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Abstract. Let X;,i € N, bei.i.d. B-valued random variables, wheBeis a real separable
Banach space. L&D be a mapping3 — R. Under a central limit theorem assumption, an
asymptotic evaluation o, = E (exp(n®(}_;_, X;/n))), up to a factorl + o(1)), has

been gotten in Bolthausen [1]. In this paper, we show that the same asymptotic evaluation
can be gotten without the central limit theorem assumption.

1. Introduction

Let B be areal separable Banach space with njpriffy « be a probability measure
on B. We assume that the smallest closed affined space that containg suBp
Moreover we assume

(A1)

/ expt|lxDu(dx) < oo foralltr eR .
B

Let® : B — R be a three times continuouslyééhet differentiable function
satisfying the following:
(A2) There exist constants;, C, > 0, such that

®D(x) < C1+ Co|x|, foranyx € B .

Let X, and S,, n € N, be the random variables defined &y (x) = x, and
Sp(x) = > p_q xi foranyx = (x1, x2, x3,---) € BN.
By Donsker-Varadhan [3], we have that

lim }Iog EF [exp(ml) (ﬁ))} = sup{®@(x) — h(x)} ,
n—-oon n xeB
wherer is the entropy function of:

h(x) = ¢Slj9p* {p(x) —logM(#)}, xeB,

B* is the dual Banach space BfandM (¢) = [, ¢?® u(dx) for any¢ € B*.
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It has been shown by Bolthausen [1] that there is at leastxéne B with
D(x*) — h(x*) = sup,cp{P(x) — h(x)}. Also, we assume the following as in
Bolthausen [1]:

(A3) There is a unique™ € B with ®(x*) — h(x*) = sup.cp{P(x) — h(x)}.

We will usex™* exclusively for this point.

Let v be the probability measure ahgiven by

eXp(D®(x*)(x))u(dx)
M (D®(x*))

v(dx) =

As it has been shown by Bolthausen [1], the following proposition holds.

Proposition 1.1. Under the assumptior(&\1), (A2), (A3),

x*:/xv(dx), (1.1
B
h(x*) = DOG(*)(x*) — log M(DD(x*)) . (1.2)

Let vo be the O-centered, i.e. vo = v6_}, whered, : B — B is defined by
0,(x) =x —a,x € B.

Let I'(p, ¥) = fB o (x)¥(x)vo(dx) be the covariance ap andy for any
o, ¥ € B*. Thenl” becomes an inner product &. Let H = (B* )*, whereB*
means the completion @t* with respect ta". Then we can show thaf can be
regarded as a dense subseBo{See Proposition 2.1.)

In this paper, we assume the following, which is a little stronger than (A1):

(A1) There exists a constagg > 0, such that

f exp(Callx[12) p(dx) < os.
B
It has been shown by Bolthausen [1] that the following holds:

T'($,¢) = D*®(x*)(1(9), L)), forany¢ € B,

wheret(¢) = fB ¢ (x)xvo(dx), ¢ € B*. From this, we see that all of the eigenval-
ues of the operatoDZ(I)(x*)mxy are smaller than or equal to 1. Furthermore we
assume the following

(A4) All of the eigenvalues oD2®(x*)|z xz are smaller than 1.

(A5) There exist constant, > 0ands > 0, and a continuous bilinear function
K : B x B — R, such that

ID3®(x)(y, y, ¥)| < CalyIK (v, y)

foranyy € B and anyx € B with ||x — x*|| < §.
The following is our main result:
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Theorem 1.2. Under the assumptior(®\1’), (A2) ~ (A5) above, we have

lim_exp(—n(@(*) — h(*) EX" [exp("q’ (57>>]

Nl

— exp<% /B D2® (%) (x, x)vo(dx)) - deb (IH - D2®(x*))7

RemarkThe fact thatD2® (x*)| g x & is @ Hilbert-Schmidt function, which ensures
that the factor th(IH — DZ(D(x*)) above is well-defined, can be gotten from
Proposition 2.2 later.

Bolthausen [1] studied the same problem under the different assumption. He
showed the following

Theorem 1.3. Assume the following

(B) vo satisfies central limit theoreni.e., v, defined by, (4) = v§"(V/nA)
converges weakly to a Gaussian measuien B.

