp(−n(U(x∗)− h(x∗)))Eµ

⊗∞
[
exp

(
nU

(
Sn

n

))]

=
∫
B

exp

(
1

2
D2U(x∗)[y, y]

)
γ (dy) .

If we assume thatν0 satisfies central limit theorem as in Bolthausen [1],(H,B, γ)

becomes an abstract Wiener Space, and so from Kuo [4] (Page 83, Theorem 4.6
(Goodman)), we can get thatD2U(x∗)|H×H is a nuclear function. In this situation,
the intergration

∫
B

exp(1
2D

2U(x∗)[y, y])γ (dy) appeared in Bolthausen’s theorem

is nothing but exp(1
2

∫
B
D2U(x∗)(x, x)ν0(dx)) · det2(I −D2U(x∗))−

1
2 , which is

just the limit appeared in our theorem. And when the operatorD2U(x∗)|H×H is not
nuclear, but just a Hilbert-Schmidt function, Bolthausen’s one is not defined, while
our one is still well-defined. The point here is that the condition that a function is
Hilbert-Schmidt can be easily checked be integration, while the condition nuclear
is not. Moreover, ifB is a Hilbert space, then (A5) is also satisfied.

As mentioned above, the central limit theorem assumption is actually a very
strong assumption as we are dealing with infinite dimension space. Our theorem
claims that without the assumption thatν0 satisfies central limit theorem, the result
still holds under the assumptions (A1′) and (A5).

Remark. In most of our proofs, (A1′) can be substituted by (A1), but in the proof
of Lemma 3.5, we use (A1′) essentially to derive (3.18). We do not know whether
one can weaken the assumption (A1′).

2. Preparations

Proposition 2.1. H can be regarded as a dense subset ofB.
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Proof. The fact thatH can be regarded as a subset ofB can be seen from the defi-
nition ofH , the continuity ofι : (B∗, ‖ · ‖H ∗) → (B, ‖ · ‖B), and the completeness
of B.

The denseness can be seen from the extension theory and the assumption that
the closed affined space that contains suppν0 isB, by using contradiction. ut
Proposition 2.2. Under the assumption (A1′) (or just (A1)), for any continuous

bilinear functionA : B × B → R, A
∣∣∣
H×H

is a Hilbert-Schmidt function.

Proof. SinceA is continuous, there exists a constantC0 > 0, such that

|A(y1, y2)| ≤ C0‖y1‖ · ‖y2‖, for anyy1, y2 ∈ B .

Let {en}∞n=1 be a complete orthonormal base ofH ∗ with {en}∞n=1 ⊂ B∗. Then
{ι(en)}∞n=1 is the corresponding base ofH . Let fn,m : B × B → R be defined as

fn,m(y1, y2) :=< en, y1 > · < em, y2 >, y1, y2 ∈ B ,

then(fn,m, fn′,m′)
L2(dν⊗2

0 )
= δnn′ · δmm′ for anyn,m, n′,m′ ∈ N. Therefore,

‖A‖2
H.S. =

∞∑
n,m=1

A(ι(en), ι(em))
2

=
∞∑

n,m=1

(∫
B

∫
B

A(y1, y2)fn,m(y1, y2)ν0(dy1)ν0(dy2)

)2

≤
∫
B

∫
B

|A(y1, y2)|2ν0(dy1)ν0(dy2) ≤ C2
0

(∫
B

‖y‖2ν0(dy)

)2

,

which is finite by assumption (A1′) (or just (A1)). ut

3. Basic lemmas

For anyR > 2, let ν̃R be the probability measure onR given by

ν̃R({R}) = 3

4R2 − 1
, ν̃R

({
1

2

})
= R − 2

2R − 1
, ν̃R

({
−1

2

})
= R + 2

2R + 1
.

By a simple calculation, we have

Eν̃R [Y ] = 0, Eν̃R [Y 2] = 1 .

For anya > 0, letρa be the probability measures onR given by

ρa(dR) = Ca exp

(
−aR

2

2

)
dR, R > 2 ,
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whereCa is the normalizing constant,i.e.Ca =
(∫∞

2 e−
aR2

2 dR

)−1

. Letγa be the

probability measures onR given by

γa(dy) =
∫
ν̃R(dy)ρa(dR) ,

and letYi be i.i.d. random variabless.t.P(Yi ∈ dy) = γa(dy).

Lemma 3.1. For anya > 0, there exists a constantDa , depends only ona, such
that

P

(∣∣∣∣∣ 1√
n

n∑
i=1

Yi

∣∣∣∣∣ ≥ z

)
≤ 2 exp

(
− 1

4Da
z2
)

(3.1)

for anyz ≥ 0 and anyn ≥ 1.

Proof. Let f (ξ) ≡ ∫
R e

ξyγa(dy). Then it can be shown that

Da ≡ sup
ξ 6=0

1

|ξ |2 logf (ξ) < ∞ .

