Shigeo Kusuoka • Song Liang

Laplace approximations for sums of independent random vectors

Received: 19 September 1997 / Revised version: 22 April 1999

Abstract

Let $X_{i}, i \in \mathbf{N}$, be i.i.d. B-valued random variables, where B is a real separable Banach space. Let $\boldsymbol{\Phi}$ be a mapping $B \rightarrow \mathbf{R}$. Under a central limit theorem assumption, an asymptotic evaluation of $Z_{n}=E\left(\exp \left(n \boldsymbol{\Phi}\left(\sum_{i=1}^{n} X_{i} / n\right)\right)\right)$, up to a factor $(1+o(1))$, has been gotten in Bolthausen [1]. In this paper, we show that the same asymptotic evaluation can be gotten without the central limit theorem assumption.

1. Introduction

Let B be a real separable Banach space with norm $\|\cdot\|, \mu$ be a probability measure on B. We assume that the smallest closed affined space that contains supp μ is B. Moreover we assume

$$
\begin{equation*}
\int_{B} \exp (t\|x\|) \mu(d x)<\infty, \quad \text { for all } t \in \mathbf{R} \tag{A1}
\end{equation*}
$$

Let $\boldsymbol{\Phi}: B \rightarrow \mathbf{R}$ be a three times continuously Fréchet differentiable function satisfying the following:
(A2) There exist constants $C_{1}, C_{2}>0$, such that

$$
\boldsymbol{\Phi}(x) \leq C_{1}+C_{2}\|x\|, \quad \text { for any } x \in B .
$$

Let X_{n} and $S_{n}, n \in \mathbf{N}$, be the random variables defined by $X_{n}(\underline{x})=x_{n}$ and $S_{n}(\underline{x})=\sum_{k=1}^{n} x_{k}$ for any $\underline{x}=\left(x_{1}, x_{2}, x_{3}, \cdots\right) \in B^{\mathbf{N}}$.

By Donsker-Varadhan [3], we have that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{\mu^{\otimes \infty}}\left[\exp \left(n \boldsymbol{\Phi}\left(\frac{S_{n}}{n}\right)\right)\right]=\sup _{x \in B}\{\boldsymbol{\Phi}(x)-h(x)\},
$$

where h is the entropy function of μ :

$$
h(x)=\sup _{\phi \in B^{*}}\{\phi(x)-\log M(\phi)\}, \quad x \in B,
$$

B^{*} is the dual Banach space of B and $M(\phi)=\int_{B} e^{\phi(x)} \mu(d x)$ for any $\phi \in B^{*}$.

[^0]Mathematics Subject Classification (1991): 60F10, 60B12

It has been shown by Bolthausen [1] that there is at least one $x^{*} \in B$ with $\boldsymbol{\Phi}\left(x^{*}\right)-h\left(x^{*}\right)=\sup _{x \in B}\{\boldsymbol{\Phi}(x)-h(x)\}$. Also, we assume the following as in Bolthausen [1]:
(A3) There is a unique $x^{*} \in B$ with $\boldsymbol{\Phi}\left(x^{*}\right)-h\left(x^{*}\right)=\sup _{x \in B}\{\boldsymbol{\Phi}(x)-h(x)\}$.
We will use x^{*} exclusively for this point.
Let v be the probability measure on B given by

$$
v(d x)=\frac{\exp \left(D \Phi\left(x^{*}\right)(x)\right) \mu(d x)}{M\left(D \Phi\left(x^{*}\right)\right)}
$$

As it has been shown by Bolthausen [1], the following proposition holds.
Proposition 1.1. Under the assumptions (A1), (A2), (A3),

$$
\begin{align*}
& x^{*}=\int_{B} x v(d x) \tag{1.1}\\
& h\left(x^{*}\right)=D \boldsymbol{\Phi}\left(x^{*}\right)\left(x^{*}\right)-\log M\left(D \boldsymbol{\Phi}\left(x^{*}\right)\right) \tag{1.2}
\end{align*}
$$

Let v_{0} be the 0 -centered v, i.e. $v_{0}=v \theta_{x^{*}}^{-1}$, where $\theta_{a}: B \rightarrow B$ is defined by $\theta_{a}(x)=x-a, x \in B$.

Let $\Gamma(\varphi, \psi)=\int_{B} \varphi(x) \psi(x) \nu_{0}(d x)$ be the covariance of φ and ψ for any $\varphi, \psi \in B^{*}$. Then Γ becomes an inner product on B^{*}. Let $H \equiv\left({\overline{B^{*}}}^{\Gamma}\right)^{*}$, where ${\overline{B^{*}}}^{\Gamma}$ means the completion of B^{*} with respect to Γ. Then we can show that H can be regarded as a dense subset of B. (See Proposition 2.1.)

In this paper, we assume the following, which is a little stronger than (A1):
(A1') There exists a constant $C_{3}>0$, such that

$$
\int_{B} \exp \left(C_{3}\|x\|^{2}\right) \mu(d x)<\infty
$$

It has been shown by Bolthausen [1] that the following holds:

$$
\Gamma(\phi, \phi) \geq D^{2} \boldsymbol{\Phi}\left(x^{*}\right)(\iota(\phi), \iota(\phi)), \quad \text { for any } \phi \in B^{*}
$$

where $\iota(\phi) \equiv \int_{B} \phi(x) x v_{0}(d x), \phi \in B^{*}$. From this, we see that all of the eigenvalues of the operator $\left.D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right|_{H \times H}$ are smaller than or equal to 1 . Furthermore we assume the following
(A4) All of the eigenvalues of $\left.D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right|_{H \times H}$ are smaller than 1 .
(A5) There exist constants $C_{4}>0$ and $\delta>0$, and a continuous bilinear function $K: B \times B \rightarrow \mathbf{R}$, such that

$$
\left|D^{3} \boldsymbol{\Phi}(x)(y, y, y)\right| \leq C_{4}\|y\| K(y, y)
$$

for any $y \in B$ and any $x \in B$ with $\left\|x-x^{*}\right\|<\delta$.
The following is our main result:

Theorem 1.2. Under the assumptions ($\mathrm{A}_{1}{ }^{\prime}$), (A 2) $\sim(\mathrm{A} 5)$ above, we have

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \exp \left(-n\left(\boldsymbol{\Phi}\left(x^{*}\right)-h\left(x^{*}\right)\right)\right) E^{\mu^{\otimes \infty}}\left[\exp \left(n \boldsymbol{\Phi}\left(\frac{S_{n}}{n}\right)\right)\right] \\
& \quad=\exp \left(\frac{1}{2} \int_{B} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)(x, x) v_{0}(d x)\right) \cdot \operatorname{det}_{2}\left(I_{H}-D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right)^{-\frac{1}{2}}
\end{aligned}
$$

Remark. The fact that $\left.D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right|_{H \times H}$ is a Hilbert-Schmidt function, which ensures that the factor $\operatorname{det}_{2}\left(I_{H}-D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right)$ above is well-defined, can be gotten from Proposition 2.2 later.

Bolthausen [1] studied the same problem under the different assumption. He showed the following

Theorem 1.3. Assume the following
(B) v_{0} satisfies central limit theorem, i.e., v_{n} defined by $v_{n}(A)=v_{0}^{* n}(\sqrt{n} A)$ converges weakly to a Gaussian measure γ on B.

Furthermore, assume (A1) ~ (A4), then

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \exp \left(-n\left(\boldsymbol{\Phi}\left(x^{*}\right)-h\left(x^{*}\right)\right)\right) E^{\mu^{\otimes \infty}}\left[\exp \left(n \boldsymbol{\Phi}\left(\frac{S_{n}}{n}\right)\right)\right] \\
& \quad=\int_{B} \exp \left(\frac{1}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)[y, y]\right) \gamma(d y) .
\end{aligned}
$$

If we assume that ν_{0} satisfies central limit theorem as in Bolthausen [1], (H, B, γ) becomes an abstract Wiener Space, and so from Kuo [4] (Page 83, Theorem 4.6 (Goodman)), we can get that $\left.D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right|_{H \times H}$ is a nuclear function. In this situation, the intergration $\int_{B} \exp \left(\frac{1}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)[y, y]\right) \gamma(d y)$ appeared in Bolthausen's theorem is nothing but $\exp \left(\frac{1}{2} \int_{B} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)(x, x) \nu_{0}(d x)\right) \cdot \operatorname{det}_{2}\left(I-D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right)^{-\frac{1}{2}}$, which is just the limit appeared in our theorem. And when the operator $\left.D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right|_{H \times H}$ is not nuclear, but just a Hilbert-Schmidt function, Bolthausen's one is not defined, while our one is still well-defined. The point here is that the condition that a function is Hilbert-Schmidt can be easily checked be integration, while the condition nuclear is not. Moreover, if B is a Hilbert space, then (A5) is also satisfied.