Furthermore assuméAl) ~ (A4), then

lim_exp(—n(®(x") — ) EX [eXp<n<D (%))}
1
=/exp(§D2<D(x*)[y,y]> y(dy) .
B

If we assume thatp satisfies central limittheorem asin Bolthausen{d], B, y)
becomes an abstract Wiener Space, and so from Kuo [4] (Page 83, Theorem 4.6
(Goodman)), we can get thB2®(x*)| z « i is a nuclear function. In this situation,
the intergrationy/, exp(%chl)(x*)[y, yDy (dy) appeared in Bolthausen’s theorem
is nothing but exp$ [, D?®(x*)(x, x)vo(dx)) - deb(l — D2®(x*))~ 2, which is
just the limit appeared in our theorem. And when the opet@fsb(x*)| g » g is not
nuclear, but just a Hilbert-Schmidt function, Bolthausen’s one is not defined, while
our one is still well-defined. The point here is that the condition that a function is
Hilbert-Schmidt can be easily checked be integration, while the condition nuclear
is not. Moreover, ifB is a Hilbert space, then (A5) is also satisfied.

As mentioned above, the central limit theorem assumption is actually a very
strong assumption as we are dealing with infinite dimension space. Our theorem
claims that without the assumption thgtsatisfies central limit theorem, the result
still holds under the assumptions (Aand (A5).

Remark. In most of our proofs, (A can be substituted by (A1), but in the proof

of Lemma 3.5, we use (Alessentially to derive (3.18). We do not know whether
one can weaken the assumption (A1

2. Preparations

Proposition 2.1. H can be regarded as a dense subseBof
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Proof. The fact thatH can be regarded as a subseBofan be seen from the defi-
nition of H, the continuity of : (B*, || - |lz+) — (B, |- | 8), and the completeness
of B.

The denseness can be seen from the extension theory and the assumption that
the closed affined space that contains supis B, by using contradiction. O

Proposition 2.2. Under the assumptiomAl’) (or just (Al)), for any continuous

bilinear functionA : B x B — R, A‘H Y is a Hilbert-Schmidt function.
X

Proof. SinceA is continuous, there exists a constéigt> 0, such that

[A(y1, y2)| < Collyall - lly2ll, foranyy;, y2 € B .

Let {e,}°>, be a complete orthonormal base Bf with {e,}>>;, C B*. Then

{t(en)}52 4 is the corresponding base &f. Let f,, ,, : B x B — R be defined as

Jaom(Y1, y2) ‘=< en, y1> - < em, y2 >, y1,y2€ B,
then(fo.m, T ) p2(gy52) = Snn * Smmy for anyn, m, n’, m’ € N. Therefore,
0

[e¢]

1AIZ 5. = Y Allen). tlem))?

n,m=1

S 2
Z </B /B AL ¥2) fam (Y1, )’Z)VO(le)UO(dYZ)>

n,m=1

2
fB fB A1, y2) Pro(dynvo(dyz) < C2 ( fB ||y||2vo<dy>) ,

IA

which is finite by assumption (A)L(or just (Al)). O
3. Basic lemmas

For anyR > 2, letvg be the probability measure éhgiven by

3 /(1) R-2 1\ R+2
arz—1 "RB\\2[) T2r=1 "R\\72|) T 2r+1-

By a simple calculation, we have

VrR({R}) =

ER[Y] =0, E'R[Y?] =1 .
For anya > 0, letp, be the probability measures &given by

R2
pa(dR) = C, exp(—%) dR, R>2,
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-1
aR?

whereC, is the normalizing constarite. C, = (fz"o e‘ng) . Lety, be the

probability measures oR given by

Ya(dy) = / VR(dy)pa(dR) ,
and letY; bei.i.d. random variables.t. P(Y; € dy) = y.(dy).

Lemma 3.1. For anya > 0, there exists a constam?,, depends only oa, such

that
d(F%

foranyz > Oand anyn > 1.

> z) < 2exp<—%z2> (3.1)

Proof. Let £(§) = [ ¢ ya(dy). Then it can be shown that

D, = sup log f(§) < o0 .