Therefore,

P

(∣∣∣∣∣ 1√
n

n∑
i=1

Yi

∣∣∣∣∣ ≥ z

)
≤ e−ξ ·

√
nzE

[
eξ
∑n
i=1 Yi

]
+ e−ξ ·

√
nzE

[
e−ξ

∑n
i=1 Yi

]

≤ 2e−ξ ·
√
nz · exp

(
nDa|ξ |2

)
for anyξ 6= 0. Lettingξ = z

2Da
√
n
, we get (3.1). ut

Lemma 3.2. Under the assumption (A1′) in section 1, for anyc > 0, there exists
a a0 > 0 small enough, such that for anyn ≥ 3 and anya ∈ (0, a0],

cn
(∫

B

‖x‖2nν0(dx)

)1/2

≤
∫

R
ynγa(dy) . (3.2)

Proof. From assumption (A1′) and the definition ofν0, there exists a constant
C′

3 > 0, such thatC5 ≡ ∫
B
eC

′
3‖x‖2

ν0(dx) < ∞. So for anyt > 0,

f (x) ≡ ν0(‖X‖ ≥ t) ≤ C5e
−C′

3t
2
.

Therefore, for anyn ≥ 3,

∫
B

‖x‖nν0(dx) ≤ n

∫
(0,∞)

yn−1 · e− y2

2 dy · C5 ·

 1√

2C′
3



n

. (3.3)
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On the other hand, from the definition ofν̃R, we can get by a calculation that for
anyR > 2, ∫

R
ynν̃R(dy) ≥ 3

4
Rn−2

for anyn ≥ 3. So letρ0,a, a > 0 be the probability measures given by

ρ0,a(dR) = 2
√
a√

2π
e−

aR2
2 dR, R > 0 .

then we have that for anya < a0 and anyn ≥ 3,∫
R
ynγa(dy) ≥ 3

4

∫
(0,∞)

Rn−2ρa(dR) ≥ 3

4

∫
(0,∞)

Rn−2ρ0,a0(dR)

= 3

4

2√
2π

∫
(0,∞)

yn−2e−
y2

2 dy ·
(

1√
a0

)n−2

. (3.4)

From (3.3) and (3.4), to prove the lemma, we only need to show that

c2n · 2n
∫
(0,∞)

y2n−1e−
y2

2 dy · C5 ·
(

1

2C′
3

)n

≤
(

3

2
√

2π

)2

·
(∫

(0,∞)

yn−2 · e− y2

2 dy

)2

·
(

1

a0

)n−2

(3.5)

holds for anyn ≥ 3 if a0 > 0 is small enough. But this is easy to be seen by a
simple calculation and Stirling’s formula. ut

Lemma 3.3. Assume the assumption(A1′) in section1. Let W be a symmetric,
bilinear function that satisfies the following conditions:

1. There exists a constantC0 > 0, such that|W(x, y)| ≤ C0‖x‖ · ‖y‖ for any
x, y ∈ B,

2.
∫
B

W(x, y)2ν0(dx)ν0(dy) = 1.

Then, there exists ana0 > 0, depending only onC0 and
∫
B

‖x‖2ν0(dx), such that

Eν
⊗∞
0

[
m∏
k=1

W(Xik , Xjk )

]
≤ Eγ

⊗∞
a

[
m∏
k=1

YikYjk

]
(3.6)

holds for anym ∈ N, any i1, . . . , im, j1, . . . , jm ∈ N with 1 ≤ ik < jk ≤ n, k =
1, · · · ,m, and anya ∈ (0, a0], where{Xi}∞i=1 is the sequence of random variables
defined in section1,and{Yi}∞i=1 is defined byYn(y) = yn, y = (y1, y2, . . .) ∈ RN.

Note.Asν0 has mean 0, we get from the bilinearity ofW that
∫
B

W(x, y)ν0(dy) = 0
for anyx ∈ B.
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Proof. To simple the notation, in the proof of this lemma, we will write justE,
which means the expectation with respect toν⊗∞

0 when deal with{Xi}∞i=1, and
γ⊗∞
a when deal with{Yi}∞i=1, when there is no risk of being confused.

Let us consider the graph that consists all theik, jk ’s as its nodes and all the
ikjk ’s as its lines. We may assume that the graph is connected, since if not, from
the independent of theXi ’s andYi ’s, we can consider each connected component,
respectively.

Let

α` = ]{k : ik = ` or jk = `}, 1 ≤ ` ≤ n .

If there exists à such thatα` = 1, then (3.6) obviously holds as 0= 0. So, we
may assume thatα` = 0 orα` ≥ 2 for all `. Let

L = {`;α` ≥ 2}, L0 = {`;α` ≥ 3} .

