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Diffusion processes on graphs: stochastic
differential equations, large deviation principle
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Abstract. Ito’sruleis established for the diffusion processes on the graphs. We also consider
a family of diffusions processes with small noise on a graph. Large deviation principle is
proved for these diffusion processes and their local times at the vertices.

1. Introduction

LetI" be aconnected graph consisting of vertiogs. .., Oy andedgeé,, ..., Iy
connecting the vertices. Write ~ O if Oy is one of the end points df. Some of

the edges may just have only one end point. We assume that the graph is imbedded
in an Euclidian space so that any two edges can only have intersection at a vertex.
A coordinatey; is chosen in;. In terms of this coordinate, we assume that a second
order elliptic operatoL; is defined or;,

Li= 5= 4+ bi(y) 5
y Y

It is well known, under some general conditiohsdefines uniquely (distribution-
wise) a diffusion proces& @ (z) in I; up to the first time it reaches the end points

of I; (see [24]). To define the process Bywhich coincides withk @ (¢) in I;, one
should prescribe the behavior of the process after it reaches the vertices. In[18, 19],
all possible continuous Markov processedomith Feller property governed h;
inside I; were described. It is shown that there exists a one to one correspondence
between such processes and the sets of nonnegative congtants for eachOy

andl; ~ Oy, such that

Z or +or >0 .
I[NOk

Namely, given a set of such constants, an operatcan be defined on a subset of
continuous functiong on T satisfying
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arAF(Oyp) = Z aiDiF(Oy), k=1,....,M ,
1,""0/(

suchthatd F is continuous o' and equaltd.; F; insidel;. HereF; is the restriction
of Fonl; and

DiFO) = lim X 7O
T ervix— o, i(X) — i (00

Then the corresponding process is the Markov process generated by

Skew Brownian motion ([25]) and Walsh’s Process ([38]) are interesting exam-
ples for the processes introduced above. See also [3] and an extensive references
there. Diffusion processes on graphs arise naturally in models of physical processes
such as electrical network, nerve impulse propagation, etc. ([15, 20, 21, 30, 32]).
Such processes also appear in a number of limiting theorems for classical processes
([7, 16, 18, 19]). Many related interesting mathematical problems has been studied
in the literature ([4, 5, 22, 28, 30, 33]).

In this paper, we consider the particular case that= 0 anday; > O if
I; ~ Or. We shall develop stochastic analysis for such processes. We also give
a useful description for them. Of course, inside e&chhe process is governed
by a classical stochastic differential equation, but at the vertices we face some
new effects. We derive Ito’s differential rule for the processes. These are given
in Sections 2 and 3. In Section 4, we consider a family of diffusion processes on
graph with small noise and study the large deviation properties of these processes
and their local times at the vertices. Some applications are given in Section 5 which
in particular implies some of the results obtained in [8, 26]. Finally, we remark that
the analysis presented in this paper allows us to consider, for example, the Dirichlet
problem for second order elliptic operators on graphs with a small second order
coefficients, as well as wave front propagation for reaction-diffusion on graphs.
The last problem will be studied in detail elsewhere.

2. Stochastic calculus, stochastic equation for the process

In this section, we shall introduce notations, terminology which will be used for
what follows.

LetI" be a connected graph, as described in Section 1, consisting of vertices,
01, ..., 0y, and edges/y, ..., Iny. A coordinatey; is chosen or; such that;
is homeomorphic to an interval of real line using this coordinz‘;ﬁés the interior
of I;. We sayl; ~ Oy if I; hasOy as one of its boundary (end pointg);has only
one end if and only if/; is homeomorphic to [000).

Let C,(I") be the space of bounded continuous function§ olVe say that a
continuous functionF' defined onl" is in C;°(I) if it is bounded and continuous
on I? together with all its derivatives, which have natural extension to the ends of
I; if I; is homeomorphic to a bounded interval.
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Let L; be an operator given by

2

1 d d
Lif(X)= Eaf(y»d—yf;(y,-) +b; (yi)d—§<yi

), Xel, yiX)=y . (21)
We assume that; andb;,i = 1, ..., N, are functions irC{°(1?). We also assume
thato;,i =1,..., N, are uniformly strictly positive.

Let I; ~ Oy. For a functionF defined on a neighborhood 6f;, we denote

D;F(Oy) = lim M
T xe1?,x—0; 15i(X) — yi(Op)|

if the limit exists.
Letay; > 0 be given forl; ~ O;. We define a linear operatar on C, (") by

AF(X)=L,F;(X), Xel; , (22)

for F in the domainD(A) which consists of functiong' in C;°(I") satisfying

p(F)(Oy) = Z; Z axi Di F(Or) =0 (2.3)
itl;~Oy ki itli~0g

for eachO, andAF € Cp(I"). HereF; is the restriction ofF on I;. We shall call

(2.3) the gluing condition in the sequel. The following result taken from [18] gives

the existence and uniqueness of a Markov proceds with the generatoa . We

mention that the distribution for Walsh’s process is given in [3].

Theorem 2.1. The operatorA generates a Feller Markov process Drwith con-
tinuous sample paths. The operatbr and the gluing condition at the vertices
define such a process in a unigue waythe sense of distribution

We know that this Markov process insideis the diffusion process generated
by L;. In the following, we shall try to describe the behavior of this process in the
neighborhood oDy. This is a local property. Therefore, in the rest of this section,
we shall assume that has only one vertew) and is given by

={(kx,i); x>0,i=1,...,N}. (2.4)

Here we identify(0,i),i = 1,..., N, and call itO. We shall useF' to denote a
function onI” and define

Fi(x)=F(x,i), x=>0.

We sayF e C;°(I) if F; € Cp°((0, 00)) for eachi andF;(0),i =1,..., N, have
the same value.
The operatol; can be considered for functions on ) and is given by

1 d? d
Lif(x) = Eoiz(x)d—x];(x) + b (x)%(x), x>0 (2.5)
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for f defined on [Qoo). Hereo;, b; are inCp°((0, oo)) for eachi. We assume that
there is ag > 0 such that

oi(x) > ¢ foralliandx >0 .

Let the constants;,i = 1, ..., N, be positive. We may assume that

N
Zai =1.
i=1

For F e C;°(I'), define

dF;
pF) =D i (0) . (2.6)

The operator, defined according to (2.2) (2.3), generates a Markov process and
is denoted byX () = (x(¢), i(¢)), t > 0. Note that ifx(r) = 0, i(z) can be chosen

in a nonunique way. Let, for the definition, pit) = 1 in this case. Since al0, i)

are identified, the choice @fr) is not essential when(r) = 0.

Lemma 2.2. There is al-dim Wiener proces¥ (¢) and a continuous increasing
processt(t), which are measurable with respect %y, the o-field generated by
X (s),s < t,such that

dx(t) = 0y (x(1))dW (t) + bi(ry(x (1))dt + dL(t) . (2.7)
Here{(-) increases only when(z) = 0.

Proof. For eachs > 0, let us define the stopping time$, 6 ,n =0,1,2,..., as
follows.

6 =0
‘L'g =inf{r >0; x@) =0}

Gf =inf{r > rg; x(t) =8}

t,‘f =inf{r > 9,‘3; x(t) =0}

02, =inf{r > 13 x(t) =8} .

We define a functiori{ onT by

H(x,i) =Hi(x)=/x

o oi(u
We consider the following decomposition,

du, x >0 . (2.8)

H(X(1) = HX(©)+ Y (H (X (70 A1) — H (X (6 A 1))
+ 2 (H (X O nt) = H(X (57 A1) (2.9)
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Denote
Wo () =)&)
with
£5(t)=H (X (10 At)) — H (X (0] A1)

(2N
- / 5 ( ,(S)(x(s» ’(”(x(s)>+b,<v>(x(s)) “”((s)))ds.

