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Abstract. The iterates of expanding maps of the unit interval into itself have many of the
properties of a more conventional stochastic process, when the expanding map satisfies some
regularity conditions and when the starting point is suitably chosen at random. In this paper,
we show that the sequence of iterates can be closely tied #o-@pendent process. This
enables us to prove good bounds on the accuracy of Gaussian approximations. Our main
tools are coupling and Stein’s method.

1. Introduction

Leth : I =[0, 1] — I be piecewise monotor@! and uniformly expanding: that
is, there is a finite sd = U (h) of points

O=up<ur<-- <um <Ums1=1 (1.1

in I such that, for each intervd] = J;(h) = (u;_1, u;), bothh restricted ta/; and
its continuous extension taf_1, #;] are C! and monotone, satisfying

l<ch) < (x)| <Ch) < oo (1.2)

for all x. We shall be interested in the behaviour of the sequénce: 4, (xg), r >
0}, whereh, denotes theth iterate ofz. We need the following basic assumptions
A1-A3, which are to hold throughout.

A (measurable) sed is said to have period if ,(A) = A, whereA = B
means thak (A, B) = 0 andx denotes Lebesgue measuredihas period 1, it is
called invariant. An invariant measure is a meaguseich thaj.(h~1(A)) = w(A)
for all A. We assume that:

Al: There are no periodic setswith 0 < A(A) < 1.
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A2: Thereexistsan =r; > 1 forwhich|h,‘1(x)| > 4forallx ¢ h.(U(h,)).

If his piecewise monotone and uniformly expanding &g piecewise smooth,
there exists at least one invariant probability meaguwhich is absolutely con-
tinuous with respect ta. The celebrated theorem of Lasota and Yorke (1973)
proves this whert’ is piecewiseC!, and shows also that the densityof . is
of bounded variation. In Keller (1985, Theorem 3.5), the conditions are relaxed
somewhat beyond
A3: I’ is piecewise Blder continuous with exponent for some 0< ¢ < 1.

Under A3, Keller shows that any invariant densftas the following regularity
property: there exists K13, < oo such that, for all O< ¢ < 1,

/OSC(f, e, x)dx < Kagze , (1.3)
I
where
OSC(f, 87 X) = eSS Sup |f()’) - f(Z)| ’ (14)
v,2€8¢ (€)

andS,(¢) = {y : |y — x| < &}. Under our additional assumption Al, there is in
fact only one invariant measure thatisabsolutely continuous, since sugp is
an invariant set if: is an invariant measure, and thus sgpjp = 7 for any suchu.

Our interest lies mainly in the extent to which the properties ofitlsequence
{h,(x0), r = 0} mimic those of a more conventional stochastic process, when
is suitably chosen at random. iAf is exactly known, the whole future of the
sequence is completely determined, and randomness does not enter at all. However,
in practicexg can never be known without error, and the small uncertainty in the
value ofxg has an enormous effect on the later values in the sequence. It also makes
sense to ask for the properties of a ‘typical’ sequence, where ‘typical’ could, for
instance, be interpreted as meaning that chosen uniformly at random from
An example of the parallels with stochastic processes is the functional central limit
theorem for partial sum processes derived frorh-gequence, which was proved by
Hofbauer and Keller (1982). They also derive a rate of convergence, using general
theorems for mixing sequences given in Stout (1974). However, the rate they obtain
is not explicitly characterized, and can be expected to be very poor. In this paper,
we address the stochastic structuré-afequences more directly, and are thus able
to make much more concrete statements.

Our approach, illustrated in an elementary setting in Barbour (1995), is based
on two observations. The first, which we will probably not be the last to rediscover,
is that if xg is chosen at random according to the invariant meagutben thei-
sequence is a stationary Markov chain taking valuds @s is its time-reversal; see,
for instance, the reference given in Isham (1993, Section 3.6.3)hT™eguence
is Markovian because its evolution, for gives, is deterministic, and stationarity
follows directly if xo ~ . Now the invariance of implies that

f= > f@/IHE)] (1.5)

xeh=1(y)
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for (almost) ally such that:~1(y) N U (h) = @, so that then the quantities
fx)

I ) f ()

are probabilities. Moreover, i is such thati; (x) ¢ U(h),0<i < m, if X isan

interval aroundx so small that the maps : #;(X) — h;+1(X) are 1-1 for each

O<i<mandifg: "t . R is measurable, then

p(y,x) = xeh ), (1.6)

/Xg(x,h(x),...,hm(X))u(dx)

=/Xg(x,h(X),.--,hm(X))f(X)dx

m—1 1

= hty), . h ), v f(RE —d
/hm(x)gw(y) (3. )£ (y))g|h,(h;£i(y))| y

m—1 -1
_ _ FA(maCY))
= (i) N O N z fnd
/hm<x§ ' Y ,-1:!,:f(h,;ii_l(y))Ih’(h,;f,»(y))l e
m—1
= /h (X)g(h,#(y),...,h—1<y),y> [Ttk 1), BE ) widy)
m i=0

so that the time reversal ¢, X1, ...) with Xg ~ n and withX; = h; (Xo) is
the Markov chain(Yy, Y1, ...) with Yo ~ u and with transition probabilities given
by (1.6).

An advantage of considering the reversed process is that randomness enters
progressively at each step, and not only when setting the initialgtateaking the
analogy with classical stochastic processes clearer. Our second observation is that
the time reversal of the-sequence of a uniformly expanding map has an induced
contraction property, which enables coupling methods to be introduced. It is shown
in Section 3 under A1-A3 that, i is close enough t®’, thenp(x, ¢ (x)) is close
to p(x’, ¢(x)), whereg is a given branch of ~1. Thus the first steps in a reversed
chain starting inxo and in one starting i, can typically be realized in such a
way that, with high probabilitys; = ¢ (xo) andx; = ¢ (x) for the same branch
of 1. If this is the case, then

lx1—x1| = | (x0) = (xp)| < Ixo—xélsup{l/lh’(y)l} = c(h)Hxo—xp| . (1.7)
ye

and the positions of the two chains after one step are closer than they were initially,

at least by a geometric factor ofh)~1 < 1. The main effort is then devoted

to showing in Theorem 3.4 that, however two reversed chdips n > 0) and

(¥,, n > 0) are started, they can be realized simultaneously in such a way that

|Y, — Y| < Zc(h)™" for all n, whereZ is a random variable with Pareto tail; we

refer to this as a ‘successful’ coupling. The coupling approach has already proved

to be a powerful tool in many areas (Lindvall, 1992), and it plays the main part in

our arguments.
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A traditional approach to the limiting behaviour of the sequence of iterates
{h,(x0), r > 0} is first to study a sequence of labgls, r > 0} determined by
the iterates; typically,. =i if h,(xg) € J;. Sinceh is expanding, the finite vectors
(ry g1, .o, Ligs), s > 0, determine the value df, (xg) ever more precisely
ass — oo. Under conditions such as in Hofbauer and Keller (1982), the label
process is proved to be absolutely regular (Ibragimov and Rozanov, 1978), and
the ‘stochastic’ behaviour of the, (xg) sequence is then deduced from that of
thel, sequence. Our coupling argument has a somewhat similar flavour, but with
an important difference. In Theorem 3.5, we are able to approximate the finite
sequencégh,(xg), 0 < r < N} by a sequencéx,, 0 < r < N} which ism-
dependent, whera = m(N) need only grow logarithmically witlv to achieve
a uniform accuracy of approximation of ord®r—*, for any chosern > 0. Being
able to work with ann-dependent process instead of with an absolutely regular
mixing process brings substantial advantages.