If L = L\L0, then all of theik ’s appear exactly twice, so from Schwartz’s inequality
and the independence of theXi ’s and the assumptions, it could be seen that

Eν
⊗∞
0

[
m∏
k=1

W(Xik , Xjk )

]
≤

m∏
k=1

E
[
W(Xik , Xjk )

2
]1/2 = 1 (3.7)

= Eγ
⊗∞
a

[
m∏
k=1

YikYjk

]
.

To see the inequality in the first line, we only need to notice that whenr is an odd
number,

E [W(x,X1)W(X1, X2) · · · W(Xr, y)]
= E[(W(x,X1)W(X2, X3) · · · W(Xr−1, Xr))

· (W(X1, X2)W(X3, X4) · · · W(Xr, y))]
≤ E

[
(W(x,X1)W(X2, X3) · · · W(Xr−1, Xr))

2
]1/2

·E
[
(W(X1, X2)W(X3, X4) · · · W(Xr, y))2

]1/2

= E[W(x,X1)
2]1/2E[W(X1, X2)

2]1/2 · · ·E[W(Xr, y)
2]1/2

= E[W(x,X1)
2]1/2 · E[W(Xr, y)

2]1/2

for anyx, y. The case whenr is even is the same.
For the case whenL 6= L \ L0, by using (3.7), we have that

Eν
⊗∞
0

[
m∏
k=1

W(Xik , Xjk )

]

= E

[
E

[
m∏
k=1

W(Xik , Xjk )|σ {Xx, x ∈ L0}
]]
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≤ E


 ∏
k:ik,jk∈L0

|W (
Xik ,Xjk

) |
(∏
k∈A

E
[
W(Xik , Xjk )

2|σ {Xx, x ∈ L0}
])1/2


 ,

(3.8)

whereA in the third production is defined as

A = {k : (ik ∈ L0 & jk ∈ L \ L0) ,

or (jk ∈ L0 & ik ∈ L \ L0)} .

So, letg(x) = E[W(x,X1)
2]1/2 and

β` = ]{k : (ik = ` & jk ∈ L \ L0) , or (ik ∈ L \ L0 & jk = `)} ,

then we can get from (3.8) that

E

[
m∏
k=1

W(Xik , Xjk )

]
≤ E


 ∏
k:ik,jk∈L0

|W(Xik , Xjk )|2



1/2

·E
[∏
k∈A

E[W(Xik , Xjk )
2|σ {Xx, x ∈ L0}]

]1/2

= E


 ∏
k:ik,jk∈L0

|W(Xik , Xjk )|2



1/2

· E

∏
`∈L0

g(X`)
2β`




1/2

.

(3.9)

Since|W(x, y)| ≤ C0‖x‖ · ‖y‖ for anyx, y ∈ B by the assumption,

E


 ∏
k:ik,jk∈L0

|W(Xik , Xjk )|2



1/2

≤ E


 ∏
k:ik,jk∈L0

C2
0‖Xik‖2‖Xjk‖2




1/2

= C0
1
2

∑
`∈L0

(α`−β`) ∏
`∈L0

E
[
‖X`‖2(α`−β`)

]1/2
. (3.10)

Also, from the definition ofg, we have

g(x) = E
[
|W(x,X1)|2

]1/2 ≤ E
[
C0

2‖x‖2‖X1‖2
]1/2

= C0‖x‖Eν0
[
‖X1‖2

]1/2 = C6‖x‖,
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whereC6 ≡ C0E
ν0[‖X1‖2]1/2. So,

E


∏
`∈L0

g(X`)
2β`




1/2

=
∏
`∈L0

E
[
g(X`)

2β`
]1/2

≤
∏
`∈L0

E
[
(C6‖X`‖)2β`

]1/2 =
∏
`∈L0

C6
β`E

[
‖X`‖2β`

]1/2

= C6

∑
`∈L0

β`
∏
`∈L0

E
[
‖X`‖2β`

]1/2
. (3.11)

LetC7 ≡ max{C0, C6,1}, then from (3.9), (3.10), (3.11), we see that

E

[
m∏
k=1

W(Xik , Xjk )

]

≤ C0
1
2

∑
`∈L0

(α`−β`) ∏
`∈L0

E
[
‖X`‖2(α`−β`)

]1/2 · C6

∑
`∈L0

β`
∏
`∈L0

E
[
‖X`‖2β`

]1/2

≤ C
1
2

∑
`∈L0

(α`+β`)
7

∏
`∈L0

(
E
[
‖X`‖2(α`−β`)

]
E
[
‖X`‖2β`

])1/2

≤ C

∑
`∈L0

α`

7

∏
`∈L0

Eν
⊗∞
0

[
‖X`‖2α`

]1/2
.

On the other hand,

Eγ
⊗∞
a

[
m∏
k=1

(YikYjk )

]
=
∏
`∈L0

Eγ
⊗∞
a

[
Y`
α`
]
.