Iél2

Therefore,

> z) < e EViE [ef Tl Yf] teEViE [e—f Tia Yf]

< 275V exp(nDyJ51?)

forany& # 0. Lettingé = we get (3.1). O

2z
2Dq/n’

Lemma 3.2. Under the assumption (Alin section 1for anyc > 0, there exists
aagp > 0small enoughsuch that for any: > 3 and anya € (0, ag],

1/2
c" </B ||x||2"vo(dX)> ffRy")/a(dy) . (3.2)

Proof. From assumption (A}] and the definition ofup, there exists a constant
C4 > 0, such thaCs = [, C3l¥I? o (dx) < oo. So for anyr > 0,

£ = wo(IX] = 1) < Cge G

Therefore, for any > 3,

2 1
/ 1" vo(dx) < n / VLo dy - Cs. . (33)
B (0,00) 2C§
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On the other hand, from the definition ©§, we can get by a calculation that for
anyR > 2,

3
/ Y'ir(dy) > S R"2
R 4

for anyn > 3. So letpg 4, a > 0 be the probability measures given by

2 a 2
\/aef%dR, R>0.
V2

then we have that for any < ag and anyn > 3,

po.a(dR) =

3 i 3 )
/ Vv = / R™2p,(dR) = 5 / R"2p0.ag(dR)
R (0,00) (0,00)

3 2 » 12 1\"?
=-— y' %"z dy - <—) . (3.4)
421 Jo.00) Vao

From (3.3) and (3.4), to prove the lemma, we only need to show that

" Zn/ yzn_le_édy C ( ! >”
. .Cs- | —
(©.00) 2C4

() () () oo

holds for anyn > 3 if ag > 0 is small enough. But this is easy to be seen by a
simple calculation and Stirling’s formula. O

Lemma 3.3. Assume the assumpti¢Al’) in sectionl. Let ¥ be a symmetric
bilinear function that satisfies the following conditions:

1. There exists a constaidty > 0, such that|¥(x, y)| < Collx]| - |||l for any
X,y € B,
2. [ ¥(x, y)?vo(dx)vo(dy) = 1.

Then there exists amg > 0, depending only o€y ande llx 12vo(dx), such that

E%6™ [1‘[ ¥(X,, Xjk)} < Ere” [1‘[ Y;, ij} (3.6)
k=1

k=1
holds for anym € N, anyiq, ..., im, j1,---, jm € NWith1l < iy < jr < n,k =
1,---,m,and anya € (0, ag], where{X;}?°, is the sequence of random variables

defined in sectiot, and{Y;}72, is defined by, (y) = yn, y = (y1, y2,...) € RN,

Note. Asvp has mean 0, we get from the bilinearityBthat [, ¥ (x, y)vo(dy) = 0
foranyx € B.
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Proof. To simple the notation, in the proof of this lemma, we will write just
which means the expectation with respecﬁ;(ﬁﬁ’O when deal with{X;}?°,, and
¥ 2> when deal with{Y;}¢2,, when there is no risk of being confused.

Let us consider the graph that consists all thejx’'s as its nodes and all the
irjk'S as its lines. We may assume that the graph is connected, since if not, from
the independent of thE;’s andY;’s, we can consider each connected component,
respectively.

Let

ap = ffk iig =€ orj, = £}, 1<¢<n.

If there exists & such thaty, = 1, then (3.6) obviously holds as8 0. So, we
may assume that;, = 0 oray > 2 for all £. Let

L={ta > 2} Lo={;a; >3} .

If L = L\ Lo,thenall ofthg;’s appear exactly twice, so from Schwartz’s inequality
and the independence of the’s and the assumptions, it could be seen that

EVSZJOO |:ﬁ ‘I’(Xik, X]k):| < ﬁ E [‘P(Xik, Xjk)z:ll/z =1 (37)
k=1

k=1
o m
= EVa |:l_[ Yiijki|
k=1

To see the inequality in the first line, we only need to notice that whsran odd
number,

= E[(Y(x, X)¥ (X2, X3) - - - ¥(X,_1, X}))
-(Y(X1, X2)¥(X3, Xg) - - - ¥(X,, y))]

> 1/2
< E[(¥0r, X0W(Xa, Xg) -+ (X1, X))

2112
E[(P(X1, X2W(Xa, Xa) -+ (X, )P

= E[¥(x, X0)Y?E[¥Y(X1, X2)?]Y2 - E[¥(X,, y)2]Y?