As mentioned above, the central limit theorem assumption is actually a very strong assumption as we are dealing with infinite dimension space. Our theorem claims that without the assumption that v_{0} satisfies central limit theorem, the result still holds under the assumptions ($\mathrm{A} 1^{\prime}$) and (A5).

Remark. In most of our proofs, (Al^{\prime}) can be substituted by (A1), but in the proof of Lemma 3.5, we use (A1') essentially to derive (3.18). We do not know whether one can weaken the assumption (Al^{\prime}).

2. Preparations

Proposition 2.1. H can be regarded as a dense subset of B.

Proof. The fact that H can be regarded as a subset of B can be seen from the definition of H, the continuity of $\iota:\left(B^{*},\|\cdot\|_{H^{*}}\right) \rightarrow\left(B,\|\cdot\|_{B}\right)$, and the completeness of B.

The denseness can be seen from the extension theory and the assumption that the closed affined space that contains supp ν_{0} is B, by using contradiction.

Proposition 2.2. Under the assumption (Al^{\prime}) (or just (A1)), for any continuous bilinear function $A: B \times B \rightarrow \mathbf{R},\left.A\right|_{H \times H}$ is a Hilbert-Schmidt function.

Proof. Since A is continuous, there exists a constant $C_{0}>0$, such that

$$
\left|A\left(y_{1}, y_{2}\right)\right| \leq C_{0}\left\|y_{1}\right\| \cdot\left\|y_{2}\right\|, \quad \text { for any } y_{1}, y_{2} \in B .
$$

Let $\left\{e_{n}\right\}_{n=1}^{\infty}$ be a complete orthonormal base of H^{*} with $\left\{e_{n}\right\}_{n=1}^{\infty} \subset B^{*}$. Then $\left\{\iota\left(e_{n}\right)\right\}_{n=1}^{\infty}$ is the corresponding base of H. Let $f_{n, m}: B \times B \rightarrow \mathbf{R}$ be defined as

$$
f_{n, m}\left(y_{1}, y_{2}\right):=<e_{n}, y_{1}>\cdot<e_{m}, y_{2}>, \quad y_{1}, y_{2} \in B
$$

then $\left(f_{n, m}, f_{n^{\prime}, m^{\prime}}\right)_{L^{2}\left(d v_{0}^{\otimes 2)}\right.}=\delta_{n n^{\prime}} \cdot \delta_{m m^{\prime}}$ for any $n, m, n^{\prime}, m^{\prime} \in \mathbf{N}$. Therefore,

$$
\begin{aligned}
\|A\|_{H . S .}^{2} & =\sum_{n, m=1}^{\infty} A\left(\iota\left(e_{n}\right), \iota\left(e_{m}\right)\right)^{2} \\
& =\sum_{n, m=1}^{\infty}\left(\int_{B} \int_{B} A\left(y_{1}, y_{2}\right) f_{n, m}\left(y_{1}, y_{2}\right) v_{0}\left(d y_{1}\right) v_{0}\left(d y_{2}\right)\right)^{2} \\
& \leq \int_{B} \int_{B}\left|A\left(y_{1}, y_{2}\right)\right|^{2} v_{0}\left(d y_{1}\right) v_{0}\left(d y_{2}\right) \leq C_{0}^{2}\left(\int_{B}\|y\|^{2} v_{0}(d y)\right)^{2},
\end{aligned}
$$

which is finite by assumption (Al^{\prime}) (or just (A1)).

3. Basic lemmas

For any $R>2$, let \tilde{v}_{R} be the probability measure on \mathbf{R} given by

$$
\tilde{v}_{R}(\{R\})=\frac{3}{4 R^{2}-1}, \quad \tilde{v}_{R}\left(\left\{\frac{1}{2}\right\}\right)=\frac{R-2}{2 R-1}, \quad \tilde{v}_{R}\left(\left\{-\frac{1}{2}\right\}\right)=\frac{R+2}{2 R+1} .
$$

By a simple calculation, we have

$$
E^{\tilde{v}_{R}}[Y]=0, \quad E^{\tilde{v}_{R}}\left[Y^{2}\right]=1 .
$$

For any $a>0$, let ρ_{a} be the probability measures on \mathbf{R} given by

$$
\rho_{a}(d R)=C_{a} \exp \left(-\frac{a R^{2}}{2}\right) d R, \quad R>2
$$

where C_{a} is the normalizing constant, i.e. $C_{a}=\left(\int_{2}^{\infty} e^{-\frac{a R^{2}}{2}} d R\right)^{-1}$. Let γ_{a} be the probability measures on \mathbf{R} given by

$$
\gamma_{a}(d y)=\int \tilde{v}_{R}(d y) \rho_{a}(d R)
$$

and let Y_{i} be i.i.d. random variables s.t. $P\left(Y_{i} \in d y\right)=\gamma_{a}(d y)$.
Lemma 3.1. For any $a>0$, there exists a constant D_{a}, depends only on a, such that

$$
\begin{equation*}
P\left(\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}\right| \geq z\right) \leq 2 \exp \left(-\frac{1}{4 D_{a}} z^{2}\right) \tag{3.1}
\end{equation*}
$$

for any $z \geq 0$ and any $n \geq 1$.
Proof. Let $f(\xi) \equiv \int_{\mathbf{R}} e^{\xi y} \gamma_{a}(d y)$. Then it can be shown that

$$
D_{a} \equiv \sup _{\xi \neq 0} \frac{1}{|\xi|^{2}} \log f(\xi)<\infty
$$

Therefore,

$$
\begin{aligned}
P\left(\left|\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Y_{i}\right| \geq z\right) & \leq e^{-\xi \cdot \sqrt{n} z} E\left[e^{\xi \sum_{i=1}^{n} Y_{i}}\right]+e^{-\xi \cdot \sqrt{n} z} E\left[e^{-\xi \sum_{i=1}^{n} Y_{i}}\right] \\
& \leq 2 e^{-\xi \cdot \sqrt{n} z} \cdot \exp \left(n D_{a}|\xi|^{2}\right)
\end{aligned}
$$

for any $\xi \neq 0$. Letting $\xi=\frac{z}{2 D_{a} \sqrt{n}}$, we get (3.1).
Lemma 3.2. Under the assumption ($A 1^{\prime}$) in section 1 , for any $c>0$, there exists a $a_{0}>0$ small enough, such that for any $n \geq 3$ and any $a \in\left(0, a_{0}\right]$,

$$
\begin{equation*}
c^{n}\left(\int_{B}\|x\|^{2 n} v_{0}(d x)\right)^{1 / 2} \leq \int_{\mathbf{R}} y^{n} \gamma_{a}(d y) \tag{3.2}
\end{equation*}
$$

Proof. From assumption (A^{\prime}) and the definition of ν_{0}, there exists a constant $C_{3}^{\prime}>0$, such that $C_{5} \equiv \int_{B} e^{C_{3}^{\prime}\|x\|^{2}} v_{0}(d x)<\infty$. So for any $t>0$,

$$
f(x) \equiv v_{0}(\|X\| \geq t) \leq C_{5} e^{-C_{3}^{\prime} t^{2}}
$$

Therefore, for any $n \geq 3$,

$$
\begin{equation*}
\int_{B}\|x\|^{n} v_{0}(d x) \leq n \int_{(0, \infty)} y^{n-1} \cdot e^{-\frac{y^{2}}{2}} d y \cdot C_{5} \cdot\left(\frac{1}{\sqrt{2 C_{3}^{\prime}}}\right)^{n} . \tag{3.3}
\end{equation*}
$$