69 Nt

Itis easy to see from the Ito’s formula tha&? () is a martingale with the quadratic
variation

Y (i at—6) )

which converges to ass tends to 0. Here we use the property

t
lim E {/ X{x(s)<3}ds} =0 (2.10)
§—0 0 -

and the relation

t
D0 - y) S/O Xix@)=syds

s
03 <t

We remark that (2.10) can be proved using the relation
13
E{ /O X{x@fs}ds} <E{F'(X®) - F X0} ,
whereF? e C°(T") satisfies
LiF}(x) = a(x),
s dF}
F)(0) = —L0 =
dx

with a(x) a function such that & a(x) < 1, a(x) = 1 on [0, 8] and 0 ifx > 24.
Indeed, solving the equation we get

x < 2b; (u) < 2a(y) Y 2b; (v)
F(x) = / _ / d / / 2210 4 )ay dz
= exp( 0 02w u) 0 a2\l 2w ) E

By the assumption oa(-), we can show

‘Fi‘s(x)| < cdx

for somec > 0. The assertion follows from this.
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Therefore,W? converges to a Wiener proceB4&(r) ass tends to 0. By using
(2.10), we can also prove

8

WA 1 Hi s i(s
Z/ ( ,m<<)> ”(x<s>>+b,(s><x<s)> “(()))ds

O3 At

- / < 02, (x(s i ’“) (£(5)) + bigs) (x(5) 2 ‘”( (s ))) ds, ass—>0 .
From these results,

D HX O} 4 A1) — H(X(5) A1)
also converges to a proce&s) ass tends to 0. But since

Z(H(X(@Hl/\t))—H(X(t AE)) =Y H(ES, l))({

(=06}, =i |
n, i

and

D HEG. i) 5o —Zia
{9 l<t 1(0 l):l} — O,l(o) {n+l—t 1(98+1) l]

n,i

both tend to 0 in mean a& — 0, £(¢) should be an increasing process and it
increases only when(t) = 0.
Now, consider

() =x0) + Y @ AD —xO AD)+ Y (x(O) 1 A1) = x(th AD) .
We observe that
D@ An —x@0) At) = /0, 0i(s) (X ($)dW(s) + Y /gijt bi(s) (x(s))ds
which converges to
| o1 (FNAW(s) + / b (x(5))ds
asé — 0 by using (2.10). On the other hand,
D@ AD = x(@ AD) =D X8 <y

tends to 0 in mean as— 0 and}_ & x4 <1} is an increasing process. Therefore,
n+l—

D @@ A —x(z) AL)

also converges to an increasing proceégs satisfying the desired property. This
completes the proof.
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Lemma 2.3. (Ito’s formula) Let W(z), £(r) be as in Lemm&.2. AssumeF ¢
C,°(T). Then

t
F(X(t)) = F(X(0)) + / o x50 4 ““( (5)d W,
t
+/ AF(X(s))ds + p(F)e(1) .
0

Proof. For eachs > 0, let the stopping times’, #° be defined as in the proof of
Lemma 2.2. We use a decomposition #¢X (¢)) similar to (2.9) and a similar
arguments. To show the result we only need to show that

dF;
Z—(O)SX 00, <08, i) (2.11)

n,i

converges t@ (F)£(t) asé — 0, by noting that
dF;
Z(F(X(QHl AD) — F(X(1) A1) — Z —— 08X <viep, =i — O

ass — 0.
By the strong Markovian property of the process we see (H,%)t, n=01,...,
arei.i.d. with distribution

Pli©) =k} =B} .

Let B be a limit ofﬁ,‘f, k=1,..., N, forasubsequence éfthat tends to 0. Then,
by the independence o9}),n = 0, 1, ..., we can show that (2.11) converges to
o(F)(t), where

p(F) = Zﬂ,—(m

Therefore,

F(X(1) = F(X(0)) + f oo 0 ’“)( ($))d W,
+f0t AF (X (s))ds + p(F)e(t) . (2.12)
By the Markovian property of the proce&gr), it is known that
Faon - [ AF(X()ds
isamartingale i € D(A). See [14]. This together with (2.12) imply thatF) =

0if p(F) = 0. Then we can deduce th8t = oy, k =1,..., N. Thereforeﬁ,‘cS
convergestay,k =1,..., N, ass tends to 0. Also, the equation
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t
F(X(1) = F(X(0) + / o x4 ’“)( (5))dW,

t
+/ AF(X(s))ds + p(F)((@t) .
0

holds as claimed.
The above argument also proves the following result.

Corollary 2.4. Let#®, s > 0, be the stopping time defined by
=inf{r > 0;x(r) =6} .
Then
lim Poli(0®) =i} =« foralli .
Remark 2.5. Let§ > 0. Define

X 82b; (u) s 9 2b; (1)
d - duldydz if 5
Fi(x) = Jo exp(/Z of (u) u)/zaiz(y) eXp( fy a2(u) ulaydz it x =

1

0 otherwise

Applying Lemma 2.3 to this function and lettidg— O we can prove that

'
Za’ 2(0)3( ) = I|m / X{x(s)<8)1ds

holds in mean. That i€,(-) is the occupation density af(-) (X(-) ) at 0 (O) up to
a constant factor.

3. Some basic transformations

In this section, we assume that our grdphas one vertex and is given by (2.4). Let

X () = (x(2),i(2)) be the process dn generated by the operator (2.5) with gluing
conditionp(F) = 0. Herep(F) is defined by (2.6). By Lemma 2.%,(¢) satisfies

the equation (2.7). However, simple example, such as the casewith= 1, and

b;(-) = 0 for all i, shows that (2.7) alone is not enough to determir@. It is
interesting to see if a complete set of equations exists, including (2.7), which can
be used to describe the process. Basically, what we need is a random selection of
i(t) on each excursion from O. In the case= 2, [23] provides another equation

to describe the process. It is not known if this idea can be generalized-t@.
However, itis shown in [35] that for Walsh’s process, the filtration generated by the
process is not the same as the filtration generated by the Brownian motion in Lemma
2.2. In the following we shall introduce some basic transformations, including
space transformations and the transformations by the change of probability measure
resembling the Girsanov transformation. We think that these are useful for studying
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the problems related to the process. In Section 4, we shall apply these to the study
of large deviations of small perturbed diffusions on graphs.

For the space transformation, dgtx), . . ., ¢y (x) be bounded, strictly positive,
smooth functions oii0, co) with bounded derivatives. Define

Gi(x) = / " du |
0
and
() = GX (1) = Gign (x (1)) .

We denote by (¢) the processy(z), i (t)) which is a continuous process dh

Lemma 3.1. The proces¥ (1) defined above is the diffusion generateddwith
the gluing conditionp (F) = 0. Here

1.
AF(y.i) = —0, (y) 12 (y) + by (y)—(y) y>0,
6:(y) = 0 (G () - (G
bi(y) = AG(G; (), 1)

—}ZG G bi (G ()i (GL
—Zai( (Y)) ( (.V))‘i‘ i( i ONei( i o),

1 dF;
6(F) = =————— Y aic;(0)—(0) ,
P(F) > i (0) OtC()dy()
WhereGlT1 is the inverse of5;. Let ¢, ¢ be the local time o (¢), Y (¢) at 0. Then

b0 =Y aici 0L = p(G)(0).

Proof. Let F be a function inCy°(I"). We may apply Lemma 2.3 t6(G (X (t)))
to get

t
FY @) = F(Y(O))Jr/ Uz(z)(y(t)) I(I) (y(@)dW (1)

t
+f AF(Y(0)dt + p(F)L(@) .
0
This implies that

t
F(Y (1)) — / AF (Y (t))dt
0
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is a martingale ifo(F) = 0. That is, the distribution generated By-) is a solu-
tion of martingale problem. Then by applying Theorem 2.1, 5(F) together
with the result in [14] (Chapter 4, Theorem 4.1), we know that the solution of the
martingale problem is unique. Therefoig;) is the process generated Bywith
gluing conditiong(F) = 0. The rest is easy and the detail is omitted.

Now we consider the Girsanov type transformation. &;€ét),i = 1,..., N,
defined on0, oo), be bounded smooth functions with bounded derivatives.

Lemma 3.2. Assume thatthe proceX<r) is defined on a probability spa¢e, 7,
P), 7, is theo-field generated by (s), s < r, and W(z), given in Lemma.2.,

is a Wiener process adapted.to,. We define a probability measu@on (22, #)
such that on 2, .# 1) we have

dQ

T 1 T s
7P =eXD(/O ein (x(1)dW (1) — 5/0 lei ) (x(2))] dl) .