= E[¥(x, X0)Y? - E[Y(X,, »)4Y?

for anyx, y. The case whenis even is the same.
For the case wheh # L \ Lo, by using (3.7), we have that

E%6™ []‘[ (X, Xjk)}

k=1

=E [E [H ¥(Xi, Xj)lo{ Xy, x € LO}H

k=1
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1/
<e| ] |‘1'(Xik,xjk)|(HE[‘P(xik,Xj&w{Xx,xeLo}]> ,

ki, jx€Lo keA
(3.8)
whereA in the third production is defined as
A=1{k: (ixrelo & jreL\ Lo,
or jrelo & ireL\Lg)}.
So, letg(x) = E[¥(x, X1)4]¥? and
Be=1glk:((x =0& jx€e L\ Lo), or (ix € L\ Lo & jk=10)} ,
then we can get from (3.8) that
" 1/2
E []‘[ ¥(X;,, xjk)} <E| ] Y& X3P
k=1 ki, jkeLo
1/2
-E |:1_[ E[\P(X,‘k, Xjk)2|O'{Xx, X € LO}]1|
keA
1/2 1/2
=E| [] M. x| -E[]]exo®
ki, jx€Lo teLlg
(3.9)
Since|¥(x, y)| < Collx|| - |ly|l for anyx, y € B by the assumption,
1/2
E| ] M. x?
ki, jkeLlo
1/2
<e| ] <aIxil®1x;1?
ki, jx€Lo
1 _ 1/2
= Co2 Zeet @™ [T g [xPec0[7  (3.10)

teLg
Also, from the definition og, we have

1/2 1/2
g = E [0, x0P| " = E[Co?lxl?1X)?]

. ,11/2
= Collxl| E*° [1X21%] " = Callxl.
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whereCg = CoE™[|| X1]/%]Y2. So,

1/2
1/2
E|TTexo® | =TT E[sx0¥]
leLlo leLlo
1/2 1/2
= [T e[ onxen® ™" = [T cs™E [1Xe1% ]

leLlo leLlo

1/2
= cgZeno T E [||Xg||2ﬂf] . (3.11)

teLg

Let C7 = max{Co, Cs, 1}, then from (3.9), (3.10), (3.11), we see that

E []‘[ Y(X;,, Xjk)}

k=1
< Co? Zeeto® 0 TT g [xpec-0]" . coZeeso [T £ [1xer? ]

teLg LeLg
1
3 2veLy@etBo) _ 1/2
< o7 T (B [1xen? @] £ [1xe®))
teLlg
~ 1/2
< cxe™ T B (1012

lelo
On the other hand,
m
Eve® |:1_[(Yiijk):| = 1_[ EYe® [v,].
k=1 LeLg

So we only need to take a propey, such that for any < ag, the following holds:
CYEYS [||Xg||2‘”] < EX¥[y™],  foranyf e Lo,

but this could be gotten from Lemma 3.2. O

The following lemma has been proved in Kusuoka-Tamura [5] (Lemma 2.1 in
[5]). We write it here as it will be used later.

Lemma 3.4. LetZ;,i € N bei.i.d.R?-valued random variablesvith mearD and
finite variance. Assume that there exist constantsA,, Az, such that

E[Z1-'Z1] < A1~ 14,
E[exp(Az2|Z1])] < As.
Then for anyp < »+, there exist constants> 0 and A4 > 0, such that
2A1

1 n
w2

2

n

2. %

i=1

1
E|exp|b- - <8 | < Ay, foranyn e N ,
n

)




230 S. Kusuoka, S. Liang

wheres depends only oA, A2, Az andb, and A4 depends only od, A1, Az, A3
andb.

Lemma 3.5. Assume the same assumptions and use the same notations as in
Lemma 3.3. Then for any < % there exists & > 0, depends only oag and
b, whereqg is the one chosen in Lemma 3.3, such that

1
~ Z Y(X;, Xj)|<e| <00 .