On the other hand, from the definition of \tilde{v}_{R}, we can get by a calculation that for any $R>2$,

$$
\int_{\mathbf{R}} y^{n} \tilde{v}_{R}(d y) \geq \frac{3}{4} R^{n-2}
$$

for any $n \geq 3$. So let $\rho_{0, a}, a>0$ be the probability measures given by

$$
\rho_{0, a}(d R)=\frac{2 \sqrt{a}}{\sqrt{2 \pi}} e^{-\frac{a R^{2}}{2}} d R, \quad R>0 .
$$

then we have that for any $a<a_{0}$ and any $n \geq 3$,

$$
\begin{align*}
\int_{\mathbf{R}} y^{n} \gamma_{a}(d y) & \geq \frac{3}{4} \int_{(0, \infty)} R^{n-2} \rho_{a}(d R) \geq \frac{3}{4} \int_{(0, \infty)} R^{n-2} \rho_{0, a_{0}}(d R) \\
& =\frac{3}{4} \frac{2}{\sqrt{2 \pi}} \int_{(0, \infty)} y^{n-2} e^{-\frac{y^{2}}{2}} d y \cdot\left(\frac{1}{\sqrt{a_{0}}}\right)^{n-2} . \tag{3.4}
\end{align*}
$$

From (3.3) and (3.4), to prove the lemma, we only need to show that

$$
\begin{align*}
& c^{2 n} \cdot 2 n \int_{(0, \infty)} y^{2 n-1} e^{-\frac{y^{2}}{2}} d y \cdot C_{5} \cdot\left(\frac{1}{2 C_{3}^{\prime}}\right)^{n} \\
& \quad \leq\left(\frac{3}{2 \sqrt{2 \pi}}\right)^{2} \cdot\left(\int_{(0, \infty)} y^{n-2} \cdot e^{-\frac{y^{2}}{2}} d y\right)^{2} \cdot\left(\frac{1}{a_{0}}\right)^{n-2} \tag{3.5}
\end{align*}
$$

holds for any $n \geq 3$ if $a_{0}>0$ is small enough. But this is easy to be seen by a simple calculation and Stirling's formula.

Lemma 3.3. Assume the assumption (A^{\prime}) in section 1 . Let $\boldsymbol{\Psi}$ be a symmetric, bilinear function that satisfies the following conditions:

1. There exists a constant $C_{0}>0$, such that $|\Psi(x, y)| \leq C_{0}\|x\| \cdot\|y\|$ for any $x, y \in B$,
2. $\int_{B} \boldsymbol{\Psi}(x, y)^{2} \nu_{0}(d x) \nu_{0}(d y)=1$.

Then, there exists an $a_{0}>0$, depending only on C_{0} and $\int_{B}\|x\|^{2} \nu_{0}(d x)$, such that

$$
\begin{equation*}
E^{\nu_{0}^{\otimes \infty}}\left[\prod_{k=1}^{m} \boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)\right] \leq E^{\gamma_{a}^{\otimes \infty}}\left[\prod_{k=1}^{m} Y_{i_{k}} Y_{j_{k}}\right] \tag{3.6}
\end{equation*}
$$

holds for any $m \in \mathbf{N}$, any $i_{1}, \ldots, i_{m}, j_{1}, \ldots, j_{m} \in \mathbf{N}$ with $1 \leq i_{k}<j_{k} \leq n, k=$ $1, \cdots, m$, and any $a \in\left(0, a_{0}\right]$, where $\left\{X_{i}\right\}_{i=1}^{\infty}$ is the sequence of random variables defined in section 1 , and $\left\{Y_{i}\right\}_{i=1}^{\infty}$ is defined by $Y_{n}(\underline{y})=y_{n}, \underline{y}=\left(y_{1}, y_{2}, \ldots\right) \in \mathbf{R}^{\mathbf{N}}$.

Note. As ν_{0} has mean 0 , we get from the bilinearity of $\boldsymbol{\Psi}$ that $\int_{B} \boldsymbol{\Psi}(x, y) v_{0}(d y)=0$ for any $x \in B$.

Proof. To simple the notation, in the proof of this lemma, we will write just E, which means the expectation with respect to $v_{0}^{\otimes \infty}$ when deal with $\left\{X_{i}\right\}_{i=1}^{\infty}$, and $\gamma_{a}^{\otimes \infty}$ when deal with $\left\{Y_{i}\right\}_{i=1}^{\infty}$, when there is no risk of being confused.

Let us consider the graph that consists all the i_{k}, j_{k} 's as its nodes and all the $i_{k} j_{k}$'s as its lines. We may assume that the graph is connected, since if not, from the independent of the X_{i} 's and Y_{i} 's, we can consider each connected component, respectively.

Let

$$
\alpha_{\ell}=\sharp\left\{k: i_{k}=\ell \text { or } j_{k}=\ell\right\}, \quad 1 \leq \ell \leq n .
$$

If there exists a ℓ such that $\alpha_{\ell}=1$, then (3.6) obviously holds as $0=0$. So, we may assume that $\alpha_{\ell}=0$ or $\alpha_{\ell} \geq 2$ for all ℓ. Let

$$
L=\left\{\ell ; \alpha_{\ell} \geq 2\right\}, \quad L_{0}=\left\{\ell ; \alpha_{\ell} \geq 3\right\} .
$$

If $L=L \backslash L_{0}$, then all of the i_{k} 's appear exactly twice, so from Schwartz's inequality and the independence of the X_{i} 's and the assumptions, it could be seen that

$$
\begin{align*}
E^{v_{0}^{\otimes \infty}}\left[\prod_{k=1}^{m} \boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)\right] & \leq \prod_{k=1}^{m} E\left[\boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)^{2}\right]^{1 / 2}=1 \tag{3.7}\\
& =E^{\gamma_{a}^{\otimes \infty}}\left[\prod_{k=1}^{m} Y_{i_{k}} Y_{j_{k}}\right]
\end{align*}
$$

To see the inequality in the first line, we only need to notice that when r is an odd number,

$$
\begin{aligned}
& E\left[\boldsymbol{\Psi}\left(x, X_{1}\right) \boldsymbol{\Psi}\left(X_{1}, X_{2}\right) \cdots \boldsymbol{\Psi}\left(X_{r}, y\right)\right] \\
&= E\left[\left(\boldsymbol{\Psi}\left(x, X_{1}\right) \boldsymbol{\Psi}\left(X_{2}, X_{3}\right) \cdots \boldsymbol{\Psi}\left(X_{r-1}, X_{r}\right)\right)\right. \\
&\left.\cdot\left(\boldsymbol{\Psi}\left(X_{1}, X_{2}\right) \boldsymbol{\Psi}\left(X_{3}, X_{4}\right) \cdots \boldsymbol{\Psi}\left(X_{r}, y\right)\right)\right] \\
& \leq E\left[\left(\boldsymbol{\Psi}\left(x, X_{1}\right) \boldsymbol{\Psi}\left(X_{2}, X_{3}\right) \cdots \boldsymbol{\Psi}\left(X_{r-1}, X_{r}\right)\right)^{2}\right]^{1 / 2} \\
& \cdot E\left[\left(\boldsymbol{\Psi}\left(X_{1}, X_{2}\right) \boldsymbol{\Psi}\left(X_{3}, X_{4}\right) \cdots \boldsymbol{\Psi}\left(X_{r}, y\right)\right)^{2}\right]^{1 / 2} \\
&= E\left[\boldsymbol{\Psi}\left(x, X_{1}\right)^{2}\right]^{1 / 2} E\left[\boldsymbol{\Psi}\left(X_{1}, X_{2}\right)^{2}\right]^{1 / 2} \cdots E\left[\boldsymbol{\Psi}\left(X_{r}, y\right)^{2}\right]^{1 / 2} \\
&= E\left[\boldsymbol{\Psi}\left(x, X_{1}\right)^{2}\right]^{1 / 2} \cdot E\left[\boldsymbol{\Psi}\left(X_{r}, y\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

for any x, y. The case when r is even is the same.
For the case when $L \neq L \backslash L_{0}$, by using (3.7), we have that

$$
\begin{aligned}
& E^{v_{0}^{\otimes \infty}}\left[\prod_{k=1}^{m} \boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)\right] \\
& \quad=E\left[E\left[\prod_{k=1}^{m} \boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right) \mid \sigma\left\{X_{x}, x \in L_{0}\right\}\right]\right]
\end{aligned}
$$

$$
\begin{equation*}
\leq E\left[\prod_{k: i_{k}, j_{k} \in L_{0}}\left|\boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)\right|\left(\prod_{k \in A} E\left[\boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)^{2} \mid \sigma\left\{X_{x}, x \in L_{0}\right\}\right]\right)^{1 / 2}\right] \tag{3.8}
\end{equation*}
$$

where A in the third production is defined as

$$
\begin{aligned}
A= & \left\{k:\left(i_{k} \in L_{0} \quad \& \quad j_{k} \in L \backslash L_{0}\right),\right. \\
& \text { or } \left.\left(j_{k} \in L_{0} \quad \& \quad i_{k} \in L \backslash L_{0}\right)\right\} .
\end{aligned}
$$