The purpose of this paper is twofold: first, to introduce the coupling approach to
the sequence of iterates, and then to illustrate how it can be used to sharpen various
stochastic limit theorems. Berry—Esseen theorems with ¥at&2 have already
been established under a variety of circumstances (Rousseau-Egele 1983, Coelho
and Parry 1990, Heinrich 1996) for the distribution of the centred and normal-
ized partial sums of the sequence. Here, we usentitkependent approximation
and Stein’s method to obtain, in Theorem 4.5, a near optimal convergence rate
of N~Y2]og?® N for the multivariate central limit theorem. We have also obtained
rates of similar order with respect to appropriate Wasserstein metrics for the func-
tional central limit theorem, and for approximation of the empirical process: details
can be found on

ftp://iamassi.unizh.ch:/pub/Barbour/Iterates.ps

Dembo and Zeitouni (1996) have used the results of this paper to obtain information
about moderate deviations.

The structure of the paper is as follows. In Section 2, we establish the properties
of h and f which we need in order to prove that our coupling is successful. We
do so assuming A1-A3, and making heavy use of the results of Keller (1985); the
arguments simplify somewhatifitself is invariant, which requires that

> YWwl=1

xeh=1(y)

forall y ¢ h(U). In Section 3, we demonstrate that the coupling of time reversals
of h-sequences is successful. In Section 4, we use the coupling method to prove
the stochastic properties bfsequences in which we are primarily interested.

2. Properties ofh and f
In order to prove that the coupling of the next section is successful, we need to

show that the sef; %(y) of pre-images of a typical point under the iterates,
of h becomes dense as— oo. More precisely, starting with any interval C 1,
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we show that there is ag = ro(K) < oo such that, (K) = I for all r > rg: this

is the substance of Theorem 2.6. We cannot in general clainktlat) = 1 for
suchr, since it need not (quite) be the case th@t) = 7, and this generates some
technical complication. The following lemma describes what happens.

Lemma 2.1. UnderAl andA3, the set/\i (1) is at most finite.

Proof . Sinceh(I) C I, it follows that the set#, (1) are decreasing. Defing =
Nr>oh-(I). Thenh(I*) = I*, so that/* is invariant, and by Al we then have
A(I*) € {0, 1}.

Now, sinceu is invariant, we have

w(he (D) = p(hy the (D) = p() =1,
for all »r > 0, and thug«(I*) = 1. Hence, since. <« A, we haver(I*) = 1 also,
from which it follows thati(k(1)) = 1 also. Buth is piecewise continuous, and
soh([1) is afinite union of intervals. Thub\A(I) is at most finite. O

We will now usually restrict attention td*, so that all the inversek, * are
properly defined; note that, from Lemma 2/3/* is at most countable. We use
the notationA* to denoted N I'*.

As a first step in showing thai,,(K) = I for somerg, we prove that,
if A, =h~th,(K), then

A=1lm A, =1 . (2.1)

r—0o0

Note that the setd, are increasing, and that

hy e (A) = byt (Upsr Ap) = Upsrhy e (Ay)

;
= Unsrhy phy i (K) = Uns by iy by (K)
= Un>rh71hn(K) =A.

n

This motivates a further definition: a seB is called preinvariant if
h:th.(B) = Bforallr > 1.

Lemma 2.2. The family of preinvariant sets is closed under Boolean operations.

Proof . If B; andB; are preinvariant and > 1, then
h7h,(B1N B2) C h:th, (B1) N th,(B2) = B1N By ;

however,B C k- 1h,(B) for any B, so that in fach, *h, (B1 N Bz) = B1 N By for
all r.

Now, for anyy € hr‘lhr(B"), there exists am € B¢ such thati, (x) = h,(y),
or equivalently such that € 21, (y) c h7th,(B) = B, ifalsoy € B. The set
of suchx has to have.-measure zero; hence the same is trubx}fh,(B“) N B,
sinceh is piecewise monoton€?. O

Lemma 2.3. If B is preinvariant then so ish, (B) for anyr > 0,andu(h,(B)) =
u(B).
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Proof . For anys > 0, observe that
hyhshy (B) = hy *hy (b *hshy (B)} = hy{hy Ehess (B)Y = hy (B)

becauseB is preinvariant, proving the first part. The second part follows because
is invariant, so thagu(h, (B)) = w(h-th,(B)) = u(B). o

Theorem 2.4.Let K < [ be a non-empty intervaland letA = lim,_
h~h,(K). UnderAl andA3, we haveA = /.

Proof . A is preinvariant, and so are the s&s = h,(A), forall» > 1, and all
sets obtainable from them by finitely many Boolean operations, by Lemmas 2.2
and 2.3. In additionk(A) > A(K) > 0.

If L(A) = 1, the theorem is proved. If not, given any> 0, there can be
no more than ¥¢ distinct B, [that is, A(B, A B,) = 0 if r # s] such that all the
Boolean atoms derived from them haxveneasure zero or at leastThus, under
Al, there are two possibilities: eith&(B,) = 1 for some (periodic),, in which
caser(A) = k(h,‘lB,) =1 also, and the theorem is proved; or else allBhare
distinct, and, for any > 0, there exists a preinvariant S€t derived by finitely
many Boolean operations from th#, such that O< A(C) < e. Indeed, since
supp(u) = I andu is A-absolutely continuous, we can take<Ou(C) < ¢ also.
It remains to be shown that this latter possibility cannot in fact occur.

If it were possible, pick so large that(h)"2 > 4, in which caseh/,z(x)l >4
for all x. Now U (h,,) dissectsl into a finite number of intervald; = J;(h,,);
let n1 = min; A(J;) > 0, n2 = min; u(J;) > 0 andn = min(ny, n2). Choose
a preinvariant se€ as above with O< A(C), u(C) < n. SinceA is the limit of
finite unions of intervals and is derived by Boolean operations on the ggts4),
C contains a non-empty intervdy which is entirely contained in somg. Thus
hr,(Ip) is also an interval, and of length at least(%). If it covers one of the/;,
stop and set = 0. If not, it contains an intervah of length at least 2(1p) which
is contained in somé;. Continue the process of applyihg, and selecting a new
sub-interval until, for some, &,,(I) covers one of the/;: this must happen in
finitely many steps, since, at each stagd,) > 2A(/;_1). Then, ifth,,(Ix) D J;,
it follows that u{h k1), (I0)} > n(J;) = n. Buthg1y,(lo) C hi+1)r,(C), and
so, by Lemma 2.3,

pihk+1yr,(10)} = m(h4+2)r,(C)) = n(C) <n
the desired contradiction. ]
Let the dissection of induced byi from U (h),
O=vo<v1<: - <Upy <Uppt1=1,
be denoted by

V=V ={v,...,0m) ={h@h), h@™); u e UMNO,1} , (2.2)
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and,forH = h,,,letV = V(H) be defined accordingly; because of Ad1(y)| >
4forally ¢ H(U(H)). Set

= min Vi, V; ,
n3 Ogifmg(H)M{(l i+1)}

with n3 > 0, because sup) = I. Now, foranyA c I, writing A; = AN J;(H)
(see (1.1)), we have

W(H(A) <Y p(H(A)) =) /A FHE@)H (0 dx < KA(A)

by (1.3) and becausgd’| < C(h)"t; whereasu(A) = fA f(x)dx is bounded
below by somew(A(A)) with w(y) > 0 for all y > 0, because supp) = I.
Hence there is any > 0 such that, ifu(H (A)) > n3, thenw(A) > n4 also.