Then undem, X (¢) is the diffusion process generated by the operator
- . . dF;
AF(x,i) = AF(x,i) +m'(X)€i(x)d—(x)
X
with the gluing conditiorp (F) = 0.
Proof. We know that unde©,
R t
W) = W) —/0 ei(s)(x(s))ds

is a Wiener process. Therefore unggr

t
F(X(t)) —/ AF (X (s))ds
0

is a martingale ifo (F) = 0. The rest follows by using the same argument as in the
proof of Lemma 3.1.

Remark 3.3. By Lemma 3.1, it is not difficult to see thétr), p(F) defined as

0 = Zaiiem, BF) = ——p(F)
0i(0) Z“ia,-_%())

are independent of the local coordingte} chosen or". It seems nature to replace
£(t) by £(-). Then the Ito’s formula in Lemma 2.3 still holds if we repleige) and
p(F) by £(¢) andp(F).
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4. Small perturbed diffusion processes o™ and their large deviations

In this section, we shall consider a family of diffusion process&s) on the graph
satisfying stochastic differential equations with small noise dependingWwa will
study their large deviation properties. The large deviation properties for a family
of stochastic processes or probability distributions has been well studied. We shall
briefly review the definition in the following. We refer to [17, 37] for more details
and some basic properties.

Let 2 be a metric space with metric and Z" denote ar-valued random
variable for eacth > 0. LetA(h) be a positive real-valued function and tendsto
ash tends to 0. And lefS(x) be a function or#’ assuming values in [@c]. The
sequence& ash — 0 is said to satisfy the large deviation principle with action
functionali(h) S (x) if the following assertions hold:

(i) the setd(s) = {x € Z'; S(x) < s} is compact for everys > 0;
(i) forany§ > 0,y > 0 andx € Z there ishg > 0 such that
P{p(Z" x) < 8} = exp(—1(h)(S(x) + ¥))

forall i < ho;
(iii) forany § > 0,y > 0 ands > O there is arkg > 0 such that

P{o(Z", ®(5)) = 8} < exp(—A() (s — y))
for h < ho.
The functionsS(x) andx(h) are called the normalized action functional and nor-
malizing coefficient.
The following is an equivalent definition which is frequently used:
(i) the setd(s) = {x € Z'; S(x) < s} is compact for everys > 0;
(i) liminf ,_oA(h)~tlog P{Z" € A} > —inf 40 S(x);
(iii) limsup,_,oA(h)~tlog P{Z" € A} < —inf _; S(x);
HereA is any Borel subset of', A andA® are the closure and interior df.
The following is another equivalent definition which we shall adopt in this
paper.
(i) the setd(s) = {x € 2'; S(x) < s} is compact for everys > 0;
(i) foranyr > 0 there is a compact sét of Z such that for any > 0 there is
anhg > 0 such that

P{p(Z", K) > 8} < exp(—=r(h)r)

for h < ho;
(iii) forany x € %,

_ — lim lim i -1 h
S(x) g[)nollzn_lrgf)\(h) log P{p(Z", x) < 8}

= gim limsupx(h)~tlog P{p(Z", x) < 8} .

-0 p-0
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We remark that (i) and (ii) are easier to verify. The main effort is to prove (iii)

In the rest, we shall adopt the notations in Section 2.ILdte a connected
graph with set of vertices?1, ..., Oy, and edgesly, ... Iy. On eachl;, a proper
coordinatey; is chosen. The proceds () has generatot® which is given by (2.2)
and (2.3) withL; replaced byL?,

d? d
L f(X) = gaiz(yz')d—y];(yi) +bi(yi)d_)j;()7i)7 Xel;, y»X)=y . (41)

for eachl;. Hereo; andb; satisfy the conditions in Section 2. We note that it is also
interesting to consider the case whejg depends on for all i andk, I; ~ O.
However, here we assurnag; to be independent of. Denotel; (-) the local time
of X¢(-) at Oy defined in Lemma 2.2.
For any two points(1, X» in ", the distancéX1 — X»| is defined as$y; (X1) —
vi (X2)|if X1, Xpareinl;. Otherewise, itis defined asthe minimumEfiK:1 |Yig1—
Y;| over all those’; satisfying that'1 = X1, Yx1+1 = X2 andY;, Y;,1 for each are
in the samd ; for some;. For any two continuous functioris;, ®, : [0, T] — T,
we define

[®1 — P2fl7 = OSUD {|P1(r) — 201} . (4.2)
<t<T

The limiting behavior ofX¢(t) ase — 0 in general is not obvious. However,

in this section we are able to establish the large deviation properties for these
processes. Thisinturn can be used to obtain the limiting behavior of these processes.
Indeed, because of some applications such as the one which will be mentioned in
Section 5, we shall study the large deviation properties for the coupled processes
(X(), £;(t), k =1,..., M), considered as a family of continuous processes on
[0, T] for a fixedT > O with sample paths if#. Here

€ ={(P,n1,...,nm); ®:[0,T] = T, nx : [0, T] - R are continuous
such thaty; (0) = 0 andng(-) is nondecreasingfok =1,..., M.} (4.3)

We equip¥ with uniform topology as described above.
It will become clear later (see the calculation in the proof of Theorem 4.5.)
that the normalized action functional for the coup¥ (-), £;(-), k = 1,..., M)
can be calculated involving the large time behavior of some diffusion described by
(2.4), (2.5) and (2.6), maybe with differest, b; ande;. For this reason, we shall
first present some results concerning the large time asymptotics for such processes.
LetT be given by (2.4) and; > 0,¢; > 0,i =1,..., N, be fixed constants.
We also assume
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We consider the diffusion proce&qt) = (x(¢), i(¢)) onT" with generator

1d%F; dF;
AF(x,i) = Eﬁ(x)—cid—x[(x), x>0 i=1---,N, (4.4)

satisfying the gluing conditiop (F) = 0 with p(F) given by (2.6).

Lemma 4.1. Letthe procesX (¢) be defined as above. Th&rit) has the invariant
density
pi(x) = a;exp(—2cix), x>0, i=1...,N,
with 1
a; = 2—0”01,- .

>

Moreover
1 /T dt a;
= o adt —
T 0 X{i(t)=i} 2Ci
in probability asT — oo for all i.
In particular, whenc; = 1for all i, define

t=Iinf{t > 0;x(t) =0} .
Then

1
Py{t >t} <cxe® —se_%’ (4.5)
12
for some constant. The process (¢) is also a one dimensional diffusion process.
Let p;(x, y) be the transition density of the process). We have

1
5 &)
prie,y) = e B () e Bun? g o2r 2 / e~ 5t gp
mt mt X
(4.6)

+(2i)%e—%fexfy[e—%(x—y)2 _ e—z%(xﬂ)z] )
Tt

LetX = (x,i),Y = (y, j). Then,P, (X, Y), the transition density of the process
X (1), is given by

1N\2 1, _eo? _ain?
P(X,Y) =ajpi(x,y) — P e 2e¢ “le A —e X

ifi #jand
1\2 ‘ )2 )2
Pi(X,Y) =a;p(x,y) + (1 —a)) (—) P L |:e_( 2 e_(JEt)):|
2t
ifi=j.

We postpone the proof of these results to Appendix 2.
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Lemma4.2. Let X (¢r) = (x(¢), i(¢)) be the process in Lemma 4.1. with= 1 for
all i. Then, for eactV = (v1, -- -, vy), we have

1 T
lim lim sup? logEp {exp(—/ v,»(,)dt> IW(T)| <6T,x(T) < ST}
0

-0 7500

T
= lim liminf %IogEo {exp(—f vi(,)dt) W) < 6T, x(T) < ST}
0

§—>0 T—o0

This limit depends ol and is denoted by A (V). We have the following expression
for A(V),

Awy=int [ upi+ 1B} @a.7)

1 oziz 1 o 2
J(,3)=§<ZE—1)—§Z,31'(E—1) :

where thanf is taken over alB = (81, ..., By) satisfying
Bi>0, i=1...Ni Y B=1. (4.8)
Proof. Denote
1 T
wi(T) = 7/0 Xio=ndt, i=1...,N, u(T)= uu(T),...,un(T)) .

Itis enough to prove the following result,

lim lim sup - 10g Eo{|u(T) — | < 8. [W(T)| < 8T. x(T) < 6T}
-V 150

= lim liminf 7og Eo{|u(T) — B| < 8. |W(T)| < 8T, x(T) < 6T} (4.9)
— — 00

=—J(B)

for each8 = (81, ..., By) satisfying (4.8), sincngT vindt =T Y v (T).