So, let $g(x)=E\left[\Psi\left(x, X_{1}\right)^{2}\right]^{1 / 2}$ and

$$
\beta_{\ell}=\sharp\left\{k:\left(i_{k}=\ell \& j_{k} \in L \backslash L_{0}\right), \text { or }\left(i_{k} \in L \backslash L_{0} \& j_{k}=\ell\right)\right\},
$$

then we can get from (3.8) that

$$
\begin{align*}
E\left[\prod_{k=1}^{m} \boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)\right] \leq & E\left[\prod_{k: i_{k}, j_{k} \in L_{0}}\left|\boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)\right|^{2}\right]^{1 / 2} \\
& \cdot E\left[\prod_{k \in A} E\left[\boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)^{2} \mid \sigma\left\{X_{x}, x \in L_{0}\right\}\right]\right]^{1 / 2} \\
= & E\left[\prod_{k: i_{k}, j_{k} \in L_{0}}\left|\boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)\right|^{2}\right]^{1 / 2} \cdot E\left[\prod_{\ell \in L_{0}} g\left(X_{\ell}\right)^{2 \beta_{\ell}}\right]^{1 / 2} . \tag{3.9}
\end{align*}
$$

Since $|\boldsymbol{\Psi}(x, y)| \leq C_{0}\|x\| \cdot\|y\|$ for any $x, y \in B$ by the assumption,

$$
\begin{align*}
& E\left[\prod_{k: i_{k}, j_{k} \in L_{0}}\left|\boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)\right|^{2}\right]^{1 / 2} \\
& \quad \leq E\left[\prod_{k: i_{k}, j_{k} \in L_{0}} C_{0}^{2}\left\|X_{i_{k}}\right\|^{2}\left\|X_{j_{k}}\right\|^{2}\right]^{1 / 2} \\
& \quad=C_{0}^{\frac{1}{2} \sum_{\ell \in L_{0}\left(\alpha_{\ell}-\beta_{\ell}\right)}^{\prod_{\ell \in L_{0}} E\left[\left\|X_{\ell}\right\|^{2\left(\alpha_{\ell}-\beta_{\ell}\right)}\right]^{1 / 2}}} . \tag{3.10}
\end{align*}
$$

Also, from the definition of g, we have

$$
\begin{aligned}
g(x) & =E\left[\left|\boldsymbol{\Psi}\left(x, X_{1}\right)\right|^{2}\right]^{1 / 2} \leq E\left[C_{0}^{2}\|x\|^{2}\left\|X_{1}\right\|^{2}\right]^{1 / 2} \\
& =C_{0}\|x\| E^{\nu_{0}}\left[\left\|X_{1}\right\|^{2}\right]^{1 / 2}=C_{6}\|x\|
\end{aligned}
$$

where $C_{6} \equiv C_{0} E^{\nu_{0}}\left[\left\|X_{1}\right\|^{2}\right]^{1 / 2}$. So,

$$
\begin{align*}
E\left[\prod_{\ell \in L_{0}} g\left(X_{\ell}\right)^{2 \beta_{\ell}}\right]^{1 / 2} & =\prod_{\ell \in L_{0}} E\left[g\left(X_{\ell}\right)^{2 \beta_{\ell}}\right]^{1 / 2} \\
& \leq \prod_{\ell \in L_{0}} E\left[\left(C_{6}\left\|X_{\ell}\right\|\right)^{2 \beta_{\ell}}\right]^{1 / 2}=\prod_{\ell \in L_{0}} C_{6} \beta_{\ell} E\left[\left\|X_{\ell}\right\|^{2 \beta_{\ell}}\right]^{1 / 2} \\
& =C_{6} \sum_{\ell \in L_{0}} \beta_{\ell} \prod_{\ell \in L_{0}} E\left[\left\|X_{\ell}\right\|^{2 \beta_{\ell}}\right]^{1 / 2} . \tag{3.11}
\end{align*}
$$

Let $C_{7} \equiv \max \left\{C_{0}, C_{6}, 1\right\}$, then from (3.9), (3.10), (3.11), we see that

$$
\begin{aligned}
& E\left[\prod_{k=1}^{m} \boldsymbol{\Psi}\left(X_{i_{k}}, X_{j_{k}}\right)\right] \\
& \leq C_{0}^{\frac{1}{2} \sum_{\ell \in L_{0}}\left(\alpha_{\ell}-\beta_{\ell}\right)} \prod_{\ell \in L_{0}} E\left[\left\|X_{\ell}\right\|^{2\left(\alpha_{\ell}-\beta_{\ell}\right)}\right]^{1 / 2} \cdot C_{6} \sum_{\ell \in L_{0}} \beta_{\ell} \prod_{\ell \in L_{0}} E\left[\left\|X_{\ell}\right\|^{2 \beta_{\ell}}\right]^{1 / 2} \\
& \leq C_{7}^{\frac{1}{2} \sum_{\ell \in L_{0}}\left(\alpha_{\ell}+\beta_{\ell}\right)} \prod_{\ell \in L_{0}}\left(E\left[\left\|X_{\ell}\right\|^{2\left(\alpha_{\ell}-\beta_{\ell}\right)}\right] E\left[\left\|X_{\ell}\right\|^{2 \beta_{\ell}}\right]\right)^{1 / 2} \\
& \leq C_{7}^{\sum_{\ell \in L_{0}} \alpha_{\ell}} \prod_{\ell \in L_{0}} E^{\nu_{0}^{\otimes \infty}}\left[\left\|X_{\ell}\right\|^{2 \alpha_{\ell}}\right]^{1 / 2} .
\end{aligned}
$$

On the other hand,

$$
E^{\gamma_{a}^{\otimes \infty}}\left[\prod_{k=1}^{m}\left(Y_{i_{k}} Y_{j_{k}}\right)\right]=\prod_{\ell \in L_{0}} E^{\gamma_{a}^{\otimes \infty}}\left[Y_{\ell}^{\alpha_{\ell}}\right] .
$$

So we only need to take a proper a_{0}, such that for any $a \leq a_{0}$, the following holds:

$$
C_{7}^{\alpha_{\ell}} E^{\nu_{0}^{\otimes \infty}}\left[\left\|X_{\ell}\right\|^{2 \alpha_{\ell}}\right]^{1 / 2} \leq E^{\gamma_{a}^{\otimes \infty}}\left[Y_{\ell}^{\alpha_{\ell}}\right], \quad \text { for any } \ell \in L_{0}
$$

but this could be gotten from Lemma 3.2.
The following lemma has been proved in Kusuoka-Tamura [5] (Lemma 2.1 in [5]). We write it here as it will be used later.