Lemma?2.5.Let W be any union ofk non-empty intervals such that
w(W) < ng4. Define

H = A (W) ={J:Jamaximal interval s.ta(J) > 0
and H-YX(J\V(H)) Cc W} . (2.3)

ThenunderA1-A3,%" ;. , u(J) < w(W) < ngand|#| <k — 1.

Proof . For the first part, observe that the intervdlss # are non-overlapping,

and hence
=+ {) -+ ()
JeAH JeAH JeAH

becauseu is invariant; however, from the definition of?, H*l(Ujey J*)

cW.
For the second part, iW is such a union, theW\U (H) is a collection of
| <k-+mi(H) intervalsly, ..., I;. Write

Gj=HUj)=(aj,bj), 1=<j=<I, (2.4)

where the angle brackets indicate that the endpoints may or may not belong to the
interval. We now partition thé ; into overlapping clusters. Define an equivalence
relationon{l, 2,...,1} by j ~ j' if there exists a and 1, ..., j; such that

GiNGj, #9, GyNGj, #9,..., G, NGy #0 . (2.5)

Let the equivalence classes I, ..., P,. Sinceu(W) < na, it follows that
w(H(W)) < n3, and hence that each contiguous cluster

ri=J¢; (2.6)

JEP;
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contains at most one point of. If [I'; N V| =0, sets; = 0. If I'; NV = {v;}, set
s,-:|{teP,-:b,=vj}|+|{teP,~:a,=vj}| . (2.7)

We now count the intervals o which are contained in a clustgr.
To do this, we further define

wi = |H ()| for vii<y<v, 1<i<mp+1; (2.8)

note that H~1(y)| is indeed constant over such intervals. We then define the index
setsZ(y) = {j:[; NH X(y) # 0} If J € # andy € J N (vi—_1, v;), we must
have

W =w; =4 . (2.9)
This is the key observation for the counting argument. We now distinguish five
cases.
Case I.T; C (vj_1, v;) for some;.

If J € # andJ C I, identify J with anr, 1 < r < | P;|, defined by

r=r(J)=maxq{R("); r' € P;, b =supJ} , (2.10)

where R(r’) is the rank indescendingorder ofb,» among{b;, t € P;}: within
ties, take any fixed order. Because of (2:9)% w;; also distinct intervald, being
non-overlapping, have distinetJ/). Hence

WS e#:J T <|Pl—w;—1) <|P|—(s5; VI , (2.11)
the last inequality being true becausg > 4 ands; = 0 in this case.

Case 2:T; > v; and|j(vj+)| <wjit, | £ )] < w;.

In this casey; is not covered by an intervdl e 2, though it may still happen
thatH 1(v;) e W.

ForJ € # suchthat/ c I'; N (v}, 1], identify it with

F=7r(J)=maxR"); r € Pi,ay =inf J} , (2.12)

whereR(r') is the rank ofa,» among{a;; t € P;} in ascendingorder. Because
of (2.9) and the assumption of Cased?, > v;, and distinct intervals/ have
differentr(J).

ForJ e # suchthat’ C I'; N[0, v;), identify J with r (J) as defined in (2.10),
obtaining distinct indices with b, < v;, so that they are also distinct from the
obtained above. Hence, in this case,

W e JCTi}| <|P|—WtePiia=v}| -t ePi:b =}
<|P|—si; (2.13)

also, arguing as in Case 1, one has
e :J CTi} <|P|—(min(w;,wjt1) —1) < |P| -3 . (2.14)

Case 3:T; > v; and|j(uj+)| = wji1, |F))] < wj.
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Use the algorithm of Case 1, identifying ea€lwith r(J). As beforey(J) >
w;41. Also, noJ has supremum;, because of the assumption of Case 3. Thus

e J i} <|Pl—(wjra—1) —{t € Pi b = v}
< |P,'| —(s,' —1)V3 . (2.15)

Case 4:T; 5 v; and|/(vj+)| <wjs, £ @) = w;.
In this case, the argument is similar to that of Case 3, leading again to the
estimate

e JCT <|P|l—(i—1DVv3. (2.16)

Case 5:T; 3 v; and|f(uj.+)| =wj1, S0 =wj.
In this case, there is an intervale # which contains;, so noJ has supre-
mumvu;. Now argue as in Case 3, obtaining the same inequality.

Collecting the results of Cases 1-5, we find that

A <1=) (si—DV3,
i

implying that
|#) <l —-3=k+(1—-k -3, (2.17)

and that

#) 1= 35/A<1-31-k/2=k—(1—k)/2 . (2.18)

1

Taking the worst value of — k for (2.17) and (2.18) still gives#| < k — 1, as
claimed. O

Theorem 2.6. Under A1-A3, given any non-empty intervdd C I, there exists
anro = ro(K) and a finite seiv = N(K) C I such thati,,(K) = I\N.

Proof . By Theorem 2.4, there exists apnsuch thatu(h;zlhrz([()) > 1—n4. By

the invariance oft, wu(h,,(K)) > 1 — na, and p,,(K)]¢ is of the formWp U No,
where Wy is a union of some numbeég of intervals as for Lemma 2.5, andy

is a finite set. Furthermore, applyifg = /., W1 = U cpw,) J i, but for a
finite set of exceptional points, justf:,,(K)]¢, and by Lemma 2.5, is a union of

k1 < ko — 1 intervals and satisfieg(W1) < n4. Thus, recursively applying/

in all ¥ < k times and using Lemma 2.5 at each step, we arrive at a point where
Hyhy(K) = hyr 4, (K) consists of all but finitely many points &t O

The remainder of the section is concerned with showing that the invariant den-
sity f has ‘nice’ properties outside a setxoimeasure zero. The properties pf
implied by (1.3) apply only off certain null sets. We shall use some specific conse-
guences of (1.3).
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Lemma 2.7. UnderA1-A3, there exists atN = No7 C I withA(N) =0and a
K27 < oo such thatforany0 < ¢ < 1,

1
f M. (f, e; N)ydx < Kp76° |
0

where

M,(f,e;N)y=sup |f(»)— f@I . (2.19)
y,2€S8x (e)\N

Proof . By successively removing countably many null sets frbrwvhose union
we call N, we can ensure that

sup |f(y) = f(@)] <osc(f; 27", xj,) »

y,ZESjr\N

whereS;, = ijr(Z*’) andx;, = j2"forl < j <2" —1,r = 1. Then, given
0 < & < 1/4,pickr = r(s) = [—log, e] -1, itfollows thatS, (¢) C S} C Sx(6e),
wherex ;, is the nearest of the sgt;,, 1 <i < 2" — 1} tox. Hence

1 -1
| My dx =27 Y oslri 27 a0
0 ;
j=1

1

< 2/ 0Ssc(f; 6e, x) dx
0

< 2K(13(6e)"

and the lemma follows. O

Lemma 2.8. UnderA1-A3, there existsV = Nog C I with A(N) = 0 such that

fmax= sup f(x) <o0o; fmn= inf f(x)>0.
xel"\N xel*\N

Proof . The first claim follows directly from (1.3). Then, singeis invariant, we

can takef to satisfy

for= Y f@/Ihx (2.20)

xehy H(y)

(see (1.5)) for ally € I* and allr > 1. Take any of the interval§;, defined in
Lemma 2.7, and letg = rg(S;,) be as in Theorem 2.6, so th&l, = I\, (S;,)
is finite. If inf{ f (x): x € I"\{h;y(N2.7) U N;;}} = 0, then (2.20) implies tha;,
contains a zero of or points wheref is arbitrarily small, so that then

sup f(y) <osc(f;27",xj) .
y€Sjr\Na7
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Hence, taking
N = Nzg= { Uhr(N2.7)} U { U U er} )
r>0 r>11<j<2-1
it follows as in the proof of Lemma 2.7 that, if inf;«\nx f(x) = 0, then
fol f(x)dx = 0, which is impossible, since(l) = 1. O