To prove this, we use the idea of changing the probability measure. We consider
a new Markov proces}?(t) = (£(t), 1)) with generator (4.4) and satisfying the
gluing conditionp(F) = 0. Herec¢;,i = 1,..., N, are positive and shall be
determined later. By Lemma 2.2, there is a one dimensional Wiener prﬁde$s
such that

dR (1) = —cj dt +dW (1) +di@) | (4.10)

2(1) is the local time ofX (1) at O.
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Denote,

R 1 (T . . .
Ai(T) = 2 fo Xgw—indt:  A(T) = (aa(T), ..., AN (D))
and
t
&) Z/o (Cf(s) —Dds .

Then, by using Lemma 3.2, we have

Eo{lu(T) — Bl <8, [W(T)| = 8T, x(T) < 8T}

T R 1 T
= Eo {exp(fo (ciy — DAW (1) - 5/0 ) — 1)2dt); (4.11)

|A(T) — Bl < 8, IW(T) — E(T)| < 8T, £(T) < 5T} :

We claim that (4.11) has the following as an upper and lower bound respectively,

exp(cs) exp(—T (% Z(c,- —1)28; — Zci (ci — 1),3i>>

Eo{exp(F (X(T)) — p(F)(T)); |A(T) — Bl < 8, (4.12)
\W(T) +&(T)| < 8T, (T) < 8T} ,
c is a constant and' is given by
Fix,i)=(c;i—Dx, x>0i=1,..., N .

To prove (4.12), by Lemma 2.3,

T T
F(X(T)) =/O G —1)dW(t)—/0 Sy €30y — Dt + p(FUT)

wherep(F) = Y a;(¢c; — 1). Now assumen(T) — 8| < § and$ is small. Then
using

T
/0 (€ = D2t =T Y (ci — D?i(T)
we have

<cs

> = D2 = Y (e - 1

Similarly, under the same condition, we have

< 8T

T
[ ciotcio — var -1 ¥ e - v
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and
E(T) = T() (e — DB < 8T .

These imply (4.12). Next we show how to choesg = 1,..., N.
The choice of; is to ensure that the following properties hold,

@D Y (ci —DBi =0,

_ N (4.13)
(2) i(T) — B, in probability asT — oo .

To see this, we assume (4.13), then
|A(T) — Bl <8, |W(T)+&(T)| < 8T, X(T) < 8T
imply
|A(T) = Bl <8, |W(T)| < 8T, X(T) < 8T

Here, and also in the following, we us¢o denote a positive constant which maybe
different from place to place. Then together with (4.10), we have
‘E(T) ~ T cipi| < ooT .

This implies that the following are upper and lower bounds for (4.11),

exp(£csT) exp(—T (% Z(ci — 128 — Zci (ci —DB;

+ Z(C,' — Do - ZC,’,B[)) . (4.14)

Here we use the fact that
Po{lp(T) — B| <8, IW(T)I <4éT, X(T)<éT}—1

which can be proved by using (4.13) and Lemma 4.1. In the following we shall

show that the onlyc;}" ; satisfying (4.13) is given by

Q;
Bi’
Thenwith this particular choice, (4.14) is easily shown to be equal to-€kg (8) £
¢8T), with J(B) given by (4.7). This completes the proof of (4.9). It remains to
prove that (4.15) implies (4.13).
By Lemma 4.1, the invariant density for the procéss) is given by

i=1...,N. (4.15)

Ci

pi(x) = a; exp(—2c¢;x)

a; = 2 (4.16)

1
o i
3
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forx >0,i =1,..., N. We also have,

[Li(T)—>2a—’, i=1....N.
Ci

in probability asT — 0. Therefore, (4.13)(2) implieg; = 2“7 Together with
(4.16), we have

o .
ci=c—, i=1...,N ,

Bi

for somec > 0. Furthermore, using the relation (4.13)(1) we can easily deduce that
¢ = 1. This gives precisely (4.15).

Corollary 4.3. LetX(r) = (x(0), i (1)) be the process in Lemndal.with¢; = 1

for all ;. We define the functiof(V) for V. = (v, ..., vy) asin Lemma&.2.Then
we have

T
lim lim supllog sup Eyx {exp(—/ vi(t)dt); |W(T)| <4T,
0

6=0 7500 T 7 |x|<5T

x(T) < ST} =—A(V) .

Proof. We use exactly the same argument as in the proof of Lemma 4.2. The detail
is omitted.

The following result, although will not be used in the rest, is of independent
interest. It can be proved mimicing the above argument. We shall omit the detail.

Lemma4.4. LetX (t) = (x(¢), i(¢t)) be the process as defined in Len¥ina Then

. 1 r
TlinooflogEO {exp(—/o U,’mdi)}

exists forV = (v1, ..., vy). Let denote- A (V) for the limit. Then

Awy=int {3 upi+ T}

- 1 1
J(ﬂ)zz(l_z“?)
Fli

where thanf is taken over alB = (81, . .., By) satisfying

Bi>0 i=1...N Y g=1.
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We begin our discussion on the large deviation properties for the processes
determined by (4.1) witlk > 0. We shall first consider the special case fhas
given by (2.4). The operatot® is defined by (2.2) and (2.3) with; being replaced
by L?,
e d? d
Lif(x) = 55— f(x) +bi(x)——f(x), x>0. 4.1
2dx? X

e
We again assume

dai=1. (4.17)
Let X¢(¢t) = (x%(¢),i°(z)) be the diffusion o generated byA® and ¢¢(¢) be
the local time of this process & = (0, ). The coupled processX®(t), £°(t))
restricted to [0 7] has the sample paths in the following space,

€ ={(®,n);®:[0,T] > T, n:[0,T] — R are continuous
such that;(0) = 0 andn(-) is nondecreasing . (4.3

We shall first describe the action functional for the large deviation properties of
the coupled processéX®(-), £4(-)).

GivenXg = (xg, ig) € . Let®(t) = (¢(¢), j(1)),0 <t < T, be acontinuous
function with value orT" such thatb (0) = Xg. Letn(z),0 <t < T, be continuous
and nondecreasing(0) = 0, n(-) be constant on intervals whep€-) is away from
0. We also assume that(-), n(-) are absolutely continuous such that

2

T d 2 T d
/0 E‘P(f) dr < oo, /0 En(t) dt < oo . (4.18)
The functionall7 (®, ) is defined by
1 (7 |d¢ 2
IT(®,n) = E/ d—(l) —bin(@®)| xem=+oydt
0 t
T d’)
+/ A d_(t) X(@o@n=0)dt , (4.19)
0 t

where

. 2
A®) = %inf IZ,Bi <9%’_+b,-(0)) L 0<Bi<Lld Bi= 1} . (4.20)

For other(®, n), we definely (®, n) = oc.
Now we can state our main result.

Theorem 4.5. Let X¢(-), £°(-) be the processes defined as above. For dach0,
the family of continuous processes

(X*(), €5(t)), 0<t<T, ¢>0,

satisfies the large deviation principle in the uniform topology with action functional
-1
eI (-.).
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Remark 4.6. Let define

. 1
L(’)(x,p)=§|p—bi(x)|2, x>0, i=1,...,N .

T ) d(b
-1, @)
£ /o L <¢>(t), T (t))dt

is the large deviation action functional for the process&s) on [0, 7] before exit
from{(x, i); x > 0}. ThenA (#) can be expressed in termsidf’ (x, p) as follows.

It is well known that

A9) = inf {Zﬂm“%o, i) 0<pi <1,
Zﬁ,’ =1, Di 2—9%, i =1,...,N} .

Moreover, by the contraction principle (see [17, 37]), the proceXses), €
[0, T, ¢ > 0, satisfy large deviation properties with the actionfuncti@ﬁéll}’(@),

T d
(@) =/ L(@(r>,—¢(t>) dr
0 dt
whered (1) = (¢ (1), j (1)),

L((x, i), p) =LD(x,p), ifx#0,
and
L(0,0) = inf {Zﬁ,LWO, pi); 0>00<p <1,
o
,3,‘:1, p,‘:—e—,l:l,...,N} .
Z Bi

We remark that the expression of this normalized action functional is closely related
to the one given in [11] for a family of stochastic processes with a feature similar
to ours. See also [9, 13].