Lemma 3.4. Let $Z_{i}, i \in \mathbf{N}$ be i.i.d. \mathbf{R}^{d}-valued random variables, with mean 0 and finite variance. Assume that there exist constants A_{1}, A_{2}, A_{3}, such that

$$
\begin{aligned}
& E\left[Z_{1} \cdot{ }^{t} Z_{1}\right] \leq A_{1} \cdot I_{d}, \\
& E\left[\exp \left(A_{2}\left|Z_{1}\right|\right)\right] \leq A_{3} .
\end{aligned}
$$

Then for any $b<\frac{1}{2 A_{1}}$, there exist constants $\delta>0$ and $A_{4}>0$, such that

$$
E\left[\exp \left(b \cdot \frac{1}{n}\left|\sum_{i=1}^{n} Z_{i}\right|^{2}\right),\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}\right|<\delta\right] \leq A_{4}, \quad \text { for any } n \in \mathbf{N}
$$

where δ depends only on A_{1}, A_{2}, A_{3} and b, and A_{4} depends only on d, A_{1}, A_{2}, A_{3} and b.

Lemma 3.5. Assume the same assumptions and use the same notations as in Lemma 3.3. Then for any $b<\frac{1}{2}$, there exists $a \varepsilon>0$, depends only on a_{0} and b, where a_{0} is the one chosen in Lemma 3.3, such that
$\sup _{n \in \mathbf{N}} E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(b \cdot \frac{1}{n} \sum_{1 \leq i \neq j \leq n} \boldsymbol{\Psi}\left(X_{i}, X_{j}\right)\right),\left|\frac{1}{n^{2}} \sum_{1 \leq i \neq j \leq n} \boldsymbol{\Psi}\left(X_{i}, X_{j}\right)\right|<\varepsilon\right]<\infty$.

Proof. First, since $n!\sim \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}$, there exists a constant $C_{8}>0$, such that $n!\geq C_{8}^{-1} n^{n} e^{-2 n}$. So, for $m=\left[n \varepsilon e^{2}\right]$,

$$
\begin{align*}
\sum_{k=m+1}^{\infty} \frac{(n \varepsilon)^{2 k}}{(2 k)!} & \leq C_{8} \sum_{k=m+1}^{\infty}\left(\frac{n \varepsilon e^{2}}{2 k}\right)^{2 k} \leq C_{8} \sum_{k=0}^{\infty}\left(\frac{n \varepsilon e^{2}}{2 m+2}\right)^{k} \\
& \leq C_{8} \frac{1}{1-\frac{n \varepsilon e^{2}}{2 m+2}} \leq 2 C_{8} \tag{3.13}
\end{align*}
$$

Also, in general, for any random variable Z,

$$
\begin{align*}
& E[\exp (n Z),|Z| \leq \varepsilon] \\
& \quad \leq 2 E\left[\sum_{k=0}^{m} \frac{(n Z)^{2 k}}{(2 k)!},|Z| \leq \varepsilon\right]+2 E\left[\sum_{k=m+1}^{\infty} \frac{(n Z)^{2 k}}{(2 k)!},|Z| \leq \varepsilon\right], \tag{3.14}
\end{align*}
$$

and we can get from Lemma 3.3 that

$$
\begin{equation*}
E^{\nu_{0}^{\otimes \infty}}\left[\left(\sum_{1 \leq i \neq j \leq n} \boldsymbol{\Psi}\left(X_{i}, X_{j}\right)\right)^{m}\right] \leq E^{\gamma_{a}^{\otimes \infty}}\left[\left(\sum_{i=1}^{n} Y_{i}\right)^{2 m}\right] \tag{3.15}
\end{equation*}
$$

for any $m \in \mathbf{N}$ and any $a \leq a_{0}$, where a_{0} is the one chosen in Lemma 3.3.
So, let $P_{m}(\xi)=\sum_{k=0}^{m} \frac{|\xi|^{2 k}}{(2 k)!}, m \in \mathbf{N}$, and we can get from (3.13), (3.14), (3.15) that for $m=\left[b n \varepsilon e^{2}\right]$,

$$
\begin{aligned}
& E\left[\exp \left(b \cdot \frac{1}{n} \sum_{1 \leq i \neq j \leq n} \boldsymbol{\Psi}\left(X_{i}, X_{j}\right)\right),\left|\frac{1}{n^{2}} \sum_{1 \leq i \neq j \leq n} \boldsymbol{\Psi}\left(X_{i}, X_{j}\right)\right| \leq \varepsilon\right] \\
& \quad \leq 4 C_{8}+2 E\left[\sum_{k=0}^{m} \frac{\left(b \frac{1}{n} \sum_{i \neq j} \boldsymbol{\Psi}\left(X_{i}, X_{j}\right)\right)^{2 k}}{(2 k)!}\right]
\end{aligned}
$$

$$
\begin{align*}
& \leq 4 C_{8}+2 E\left[P_{m}\left(b \frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right),\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right|<\delta\right] \\
& \quad+2 E\left[P_{m}\left(b \frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right),\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right| \geq \delta\right], \text { for any } \delta>0 . \tag{3.16}
\end{align*}
$$

For the second term in the last expression, from the definition of γ_{a} and the calculation in Lemma 3.1, we see that all of the conditions in Lemma 3.4 is satisfied. So, from Lemma 3.4, for any $b<\frac{1}{2}$, there exists a $\delta>0$, such that

$$
\begin{align*}
& E\left[P_{m}\left(b \frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right),\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right|<\delta\right] \\
& \quad \leq E\left[\exp \left(b \frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right),\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right|<\delta\right] \leq^{\exists} C_{9} . \tag{3.17}
\end{align*}
$$

Note that δ does not depend on ε here.
For the last term, since

$$
P_{m}(\xi) \leq c^{-2 m} \exp (c|\xi|)
$$

for any $c \in(0,1)$, we can get that

$$
\begin{align*}
E & {\left[P_{m}\left(b \frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right),\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right| \geq \delta\right] } \\
& \leq c^{-2 m} E\left[\exp \left(c b \frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right),\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right| \geq \delta\right] \\
& \leq c^{-2 m} E\left[\exp \left(2 c b \frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right)\right]^{\frac{1}{2}} P\left(\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right| \geq \delta\right)^{\frac{1}{2}} . \tag{3.18}
\end{align*}
$$

But here, from the definition of Y_{i}, we can get from Lemma 3.1 that if $A \equiv$ $\frac{1}{4 D_{a}}-2 c b>0$, which can be done for any fixed a and b by taking c small enough, then

$$
\begin{equation*}
E\left[\exp \left(2 c b \frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right)\right] \leq \frac{4 c b}{A}+1<\infty \tag{3.19}
\end{equation*}
$$

Also, by Cramér's Theorem (c.f. [6] page 29, Theorem 1.3.13), we see that

$$
\begin{align*}
\gamma_{a}^{\otimes \infty}\left(\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right| \geq \delta\right) & \leq \exp \left(-n I_{\gamma_{a}}(\delta)\right)+\exp \left(-n I_{\gamma_{a}}(-\delta)\right) \\
& \leq 2 e^{-n \alpha(\delta)}, \tag{3.20}
\end{align*}
$$

where

$$
\begin{aligned}
I_{\gamma_{a}}(\delta) & =\sup \left\{\xi \delta-\log \int e^{\xi x} \gamma_{a}(d x), \xi \geq 0\right\}>0 \\
I_{\gamma_{a}}(-\delta) & =\sup \left\{-\xi \delta-\log \int e^{\xi x} \gamma_{a}(d x), \xi \leq 0\right\}>0, \\
\alpha(\delta) & \equiv I_{\gamma_{a}}(\delta) \wedge I_{\gamma_{a}}(-\delta) .
\end{aligned}
$$

We have taken m to be $m=\left[b n \varepsilon e^{2}\right]$, so if we take $\varepsilon>0$ small enough, such that

$$
\frac{\alpha(\delta)}{2}+2 b \varepsilon e^{2} \log c>0
$$

then from (3.18), (3.19), (3.20), we have

$$
\begin{align*}
E & {\left[P_{m}\left(b \frac{1}{n}\left(\sum_{i=1}^{n} Y_{i}\right)^{2}\right),\left|\frac{1}{n} \sum_{i=1}^{n} Y_{i}\right| \geq \delta\right] } \\
& \leq\left(\frac{4 c b}{A}+1\right)^{\frac{1}{2}} e^{-2 m \log c}\left(2 e^{-n \alpha(\delta)}\right)^{\frac{1}{2}} \\
& \leq\left(2\left(\frac{4 c b}{A}+1\right)\right)^{\frac{1}{2}} e^{2 \log c} \exp \left(-n\left(\frac{\alpha(\delta)}{2}+2 b \varepsilon e^{2} \log c\right)\right) \\
& <^{\exists} C_{10}, \quad \text { for any } n \in \mathbf{N}, \tag{3.21}
\end{align*}
$$

the c here is the one chosen before.
(3.16), (3.17) and (3.21) completes the proof of the lemma.