The points ofU (k) split I into intervalsJ; = J;(h), 1 <i < m1+ 1. Let
B; = h(J;), and letg; denote the inverse dfl ;.. Fory € B\ N2 g, define

qi(y) = f@iODIG;WNI/f () - (2.21)

Lemma 2.9. There exists &2 9 < co and anN = N2 g C I with A(N) = 0such
that, for any0 < ¢ < 1 and for each,

1
/ M, (gi, &; N)dx < Kpg¢° .
0

Proof . Take N = N9 = U,>0h,(N2g). Then the functiong o ¢; and|¢;| are
bounded offNV, and f is also bounded away from zero a¥f. Hence, forx € B;
andy, z € (B; N Sx(e))\N,

lgi (¥) —qi ()| < Kl f(y) — f@)| + K2| f(¢: () — f($i ()]
+K3lp/(y) — ¢/ ()] , (2.22)

for suitable constant&;, 1 < [ < 3. Now, for suchy,z, |f(y) — f(@)| <
M, (f,e: N),and| f(¢i (y)) — f (i ()| < My, ) (f. €/c(h); N), since alsd¢;| <
1/c(h); and, by A3,|¢/(y) — ¢/(2)] < K@.3)¢%. Thus, in view of Lemma 2.7, it
remains to be shown that

1
/ My, () (f, /c(h); N)dx < Kge® (2.23)
0

for somekK,4 < oo. However, sinceu is invariant forh,

1 1
/ My, (o) (f, e/c(h); N)dx < fmax/ M. (f,e/c(h); N)dx |
0 Smin Jo

so that Lemmas 2.7 and 2.8 conclude the proof. O

The importance of thg; comes from the fact that is the invariant density,
since then, from (1.6), fop € Bf\N2g9, we find thatg; (y) = p(y, ¢i(y)) is a
transition probability of the time reversal of the stationarprocess. In view of
Lemma 2.8, eacly; is uniformly bounded away from zero @h\ N.g; furthermore,
if

F(e.a) = Jlx: Mi(qi, &3 Now) > a} | (2.:24)

1
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it follows from Lemmas 2.8 and 2.9 that
W(F (e, a)) < K29 fmaxe® /a (2.25)

foralla > 0and O< ¢ < 1.

3. Coupling

Consider a Markov chaifl,,, n > 0) on the sefl’ = I*\N2.9 C I with transition
probabilities given by

y +> ¢i(y) with probability ¢;(y)1p,(y) ; (3.1)

note that\(T) = 1 and that:~(T) ¢ T, so that the chain is almost surely well
defined for allz > 0 if P[Yp € T] = 1, and in particular ifrg ~ u. The Markov
chain(Y,, n > 0) can be recursively constructed in the following standard fashion,
as a function of a sequenc¢¥,,, n > 0) of independent/[0, 1] random variables
and a starting valugg, which may depend ofp. GivenY,, = y, set

i—-1 i

Yopr=¢i(») i D qr01g () < U1 <Y a:Mig () . (3.2)
r=1 r=1

In what follows, we shall usually be interested in realizing two or more such chains
simultaneously, in such a way that, as far as possible, their paths remain close to-
gether. The main result is that of Theorem 3.4, showing that a pair of realizations
with almost arbitrary starting points can be coupled so as to approach each other
geometrically fast. This is then used in Theorem 3.5, to show that any Elain-
structed in accordance with (3.2) can be closely approximated by-@ependent
sequencd’, withm = m(N) = O(logN).

The joint realization of two such chaing/, » > 0) and (Y2, n > 0), is
achieved by realizing’* as in (3.2) from a sequend&! of independent uniform
random variables, and then realizifd as a function ofY! and a second se-
quencel/?2 of uniform random variables, according to the following rules. Define
I =i whenevery;| € C;, where(C;, 1 <i < ma(h) + 1) are the intervals into
which V (k) dissectsl, and set/;,, = r whenevery! , = ¢,(Y), j = 1. 2.

Then, givenY,? and the whole pathy?, determine¥?, ; according to (3.2) with
UZ,, for Uyyq if I1 # 12, if I} = 12, define
¢r(y2) it U2, < pra/pra;
2
Y= di(y2) if Unz+l > pr2/pr1and (33)
Rio1<(A—UZ )/(d—pr2/pr1)) < Ri
where

r=Jhy wm=Yh =YY% pi=q¢0) j=12, (3.4)
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and
l ma(h)+1
=Y p2-p0 0D [ Y (2P0 102 . (35)
s=1 s=1

This construction make&? choose the same branchidswith as high a probability
as possible wheiii andY? are both in the same sét. It follows, in particular,
that

P/ +17é n+l|212 m{Il_lz}m{-]_;_]_—”}]
— (@G YH NG (Y2 g (YD) (3.6)

WhereEIj — o/, 0<s <)andxl? = x} v 22, and hence that, for
someK 37 < o9,

Pl # Jua Uy = IANEL] < Kanlays (V) —qa VD] (3.7)

Now define

In

1
Dy = (¥ ¢ Ens} € 5,
n=0
where

—{yeT: m - UF@E", ey 3.8
{y l)ev(h)um}ly v <c™"} (c ) (3.8)

now henceforth witle = ¢(h) and with¢’ fixed, 0< ¢’ < ¢: F(e, a) asin (2.24).
The setsD,; are those in whicty does not too soon approach points wheregthe
may change abruptly.

Lemma 3.1. For anyyi, y2 € T satisfying|y, — y1] < ¢~%, we have

I
P[ﬂw,f — Y <O YE = y2, ¥ =31, 5N Ds1:| >1— K31,
n=0

whereKz1 = K@37c/(c — 1).

Proof . If s is such thakz 1¢~%¢ > 1, there is nothing to prove. Otherwise, since
lp.(y)| < ¢ Yforallr and ally € B,, it follows that, for ally, z € C; and allr
such thatB, > Ci, we havel,(y) — ¢,(z)| < ¢ |y — z|. Hence it suffices to
show that, if|y2 —y1] < ¢7%, then

P ﬂ{ =72}
Ln=0
However, from (3.7), (3.8) and (2.24), it follows that

Yo =2, Y3 = y1. X% ﬂDsz] >1— Kzpc™¢

n

(=130 {I¥§ - Y5l < ¢} N Dy N Em}
L r=1

< K@ape 6+me (3.9)

and the lemma follows. O

P n+1 7é n+1
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Remark.By choosings > sg for a suitablesg, the lower bound in Lemma 3.1 can
be made to exceed 0.

Now define

P(s,y) = PDyo | Y3 =31 75, 0) =B 15, (D | ¥ =vt .

n>0
(3.10)
and observe that
1= P, ) =P| > 16, () > 0|} =y | =7(s.3) .

n>0

SinceY?! is stationary ifYg ~ p, it follows that
1
[ 76 ) Y i)
0 n>0
< fmaxz I:Z(mZ(h)‘i‘l)C_(SJ’_n)‘i‘H/ {F(C_(S-’_n), C—(s+n);-/)}i|

n>0

< fmad2ma(h)+1)c ™ /(c—1) + K2.9c ¢~ /(8¢ —1)}
(3.11)

where the final estimate comes from (2.25). Chaoses; > sg large enough to
make the final bound in (3.11) smaller thafl0. Then the set

S={yeT:n(s1,y) <1/10}
hasu(S) > 0, and, for eacly € S, P(s1, y) > 9/10.

We next show that, i} € S andYZ is close enough t&§, then there is a good
chance that the paths #f andY? never get far from one another.