So we only need to take a propera0, such that for anya ≤ a0, the following holds:

C
α`
7 E

ν⊗∞
0

[
‖X`‖2α`

]1/2 ≤ Eγ
⊗∞
a

[
Y
α`
`

]
, for any` ∈ L0,

but this could be gotten from Lemma 3.2. ut
The following lemma has been proved in Kusuoka-Tamura [5] (Lemma 2.1 in

[5]). We write it here as it will be used later.

Lemma 3.4. LetZi, i ∈ N be i.i.d.Rd -valued random variables, with mean0 and
finite variance. Assume that there exist constantsA1, A2, A3, such that

E[Z1 · tZ1] ≤ A1 · Id,
E[exp(A2|Z1|)] ≤ A3.

Then for anyb < 1
2A1

, there exist constantsδ > 0 andA4 > 0, such that

E


exp


b · 1

n

∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣
2

 ,

∣∣∣∣∣1n
n∑
i=1

Zi

∣∣∣∣∣ < δ


 ≤ A4, for anyn ∈ N ,
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whereδ depends only onA1,A2,A3 andb, andA4 depends only ond,A1,A2,A3
andb.

Lemma 3.5. Assume the same assumptions and use the same notations as in
Lemma 3.3. Then for anyb < 1

2, there exists aε > 0, depends only ona0 and
b, wherea0 is the one chosen in Lemma 3.3, such that

sup
n∈N

Eν
⊗∞
0


exp


b · 1

n

∑
1≤i 6=j≤n

W(Xi,Xj )


 ,

∣∣∣∣∣∣
1

n2

∑
1≤i 6=j≤n

W(Xi,Xj )

∣∣∣∣∣∣< ε


 < ∞ .

(3.12)

Proof. First, sincen! ∼ √
2πn(n

e
)n, there exists a constantC8 > 0, such that

n! ≥ C−1
8 nne−2n. So, form = [nεe2],

∞∑
k=m+1

(nε)2k

(2k)!
≤ C8

∞∑
k=m+1

(
nεe2

2k

)2k

≤ C8

∞∑
k=0

(
nεe2

2m+ 2

)k

≤ C8
1

1 − nεe2

2m+2

≤ 2C8 . (3.13)

Also, in general, for any random variableZ,

E[exp(nZ), |Z| ≤ ε]

≤ 2E

[
m∑
k=0

(nZ)2k

(2k)!
, |Z| ≤ ε

]
+ 2E


 ∞∑
k=m+1

(nZ)2k

(2k)!
, |Z| ≤ ε


 , (3.14)

and we can get from Lemma 3.3 that

Eν
⊗∞
0




 ∑

1≤i 6=j≤n
W(Xi,Xj )



m
 ≤ Eγ

⊗∞
a


( n∑

i=1

Yi

)2m

 (3.15)

for anym ∈ N and anya ≤ a0, wherea0 is the one chosen in Lemma 3.3.

So, letPm(ξ) = ∑m
k=0

|ξ |2k
(2k)! ,m ∈ N, and we can get from (3.13), (3.14), (3.15)

that form = [bnεe2],

E


exp


b · 1

n

∑
1≤i 6=j≤n

W(Xi,Xj )


 ,

∣∣∣∣∣∣
1

n2

∑
1≤i 6=j≤n

W(Xi,Xj )

∣∣∣∣∣∣ ≤ ε




≤ 4C8 + 2E

[
m∑
k=0

(b 1
n

∑
i 6=j W(Xi,Xj ))2k

(2k)!

]
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≤ 4C8 + 2E


Pm


b1

n

(
n∑
i=1

Yi

)2

 ,

∣∣∣∣∣1n
n∑
i=1

Yi

∣∣∣∣∣ < δ




+2E


Pm


b1

n

(
n∑
i=1

Yi

)2

 ,

∣∣∣∣∣1n
n∑
i=1

Yi

∣∣∣∣∣ ≥ δ


 , for anyδ > 0 .

(3.16)

For the second term in the last expression, from the definition ofγa and the calcu-
lation in Lemma 3.1, we see that all of the conditions in Lemma 3.4 is satisfied. So,
from Lemma 3.4, for anyb < 1

2, there exists aδ > 0, such that

E


Pm


b1

n

(
n∑
i=1

Yi

)2

 ,

∣∣∣∣∣1n
n∑
i=1

Yi

∣∣∣∣∣ < δ




≤ E


exp


b1

n

(
n∑
i=1

Yi

)2

 ,

∣∣∣∣∣1n
n∑
i=1

Yi

∣∣∣∣∣ < δ


 ≤∃ C9 . (3.17)

Note thatδ does not depend onε here.
For the last term, since

Pm(ξ) ≤ c−2m exp(c|ξ |)

for anyc ∈ (0,1), we can get that

E


Pm


b1

n

(
n∑
i=1

Yi

)2

 ,

∣∣∣∣∣1n
n∑
i=1

Yi

∣∣∣∣∣ ≥ δ




≤ c−2mE


exp


cb1

n

(
n∑
i=1

Yi

)2

 ,

∣∣∣∣∣1n
n∑
i=1

Yi

∣∣∣∣∣ ≥ δ




≤ c−2mE


exp


2cb

1

n

(
n∑
i=1

Yi

)2





1
2

P

(∣∣∣∣∣1n
n∑
i=1

Yi

∣∣∣∣∣ ≥ δ

) 1
2

. (3.18)