Lemma 3.6. Assume the same conditions as in Lemma 3.5. Then for any $b<\frac{1}{2}$, there exist constants $\varepsilon_{1}>0$ and $\varepsilon_{2}>0$, such that the following holds:

$$
\begin{aligned}
& \sup _{n \in \mathbf{N}} E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(b \cdot n \boldsymbol{\Psi}\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)\right),\right. \\
&\left.\left\{\left|\frac{1}{n^{2}} \sum_{i=1}^{n} \boldsymbol{\Psi}\left(X_{i}, X_{i}\right)\right|<\varepsilon_{1}\right\} \cap\left\{\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\|<\varepsilon_{2}\right\}\right]<\infty .
\end{aligned}
$$

Proof. Let $N_{0} \equiv \frac{q b C_{0}}{C_{3}^{\prime}}$. For $n=1, \ldots, N_{0}$, the item is obviously bounded. So we only need to do with $n>N_{0}$. Since $b<\frac{1}{2}$, there exists a $p>1$ small enough such that $p \cdot b<\frac{1}{2}$. Let q be the dual number of p, that is, $\frac{1}{p}+\frac{1}{q}=1$, By Hölder's inequality and Lemma 3.5, we only need to show that

$$
\sup _{n>N_{0}} E^{v_{0}^{\otimes \infty}}\left[\exp \left(q b \cdot \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\Psi}\left(X_{i}, X_{i}\right)\right)\right]<\infty .
$$

But by Hölder's inequality, for any $n>N_{0}=\frac{q b C_{0}}{C_{3}^{\prime}}$,

$$
E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(q b \cdot \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{\Psi}\left(X_{i}, X_{i}\right)\right)\right] \leq E^{\nu_{0}}\left[\exp \left(C_{3}^{\prime}\|X\|^{2}\right)\right]^{\frac{q b C_{0}}{c_{3}^{\prime}}}<\infty
$$

This completes the proof of the lemma.
Lemma 3.7. Assume the assumption (A^{\prime}) in section 1 . Assume that Ψ is a symmetric, bilinear function that satisfies the following conditions:

1. There exists a constant $C_{0}>0$, such that

$$
|\boldsymbol{\Psi}(x, y)| \leq C_{0}\|x\| \cdot\|y\|, \quad \text { for any } x, y \in B
$$

2. $\int_{B} \boldsymbol{\Psi}(x, y)^{2} \nu_{0}(d x) \nu_{0}(d y) \equiv b<\frac{1}{2}$.

Then there exists a $\varepsilon>0$, such that

$$
\begin{equation*}
\sup _{n \in \mathbf{N}} E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(\frac{1}{n} \sum_{i, j=1}^{n} \boldsymbol{\Psi}\left(X_{i}, X_{j}\right)\right),\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\|<\varepsilon\right]<\infty . \tag{3.22}
\end{equation*}
$$

Proof. Since $\Psi(x, y) \leq C_{0}\|x\| \cdot\|y\|$ for any $x, y \in B$, we have

$$
\begin{aligned}
v_{0}^{\otimes \infty}\left(\left|\frac{1}{n^{2}} \sum_{i=1}^{n} \boldsymbol{\Psi}\left(X_{i}, X_{i}\right)\right| \geq \varepsilon_{1}\right) & \leq v_{0}^{\otimes \infty}\left(\sum_{i=1}^{n}\left\|X_{i}\right\|^{2} \geq \frac{\varepsilon_{1}}{C_{0}} \cdot n^{2}\right) \\
& \leq e^{-\frac{\varepsilon_{1}}{C_{0}} \cdot n^{2} \cdot C_{3}^{\prime}} \cdot\left(E^{\nu_{0}}\left[e^{C_{3}^{\prime}\left\|X_{1}\right\|^{2}}\right]\right)^{n}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(n \boldsymbol{\Psi}\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)\right),\left\{\left|\frac{1}{n^{2}} \sum_{i=1}^{n} \boldsymbol{\Psi}\left(X_{i}, X_{i}\right)\right|>\varepsilon_{1}\right\} \cap\left\{\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\|<\varepsilon_{2}\right\}\right] \\
& \leq E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(2 n \boldsymbol{\Psi}\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)\right),\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\|<\varepsilon_{2}\right]^{1 / 2} \\
& \quad \cdot v_{0}^{\otimes \infty}\left(\left|\frac{1}{n^{2}} \sum_{i=1}^{n} \boldsymbol{\Psi}\left(X_{i}, X_{i}\right)\right|>\varepsilon_{1}\right)^{1 / 2} \\
& \leq \exp \left(n C_{0} \varepsilon_{2}^{2}\right) \cdot\left(\exp \left(-\frac{\varepsilon_{1}}{C_{0}} \cdot n^{2} \cdot C_{3}^{\prime}\right) \cdot\left(E^{\nu_{0}}\left[e^{C_{3}^{\prime}\left\|X_{1}\right\|^{2}}\right]\right)^{n}\right)^{\frac{1}{2}},
\end{aligned}
$$

which is obviously bounded for $n \in \mathbf{N}$.
This accompanied with Lemma 3.6 gives our assertion.

4. Proof of the main theorem

In this section, we will give the proof of the main theorem.
As in Bolthausen [1], by a easy calculation and Proposition 1.1, we can get that

$$
\begin{aligned}
& \exp \left(-n\left(\boldsymbol{\Phi}\left(x^{*}\right)-h\left(x^{*}\right)\right)\right) E^{\mu^{\otimes \infty}}\left[\exp \left(n \boldsymbol{\Phi}\left(\frac{S_{n}}{n}\right)\right)\right] \\
& \quad=E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(\frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)+n R\left(x^{*}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)\right)\right]
\end{aligned}
$$

where $R\left(x^{*}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)$ is the 3rd remainder of the Taylor's formula.
Therefore, to proof Theorem 1.2, we only need to show that the following two lemmas hold:

Lemma 4.1. There exists a constant $\varepsilon>0$, such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(\frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)+n R\left(x^{*}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)\right),\right. \\
& \left.\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\|<\varepsilon\right] \\
& =\exp \left(\frac{1}{2} \int_{B} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)(x, x) v_{0}(d x)\right) \cdot \operatorname{det}_{2}\left(I-D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right)^{-\frac{1}{2}} \equiv A . \tag{4.1}
\end{align*}
$$

Lemma 4.2. For any $\varepsilon>0$,

$$
\begin{align*}
\limsup _{n \rightarrow \infty} \frac{1}{n} \log E^{\nu_{0}^{\otimes \infty}}[& \exp \left(\frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)\right. \\
& \left.\left.+n R\left(x^{*}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)\right),\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\| \geq \varepsilon\right]<0 . \tag{4.2}
\end{align*}
$$

Lemma 4.2 can be gotten from the following proposition, which has been shown by Donsker-Varadhan [3]:

Proposition 4.3. 1. $h(x)$ is a lower semi-continuous function, and $\{x: h(x) \leq r\}$
is compact in B for $\forall r \in[0, \infty)$,
2. For any closed set $K \subset B$,

$$
\limsup _{n \rightarrow \infty} \frac{1}{n} \log \mu^{\otimes \infty}\left(\left\{\underline{x} ; \frac{1}{n} \sum_{i=1}^{n} x_{i} \in K\right\}\right) \leq-\inf \{h(x) ; x \in K\},
$$

3. For any open set $G \subset B$,

$$
\liminf _{n \rightarrow \infty} \frac{1}{n} \log \mu^{\otimes \infty}\left(\left\{\underline{x} ; \frac{1}{n} \sum_{i=1}^{n} x_{i} \in G\right\}\right) \geq-\inf \{h(x) ; x \in G\} .
$$

To prove Lemma 4.1, we will give the following proposition and lemma first:

Proposition 4.4. Let $\boldsymbol{\Psi}: B \times B \rightarrow \mathbf{R}$ be a function such that $\left.\boldsymbol{\Psi}\right|_{H \times H}$ is a Hilbert-Schmidt function with eigenvalues $a_{\ell}, \ell=1,2, \cdots$ and eigenvectors $e_{\ell}, \ell=$ $1,2, \cdots$, i.e.

$$
\Psi(x, y)=\sum_{k=1}^{\infty} a_{k}\left(e_{k}, x\right)\left(e_{k}, y\right), \quad \text { for all } x, y \in H
$$

Then e_{k} can be extended to the whole B for any k that satisfies $a_{k} \neq 0$, and $\sum_{k=1}^{N} a_{k}\left(e_{k}, x\right)\left(e_{k}, y\right)$ converges to $\Psi(x, y)$ in $L^{2}\left(d \nu_{0}^{\otimes 2}, B \times B\right)$ as $N \rightarrow \infty$.