Lemma 3.2. Foranyy; € S andyz € T such thafy, — y1| < ¢™*1, we have

P[ﬂ{nff — Y} <y

n>0

Y§ =y ¥ = yz} > 8/10 .
Proof . From Lemma 3.1 and because> so,

P[ﬂ{mf — Y} <y

n>0

Y02 =Yy2, Y(:)L = yi, Eg‘o N DS]_,OO} Z 9/10 .

(3.12)
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Hence

P[ﬂ{wj — Y} <

n>0

Yg = yo, Yo1 = yl}
> P[Dy;,00 | Y3 = 1]

E{P|:m{|Yn2 — Yyl <)

n>0

> 9P (s1, y1)/10 > 81/100 ,

Ye=y2,Y3=y,3L N Dsl,oo} }

which proves the lemma. O

Now take anyyp € S and set/ = S,,(c™°1) N T. The next lemma shows that
if YO andY0 are both inJ, thenY! andY? stay close to one another for ever with
substantial probability.

Lemma 3.3. For any y1, y» € J, it is possible to couple two Markov chaine
and Y2 with transitions governed b§B.1)in such a way that

(" 1¥Z = Y| < 2c71} | ¥§ = y2. Yg = y1| = 6/10 .

n>0

Proof . Realize a chair¥ according to (3.2) withYy = yo. Then realize two
processe¥ andY with Yo = y; andYp = y», each coupled t% asin (3.3). Apply
Lemma 3.2 to each pair, and then observe that, by the triangle inequality,

|Yn _?n| = |7n - Yn| + |Yn - i;nl .

Now set¥! =Y andy? = 7. o

Lemma 3.3 shows that! andY2 can be constructed in such a way that they stay
close for all time with substantial probability, provided that they are both initially
in the (small) set/. We can now greatly extend the scope of this result, proving
thatY! andY? can be realized in such a way that their paths are eventually close
for all time with probability 1, whatever their starting states.

Theorem 3.4. If A1-A3 hold, then there exisK3z4 < oo and0 < 8 < ¢ such
that, for a suitable joint realization o¥ * and Y2,

P |:supcr|Yr2 — le| > x Yg = yo, Yol = y1:| < Kzax#? |

r>0

uniformly for allx > Oandy1, y2 € T\N, whereN = N34 is finite.
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Proof . From Theorem 2.6, there exists apsuch thath,,(S,,(c™1)) = I\N,
with N = N34 finite. Hence, for any € T\N, h;ol N J is non-empty. Thus,
letting Y andY? evolve independently for steps, it follows that

P|Y} €Y} e s 1Y =2 ¥g = 1| = linf q:(3))?° = 5> 0,

by Lemma 2.8, for all pairs1, y2 € T\N. Hence, from Lemma 3.3,

P [ ({"1¥Z = Y| < 2071 ‘ Ye =y, Y3 = y1i| >68/10,  (3.13)

nzro

for all such pairs.

Now, givenys, y2 € T\N, definey! andy? for all time as follows. Let/} =
y1andYZ = y,, and let¥! and Y2 evolve independently foro steps. Then, if
{y1, y2} ¢ J, setNy = rg; otherwise, using the Markov property, [Et andY?
continue to evolve according to a coupling constructed as for Lemma 3.3, and set

N1y =inf{n > ro:c"|Y2 — Y} > 20791} < 00 . (3.14)

If N1 = oo, the chainsy'! andY? are fully defined. IfN1 < oo, use the strong
Markov property to restart the whole construction from new initial vaIH%ls

andY,%,l, covering all times O< n < N1 + N2 < oo, and continue to repeat until
someN; = oo. Note that, in view of (3.9), for any, / > 0,

PIN;I[Nj <00l 21] =Y P[N; =ro+1] <Y Kape (1t
t>1 t>1
hence, from (3.13), the suﬁj21 N;I[N; < oc]is stochastically dominated by a
sumN* =377 4 N of independent random variabl@g, each with distribution
P[ﬁj =ro+1] = K(3,7)C_(Sl+l)§/, 1>1
PIN; =rol =1— Ka7e ¥ /(c - 1) ,

wherert is independent ofN;, j > 1} and has geometric distribution

P[rzl]z(l—%)l, 1>0.

Hence

r>0

P |:Supc’|Y,2 — Y =2 o 2 =y vE = y1:| <P[N*>1] ,
uniformeNin v1,y2 € T\N. _

Now N; has a probability generating functidi(z) which converges inz| <
¢¢’. Hence the probability generating functionf also converges for some<
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20 < ¢, implying that PIV* > 1] < z5'E{z)"}. Hence, given any > 0, take
[ =[s1 —ro +log(x/2)/logc], giving

r>0

P |:supcr|Yr2 — Y,.1| > x:| < E{z(ljv*}e_[IOgZO < Kzax? |

for suitableK34 < oo andg > 0. O

Remark. Note that the value oB indicated by the proof is smaller than and,
through the probability generating function &f¢, is also small withs. It is not
in general obvious how to make good estimates of the best pogsitotan the
properties ofi, except in very simple cases. In the traditional approach, some
progress has been made in the analogous problem: see Liverani (1995).

An important consequence of Theorem 3.4 is that, in a certain limited sense,
the value ofY,, has little effect on that of,,,, whenm is large. This can be made
precise in the following theorem.

Theorem 3.5. Suppose that the chaiiy,, » > 0) is constructed as i3.2) from
a sequence of independdnf0, 1] random variablegU,,, n > 0), with Up deter-
mining the value of. Then it is possible to construct a sequexkg, n > 0) of
m-dependent random variables in such a way that

N+m
Pl JUYj—Yj|=N?| <KsaN"?, (3.15)

j=m
if m>(2+3/B8)logN/logc.

Proof . With (Y,, n > 0) constructed as in (3.2), and for any fixed con-
struct random variableg, , . » > 0) using an additional, independent sequence
(U;, n > 0) ofindependent/[0, 1] random variables; for eaeh> 0, start a chain
¥, r > 0) by letting U/ determiney,\"”, and then rury ™ using (3.2) and the
original values(U,4,, r > 1); setYéTm =Y, ,. Because of Theorem 3.4, for
eachn > 0, we have

P[|Yr/z+m — Yurml > xc—m] = K3.4x_ﬁ» x>0,

and (3.15) follows ifn > (2+ 3/8)log N/ logc. O

Thusm need only be of order lo for Y’ to be a uniformly small perturbation
of Y throughout an index set of lengt. The advantage of the sequertés that
longer term dependence has been entirely eliminated.
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4. Rates of approximation
4.1. Decay of correlations

The first set of implications of Theorem 3.4 concern the rate of decay of the depen-
dence upon initial conditions itsequences. This rate itself depends on the form of
the initial condition — ifxg were exactly known, there would be no decay at all. The
guantities in terms of which we express our rates are derived from the following
measure of the average smoothness of a function. Fogani0, 1] - R, we
define L

m(g, n) =/ sup  |g(z) —g(x)|dx <00 . (4.1)

0 {z|x—z|<piNT

Note that, from Lemma 2.7,

m(f,n) < Kam® . (4.2)

Let go be the density ofXy with respect tor, and letg, denote the density of
Xp = hy(Xo).

Theorem4.1.Asn — oo, g, — f in Lq. Furthermore if go satisfies
lim,_om(go, n) = 0,then

lim sup |gu(x) — f(x)|=0,

n>00 xeT\N34
whereT is as in Sectior3.

Remark. The class of densitieg such that limy_.q7(go, n) = 0 is just the class
of Riemann integrable densities, and includes in particular all densities belonging
to D[O, 1].