00 1
SupE™” | exp| b = Z Y(Xi, Xj)|.
n 1<i#j<n 1<i#j=<n

neN

(3.12)

Proof. First, sincen! ~ +/27n(%)", there exists a constadls > 0, such that
n! > Cg_ln”e_zn. So, form = [nsez],

0o 2% ) 2\ 2k 0o 2 \k
(ne) (nee ) nee
E <Cg E <Csg E
I
imer (20 i \ 2K im0 \om+2
1
< Cg > <2Cg . (3.13)
1 — nee

2m+-2

Also, in general, for any random variabte

Elexp(nZ), |Z] < €]

N (nZ)* — (n2)*
§2E|:k§0m,|2|§e:|+2E kznglm,mmg , (3.19)

and we can get from Lemma 3.3 that

m

2m
n
E%G™ > WXL X)) < Er% (ZY,) (3.15)
i=1

l<i#j=n

foranym € N and anya < ag, whereqg is the one chosen in Lemma 3.3.
2
So, letP,(§) = > 1o '(52,(#; m € N, and we can get from (3.13), (3.14), (3.15)
that form = [bnee?),

1 1
E | exp b~; Z Y(X;, X;) |2 Z Y(X;, X)) <e

1<i#j<n l<i#j=n
mop1 2%
bz Z[;ﬁ i ‘P(Xi, Xj))
<4Cg+2E n=7
Pl
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2
1 n
<4Cg+2E | P, b—(ZY,) :
n i=1
1<\’
1=

For the second term in the last expression, from the definition ahd the calcu-
lation in Lemma 3.1, we see that all of the conditions in Lemma 3.4 is satisfied. So,
from Lemma 3.4, for any < 1, there exists & > 0, such that

<6

l n
a2t

n
PN

i=1

>3 |, foranys >0 .

(3.16)

<34

1/(< 2 1<
E|P, b;(;Yi) ,;;Yi
1= 1=

; 2
1
<E|exp|b= (ZY,-) )
n
im1

Note thats does not depend anhere.
For the last term, since

n

P2

i=1

Py (§) < c~2" explcl&])

foranyc € (0, 1), we can get that
2
1 [ 1
E|P, b; (Z;Yi) |
=

_ v )
<c E |exp| b= ( Yi) ,
n \4

n

S

i=1

za>2 . (3.18)

r L/ 2\ %
<c2"E | exp| 2cb= (Z Yi> P (
" \iz1

But here, from the definition of;, we can get from Lemma 3.1 that £ =
% — 2cb > 0, which can be done for any fixedandb by takingec small enough,
then

2
1 [« Ach
E | exp| 2cb= (Z Yi) = Ftl<oo (3.19)
n
i=1
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Also, by Cranér’s Theorem¢.f.[6] page 29, Theorem 1.3.13), we see that

1 n

> 8) < exp(—nly, ) + exp(—nly,, (—8))
i=1

< 2@ (3.20)

’

where

1,(8) = sup{é‘é - log/eg"ya(dx),é > 0} > 0,

1, (=8) = sup{—fES - Iog/ e ya(dx), & < 0} >0,

a(8) = I,,(8) A1, (=) .
We have takem to bem = [bnge?], so if we takes > 0 small enough, such that
1)
&2) + 2bee?loge > 0

then from (3.18), (3.19), (3.20), we have
1(< 2\ |1
E|P,|b= Y; A=)y

1
< <4%b + 1) z e—2m loge <26—noz((3)>:72L

>6

1
< <2 <% + 1)) " 2loge exp(—n (ﬂj) + 2bee? Iogc>>

<7 C10, foranyn e N , (3.21)

thec here is the one chosen before.