The following gives the basic properties bf(-, -) as a normalized large devi-
ation action functional. Its proof will be postponed to Appendix 1.

Lemma4.7.

(i) Ir(,-) is lower semicontinuous in the uniform topology.
(i) Foranyr > 0,{(®,n) € €; IT(®,n) < r, ®(0) belongs to a compact Seis
compact.
Proof of Theorem 4.5.We mention first the main steps of the proof.
We shall prove the following “local” large deviation properties, (4.21) and
(4.22). Herg®(+), n(+)) is given and satisfies the condition (4.18). For ahy O,

liminf e log Px, {I1X* = @l < 8,16 = nllr <8} = ~Ir(@.n) . (4.21)
£—
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And for anyp > 0, there i > 0 such that

lim supe log Px, {1 X* — @7 < &, 1€° = nlr <8} < ~Ir(®,m) +p (4.22)
e—0

We shall prove that for any > 0 there is a compact sét of ,

lim supe log Px, {(X°(-), €°()) ¢ K} < —r (4.23)
e—0

By the results in [17, Chapter 3] or [37], we know that (4.21), (4.22) and (4.23)
imply the large deviation properties foK*(-), £5(-)).
To prove (4.23), we take

k=1 {(q” M € G 19() — D) < 8n, In(0) = 0(s)] < by,

1
for |t—s|§—,0§s,t§T}
n

for somes, — 0 asn — oco. For example, it is sufficient to taky = Rn~1/3
with R large enough. To see this, we first consider the special case that

bix)=0, i=1...,N, x>0.

(4.24)
We denoteX? (1) and¢? (r) the corresponding process and its local time. Then

Px, {(X°(), €5()) ¢ K}
_ _ 1 1
<) Px, {sup{|x5(t) —FOh -l <0< < T} > —sn}

_ _ 1 1
+ZPX0 {Sup{lﬂs(t) — )]s |t —s] < ;,0 <s,t < T} > —Sn}

We know thatx®(¢) = |xo + /ew(¢)| for a 1-dim Wiener process(z). Then

=& =& 1 1
Pxo {supq |¥°(1) = x°(s)|; lt —s| < =, 0<s,t <T >§5,,
n
k\| k k+1 1
SPxo{«/ESUDHw(I)—w(—) ;- <t < * ,k=l,...,K}>—8n}
n n n 8

K\| k
< Z:Zl Px, {ﬁsupr(t) —w (;)

k + 1} 1 }
y — E S > _8n )
n n
whereK is equal to the largest integer smaller thah. We need the following
estimate,

8
e () 2= 23]

~

=r= > =4,
n

8



Diffusion processes on graphs 201

2

< 2exp<—2i;2""€> (4.25)

1
<2 exp(—cR2n1/3—>
&

for somec > 0. See [34, Theorem 4.2.1] for a proof. Then we can deduce

1 1
Px, [ sup Hg(t) - )ES(S)| > 53;1} <4nT E'Xp<—cR2nl/3—) .
e

PERC R

(4.26)

On the other hand, by Lemma 2.2, there is a 1-dim Wiener proggsssuch
that

X6(1) = x0 + VEW (@) + £5(1) .

Then we use (4.25) and (4.26) to deduce

Px, [ sup |€°(t) — £ (s)| > %5} <8nT exp<—cR2n1/3}) )
&

=5 V=S

Itis easy to see that (4.23) follows from this and (4.26) if we cha®se be large
enough.
We now prove (4.23) for the general cases. We remark that by Lemma 3.2,

1 T
Pxo {(X°(), €°()) ¢ K} = Ex, {exp<ﬁfo bie ) (X5 (1)) dW (1)
1 T
— /O
1 (7 .
< (Exo {exp(Zﬁ/O by (X5 (1)) dW (1)

22 [l ol )})5

x (Pxo {(X*(), £°0)) € K})
by applying Schwarz inequality in the last step. But

1 T
EX() {EXD< \/_/ e () x (t))dW(t)_ 8_/0

< (nbn )
exp ,

()Ee(t))‘zdt); (XE(), €5 () ¢ K}

NI

(;Esg))‘iz’t)}
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since

1 (7 1 [T
Ex, {exp<zﬁf0 bie 1y ()zf(t))dW(t) —45/0 |b7e (1 (;S(t)) |2dz)} =1

Here|lb|| = supf{|b;(x)|;i = 1,..., N, x > 0}. Combining this with the result just
proved for the cases satisfying (4.24), (4.23) follows.
We now consider (4.21).

We remark that for any there ared(-) = (43(-), f(-)) and#(-) such that the
following properties hold#(-), /(-) are piecewise linear;

) 5
cp—an ° 4.27
H T = 2 ( )

8
2

|’7_ﬁ||T =

17 (8,7) < Ir @, +5 .
We shall give a sketch for how to choo®g-) and#(-).
We first choose a séf € [0, T'] which is a disjoint union of finitely many
closed intervals,
U= U;V:Ol[a,', bi] ,
such that
U2{tel0,T]; ®() = 0}

and

0§¢(t)§% fortr e U,
M@W\UGMTLwn=0Hs%.

Here| - | is the Lebesgue measure of a set. We may chegge in such a way that
® (a;) = @ (b;) = 0. Otherewise, we can replaeg b; by

G =inf{t > a;; ®(t) = 0}, b; =sup{t <b;; d(t) = 0} .
Denote
[0. TI\ U = U, (cin dy)

adecomposition by disjointopenintervals. We chapsepiecewise linear function
on each(;, d;), such that (¢;) = ¢ (d;) =0,

1)
— <
H¢ ¢ id) — 27
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1 d; 2 1 d;
f =
2, 2.,

We definej(r) = j(r) on(c;, d;) andé(r) = 0 onU.
To definen, let %ﬁ =0on[0 T]\U. On [g;, b;], we choose; such that

d 2 S
bjw (1)) — Z(b(t) dt+ — .

N d -~
bio ($0)) = 260) i

. A R 8
fa)=n), AG)=n®), [i=nly =3

bi rdp bi  rdp )
Al —(@))dt < A|l—@®) )dt+— .
/ (dr()) —/ (dr()) AN
Then(&), ﬁ) so defined satisfies the required properties.

Thisargumentcan also be applied to const(@t) (1), n™(-)),n =1,2,3, ...
satisfying the following properties.

(i) Foreachn, there are G= t(()”) < ti") <. < t}é?H = T such that

®m (ti(n)) — & (ti(n)> 7 n(n) (ti(n)) =7 (ti(n)> ’

andg™ (-), n™(-) are linear onrﬁ"), tl.(i)l] for eachi. Here

(1) = ("), j ")
Moreover,
{t €[0,T]: ®(r) =0} C U {[r}’”, t}fl]; @ (zi(")) — o (t}fl) = 0}; (4.28)
(i) As n tends to infinity,(®, ™) converges t@®, ») uniformly on [0, 7] and
im_ 17 (9,1 = I7 (@, 1)
n— oo
holds.

This result will be used in the proof of (4.22). A
In the following, we fix a smalp > 0. Let chooseb, 7 satisfying (4.27). Since

Pro (X -9l <2,

A ) . 8
e-nly <o)z P [x0-8] < 5 pe il <3

we may assume that(-), n(-) are piecewise linear. By the Girsanov theorem,

Pxo {| X — @[, <. ¢ =], <35)

is equal to

T

1 (T 1 2
Exo{exp(ﬁfo bis 1) (xé(t))dW(t)—Z/O bis 1) (xS(t))‘ dt);
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[X6 - @], <6,

=l =a]
HereX§(r) = (x§(1), i§(r)) andeg(r) satisfy

x§(t) = x0 + eEW () + L5(1) | (4.29)

and Xg(7) is the process generated Ry with the gluing conditiono (F) = 0,
where

2p

AF(xl) 2dz()c)

We defineF (-) onT" by

F(x,i)= fx bi (w)du . (4.30)
0

By Ito’s rule in Lemma 2.3,

T T d
F (X5(0) = F(Xo)+\/§/0 big 1) (xé(t))dW(t)+%/0 & —bisr) (xp(1)) dr
+ ) bi(0)a; £5(T)

The above expectation is bounded below by

1 [T 2
Ex, 1exp( —=— bie (xg(t))‘ dt);
0 2¢ 0 lo(t) 0 ’

cd
x exp( (F @) = F @) =Y bian(T)) - —)

X6 — @[, <

-1l <9}

for somec > 0. This in turn has the lower bound
1 T
E i
ofoo(-2]
. s 1
| %5 — @], < 5} exp(;(F (®(T)) = F (®(0))

=Y bi@an(D)) - Cg—‘s) (4.31)

8
Yo+ VeW =@ =ml; =3,

2
bis @) dt) :

by (4.29).