Proof . We start by assuming that satisfies lim_.om(go, n) = 0, proving the
first part by approximation when the secondis known Xet= A, (X), 1 < r < n,
with X ~ u, and set, = X,_,,0<r <n.ForanyA C I, we have

n—r?

[ e = [ Loz dx
— El14(X})80(Xp)/f (X))
— EL4(X0)80(t)/f () - (43

sothat Bgo(Y,)/f (Y,) | Yo =y} f(y),y € T, is aversion of,. Hence, realizing
Y1 andY? together as for Theorem 3.4, witiy = y € T\N34 and¥? ~ y, we
have, for anyk, > 0,

lgn () /f () — 1] = |[E{go(Y,D)/f (YD)} — E{go(YD)/f (YD)}
< 2GKaak,? + /T f(X){ sup 1(200)/f (7)) — (g0(x)/f (x))| dx

yily—x|<kpc "}NT
< 2GK34k, P + Gi(f, knc™) + (g0, knc™) (4.4)
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whereG = sup,.r go(x)/f(x) < oo, by Lemma 2.8 and becausei(go, 1)
< oo for n sufficiently small. Choosingk,,, n > 1) in such a way that, — oo
andk,c™" — 0, and recalling (4.2), the second part of the lemma follows.

Now if gg does not satisfy lin,om(go, n) = 0, it can still be approximated
arbitrarily closely inL1 by densitiegg which do. Hence we can write

/Ilgn(X)—f(X)ldx S/TIgn(X)—gﬁ(x)lder/TIgi(x)—f(X)ldx ;

with the latter integral converging to zeroms— oo by the first partyg; denotes
the density ofX,, whenXgo ~ gg. For the former integral, we have, fore T,

1(gn(y) — g5 /F )| < E{lgo(Y,)) — g§(YDI/fF (YD 1Y =y}

and hence it follows that
/T lgn(») — g5 (M dy < /T E{lgo(Y) — g5 HI/fF (XD |1 Yd =y} () dy
- /1 l20(x) — g5(0)|dx . (4.5)

which can be made arbitrarily small by choiceggf O

With slightly stronger assumptions gp, we can prove a geometric rate for the
convergence in Theorem 4.1. Fox0Oy < 1, define

my,(g) = sup n 'm(g,n) < oo;
O<n<1l

mo(g) = sup [g(x) — g =m(g, 1) . (4.6)

x,yeT

Note thatn,, (g) isincreasing witly, and that, ifg; andgo are such thatinf g; (x) <
0 <sup g (x),i =1, 2, then sup|g;(x)| < 2mog(g;), and hence

my(gng) = 4my(gl)my(82) . 4.7)
Note also thatz; (f) < oo, from (4.2).

Theorem 4.2. Suppose thain, (go) < oo for some0 < y < 1, and sety’ =

min(y, ¢) anda = ¢~#7"/(B+)_Then there exists 42 < co such thatfor all
x € T\N3g4andalln > 0,

|gn(x) — f(x)] < Kaoa"{1+my(g0)} .

Proof . Allthatis required is to make estimates of the quantities appearing in (4.4):
G < {14 2m,(g0)}/ fmin, m(f, ) < n°m¢(f) andni(go, n) < n”my(go). Then
choosek, = ¢ /B+r"), 0

Theorem 4.2 implies a corresponding rate of decay of correlations.
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Corollary 4.3. Suppose that; andu; are integrable functionsind thatmn,, (11) <
oo for somed < y < 1. Suppose also th&fp has a densitgg satisfyingn,, (go) <
oo. Then for someKys 3 < 00,

‘E{Ml(Xo)uz(hn(Xo))}—/Iul(X)go(X)dx /qu(X)f(X)dx
< K443a”/1 luz(x)| dx {/I|u1(X)|go(X)dx+my/(go)my/(|ull)} ,

where as beforey’ = min(y, ¢) anda = ¢=#7"/(B+v),

Proof . It is enough to prove the corollary for nonnegativg since a general;

can be split into its negative and nonnegative parts. Note also that a constant may
be added tarz without changing the quantity to be estimatedui{x) > 0O for

all x, define

8() = go(our(x) / /I gouL(y)dy |

and observe that
E{u1(Xo)u2(hn(Xo0))} = /lgo(X)ul(x)uz(hn(x))dx
= /Ig(X)uz(hn(X))dx /Igo(y)ul(y)dy . (48
By Theorem 4.2, we have

/1 Ozl (x)) dx — /1 () f () dy’

< Kaoa"{1+m,(g)) /1 2| dy . (4.9)

and the corollary follows, since, from (4.7),
my () < dmy (goymy (ua) | /I gous(y)dy .

Remark.The quantity estimated in Corollary 4.3, although perhaps the most useful
expectation estimate, is neither a correlation nor even a covariance, since, in the
product of integrals, E2(h, (X)) is replaced by its limiting value as — oo,

f, u2(x) f (x) dx. To obtain a true correlation estimate, first observe that a constant
may be added ta, without changing the quantity to be estimated, so thatan

be taken to be centered at its expectaiiotm) = E{u2(h,(Xo))}. Then, substi-
tuting go for g in (4.9), it follows that a similar estimate holds for the covariance
as well:

Cov{ui(Xo), u2(hn(Xo0))} < Ko /1 luz(x) — i2(n)|gn(x) dx

X {/1 lu1(x)|go(x) dx +my'(go)my'(|u1|)} ,
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with the constank incorporating a factofinf g, (x)}~1, which approaches/¥min
asn — oo, in view of Theorem 4.2. This in turn leads to an estimate of the
correlation:

Corr{u1(Xo), uz(hn(X0))} < Ka"{1+ R(u1)} ,
whereK depends on the properties @f as well as ork, and where

R(u1) = my(lur — Bug(Xo)|)/v/Varui(Xo) .

The final result of this nature concerns probabilities of sets more general than
product sets.

Theorem 4.4. If Xg ~ 1o, Wherepg has densityg such thatm,, (go) < oo, then
the Levy—Prohorov distance between the distribution ¢, /,,(Xo)) andio x @
satisfies

p < Kga0"{1+m,(g0)}
for someK 4.4 < oo, wherey’ = min(y, ¢) anda = ¢~#7"/#+7") are as usual.

Proof . Let A be any measurable subsetiok I, and letA, = {y:(y,x) € A}
denote the corresponding section. Then

pofx :(x, hy(x)) € A}
— Elgo(Ya)/f (Yl I[(Ya, Yo) € A] | Yo ~ 1}
_ /1 oY) /f OlIlYs € A [ Yo=x} f()dx  (4.10)

Forx € T\Naa, let (Y, x, n = 0) be a Markov chain with transitions governed
by (3.1) havingYp . = x, and letY’ be another withvy ~ w, realized together as
in (3.3)withy’ = y1 andY, , = Y2. Then since, for any > 0,

1Yy € Al < I[Y, € ATUNIY.x = Yyl <]l +I[|Yox =Y, 2 0] , (4.11)
it follows from Theorem 3.4 that
pofx @ (x, hp(x)) € A}

< fT El[80(Yn.0)/f (Vn)l 1Y, € AN = Y} < n]}f () dx

+G/P[|Yn,x - Yr/ll > n]f(x)dx

< /T Edlgo(Y)/f(YDULY, € AN} f (x) dx

80(Ynx)  go(¥y) o n—p
+ [ ¥ T = Py [T =Yl < | F @ dx + GRsatne

< (o x W{A"} + Gm(f, n) + m(go, n) + GKzanc™)™F |

this last from (4.4):G = sup{go(x)/f(x)} as before. Hence, taking =
c~"B/(B+Y") it follows that

polx © (x, hy(x)) € A} < (o x W{A®} +¢ , (4.12)
with & = K440 {1+ m,(go)}, for a suitableKy 4. ]
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4.2. Multivariate normal approximation

Let Xo have distribution, whereu is the invariant measure. Then recall that,
forany N, (Xo, ..., Xn) is time-reversible, and its time reversab, ..., Yy) is
stationary, withYp ~ u. Thus for any functiom, in distribution,

Lw(Xo, ..., Xn)=ZLwXo,...,Yn)) .