But here, from the definition ofYi , we can get from Lemma 3.1 that ifA ≡
1

4Da
− 2cb > 0, which can be done for any fixeda andb by takingc small enough,

then

E


exp


2cb

1

n

(
n∑
i=1

Yi

)2



 ≤ 4cb

A
+ 1< ∞. (3.19)
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Also, by Craḿer’s Theorem (c.f. [6] page 29, Theorem 1.3.13), we see that

γ⊗∞
a

(∣∣∣∣∣1n
n∑
i=1

Yi

∣∣∣∣∣ ≥ δ

)
≤ exp

(−nIγa (δ))+ exp
(−nIγa (−δ))

≤ 2e−nα(δ) , (3.20)

where

Iγa (δ) = sup

{
ξδ − log

∫
eξxγa(dx), ξ ≥ 0

}
> 0,

Iγa (−δ) = sup

{
−ξδ − log

∫
eξxγa(dx), ξ ≤ 0

}
> 0,

α(δ) ≡ Iγa (δ) ∧ Iγa (−δ) .
We have takenm to bem = [bnεe2], so if we takeε > 0 small enough, such that

α(δ)

2
+ 2bεe2 logc > 0 ,

then from (3.18), (3.19), (3.20), we have

E


Pm


b1

n

(
n∑
i=1

Yi

)2

 ,

∣∣∣∣∣1n
n∑
i=1

Yi

∣∣∣∣∣ ≥ δ




≤
(

4cb

A
+ 1

) 1
2

e−2m logc
(
2e−nα(δ)

) 1
2

≤
(

2

(
4cb

A
+ 1

)) 1
2

e2 logc exp

(
−n

(
α(δ)

2
+ 2bεe2 logc

))
<∃ C10, for anyn ∈ N , (3.21)

thec here is the one chosen before.
(3.16), (3.17) and (3.21) completes the proof of the lemma. ut

Lemma 3.6. Assume the same conditions as in Lemma 3.5. Then for anyb < 1
2,

there exist constantsε1 > 0 andε2 > 0, such that the following holds:

sup
n∈N

Eν
⊗∞
0

[
exp

(
b · nW

(
Sn

n
,
Sn

n

))
,

{∣∣∣∣∣ 1

n2

n∑
i=1

W(Xi,Xi)

∣∣∣∣∣ < ε1

}
∩
{

‖1

n

n∑
i=1

Xi‖ < ε2

}]
< ∞ .

Proof. LetN0 ≡ qbC0
C′

3
. Forn = 1, . . . , N0, the item is obviously bounded. So we

only need to do withn > N0. Sinceb < 1
2, there exists ap > 1 small enough such

thatp · b < 1
2. Let q be the dual number ofp, that is, 1

p
+ 1

q
= 1, By Hölder’s

inequality and Lemma 3.5, we only need to show that
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sup
n>N0

Eν
⊗∞
0

[
exp(qb · 1

n

n∑
i=1

W(Xi,Xi))

]
< ∞ .

But by Hölder’s inequality, for anyn > N0 = qbC0
C′

3
,

Eν
⊗∞
0

[
exp

(
qb · 1

n

n∑
i=1

W(Xi,Xi)

)]
≤ Eν0

[
exp(C′

3‖X‖2)
] qbC0

C′
3 < ∞ .

This completes the proof of the lemma. ut
Lemma 3.7. Assume the assumption(A1′) in section1. Assume thatW is a sym-
metric, bilinear function that satisfies the following conditions:

1. There exists a constantC0 > 0, such that

|W(x, y)| ≤ C0‖x‖ · ‖y‖, for anyx, y ∈ B ,

2.
∫
B

W(x, y)2ν0(dx)ν0(dy) ≡ b < 1
2.

Then there exists aε > 0, such that

sup
n∈N

Eν
⊗∞
0


exp(

1

n

n∑
i,j=1

W(Xi,Xj )), ‖1

n

n∑
i=1

Xi‖ < ε


 < ∞ . (3.22)

Proof. SinceW(x, y) ≤ C0‖x‖ · ‖y‖ for anyx, y ∈ B, we have

ν⊗∞
0

(
| 1

n2

n∑
i=1

W(Xi,Xi)| ≥ ε1

)
≤ ν⊗∞

0

(
n∑
i=1

‖Xi‖2 ≥ ε1

C0
· n2

)

≤ e
− ε1
C0

·n2·C′
3 · (Eν0[eC

′
3‖X1‖2

])n .