Since¢, n are piecewise linear, there areD1y <11 < --- < tgy1 =T
such thatp (-), n(-) are linear on{, #;11] for eachi. DenoteA; = ;41 — t;. The
expectation in (4.31) can be bounded from below by

K 1 A
l_[ inf {exp(——/
=0 DY =P ()|<8 2e Jo

[X5 - @il 5, =¥, ||y+«/EW—(¢i—m)||Ai§8/} (4.32)

2
bigin @) dr);
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for 8’ < § small enough. Here

D) =2 +1), ¢iO)=d ;i +1), i) =n@ +1) —nt) .

To estimate

1[5
Ey {exp(—z—g /0

|y +VeW = (@i —n) |, < 3/} (4.33)

2
big @1 (1) dr) g

Xo— i, =9

for|Y — ® (1;) | < &', we consider different cases separately.

Assume thatt;, t;41) isin{0 <t < T; @) # 0}, thenn; = 0on [0, A;].
Using the large deviation properties for small perturbed diffusion processes, see
[17, Chapter 3], it is easy to see that (4.33) has a lower bound

1 lit1 d
exp( —5 /t ‘EMI)

for ¢ small. Herep > 0 is given.

Now assume thaf;, ;1) is included in{0 < < T; ®(t) = O}. Eithern is
constant or has constant positive derivative in this interval. We may assumée
for both cases. lf is constant, i.en; = 0, then we can take a functighon [0, A;]
such thaty (0) = 0 and

2
+[bj (¢>(t))|2) dt + p)) (4.34)

/

O<w(t)<%,te[0,A,-] .

Then for small enough” < &', |\/eW — ¥|la, < 8" implies|x§lla, < & and
I/eW| < &'. Here we use the fact that

o) = —inf{xo+VeW(s);:0<s <t} AO .

See [24, Theorem 4.2,Chapter 3]. Therefagg;), £5(-) can be considered as con-
tinuous functionals oV ().
Using this, (4.33) has a lower bound

1 Ai 2 1"
Eo {eXp<_Z/0 bié(r)(o)) dt; |eW — | P )}
which in turn has a lower bound
1 . » 1 (A4 2 0
e ——min{b;(0)|"A; — — — @) dt — —
Xp( 2¢ jl |/()| 28[0 dtW() 2¢
1
> exp(——A(O)Ai . 3) (4.35)
& &

if we chooses’ small enough such that [o™ |%I//(1)|2dt < 5.
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We now assume thaf; () = ar for somea > 0 on(t;, t;+1) . Note that here
¢;(t) = 0on(y, t;11). By the change of probability measure using the Girsanov
theorem, (4.33) becomes

1 (A o 1
Eo {exp<_§/o |bz-g<z>(0)\2dr) exp(—ﬁw @) - 5 ||oe||2Ai) :

el =" IVEW], <5
which in turn is bounded from below by
1 Ai 2 e / /
Eo {exp —2—8/0 iz O dr ) |5, <8 [VeW |, <6
x exp(—i|a|2Ai - B) (4.36)
2¢ &

if 8" is small enough. Her& (1) = (x5 (1), i& (1)) and¢s (1) satisfy

XE(t) = JEW () — at + 5 | (4.37)

X¢ is the process generated Ry with gluing conditionp (F) = 0, where
arF i = SER G o
X,i)==——=x)—a—(x) .
¢ 2 dx? dx

It remains to get a lower bound for the expectation in (4.36). The following
argument ensures that it is enough to study the following expectation:

1o
Eo {exp(—zfo

for 8” small enough. For a fixed positive integer n, we tgke- %A,-, k=1 ...,n.
By a routine argument using the estimate in [34, Theorem 4.2.1], we can show
that, for anyR > 0, we can choose large enough,

2
biga)(o)‘ dt) ;

VEW (A)| < 8", x°(A) < 8”}
(4.38)

Po {lIxglia <&, IVeWlla, <8}

8 8 R
> Po ylxg (sp) | < > IVEW (sp) | < > k=1 ...,ng —exp|——
&
Our assertation follows from this and an argument involving conditioning.
To estimate (4.38), we change the scalesy ¢, x — 7, which gives the

processeX (1) = (x4 (1), iy (t)) andé, (¢) satisfying

Xo (1) = W(t) —at + (1)
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and X, (¢) is the process generated Ry with gluing conditiono (F) = 0, where

1d?F; dF;
x)—a—(x) .

AaF (x, 1) = 2 dx2 dx

Then (4.38) becomes

1 % 2 A; 8" A; 8"
Eo | exp _5/0 [biy ) (O)|7dt |5 |W . S?, ()= -

By Lemma 4.2 applying to the proces&) = ax, (07’2> the limit

Aj
X . 1 & 2
lim lim elogEp 3 e —— bi (0| dt );
5/’»0;»08 g 0{ Xp( 2/0 |Bio() ()| )

A; 5" A; §”
(&) 25 (%) 2] oo
& & & &
exists and is equal tea?A; A (V). HereV = ﬁ (161(0)|?, ..., [b,(0)|?). Note
that
aA (V) =Iin Ezﬂi b,(O)—I—otE —aZaibi(O)—Ea ,

where thénf is taken over ali 8;} satisfying (4.8). Then (4.21) follows from (4.31)
~ (4.39).

We now prove (4.22). Le®™, n™ 0 = ¢V <t < ... < tx,41 =T be
chosen as in (4.28). We fixand a smalp > 0. We denote

K=Ky t;=t",i=1..,K+1.
Then as (4.32),
Pxo {I1X° — @7 <8, [1€° — nll7 <5}

has an upper bound

K

L% )2 .
[T sup  Eviem(—o | lbgo (e ®)1dr)):
i1 Y= Y = ()] <b e Jo

1X5 = & la, =28, lly + VW = (6 = ") lla; < 26}

exp@ (F (2@ - F (07©) - Y b (O)Otm(")(T))) exp(%)

(4.40)
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for smallp if § is small andh is large enough. Here

& (=0 (i+1), ¢ =" @ +0). i O=0" ; + 1) =0 @) .
The processeX (1) = (xg(z), ig(t)) and{g(t) satisfy (4.29).

To evaluate
N @20 ). 1ve a®
Ey {exp 5 bisy \@; () ) 17dt )5 | X — @; la; < 26,
€ Jo
JEW — (¢ — 5™ <28 4.41
ly +eW o n; la; < ) (4.41)

we consider the following cases separately:

(i) (i, ti+2) is contained irfr; ™ (1) # 0};
@iy @™ (1) = @™ (ti11) = 0,9 (1) = 1 (ti11);
(i) @™ (1) = @™ (fi41) = 0,7 (1) # 0 (ti41);

For the cases (i)(ii), we get an upper bound similar to (4.34)(4.35). For the case (iii),
assuming%n(t) =a on(t, t;11), Similar to (4.36), (4.41) has an upper bound

1[N \
Ey{exp<—§ /0 bz (47 ®) |2dr>; X5 (A | =25,

1
IVeW (A) | < 36} exp(_EaZAi + B) ’
&
sinceY = (y, j) satisfyingy < §. Using the previous argument for relating (4.36)

and (4.38), then applying Corollary 4.3., lettihgmall enough, (4.41) has an upper
bound

exp(—% (A (o) — aZaibi(O)) + %p)

From these and collecting the terms, we can show that the left hand side of (4.22)
is bounded from above b (®™, ™) + p for largen. Then we get the relation
(4.22) by lettingn — oo. This completes the proof of the theorem.