(3.16), (3.17) and (3.21) completes the proof of the lemma. O

Lemma 3.6. Assume the same conditions as in Lemma 3.5. Then fob acn)%,
there exist constantg > 0ands2 > 0, such that the following holds:

00 Sy S
SUpE"0 [exp(b -n¥ (—, —”)) ,
neN n - n
N |I1Zn:X||
<e€ - il <e <00 .
1 "L 2

Proof. Let Ng = "’(’#. Forn =1,..., No, the item is obviously bounded. So we
3

only need to do witlk > Ng. Sinceb < % there exists @ > 1 small enough such

thatp - b < % Let g be the dual number gb, that is,% + ql = 1, By Holder’s

inequality and Lemma 3.5, we only need to show that

1 n
— D WX, X))
i=1
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n
sup E% |:exp(qb- E Z‘I‘(Xi, Xi)):| <00 .
n

n>Np i1
But by Holder's inequality, for any: > Ng = q’é?‘),
®00 1w 2%
EY0 |:exp<qb-—Z‘I’(Xi,Xi)):| < E [exp(C§||X||2)] G <o .
n
i=1
This completes the proof of the lemma. O

Lemma 3.7. Assume the assumpti¢Al’) in sectionl. Assume tha¥ is a sym-
metric, bilinear function that satisfies the following conditions:

1. There exists a constagly > 0, such that
W (x, )| < Collx|l - Iyl foranyx,y € B ,
2. [ ¥(x, »)2vo(dx)vo(dy) = b < 3.

Then there exists a > 0, such that

SUpE"6"™ exp( Z WX, X)) 1= ZX l<e|<oo. (3.22)

neN lJ —1

Proof. Since¥(x, y) < Collx|| - |ly|l foranyx, y € B, we have

1 n
> (|; WX X))l = el> <vg (Z I1X:1% = — -nz)
i=1
_f 2.0 2
<e Cy . (EVO[eCQ,HXl” Dt .

Therefore,

8% Su S 1 & 1<
EY | expn¥ (=, ), {155 Y WX Xl > a1 N {15 Y Xill < &2
n n n ) I’li=1

Sy S 1 b2
<E%" [exp(Zn‘P(—”, ==Y Xl < 82:|
n n n

i=1

1/2
Vo ( Z‘I’(Xl,X )| > 81)

i=1
2
< expnCoe3) - (exp(—é—t -n?.Cp) - (E”O[ecé|X1|2])”>

which is obviously bounded for € N.
This accompanied with Lemma 3.6 gives our assertion. O
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4. Proof of the main theorem

In this section, we will give the proof of the main theorem.
As in Bolthausen [1], by a easy calculation and Proposition 1.1, we can get that

exp(—n(®(x*) — h(x*))) EFT eXp(n(D(&))
- E% [exp( qu)(x*)( ZX“ ZXH—nR(x ZK’))} ;
i=1

whereR (x*, % Y7 1 X;) is the 3rd remainder of the Taylor’s formula.
Therefore, to proof Theorem 1.2, we only need to show that the following two
lemmas hold:

Lemma 4.1 . There exists a constaat> 0, such that

|LmOOE“6®°°[exp< DD (x* ) ZX,, ZX)—i—nR(x ZX,)),
i=1

i=1 i=1
1
||;;Xi|| < e}
:exp(%/Bchp(x*)(x,x)vo(dx)) .deb(I — D2D(x*))"Z = A . (4.1)

Lemma 4.2 . For anye > 0,
lim sup= IogE“O [exp( D?®(x* ) ZX“ ZX)

n—oo N
FnR( S Zx,»)), ||; Zx,-u > a] <0. (4.2
i=1 i=1

Lemma 4.2 can be gotten from the following proposition, which has been
shown by Donsker-Varadhan [3]:

Proposition 4.3. 1. h(x) is alower semi-continuous functiggmd{x : A(x) < r}
is compact inB for Vr € [0,00),
2. For any closed seX C B,

lim sup-~ Iog,u®°° ({x = Zx, € K}) < —inf{h(x);x € K} ,

n—oQ i=1
3. For any open seG C B,
1 1
liminf = log u®> ({)_c; - in € G}) > —inf {h(x); x € G} .
n—-oo n n i1

To prove Lemma 4.1 , we will give the following proposition and lemma first:
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Proposition4.4. Let¥ : B x B — R be a function such tha¥|g .y is a
Hilbert-Schmidt function with eigenvalues ¢ = 1, 2, - - - and eigenvectorg, £ =
1,2,---,i.e.

e ¢]

Y(x,y) = Zak(ek,X)(ek, y), forall x,ye H .
k=1

Thene; can be extended to the whok for any k that satisfiessy # 0, and
SV 1 ag(ex,x)(ex,y) converges to¥(x,y) in L2(dv$% B x B) asN — cc.