Therefore,

Eν
⊗∞
0

[
exp(nW(

Sn

n
,
Sn

n
)),

{
| 1

n2

n∑
i=1

W(Xi,Xi)| > ε1

}
∩
{

‖1

n

n∑
i=1

Xi‖ < ε2

}]

≤ Eν
⊗∞
0

[
exp(2nW(

Sn

n
,
Sn

n
)), ‖1

n

n∑
i=1

Xi‖ < ε2

]1/2

· ν⊗∞
0

(
| 1

n2

n∑
i=1

W(Xi,Xi)| > ε1

)1/2

≤ exp(nC0ε
2
2) ·

(
exp(− ε1

C0
· n2 · C′

3) · (Eν0[eC
′
3‖X1‖2

])n
) 1

2

,

which is obviously bounded forn ∈ N.
This accompanied with Lemma 3.6 gives our assertion. ut
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4. Proof of the main theorem

In this section, we will give the proof of the main theorem.
As in Bolthausen [1], by a easy calculation and Proposition 1.1, we can get that

exp
(−n(U(x∗)− h(x∗))

)
Eµ

⊗∞
[
exp(nU(

Sn

n
))

]

= Eν
⊗∞
0

[
exp

(
n

2
D2U(x∗)(

1

n

n∑
i=1

Xi,
1

n

n∑
i=1

Xi)+ nR(x∗,
1

n

n∑
i=1

Xi)

)]
,

whereR(x∗, 1
n

∑n
i=1Xi) is the 3rd remainder of the Taylor’s formula.

Therefore, to proof Theorem 1.2, we only need to show that the following two
lemmas hold:

Lemma 4.1 . There exists a constantε > 0, such that

lim
n→∞E

ν⊗∞
0

[
exp

(
n

2
D2U(x∗)(

1

n

n∑
i=1

Xi,
1

n

n∑
i=1

Xi)+ nR(x∗,
1

n

n∑
i=1

Xi)

)
,

‖1

n

n∑
i=1

Xi‖ < ε

]

= exp

(
1

2

∫
B

D2U(x∗)(x, x)ν0(dx)

)
· det2(I −D2U(x∗))−

1
2 ≡ A . (4.1)

Lemma 4.2 . For anyε > 0,

lim sup
n→∞

1

n
logEν

⊗∞
0

[
exp

(n
2
D2U(x∗)(

1

n

n∑
i=1

Xi,
1

n

n∑
i=1

Xi)

+nR(x∗,
1

n

n∑
i=1

Xi)
)
, ‖1

n

n∑
i=1

Xi‖ ≥ ε
]
< 0 . (4.2)

Lemma 4.2 can be gotten from the following proposition, which has been
shown by Donsker-Varadhan [3]:

Proposition 4.3. 1. h(x) is a lower semi-continuous function, and{x : h(x) ≤ r}
is compact inB for ∀r ∈ [0,∞),

2. For any closed setK ⊂ B,

lim sup
n→∞

1

n
logµ⊗∞

(
{x; 1

n

n∑
i=1

xi ∈ K}
)

≤ − inf {h(x); x ∈ K} ,

3. For any open setG ⊂ B,

lim inf
n→∞

1

n
logµ⊗∞

(
{x; 1

n

n∑
i=1

xi ∈ G}
)

≥ − inf {h(x); x ∈ G} .

To prove Lemma 4.1 , we will give the following proposition and lemma first:
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Proposition 4.4. Let W : B × B → R be a function such thatW|H×H is a
Hilbert-Schmidt function with eigenvaluesa`,` = 1,2, · · · and eigenvectorse`,` =
1,2, · · ·, i.e.

W(x, y) =
∞∑
k=1

ak(ek, x)(ek, y), for all x, y ∈ H .

Thenek can be extended to the wholeB for any k that satisfiesak 6= 0, and∑N
k=1 ak(ek,x)(ek,y) converges toW(x,y) in L2(dν⊗2

0 ,B × B) asN → ∞.

Proof. {e`}`∈N is a complete orthogal normalized base ofH ∗. Letf`, ` ∈ N be the
dual base ofH . SinceW(f`, x) = a`(e`, x) for anyx ∈ H for each̀ , and the left
hand side is continuous with respect tox ∈ B, we can extende` to the wholeB in
this way ifa` 6= 0. The others are easy. ut
Lemma 4.5. Under the assumptions(A1′), (A2) ∼ (A5) in section1, there exist
constantsp > 1 andε > 0, such that

sup
n∈N

Eν
⊗∞
0

[
exp

(
p · n

2
D2U(x∗)(

1

n

n∑
i=1

Xi,
1

n

n∑
i=1

Xi)

)
, ‖1

n

n∑
i=1

Xi‖ < ε

]
< ∞ .