Corollary 4.8. LetX*(¢), £¢(¢) be the same processes as in Theofebabut with
L? given by(4.1). Then for fixedT > 0, the family of continuous processes
(Xg(t)i ZE(l))OStST ’ & > 0 ’

satisfies the large deviation principle in the uniform topology with action functional
e~ (). Herg for (d,n) € €, () = (¢(1), j (1)), such thatp(-), n(-) are
absolutely continuous and satig#.18),

1 T 2 d¢
_ - 2
It (®,n) = E/OGJ»(,) (@) | i @) —bjr) (@) I“X{p#01dE

4.42

o @.42)

+/ A d—(t) X{p(r)=0}dt.
0 t
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Here

—inflisg Lo, %o _ g _
A (6) = inf EZﬂ,Gi2(0)|b,<0>+eﬂi|,0</3,<1,Zﬁ,—1} :

For other(®, ), It (P, n) = o0

Proof. We apply Lemma 3.1 witl; (x) = o;(x)~L. DenoteY?(r) = G (X°(1)).
Here

G(x,i)=Gix) = /xci (u)du .
0

ThenY#(r) is the diffusion process generated A§ as in Theorem 4.5. Witl.?
replaced by

2
re _ - f ~e ﬁ
Lif(y)= Zs—d > () + b7 () ay O .

ando; replaced byy; = (3° OljUj(O)_l)_loliUi (0)~L. Here,

b o) =bi (671 ) W ~ e (6t o)

The local time ofY ¢ (-) at O is given by

e(t) = Za,mz ) .

Now consider another diffusion proces$ generated byA® as in Theorem 4.5
with L? replaced by

42
Lif ()= —ed—J; () + b ) —f »
A -1
andq; replaced byy; defined above. Herlg (y) = b; (Gi_l (y)) oi (Gi_l (y))
Then by Lemma 3.2.,

E [(ys’ és) c B] =FE [exp(/oTeig(t) (ys(;)) daw() — %/()T|eis(t) (}-,e(t)) |2dt) ;
(?5, 2‘9> € B]

foranyB, aBorel setirg. Heree; (y) = % ”f;; (Gi_l(y)). Using this, we can show

that (Y¢, £¢) satisfies the large deviation principle if and only ¥, ) satisfies

the large deviation principle, with the same action functional. By Theorem 4.5,
(Y¢, £¢) satisfies the large deviation principle. Thereforgs, £¢), and (X¢, €¢)

too, also satisfies the large deviation principle. A simple calculation also shows
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that (4.42) gives the normalized action functional (&, ¢¢). This completes the
proof.

In the rest we consider generaland state the large deviation properties for
the diffusion processes described by the operators in (4.1). The results can be
proved using Corollary 4.8., an argument involving conditioning after suitably
dividing the time interval. We shall skip the details of the proof. To describe the
action functional, let®, n1, n2, ..., nm) € €, ® () = (¢ (1), j (1)), satisfying the
following propertiesn (1), v (®(¢)) are absolutely continuous dm; ®(r) #

O, k=1,..., M}; nisconstanton the intervals whebdr) # Oy; the following
integrals are finite:

Tdy; 2 T 2
Vi (@) dnk

/ o —— ‘ X{®(#0 k=1...m)dL, / d—(t) dt, k=1,...,. M
0 0 t

Then we define
IT ((I), ni, ..., nM)
1o dyj (D) 2
= 5/0 750 i (@) ‘_N)dt = —=bjw (Vi (1))

T
dni (1)
XX{@(t);éOk,kzl,...,M}df+Z/O A(k)( 7 X{on=0,3dt .
k

Here

2
a1

Z[ ~0y %ik ,31

’

A® (6) = inf Z fi————

b;i (yi (Ox)) + 6
o (yz<0)> 01O

where theny is taken over allg;} satisfying 0< 8; < 1, Zli’\’ok Bi = 1.
We definelr (®, n1, ..., ny) to be infinite if (®, n1, ..., ny) fails to satisfy
the above conditions.

Theorem 4.9. For eachT > 0, the family of coupled processes
(X°). 6(1),k=1,...,.M), 0<t<T, ¢>0,

satisfy the large deviation properties in the uniform topology with action functional
-1
eIt ().

5. Some applications

In this section, we present two examples to show the application of our results
obtained in Section 4. The first example is concerning the diffusion processes with
discontinuous drift and their large deviation properties. Such processes have been
studied before in different context.See [1, 2, 6, 8-13]. The second example is
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concerning the small diffusion asymptotics for Dirichlet problem in a domain on
a graph. Such problem is of interest when study the diffusion processes in narrow
channels. See [16].

For the first example, lgi(-) be a function defined oR. We assume that the
restriction ofb(-) on (0, oo) and(—o0, 0), denoted by, () andb_ (-) respectively,
are smooth with bounded derivatives of any order. We allo\wto be discontinuous
at 0. It has right and left limits at 0 which are denote@ad)) andb_ (0). Letz® (r)
be the diffusion solving the following equation,

dz°(1) = b (z°(1)) di + JedW (1) . (5.1)

Here W(z) is a one dimensional Wiener process. We note by [31] that (5.1) has
a unigue solution. The large deviation properties of this process are studied in [8,
13, 26, 27] with different conditions ab(-). Here we shall derive these results by
using Theorem 4.5.

By the following consideratiorz®(¢) can be viewed as a particular example
studied in Section 4. LeX®(r) = (x®(¢), i*(¢)) be defined by ,

x5(n) = 2 (@)l

1, ifz£(1) > 0

» & i
) = {2, otherwise

This gives a representation of the proce$g). The new process is a Markov
process off,

I'={(x,i),x>0,i=12} ,
and is generated by

ar iy = S0 oy
2 dx? dx
with gluing conditionp (F) = 0, where
p(F)= % (% O+) + %(OH) ;
and
bi(x) = by (x), ba(x) = =b_(—x), x>0 .

We note thaty; = % by using our terminology. In the following, we denote

h(r _4 t
¢()—E¢()

for a functiong : [0, T] — R. Then we have the following result.
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Theorem 5.1. Letz € R and¢ : [0, T] — R a smooth function witkp (0) = z.
Then

lim liminf elog P, {lIz° — ¢l < 5}

§—0 &—0

= lim limsupe log P; {z° — ¢llr <3} . (5.2)

=0 -0

and is equal to

1 T .
- ( f , 16(t) — b (1)) 1 X(p (201

T
+/0 Oggl{lﬂb#o) + (1 - B)b_(0)?} X{¢,(,)=0}d,>

if b+ (0) < b_(0) and is equal to

1 T
-5 < /0 lp(1) — b (D)) *X1p )01t

T
+/0 min{|b+(0)|2, Ib_(O)IZ} X{¢(t>=0}df>

if b, (0) > b_(0).

Proof. By Theorem 4.5. and the contraction principle ([17, Theorem 3.1., Chapter
3] or [37]) applying to the mapping

(X, €)= X°C)
(5.2) is equal to

T

107 . . .
—5/0 () — b (D)) |2X{¢(t);é0}dt —inf {/o A () X{d)(t):O}dt}

whereinf is taken over all absolutely continuogsuch thatj(-) > 0O andn(-) =0
whereg(t) # 0. The above is equal to

17T . . T
_5/ lp(1) — b (1)) 1 xipw)20ydt — inf {A (9)}f Xiow=0ydt . (5.3)
0 6>0 0

It remains to calculate

gr;fo{A Y (5.4)
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We note that

— inf 12,02+ 2,1
A©) = inf 1{2ﬂb+(0) + 5 L= b0+ 3 (b10)

1,(1 1
~b-(0) 0 + 56 (EJFE)} :

Therefore, (5.4) is equal to

(1 , 1 ) (1
w/;f {§b+(0) B+ 5b-(07 (1—p) +inf {E (b+(0) —b_(0)) 0

N 1‘92 1 N 1
8 \B 1-8 '
If b,(0) — b_(0) > O, theinf overd attains wher® = 0. The above is equal to

imin {b1(0)2, b_(0)2}. On the other hand , #,(0) — b_(0) < O, theniitis equal
to

: 1 1
inf 5 {5 (b+(©28 +b-(02 1= B)) = 5B L= B) (b+(0) - b_<0>>2}

. 1
=infg {Elﬂb+(0) +@Q-8) b—(O)IZ}
which gives the value of (5.4) in this case. This completes the proof.
We note that the coefficient iﬁ)T Xip(H=0)dt is also consistent with the one

using a formula suggested by the work of [11] which can be written as:

inf {BL. (63)+ (1—B)L_ (6_); Bo.+(1—B)6_=0,0<B < 1,64 <0}

where 1
Ly 0) =310 = b (O

1
L_(6) = E|9 —b_(0)2 .

It is also interesting to study the large deviation properties for the process
(z°(1), n° (1)), where

t
rla(t) =/C; X{zs(s)>0}ds .