Hence limit theorems for functions @y, ..., X)) can be obtained by deriv-
ing limit theorems for functions ofYy, ..., Yy). Due to stationarity, these are
equivalent to limit theorems for functions ¢¥,,,, ..., Y,+~), for any fixedm.
The latter process we can approximate by the above statienagpendent pro-
cess(Y,,, ..., Y, ) for which known results can easily be applied. For normal
approximations, there is a vast literature about rates of convergence for stationary
m-dependent sequences. However, we will want to get an explicit dependemce on
and therefore will have to rule out results such as Stein (1972), Tikhomirov (1980),
where the rate of convergence is given in terms of a constant that depends on the
distribution of them-dependent sequence in an unspecified way. Moreover, there
are results about Edgeworth expansions (see Heinrich (1982), Heinrich (1985),
Loh (1994), Wtze and Hipp (1983)), but these involve the cumulants of the distri-
bution of them-dependent sequence and are therefore too complex for our goals.
Instead, we will apply a result by Rinott and Rotar (1996) for multivariate normal
approximation.

Letd = (J1, ..., Js) € NS be afixed vectorwith@= J; < o <--- < J;,and
let/ ={i+J;i=1,..., N}, where we abbreviate+J = (i + J1,...,i + Jy).
Foreach,1<i < N, put

Xivd = Kivp, oo Xitr) €{X1, ... Xng, Y s

letu® be a Lipschitz continuous function from,[0]* to R, with Lipschitz con-
stantr ) and satisfying B® (X1,3) = (0, ..., 0). Here, and in what follows, the
norm of any vector or matrix is understood to be the sum of the absolute values of
its elements, and vectors are understood to be column vectors.

We also writel|ul| = maxeo,1 Z’j.zl lu(y);| < s, whereu(y); denotes
the jth coordinate ofi(y), and we set

N
UOXigg) = U Kig gy, Xivs); W= uPXipg) .
i=1

Further, we define

Xy =(0i )i, j=1,.,a = Var(W); 7 = max @ gy = srlE;,
1<i<N

1
2| .
Theorem 4.5. With the above definitions
1
sup(|Eg(W) — Eg(7.1)|:¢ € ) =< 0 {dogN + J)*(Nef + Dew]

where% is the set of indicators of convex setsRfAl and ./ denotes a standard
normal random vector ifR.
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Remark. A detailed form of the error estimate, derived from that given in Rinott
and Rotar (1996), is given below. Although it appears rather complicated, it makes
the dependence of the order terms on the parameters of the problem very explicit.
In fact, there exist universal constarts- c¢(d) anda = a(d) such that

SUP(IES(W) — Eg(E3.4)|:g € 9) < a2+ Kaa)en N~ + KaaN 2
+3c{4ab€N + Nb2%2[log N + 2| logey | + log(4h)][8aey + N—Zw]} :
(4.13)
where
b=m+J+1 ¥ =81+Kza)+1—a) Ks3(L+s1K1a) , (4.14)

and

- 2+3 2
m = max ST logN . (4.15)
logc "log2

It is also shown in Rinott and Rotar (1996) that similar estimates are valid, with
different choices ot, for other classe¥, and that the order of the bound can
be slightly improved ifd = 1. In many applicationg£y"? = 0(N~Y/2) and

J; = 0(log N), giving an error in the approximation of ordér N ~1/2log® N).

Proof of Theorem 4.4Let {Y1, ..., Yy4+j,} be the time reversal ofXy, ...,
XN+, }, SO that

N
W = Z uN=D ey )

i=1
We approximate the time-reversed process byitfdependent process;);—12....
constructed above, with the particular choicenogiven in (4.15). By stationarity,
we may shift the indices id by m + J; without changing the distribution o .
Alternatively, we may suppose the process to have started attime J;, which
allows us to maintain the notatia@’, ..., Yy).

Put

N
W = Z G(N—i-&-l)(Y;_J) ’
i=1

whered ) (v/_;) =uP(y/_;) — EuY(v;
let

+J,—3)» and note thaja /|| < st;

.....

be the covariance matrix &¥’.
First, we transfornW’; we put

1, Y . 1, Y .
Wy = 2N2<Z u(N—l+l)(Yi_J)) and WZ‘Z — 2N2<Z L“J(N—1+l)(Yl_/_J)) .
i=1 i=1
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Note that, a¥/ is closed under affine transformations, we have

supl[Eg(W) — Eg(S3.1)|:¢ € 9)
=sup{|Eg(Wz) — Eg(AN)]:g € ¥}
< SUp{|[Eg(Wz) — Eg(W'y)| + [Eg(W'y) — Eg(A)|:g € %} .
Our strategy is now to estimate the differencg(® ») — Eg(W’,), and then to
apply Rinott and Rotar’s result to the-dependent sequenueY’fJ) We have

[Eg(W ) — Eg(W'y)|

U{IY ~ Yz N—2}>

§E<Ig(W:7) g(W'y)l

j=1
N
x P[ Jty) -y = N‘z}:|
j=1
N
+E<|8(W£)f) g(WJ)| mHY; Yl < N2}>
N j=1
xp[ﬂ{wj’.—m <N_2}:| . (4.16)
j=1

The first summand can easily be bounded, using (2 + 3/8) log N/logc and
Theorem 3.5:

E(Ig(sz) —g(W'y)|

N
Jy; -y = NZ})
j=1

N N+m
x P[ Juyj—vi = N—Z}} < P[ Uy -y = N—Z}} < K3aN7% .
j=1 j=m

(4.17)

For the second summand, we have

N
(Y; —v;l < N—Z})
1 N =
( 7?2 (N 1+1)(Y/_)
R
2.

% ( (N z+l)(Y ) U(N l+1)(Y/7 )>)

N
< ?ZU(N l+1)(Y/ )) ﬂHY —Y|<N‘2})

i=1 Jj=1 .
On the seﬂ] Y=Yl < N2}, we have, from the Lipschitz property of/,
that

E(|8(W5f) g(Wiy)|

s

._\
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|U(N_i+1)(Yi7J) _ G(N—i-i—l) (Y:_‘])‘
N
= Z T¥/ = Yiog + IBUN DY)
<stN 24 [BEuN Dy, 9l
But now |EuN DY, I < EuN DY ) —uN DY ),

and splitting the expectation again as in (4.16) giga™ DY}, )| <
st(1+ K34)N~2; hence

JuN= Dy gy — GV TID Y| < sT(24+ K3a)N T2 (4.18)

and

_1
2

Xy < 2+ Kaa)eyN~t .