Proof. Let a` ∈ R ande` ∈ H ∗, ` ∈ N be the eigenvalues and the corresponding

eigenvectors ofD2U(x∗)
∣∣∣
H×H

, then

D2U(x∗)(x, y) =
∞∑
`=1

a`(e`, x)(e`, y), for anyx, y ∈ H .

e`, ` = 1,2, · · · becomes a orthonormal base ofH ∗. Let f`, ` = 1,2, · · · be the
dual base ofH , then as done in Proposition 4.4, for any` with a` 6= 0, we can
assume thate` ∈ B∗.

For anyN ∈ N, let

W(N)
1 (x, y) =

N∑
k=1

ak(ek, x)(ek, y),

W(N)
2 (x, y) = D2U(x∗)(x, y)− W1(N)(x, y), x, y ∈ B .

SinceD2U(x∗) is a Hilbert-Schmidt function from Proposition 2.2, we can see that
W(N)

2 is also a Hilbert-Schmidt function. Also, from Proposition 4.4, for anyδ > 0,

there exists aN0 ∈ N large enough, such that
∫
B×B W(N0)

2 (x, y)2ν0(dx)ν0(dy) < δ.

For the sake of simply, from now on, we will writeWi for W(N0)
i , i = 1,2. From

the definition ofW1 andW2, we see that they are bilinear and symmetric.
From Hölder’s inequation, for anyr, s > 1 : 1

r
+ 1

s
= 1, we have

Eν
⊗∞
0

[
exp

(
p

{
n

2
D2U(x∗)(

1

n

n∑
i=1

Xi,
1

n

n∑
i=1

Xi)+ nR(x∗,
1

n

n∑
i=1

Xi)

})
,

‖1

n

n∑
i=1

Xi‖ < ε

]
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≤ Eν
⊗∞
0

[
exp

(
p · r n

2
W1(

Sn

n
,
Sn

n
)
)
, ‖Sn
n

‖ < ε

]1
r

(4.3)

·Eν⊗∞
0

[
exp

(
p · s · n

2
W2(

Sn

n
,
Sn

n
)
)
, ‖Sn
n

‖ < ε

]1
s
. (4.4)

For (4.3), sinceW1 is a finite type, we can considerXi ’s as finite dimensional
valued random variables. Also, sinceak < 1, k ∈ N from the assumption (A4),
andan → 0 asn → ∞ from the fact that

∑∞
n=1 a

2
n < ∞, there exists a constant

a < 1, such thatan < a for anyn ∈ N. Takep > 1 such thata · p < 1, and fix it.
Then taker > 1 small enough, and we can get from Lemma 3.4 that this term is
bounded forn ∈ N, for ε > 0 small enough. Note that thep > 1 andr > 1 here
depend only onak, k ∈ N, and are independent toN .

For (4.4), as mentioned above,W2 satisfies all of the conditions in Lemma 3.7
except (3). But for any fixeds, we can takeδ small enough such that (3) is being
satisfied. So, from Lemma 3.7, (4.4) is bounded forn ∈ N, for N0 large enough
such thatδ > 0 is small enough.

This completes the proof of the lemma. ut
Now, we will give the proof of Lemma 4.1 , using the proposition and lemma

above.

Proof of Lemma 4.1 .Here, from Lemma 4.2 , we have that

lim
n→∞

∣∣∣∣E[exp

(
n

2
D2U(x∗)(

Sn

n
,
Sn

n
)+ nR(x∗,

Sn

n
)

)
, ‖Sn
n

‖ < ε
]

− A

∣∣∣∣
= lim
ε→0

lim
n→∞

∣∣∣∣E[exp

(
n

2
D2U(x∗)(

Sn

n
,
Sn

n
)+ nR(x∗,

Sn

n
)

)
, ‖Sn
n

‖ < ε
]

− A

∣∣∣∣
≤ lim
ε→0

lim
n→∞ |E

[
exp

(
n

2
D2U(x∗)(

Sn

n
,
Sn

n
)+ nR(x∗,

Sn

n
)

)
, ‖Sn
n

‖ < ε
]

− E
[

exp

(
n

2
D2U(x∗)(

Sn

n
,
Sn

n
)

)
, ‖Sn
n

‖ < ε
]
| (4.5)

+ lim
ε→0

lim
n→∞E

[
exp

(
n

2
D2U(x∗)(

Sn

n
,
Sn

n
)

)
, ‖Sn
n

‖ < ε
]

− A| , (4.6)

so the lemma will be shown if we can show that (4.5) equals 0, and that there exists
a constantε0 > 0, such that for anyε < ε0,

Eν
⊗∞
0

[
exp

(n
2
D2U(x∗)(

1

n

n∑
i=1

Xi,
1

n

n∑
i=1

Xi)
)
, ‖1

n

n∑
i=1

Xi‖ < ε

]
→ A, n → ∞.

(4.7)

Let us show (4.7) first. Here, as in Kusuoka-Tamura [5], we can take a seperable
Hilbert spaceH1 such thatH is a dense linear subspace ofH1, and the inclusion
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map fromH to H1 is a Hilbert-Schmidt operator. Then, letW be anH1-valued
random variable such that

E
[
exp(

√−1(W, u))
]

= exp

(
−1

2
‖u‖2

H ∗

)
, for all u ∈ H ∗

1 ⊂ H ∗ .