Proof. $\left\{e_{\ell}\right\}_{\ell \in \mathbf{N}}$ is a complete orthogal normalized base of H^{*}. Let $f_{\ell}, \ell \in \mathbf{N}$ be the dual base of H. Since $\Psi\left(f_{\ell}, x\right)=a_{\ell}\left(e_{\ell}, x\right)$ for any $x \in H$ for each ℓ, and the left hand side is continuous with respect to $x \in B$, we can extend e_{ℓ} to the whole B in this way if $a_{\ell} \neq 0$. The others are easy.
Lemma 4.5. Under the assumptions (A1'), (A2) ~ (A5) in section 1, there exist constants $p>1$ and $\varepsilon>0$, such that
$\sup _{n \in \mathbf{N}} E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(p \cdot \frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)\right),\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\|<\varepsilon\right]<\infty$.
Proof. Let $a_{\ell} \in \mathbf{R}$ and $e_{\ell} \in H^{*}, \ell \in \mathbf{N}$ be the eigenvalues and the corresponding eigenvectors of $\left.D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right|_{H \times H}$, then

$$
D^{2} \boldsymbol{\Phi}\left(x^{*}\right)(x, y)=\sum_{\ell=1}^{\infty} a_{\ell}\left(e_{\ell}, x\right)\left(e_{\ell}, y\right), \quad \text { for any } x, y \in H
$$

$e_{\ell}, \ell=1,2, \cdots$ becomes a orthonormal base of H^{*}. Let $f_{\ell}, \ell=1,2, \cdots$ be the dual base of H, then as done in Proposition 4.4, for any ℓ with $a_{\ell} \neq 0$, we can assume that $e_{\ell} \in B^{*}$.

For any $N \in \mathbf{N}$, let

$$
\begin{aligned}
& \boldsymbol{\Psi}_{1}^{(N)}(x, y)=\sum_{k=1}^{N} a_{k}\left(e_{k}, x\right)\left(e_{k}, y\right), \\
& \boldsymbol{\Psi}_{2}^{(N)}(x, y)=D^{2} \boldsymbol{\Phi}\left(x^{*}\right)(x, y)-\boldsymbol{\Psi}_{1}(N)(x, y), \quad x, y \in B .
\end{aligned}
$$

Since $D^{2} \boldsymbol{\Phi}\left(x^{*}\right)$ is a Hilbert-Schmidt function from Proposition 2.2, we can see that $\Psi_{2}^{(N)}$ is also a Hilbert-Schmidt function. Also, from Proposition 4.4, for any $\delta>0$, there exists a $N_{0} \in \mathbf{N}$ large enough, such that $\int_{B \times B} \Psi_{2}^{\left(N_{0}\right)}(x, y)^{2} v_{0}(d x) v_{0}(d y)<\delta$. For the sake of simply, from now on, we will write $\boldsymbol{\Psi}_{i}$ for $\boldsymbol{\Psi}_{i}^{\left(N_{0}\right)}, i=1,2$. From the definition of $\boldsymbol{\Psi}_{1}$ and $\boldsymbol{\Psi}_{2}$, we see that they are bilinear and symmetric.

From Hölder's inequation, for any $r, s>1: \frac{1}{r}+\frac{1}{s}=1$, we have

$$
\begin{aligned}
& E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(p\left\{\frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)+n R\left(x^{*}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)\right\}\right),\right. \\
& \left.\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\|<\varepsilon\right]
\end{aligned}
$$

$$
\begin{align*}
\leq & E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(p \cdot r \frac{n}{2} \boldsymbol{\Psi}_{1}\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)\right),\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right]^{\frac{1}{r}} \tag{4.3}\\
& \cdot E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(p \cdot s \cdot \frac{n}{2} \boldsymbol{\Psi}_{2}\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)\right),\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right]^{\frac{1}{s}} . \tag{4.4}
\end{align*}
$$

For (4.3), since $\boldsymbol{\Psi}_{1}$ is a finite type, we can consider X_{i} 's as finite dimensional valued random variables. Also, since $a_{k}<1, k \in \mathbf{N}$ from the assumption (A4), and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$ from the fact that $\sum_{n=1}^{\infty} a_{n}^{2}<\infty$, there exists a constant $a<1$, such that $a_{n}<a$ for any $n \in \mathbf{N}$. Take $p>1$ such that $a \cdot p<1$, and fix it. Then take $r>1$ small enough, and we can get from Lemma 3.4 that this term is bounded for $n \in \mathbf{N}$, for $\varepsilon>0$ small enough. Note that the $p>1$ and $r>1$ here depend only on $a_{k}, k \in \mathbf{N}$, and are independent to N.

For (4.4), as mentioned above, $\boldsymbol{\Psi}_{2}$ satisfies all of the conditions in Lemma 3.7 except (3). But for any fixed s, we can take δ small enough such that (3) is being satisfied. So, from Lemma 3.7, (4.4) is bounded for $n \in \mathbf{N}$, for N_{0} large enough such that $\delta>0$ is small enough.

This completes the proof of the lemma.
Now, we will give the proof of Lemma 4.1 , using the proposition and lemma above.

Proof of Lemma 4.1. Here, from Lemma 4.2 , we have that

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left|E\left[\exp \left(\frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)+n R\left(x^{*}, \frac{S_{n}}{n}\right)\right),\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right]-A\right| \\
&= \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty}\left|E\left[\exp \left(\frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)+n R\left(x^{*}, \frac{S_{n}}{n}\right)\right),\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right]-A\right| \\
& \leq \lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \left\lvert\, E\left[\exp \left(\frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)+n R\left(x^{*}, \frac{S_{n}}{n}\right)\right),\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right]\right. \\
& \left.\quad-E\left[\exp \left(\frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)\right),\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right] \right\rvert\, \tag{4.5}\\
& \left.\quad+\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} E\left[\exp \left(\frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)\right),\left\|\frac{S_{n}}{n}\right\|<\epsilon\right]-A \right\rvert\, \tag{4.6}
\end{align*}
$$

so the lemma will be shown if we can show that (4.5) equals 0 , and that there exists a constant $\varepsilon_{0}>0$, such that for any $\varepsilon<\varepsilon_{0}$,

$$
\begin{equation*}
E^{\nu_{0}^{\otimes \infty}}\left[\exp \left(\frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}, \frac{1}{n} \sum_{i=1}^{n} X_{i}\right)\right),\left\|\frac{1}{n} \sum_{i=1}^{n} X_{i}\right\|<\varepsilon\right] \rightarrow A, n \rightarrow \infty . \tag{4.7}
\end{equation*}
$$

Let us show (4.7) first. Here, as in Kusuoka-Tamura [5], we can take a seperable Hilbert space H_{1} such that H is a dense linear subspace of H_{1}, and the inclusion
map from H to H_{1} is a Hilbert-Schmidt operator. Then, let W be an H_{1}-valued random variable such that

$$
E[\exp (\sqrt{-1}(W, u))]=\exp \left(-\frac{1}{2}\|u\|_{H^{*}}^{2}\right), \quad \text { for all } u \in H_{1}^{*} \subset H^{*}
$$

Since

$$
E^{\nu_{0}^{\otimes \infty}}\left[n u\left(\frac{S_{n}}{n}\right)^{2}\right]=\|u\|_{H^{*}}^{2},
$$

$\frac{1}{\sqrt{n}} S_{n}$ can be regarded as H_{1}-valued random variables with respect to $v_{0}^{\otimes \infty}$. Therefore, from the central limit theorem for independently identically distributed Hilbert space valued random variables, we see that the law of $\frac{1}{\sqrt{n}} \sum_{i=1}^{n} X_{i}$ under $v_{0}^{\otimes \infty}$ converges to W in distribution as $n \rightarrow \infty$.