N
[Z(U(Ni+l) (Yi—J) _ G(N*l’+l) (Y;J)):|

i=1

This implies that, wittSy = (2 + K34)en N1,

N
(Y] -l < N_Z})
j=1
sE(g8 (W) — g, ﬂ{w Y,-|<N—2}) :
where, following @tze (1991) and Rinott and Rotar (1996), for any 0, we

define

gy () =sup{gtx+y) 1yl <8} g5 (x) =inf{gx+y) 1yl <8},

E( HOUZE

observing also that, for afl > 0, the functiongf; (x) andgy (x) are in%, and that
SUp(Egy (/") — Egy (A): g € 9} < ad (4.19)

for a universal constant = a(d) > 1. Thus we have

N N
ﬂ{w; ~Yjl < NZ}) P[ (Y; =1l < NZ}}
j=1

E(Ig(sz) —g(W'y)|

IA

E (e, W) - g5N<wj))
E(g5, (W'y) — g5, (1)) — E(g5, (W) — g5 ()
+E(g5, (/) — g5, (1))

25up{|Eg(WJ) Eg(AN)|: g € 9} +adn
2SUd|Eg(W)y) — Eg(A)|: g € 9} +a+ Kza)enN 1,

1A
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which, combined with (4.17), gives

IEg(W ) — Eg(W'y)|
< K34N"2+ a2+ K34)eyN 1 4+ 3Su|Eg(W/y) — Eg(4)| . (4.20)

Thus it remains to bound syfE(g(W’y) — Eg(A)| : ¢ € %}, for which we
apply Theorem 2.1 in Rinott and Rotar (1996). They consitfer= 27:1 Z;,
whereZ ; are bounded random vectors taking valueRfnthatis,|Z;| < B, 1 <

j < N for some constanB. (Rinott and Rotar havX instead ofZ, .# for ¢, and
n for N.)

Theorem (Rinott and Rotar). For eachj = 1, ..., N assume that we have two
representations oV, W = U; +V; andW = R; 4 T, such thatjU;| < Ay,
and|R;| < A, for constants satisfying, < A». Define

N N
x1=Y E[EZ;|V)l. x2=) EIEZ;Ul)-EZ;Ul|T)l
j=1 j=1
N
x3=1-Y E@Zul) .
j=1

wherel denotes the identity matrix. Then for agiy> 1, there exists a constant
depending only on the dimensigrsuch that

SUP{|[Eg(W) — Eg(4)|:g € ¥ } < c{aA2 + NaA1A2B(|log A2B| + log N)
+x1+ (IlogA1B| +10gN)(x2 + x3)} »

(4.21)
with a as in(4.19).
To apply this theorem, for each=1, ..., N, put
_1 . N
Zimy =22 uN T y); =) Ziy .
i=1
Clearly,
_1
|Zi-3] <stIZy°l=¢n , (4.22)

showing that we can takB = ¢y in (4.21). Moreover, to find the two representa-
tions of W', needed for (4.21), we define neighbourhoods of dependence

B]={l=l,,Nl§]—|—JA+m andi+Js2j—m},

IEBJ'
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for 1 < j < n. Because of the:-dependence, if ¢ B;, thenZ’;_j; andZ;_; are
independent. If € N;, and ifk € B}, thenZ’;_j andZ’;_; are independent. Let

szzgif\], VjZZgifJ, RjZZgiaL TjZZgFJ~

i€B; i¢B; IEN; igN;

ThenW’, = U; +V; = R; + T;. To bound|U;| and |Rj|, note that, for all
j=1,...,N,

[Bjl <2(Js+m)+1<2b

and
INj| <4(Js+m)+1<4b ,

whereb is as in (4.14), so that therefore

Uj| < s7|B;11Zy"% < 2bey and |Rj| < st |N;j|IZyY?] < dbey

so that we can take® = Ay = 4bey in (4.21). It thus only remains to bound
the)(,'.

From the choice of neighbourhoods anetlependence, the first two character-
istics in the theorem vanishy; = 0 andy, = 0. For the third characteristic, we
get

N
xs = |1 = Y E@iguD)| = || —EW, W)
i=1

2

-1 _1 _1
=‘| —I2ENEN SN BN -2 -

To bound this quantity, observe that

N
Sy = Eyl =] Y BNy guN iy )T
i,j=1

_g(N—i+1)(Y;_J)g(N—jJrl)(Y;_J)T)‘

N
Z Z E(U(N7i+l) (Y[_J)U(N7j+l)(Yj_J)T

<|
j=1ieB,
_G(N—H-l)(Y;_J)G(N—j+1)(Y/j_J)T)‘
N
+(Z 3 E(u<N—"+1>(Yi,J)u<N—-i+1>(Y,-,J)T)‘ . (@.23)
j=1igB;

Consider the first term in (4.23), for which we have
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N
‘ 33 EUY DY puV Dy )T
j=lieB;

—aN =D oy V=it (Y}_J)T) ‘

N
<> > E{ UN=HD v _yuN =70y ;T

j=lieB;

N
—a Ry a N )T (Y - Yl < N‘z}}

j=1
N
x P(ﬂ{m — Y| < N’Z})
j=1
N
+ Z Z E |U(N_i+1)(Yi_J)U(N_j+l)(YJ'_J)T
j=lieB;

N
Gy - v = 8
j=1

x P(LNJ{W, — Y| = N—2}> .

j=1

In the first sum, we bound the probability by one, giving

N
Z Z E{ \u(NfH{L)(Yl’_J)u(N*j‘I*l) (Y.j—J)T

j=lieB;
_g<N*l+1>(Y§7J)ﬂ(N*J+1)(Y’j,J)T|‘ (Y -l < NZ}}
j=1
N
xP((NY; =¥}l < N73)
j=1
N ' ' .
=22 E{ L L [ L R e A |
j=li€B;

+‘ [u(N_iH) iy — G(N—i-i-l)(Y;_J)]"J(N—j-ﬁ-l)(Y.//_J)T‘

N
‘ Ny; - v}l < N_Z}}
j=1
<42+ K34)(sT)?pN7L |
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using (4.18)p as before, in (4.14). For the second sum, we use Theorem 3.5 and
the fact thain > (2 + 3/8) log N/ logc to obtain

N
Z Z E{ |u(N7i+l) (Yi_‘])u(Nij+l)(Yj_J)T

j=lieB;

N
—a v a ety - v N-z}}
j=1

N
x P(LJUY; = Y]l = N73)) < 4Nb(s7)*KaaN 2 = 4N Kaa(s7)? .
j=1

For the second termin (4.23), we need to bound the sum over all inditatsare not
in B;. Using Corollary 4.3 wittgg = f and since, by choice @f, No 1 < N1,
we obtain

N
‘ Z Z E(U(N7i+1) (Y;_uN=i+D (Yj_J)T)‘

j=li¢B;
N
< Kaz3) Y " Nulull + TK14)
j=1i¢B;
m+1 K
=< K4‘3N(; ST(ST+1K14) < 1 43 N7 0?2+ s71K1a) .
- -«

Collecting these estimates of (4.23), we get

K
Sy — Zy| < BN Hs7)? {4(2+ Ksa) +4Kaa+ 7o (14 s—1K1.4)}

= bN L(s1)%y (4.24)

andthusz < bN 12 . Substituting our estimates af;, A», B andys into (4.21),
and using (4.20), the theorem follows. O

The freedom to choose thé’ to be different for eacli enables one for instance
to consider the joint distributions of the partial sum proqegs/2 Zl[i”l] X;, 0<
t < 1) at afinite number of different time points. Another natural multivariate cen-
tral limit theorem involves the joint distribution @iV1(X), ..., M4(X)), where
M (X) = ZlNzl I[X; € L], forasetofd intervalsL1, ..., Ly € I. The Lipschitz
assumption on the”) in Theorem 4.5 does not directly allow this example. How-
ever, by choosing: to be a possibly larger multiple of Iy, it is easy to construct
M (X) andM (Y') so as to be identical, except on an event of negligible probability,
andm-dependent theory can be used once agaiMfor’): the details are omitted.

Acknowledgementsie would like to thank Walter Philipp and John Einmahl for fruitful
discussions.
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