Proof. {e¢}¢en is @ complete orthogal normalized basa®f. Let fy, £ € N be the
dual base oH. Since¥(f¢, x) = a¢(e¢, x) for anyx € H for eacht, and the left
hand side is continuous with respectit@& B, we can extend, to the wholeB in
this way ifay # 0. The others are easy. O
Lemma 4.5. Under the assumption@1’), (A2) ~ (A5) in sectionl, there exist
constants > 1ande > 0, such that

00 n 1 1< 1
SUpE"0 |:eXp<p . EDZ(D(x*)(; in, - ng) , ||; inn < s} <00 .
i=1 i=1 i=1

neN

Proof. Leta, € R ande; € H*, £ € N be the eigenvalues and the corresponding

eigenvectors oD2®(x*) , then
HxH
o
D*®(*)(x,y) = Y ai(er. x)(e.y).  foranyx.y e H .
=1

er, £ = 1,2,--- becomes a orthonormal baseff. Let f;, £ = 1,2, --- be the
dual base of, then as done in Proposition 4.4, for ahyith a, # 0, we can
assume that, € B*.

For anyN € N, let

N
¥V () = 3 arler e y),
k=1

YV (x, y) = D2OGH)(x, y) — Yi(N)(x,y),  x,y€B .

SinceD2d(x*) is a Hilbert-Schmidt function from Proposition 2.2, we can see that
‘I‘;N) is also a Hilbert-Schmidt function. Also, from Proposition 4.4, for any 0,
there exists &g € N large enough,suchth}%xB ‘P(ZNO)(x, y)2vo(dx)vo(dy) < 8.

For the sake of simply, from now on, we will writ¥; for ‘l’fNO), i =1,2. From
the definition of¥1 and¥,, we see that they are bilinear and symmetric.
From Holder’s inequation, for any, s > 1: 2 + 1 =1, we have

U®OC n ) . 1 n l n . 1 n
E'0 |:exp<p[§D OO Y X =y Xi) +nR(x ,;Xixi)D,

i=1 i=1

1 n
||;2x,-|| <e}
1=
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00 Sn Sy Sy r
< EY |:eXp<p r—‘l’1(7 7)) ||7|| <8] 4.3)

1
o0 Sp S S B
E'S [exp(p-s-g\l'x—",—")),n—"n<s}‘ : (4.4)
n n n

For (4.3), since¥ is a finite type, we can consideéf;'s as finite dimensional
valued random variables. Also, singg < 1,k € N from the assumption (A4),
anda, — 0asn — oo from the fact thad "> , a? < oo, there exists a constant
a < 1, such thaty, < a foranyn € N. Takep > 1 suchthat: - p < 1, and fix it.
Then taker > 1 small enough, and we can get from Lemma 3.4 that this term is
bounded fom € N, for ¢ > 0 small enough. Note that the > 1 andr > 1 here
depend only oy, k € N, and are independent 16.

For (4.4), as mentioned aboW; satisfies all of the conditions in Lemma 3.7
except (3). But for any fixed, we can takeé small enough such that (3) is being
satisfied. So, from Lemma 3.7, (4.4) is boundedsoe N, for Ng large enough
such that > 0 is small enough.

This completes the proof of the lemma. O

Now, we will give the proof of Lemma 4.1 , using the proposition and lemma
above.