So,

$$
\begin{aligned}
& \frac{1}{n} \sum_{1 \leq i \neq j \leq n} \sum_{k=1}^{N} a_{k}\left(e_{k}, X_{i}\right)\left(e_{k}, X_{j}\right) \\
& \quad=\sum_{k=1}^{N} a_{k}\left(e_{k}, \frac{1}{\sqrt{n}} S_{n}\right)\left(e_{k}, \frac{1}{\sqrt{n}} S_{n}\right)-\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{N} a_{k}\left(e_{k}, X_{i}\right)^{2} \\
& \quad \rightarrow \sum_{k=1}^{N} a_{k}\left(e_{k}, W\right)^{2}-\sum_{k=1}^{N} a_{k}=\sum_{k=1}^{N} a_{k}\left(\left(e_{k}, W\right)^{2}-1\right), \quad \text { for any } N \in \mathbf{N},
\end{aligned}
$$

where the " \rightarrow " above means the convergence in distribution. Therefore, since
$E\left[\left\{\frac{1}{n} \sum_{1 \leq i \neq j \leq n}\left(D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(X_{i}, X_{j}\right)-\sum_{k=1}^{N} a_{k}\left(e_{k} X_{i}\right)\left(e_{k}, X_{j}\right)\right)\right\}^{2}\right] \rightarrow 0, N \rightarrow \infty$,
which is uniformly in n, we see that $\frac{1}{n} \sum_{1 \leq i \neq j \leq n} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(X_{i}, X_{j}\right)$ under $v_{0}^{\otimes \infty}$ converges to : $D^{2} \boldsymbol{\Phi}\left(x^{*}\right)(W, W)$: in distribution as $n \rightarrow \infty$, where : $D^{2} \boldsymbol{\Phi}\left(x^{*}\right)(x, x)$: is defined as the $L^{2}(d \tilde{\mu})$-limit of $\sum_{\ell=1}^{N} a_{\ell}\left(\left(e_{\ell}, x\right)^{2}-1\right)$ as $N \rightarrow \infty \cdot \tilde{\mu}$ is the distribution of W. Also, $\frac{1}{n} \sum_{n=1}^{n} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(X_{i}, X_{i}\right)$ under $v_{0}^{\otimes \infty}$ converges to $\int_{B} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)$ $(x, x) v_{o}(d x)$ almost surely.

Therefore, (4.7) can be gotten from Lemma 4.5.
Now, let us show that (4.5) equals 0 . Write it as $\lim _{\varepsilon \rightarrow 0} \lim _{n \rightarrow \infty} \phi(n, \varepsilon)$. Let $p>1$ be the one chosen in Lemma 4.5, and let q be determined by $\frac{1}{p}+\frac{1}{q}=1$, then

$$
\begin{align*}
\phi(n, \varepsilon) \leq E & {\left[\exp \left(p \cdot \frac{n}{2} D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)\right),\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right]^{1 / p} } \tag{4.8}\\
\cdot & E\left[\left|\exp \left(n R\left(x^{*}, \frac{S_{n}}{n}\right)\right)-1\right|^{q},\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right]^{1 / q} \tag{4.9}
\end{align*}
$$

The boundness of (4.8) for $n \in \mathbf{N}$ has been estabilished. As for (4.9), by Lemma 3.7,

$$
\sup _{n \in \mathbf{N}} E\left[e^{p \cdot q C_{4} \varepsilon n K\left(\frac{S_{n}}{n}, \frac{S_{n}}{n}\right)},\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right]<\infty
$$

if $\varepsilon>0$ is small enough, so from the fact that $\left|e^{x}-1\right|^{q} \leq\left(e^{|x|}-1\right)^{q} \leq e^{q|x|}-1$, we have

$$
\begin{aligned}
& \quad(4.9)^{q} \leq E\left[e^{q n R\left(x^{*}, \frac{S_{n}}{n}\right)},\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right]-v_{0}\left(\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right) \\
& \leq E\left[e^{q C_{4} \varepsilon K\left(\frac{S_{n}}{\sqrt{n}}, \frac{S_{n}}{\sqrt{n}}\right)},\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right]-v_{0}\left(\left\|\frac{S_{n}}{n}\right\|<\varepsilon\right) \\
& \rightarrow \\
& E\left[\exp \left(q C_{4} \varepsilon: K(W, W):\right)\right] \cdot e^{C_{4} \varepsilon \int_{B} K(y, y) v_{0}(d y)}-1, \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which converges to 0 as $\varepsilon \rightarrow 0$.
This completes the proof of the lemma.

5. Remark

Let $U \equiv \operatorname{det}_{2}\left(I-D^{2} \boldsymbol{\Phi}\left(x^{*}\right)\right)^{-\frac{1}{2}}<\infty$, and let $P_{n}, n \in \mathbf{N}$, be the probability measures given by
$d P_{n} / d \mu^{\otimes \infty}(\underline{x})=\exp \left(n \boldsymbol{\Phi}\left(\frac{S_{n}}{n}\right)\right) / E^{\mu^{\otimes \infty}}\left[\exp \left(n \boldsymbol{\Phi}\left(\frac{S_{n}}{n}\right)\right)\right], \quad \underline{x}=\left(x_{1}, x_{2}, \cdots\right)$.
Since we did not assume the existence of the Gaussian measure on B as in Bolthausen [1], we can not write in B the limit of the disribution of $\sqrt{n}\left(\frac{S_{n}}{n}-x^{*}\right)$ under P_{n}, but we can still get the following:
Theorem 5.1. Assume the same conditions as in Theorem 1.2, then for any $n \in \mathbf{N}$, and any $u_{k} \in B^{*}, k=1,2, \cdots, n$, the distribution of $\left\{{ }_{B^{*}}\left(u_{k}, \sqrt{n}\left(\frac{S_{n}}{n}-x^{*}\right)\right)_{B}, u_{k} \in\right.$ $\left.B^{*}, k=1,2, \cdots, n\right\}$ under P_{n} converge weakly to the Normal distribution $N\left(0,\left(\sum_{k=1}^{\infty} u_{i}^{k} u_{j}^{k} \frac{1}{1-a_{k}}\right)_{i, j}\right)$, where $a_{\ell}, e_{\ell}, \ell \in \mathbf{N}$ are the ones defined in the proof of lemma 4.5 , and $u_{i}=\sum_{k} u_{i}^{k} e_{k}, \quad i=1,2, \cdots$

The proof is similar with the one above, and will be omitted.

References

1. Bolthausen, E.: Laplace Approximations for Sums of Independent Random Vectors, Probab. Th. Rel. Fields, 72, 305-318 (1986)
2. Donsker, M.D., Varadhan, S.R.S.: Asymptotic evaluation of certain Markov process expectations for large time - I, Comm. Pure Appl. Math., 27, 1-47 (1975)
3. Donsker, M.D., Varadhan, S.R.S.: Asymtotic evaluation of certain Markov process expectations for large time III, Comm. Pure Appl. Math., 29, 389-461 (1976)
4. Kuo, H.-H.: Gaussian Measures in Banach Spaces, Springer-Verlag, 1975
5. Kusuoka, S., Tamura, Y.: Gibbs measures for mean field potentials, J. Fac. Sci. Univ. Tokyo Sect. IA, 31, 223-245 (1984)
6. Stroock, D.W.: Probability Theory, An analytic view, Cambridge University Press, 1993
7. Varadhan, S.R.S.: Asymptotic Probabilities and Differential Equations, Comm. Pure Appl. Math, 19, 261-286 (1966)

[^0]: S. Kusuoka, S. Liang: Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Meguro, Tokyo, 153 Japan