Since

Eν
⊗∞
0

[
nu(

Sn

n
)2
]

= ‖u‖2
H ∗ ,

1√
n
Sn can be regarded asH1-valued random variables with respect toν⊗∞

0 . There-

fore, from the central limit theorem for independently identically distributed Hilbert
space valued random variables, we see that the law of1√

n

∑n
i=1Xi underν⊗∞

0 con-

verges toW in distribution asn → ∞.
So,

1

n

∑
1≤i 6=j≤n

N∑
k=1

ak(ek,Xi)(ek,Xj )

=
N∑
k=1

ak(ek,
1√
n
Sn)(ek,

1√
n
Sn)− 1

n

n∑
i=1

N∑
k=1

ak(ek,Xi)
2

→
N∑
k=1

ak(ek,W)
2 −

N∑
k=1

ak =
N∑
k=1

ak

(
(ek,W)

2 − 1
)
, for anyN ∈ N ,

where the “→” above means the convergence in distribution. Therefore, since

E

[
{1

n

∑
1≤i 6=j≤n

(
D2U(x∗)(Xi,Xj )−

N∑
k=1

ak(ekXi)(ek,Xj )

)
}2

]
→ 0, N → ∞ ,

which is uniformly inn, we see that1
n

∑
1≤i 6=j≤n D2U(x∗)(Xi,Xj ) underν⊗∞

0

converges to :D2U(x∗)(W,W) : in distribution asn→∞, where :D2U(x∗)(x, x) :
is defined as theL2(dµ̃)-limit of

∑N
`=1 a`((e`, x)

2 − 1) asN → ∞ . µ̃ is the dis-

tribution of W. Also,1
n

n∑
n=1

D2U(x∗)(Xi,Xi) underν⊗∞
0 converges to

∫
B

D2U(x∗)

(x, x)νo(dx) almost surely.
Therefore, (4.7) can be gotten from Lemma 4.5.
Now, let us show that (4.5) equals 0. Write it as limε→0 limn→∞ φ(n, ε). Let

p > 1 be the one chosen in Lemma 4.5, and letq be determined by1
p

+ 1
q

= 1,
then

φ(n, ε) ≤ E

[
exp

(
p · n

2
D2U(x∗)(

Sn

n
,
Sn

n
)

)
, ‖Sn
n

‖ < ε

]1/p

(4.8)

·E
[∣∣∣∣exp(nR(x∗,

Sn

n
))− 1

∣∣∣∣
q

, ‖Sn
n

‖ < ε

]1/q

. (4.9)
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The boundness of (4.8) forn ∈ N has been estabilished. As for (4.9), by Lemma
3.7,

sup
n∈N

E

[
ep·qC4εnK(

Sn
n
,
Sn
n
), ‖Sn

n
‖ < ε

]
< ∞

if ε > 0 is small enough, so from the fact that|ex − 1|q ≤ (e|x| − 1)q ≤ eq|x| − 1,
we have

(4.9)q ≤ E

[
eqnR(x

∗, Sn
n
), ‖Sn

n
‖ < ε

]
− ν0(‖Sn

n
‖ < ε)

≤ E

[
e
qC4εK(

Sn√
n
,
Sn√
n
)
, ‖Sn
n

‖ < ε

]
− ν0(‖Sn

n
‖ < ε)

→ E
[
exp(qC4ε : K(W,W) :)

] · eC4ε
∫
B K(y,y)ν0(dy) − 1, asn → ∞ ,

which converges to 0 asε → 0.
This completes the proof of the lemma. ut

5. Remark

Let U ≡ det2(I − D2U(x∗))−
1
2 < ∞, and letPn, n ∈ N, be the probability

measures given by

dPn/dµ
⊗∞(x) = exp

(
nU(

Sn

n
)

)
/Eµ

⊗∞
[
exp(nU(

Sn

n
))

]
, x = (x1, x2, · · ·) .

Since we did not assume the existence of the Gaussian measure onB as in Bolthausen
[1], we can not write inB the limit of the disribution of

√
n(Sn

n
−x∗) underPn, but

we can still get the following:

Theorem 5.1. Assume the same conditions as in Theorem 1.2, then for anyn ∈ N,
and anyuk ∈ B∗, k = 1,2, · · · , n, the distribution of{B∗(uk,

√
n(Sn

n
−x∗))B, uk ∈

B∗, k = 1,2, · · · , n} under Pn converge weakly to the Normal distribution

N(0, (
∑∞

k=1
uki u

k
j

1

1 − ak
)i,j ), wherea`, e`, ` ∈ N are the ones defined in the

proof of lemma 4.5, andui = ∑
k u

k
i ek, i = 1,2, · · ·

The proof is similar with the one above, and will be omitted.
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