Thisisimportantwhen we study the large deviational properties for two dimensional
(or high dimensional) diffusion processes with discontinuous statistics. See [9-13,

26, 27].
Now we give another application. L&t be the graph described in Section 1
consisting of vertice®, ..., Oy and edged, ..., Iy. The operator? and the

functionp (F) (O),k=1,..., M , are the same as in Section 4. They are given
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by (2.2) (2.3) withL; replaced byL? in (4.1). Here we shall consider a function
Ff(x), t = 0, X e T satisfying the following equation,

d \%

EFIE = AEth + ;th, t > 0
U(X

F8<X>=exp<—%>, Xer, (5.5)

p (FE) (00) = £F(0)), k=1,....M, 1>0 .
&

HereU (), V(-) are bounded continuous ®h The solvability of the equation (5.5)

is not obvious and shall be discussed eleswhere. Here we assume tha’such
exists inC;° (I"). We wish to study the asymptotic behavior of these functions. The
following is our main result. We recall th&t is defined in (4.3).

Theorem 5.2. Let Ff be in C;° (I') and satisfy the equation (5.5). Then the
following holds:

T
Iimoslog Fi(X) = sup{—U (®(T)) +/ V (®(1))dt
e— 0

M
k=1
foranyX e I', where thenf is taken overal(®, 51, ..., ny) € € with®(0) = X.

Proof. Let X*(¢) be the process generated Ay. We denote byf, ..., ¢, the

local times of the process &y, ..., Oy. By Ito’s formula applying toF;._,, we
have v XE®) M

t c
dFf_, (X[) = =" Fj_, (X{)di + 3 " Fj_, (00 dt(0) +dM*(1) .

k=1

whereM?(t) is a martingale. From this, we see that

1! 1Y
Fr_, (X7) exp(; /0 V(X (©)ds - - ZCkﬁi(t))

k=1

is a martingale. Therefore,

1 (T 1
FE(X) = Ex {Fé (X5) exp(g/o v (x® (s))ds_gzckz,i(r))} .

k=1

The result (5.6) follows from this by applying the large deviation principle in
Theorem 4.9. and the Lapace method. See [37, Theorem 2.2.].
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Appendix 1

In this appendix, we shall prove Lemma 4.7. First, we note that Lemma 4.7. (i) is
easy since there arg, c2 > 0 such that

T dn T4
A d—(t) X{omn=0)dt > c1
0 t 0

n
E(l‘)

2
dt — coT .

Therefore, for any > 0, the set

{(®,n) € €; IT (D, n) <r, ®(0) belongs to a compact get,

is contained in

T
i(cb,n)e(g;f
0
T d 2
+
0

n
E(f)

2

d
—Yjo (@@)| dt

dt

dt <r', ®(0)is in a compact s%t

for somer’ > 0, and is precompact. It remains to prove that) is lower semi-
continuous in the uniform topology.

Let (&™), n") e % converges tq®, n) € % uniformly on [0, T] asn — oo.
We assume thaly (&™), "), I (®, n) are finite. Denote

W) = (4", J VM), &) = @), (1) .

Let fixas > 0. We choosd/ c [0, T] which is a union of finitely many open
intervals such that

U=UK(ai.b), t:®@0) =0 C U, |[U\{t;d1t)=0}| <8

and
2

1|d
¢ dt <6 ,

/U\{r;o(z):o} 2 ‘E(’) —bju ()

By a modification of the argument in the proof of [17, Chapter 3, Lemma 2.1],
we can show

2

o 1|dep™ ;
“rpllorlf e E T(t) - bj(”)(t) ((p( )(t)) dt
1|d¢ 2
> /Uf > ‘E(t) —bin (@@))| dt . (A1.1)
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On the other hand,

1 .de™ 2
= () = b (™ @) [Pdt
L\{t;¢(”)(1)—0} 2 dt @ ( )

— d¢p™ " ,
= /;]\{I;CD(")(I)ZO} 2 (l (t)| + |b (n)(t) ((f’ (I)) | dt
K

i=1

Here X
Bj(x)z—f bj(w)du .
0

By the definition ofA (), it is easy to see

1 2 dﬁ(n)
b (6™ @) di > / A () )dr .
/l]\{z;d>(">(z)=0} 2 ‘ 7 ( )‘ U\{t;<l>(”)(t)=0} dt

Therefore,
2
dn™
/ di+ f A ) Jar
U\{1:00 (=0} 2 [nom@n=0} \ df

> /I;A (dZ(") ) dt + i I:Bj(n)(bl_) (¢(") (b,‘)) — Bj(n)(al,) (¢(") (aﬂ)] .
i=1

We can mimic the proof of [17, Chapter 3, Lemma 2.1] to obtain

d¢(”)
dt

=) =bjn (97 0)

(n)
liminf [ A (d" (;)) / A (d_"(;))d; . (A1.3)
n—oo Jry U dt
Moreover, K
Z [ F™ by ( ") (bi)> - Bj(fl)(ai) (d’(n) (ai)>:|
i=1
converges to ¥
> [Bjwn) @ (b)) — Bjia) (¢ (@))] -
i=1

The last quantity is smaller thanU \ {r; ®(+) = O} | for some constant. This
combining with (A1.1)~ (A1.3) and by lettingd — O give the desired result that

lim inf 1 (q><">, n(’”) > 1 (D7) .

n—oo

The proof of Lemma 4.7. is complete.
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Appendix 2

In this appendix we prove Lemma 4.1.
First, we know that the invariant densit),(x), satisfies the relation

> (1 d? d
Z/o <2d aFil0) = dxFi(x>> P;(x)dx =0

if F; defined on(0, oo) is smooth with bounded derivatives and satisfies

> ﬂ, — (0+) =0.

By using suitable test functlonﬁ}(x), it is easy to prove that
P;(x) = a; exp(—2c;x)

with 1

a; = Zﬁdi .
Ci
The result
1 (T ai
lim — dt = j=1,...,N
Tooo T X{i()=i}) ZCi 1

in probability can be proved using the argument in [36, Sections 31,32].
To prove (4.5), we first note

1 X
2\? (5
P{Tozl}:<;> /ofe*%yzdy :

wheretg = inf{t > 0; x + W(¢) = 0} if x > 0. This can be proved by using the
observation that the desired quantity satisfies the equation

2

1d
-—f(tx) 572l (),
f@©O,r)=0, t >0,

fx,0=1 x>0,

and f(¢t,x) = f(1, %) holds by the scaling property of the Brownian motion.
After this, (4.5) follows by the change of measures using Girsanov theorem:

Ptz )= E{e VO 852 1]

=E {e_W("’)_%TO; 0 > t}

1
2\2 ® 10x X2
= (— e* e 2’ —e zds .
T t 252

(A2.1)
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Now we prove (4.6). Let
xo(t) =x+W(@) — 0min (x+W(s)AO.
<s<t

By [25, p.27], the joint distribution oW (r), maxy<s<; W (s) is given by

P {W(t) € da, 0max W (s) € db}

<s=t

1
2 \? 2b —a)®
= (_m3> (2b—a)exp<——( > ) b>0,b>a .

By changing the probability measure using Girsanov theorem, we have
1
Ec{f (x())} eXID(Et)
= E{f (xo(?)) exp(—=W (1))}

=F {f <W(t) - 0min w (s)) exp(—W(@)),x + 0min W(s) < O}
<s=t <s<t
+ E {f x4+ W) exp(=W (), x + 0min W (s) > 0}
<s<t

=F {f <—W(t) + 0max w (s)) exp(W()), 0max W (s) > x}
<s<t <s<t

+ E{f (x— W) exp(W(t)), maxo<s< W (s) < x}

In the last step we use the property tHat) and— W () have the same distribution.
Then (4.6) follows from this by an easy calculation.
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