Proof of Lemma 4.1 Here, from Lemma 4.2 , we have that

n—o0

lim ‘ [exp( D’®(x *)( S —")~|—nR(x*, &)> , ||&|| < s] —A‘
n n
— lim lim ‘E[exp(szm(x*)(i, 51y 4 nRG, ﬁ)) NES g] —A'
2 n o n n n

e—>0n—00

< lim lim |E[exp< D2®(x )( —n)—{—nR(x*,%)),H%H <s]

e—~>0Qn—o00
n Sn
—E[exp< D) (! >) 1= <] (45)
2 * Sn Sn
+ lim_ lim E[exp( D2d(x )( )>,||—|| <e]—A| , (4.6)
e—0n n

so the lemma will be shown if we can show that (4.5) equals 0, and that there exists
a constantg > 0, such that for any < &,

£ |:exp< D2®(x*) (= Zx,, ZX)) ||—ZX||<8:|—>A n — oo.
(4.7)

Let us show (4.7) first. Here, as in Kusuoka-Tamura [5], we can take a seperable
Hilbert spaceH; such thatH is a dense linear subspace®f, and the inclusion
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map fromH to Hy is a Hilbert-Schmidt operator. Then, 18t be anH;-valued
random variable such that

E [exp(\/—l(w, u))] = exp(—%nunﬁ,*) , forallu e Hf Cc H* .

Since
00 S,
B [nu (=202 = Nul
n

%Sn can be regarded &% -valued random variables with respech@o". There-

fore, from the central limit theorem for independently identically distributed Hilbert
space valued random variables, we see that the '%%@?:1 X; underny$* con-

verges tow in distribution as: — oc.
So,

N
’% Z Z ai(ex, Xi)(ek, X )
;é :

N
_Zak(ek, Sn)(ek» Zzak(ekax)

zlkl

— Zak(ek,W) —Zak—z k((ek,W)z—l), foranyN € N ,

k=1

where the “>" above means the convergence in distribution. Therefore, since

N
E|:{% > <D2(I)(x*)(X,', X)) =) ac(erXi) ex. Xj))}z} —~0O,N > oo ,

1<i#j<n k=1

which is uniformly inn, we see that Yi<ivj<n D*®@G*)(Xi, X ;) undervy™
convergesto D2®(x*)(W, W) :indistribution as: — oo, where :D2®(x*) (x, x) :
is defined as th&2(djv)-limit of >, a¢((er, x)?> — 1) asN — oo. ju is the dis-

n
tribution of W. Also, 3~ D?®(x*)(X;, X;) undernd™ converges tg’ D?®(x*)
B

n=1
(x, x)v,(dx) almost surely.
Therefore, (4.7) can be gotten from Lemma 4.5.
Now, let us show that (4.5) equals 0. Write it as Jigy lim,,_, o ¢ (1, g) Let
p > 1 be the one chosen in Lemma 4.5, andgldte determined byl + = =1,
then

S, Sn S, Yp
¢, e) < E [GXD(P . %DZ(D(x*)(z, 7)) ||—|| < 8} (4.8)

S a g 1/q
E [ expmR(x*, =) —1| ,|=1l < s} . (4.9)
n n
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The boundness of (4.8) far € N has been estabilished. As for (4.9), by Lemma
3.7,

N S,
SUpPE |:ep qCaenK (S50 ||—|| < 8i| <00
neN

if ¢ > 0 is small enough, so from the fact that — 1| < (el*l — 1)7 < e?¥ — 1,
we have

+ Sn S, S,
(4.9 <E [eqnm 23 ||7”|| < e} - vo<||7”|| <e)

C K Sl'l Srl S S
< E[eq R 2 <a} — (22 < &)
n n

— E [exp(qCas : K(W, W) )] - € [p KO2w0@) _ 1 asp - oo |

which converges to 0 as— 0.

5.

This completes the proof of the lemma. O

Remark

Let U = deb(I — Dzd)(x*))*% < oo, and letP,,n € N, be the probability
measures given by

AP, )du®> (x) = exp(mb(%)) JERS [exrxndx%»] X = (xnx2,) .

Since we did not assume the existence of the Gaussian meastiessimBolthausen
[1], we can not write inB the limit of the disribution of\/ﬁ(%" — x*) underp,, but
we can still get the following:

Theorem 5.1. Assume the same conditions as in Theorem 1.2, then for anyl,
and anyuy € B*, k=1,2,---,n,thedistribution of g« (u, f(——x*))B, up €
B*k = 1,2,- n} under P, converge weakly to the Normal distribution

N(O, (Zk L Ui ]1 ), i), whereay, e;, £ € N are the ones defined in the

proof of lemma 4.5, anal =Y ube, i=12-.

The proof is similar with the one above, and will be omitted.
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