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Abstract. The iterates of expanding maps of the unit interval into itself have many of the
properties of a more conventional stochastic process, when the expanding map satisfies some
regularity conditions and when the starting point is suitably chosen at random. In this paper,
we show that the sequence of iterates can be closely tied to anm-dependent process. This
enables us to prove good bounds on the accuracy of Gaussian approximations. Our main
tools are coupling and Stein’s method.

1. Introduction

Let h : I = [0,1] → I be piecewise monotoneC1 and uniformly expanding: that
is, there is a finite setU = U(h) of points

0 = u0 < u1 < · · · < um1 < um1+1 = 1 (1.1)

in I such that, for each intervalJi = Ji(h) = (ui−1, ui), bothh restricted toJi and
its continuous extension to [ui−1, ui ] areC1 and monotone, satisfying

1< c(h) ≤ |h′(x)| ≤ C(h) < ∞ (1.2)

for all x. We shall be interested in the behaviour of the sequence{xr = hr(x0), r ≥
0}, wherehr denotes therth iterate ofh. We need the following basic assumptions
A1–A3, which are to hold throughout.

A (measurable) setA is said to have periodr if hr(A)
.= A, whereA

.= B

means thatλ(A4B) = 0 andλ denotes Lebesgue measure; ifA has period 1, it is
called invariant. An invariant measure is a measureµ such thatµ(h−1(A)) = µ(A)

for all A. We assume that:

A1: There are no periodic setsA with 0< λ(A) < 1.
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A2: There exists anr = r1 ≥ 1 for which|h−1
r (x)| ≥ 4 for all x /∈ hr(U(hr)).

If h is piecewise monotone and uniformly expanding andh′ is piecewise smooth,
there exists at least one invariant probability measureµ which is absolutely con-
tinuous with respect toλ. The celebrated theorem of Lasota and Yorke (1973)
proves this whenh′ is piecewiseC1, and shows also that the densityf of µ is
of bounded variation. In Keller (1985, Theorem 3.5), the conditions are relaxed
somewhat beyond
A3: h′ is piecewise Ḧolder continuous with exponentζ , for some 0< ζ ≤ 1.

Under A3, Keller shows that any invariant densityf has the following regularity
property: there exists aK(1.3) < ∞ such that, for all 0< ε < 1,∫

I

osc(f, ε, x) dx ≤ K(1.3)ε
ζ , (1.3)

where

osc(f, ε, x) = ess sup
y,z∈Sx(ε)

|f (y)− f (z)| , (1.4)

andSx(ε) = {y : |y − x| < ε}. Under our additional assumption A1, there is in
fact only one invariant measure that isλ-absolutely continuous, since supp(µ) is
an invariant set ifµ is an invariant measure, and thus supp(µ) = I for any suchµ.

Our interest lies mainly in the extent to which the properties of theh-sequence
{hr(x0), r ≥ 0} mimic those of a more conventional stochastic process, whenx0
is suitably chosen at random. Ifx0 is exactly known, the whole future of theh-
sequence is completely determined, and randomness does not enter at all. However,
in practice,x0 can never be known without error, and the small uncertainty in the
value ofx0 has an enormous effect on the later values in the sequence. It also makes
sense to ask for the properties of a ‘typical’ sequence, where ‘typical’ could, for
instance, be interpreted as meaning thatx0 is chosen uniformly at random fromI .
An example of the parallels with stochastic processes is the functional central limit
theorem for partial sum processes derived from anh-sequence, which was proved by
Hofbauer and Keller (1982). They also derive a rate of convergence, using general
theorems for mixing sequences given in Stout (1974). However, the rate they obtain
is not explicitly characterized, and can be expected to be very poor. In this paper,
we address the stochastic structure ofh-sequences more directly, and are thus able
to make much more concrete statements.

Our approach, illustrated in an elementary setting in Barbour (1995), is based
on two observations. The first, which we will probably not be the last to rediscover,
is that if x0 is chosen at random according to the invariant measureµ, then theh-
sequence is a stationary Markov chain taking values inI , as is its time-reversal; see,
for instance, the reference given in Isham (1993, Section 3.6.3). Theh-sequence
is Markovian because its evolution, for givenx0, is deterministic, and stationarity
follows directly if x0 ∼ µ. Now the invariance ofµ implies that

f (y) =
∑

x∈h−1(y)

f (x)/|h′(x)| (1.5)
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for (almost) ally such thath−1(y) ∩ U(h) = ∅, so that then the quantities

p(y, x) = f (x)

|h′(x)|f (y) , x ∈ h−1(y) , (1.6)

are probabilities. Moreover, ifx is such thathi(x) /∈ U(h), 0 ≤ i ≤ m, if X is an
interval aroundx so small that the mapsh : hi(X) → hi+1(X) are 1–1 for each
0 ≤ i < m and ifg : Im+1 → IR is measurable, then∫
X

g(x, h(x), . . . , hm(x)) µ (dx)

=
∫
X

g(x, h(x), . . . , hm(x))f (x) dx

=
∫
hm(X)

g(h−1
m (y), . . . , h−1(y), y)f (h−1

m (y))

m−1∏
i=0

1

|h′(h−1
m−i (y))|

dy

=
∫
hm(X)

g(h−1
m (y), . . . , h−1(y), y)

m−1∏
i=0

{
f (h−1

m−i (y))
f (h−1

m−i−1(y))|h′(h−1
m−i (y))|

}
f (y) dy

=
∫
hm(X)

g(h−1
m (y), . . . , h−1(y), y)

m−1∏
i=0

p(h−1
m−i−1(y), h

−1
m−i (y)) µ(dy) ,

so that the time reversal of(X0, X1, . . .) with X0 ∼ µ and withXi = hi(X0) is
the Markov chain(Y0, Y1, . . .) with Y0 ∼ µ and with transition probabilities given
by (1.6).

An advantage of considering the reversed process is that randomness enters
progressively at each step, and not only when setting the initial statex0, making the
analogy with classical stochastic processes clearer. Our second observation is that
the time reversal of theh-sequence of a uniformly expanding map has an induced
contraction property, which enables coupling methods to be introduced. It is shown
in Section 3 under A1–A3 that, ifx is close enough tox′, thenp(x, φ(x)) is close
top(x′, φ(x′)), whereφ is a given branch ofh−1. Thus the first steps in a reversed
chain starting inx0 and in one starting inx′

0 can typically be realized in such a
way that, with high probability,x1 = φ(x0) andx′

1 = φ(x′
0) for the same branchφ

of h−1. If this is the case, then

|x1−x′
1| = |φ(x0)−φ(x′

0)| ≤ |x0−x′
0| sup
y∈I

{1/|h′(y)|} = c(h)−1|x0−x′
0| , (1.7)

and the positions of the two chains after one step are closer than they were initially,
at least by a geometric factor ofc(h)−1 < 1. The main effort is then devoted
to showing in Theorem 3.4 that, however two reversed chains(Yn, n ≥ 0) and
(Y ′
n, n ≥ 0) are started, they can be realized simultaneously in such a way that

|Yn − Y ′
n| ≤ Zc(h)−n for all n, whereZ is a random variable with Pareto tail; we

refer to this as a ‘successful’ coupling. The coupling approach has already proved
to be a powerful tool in many areas (Lindvall, 1992), and it plays the main part in
our arguments.
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A traditional approach to the limiting behaviour of the sequence of iterates
{hr(x0), r ≥ 0} is first to study a sequence of labels{lr , r ≥ 0} determined by
the iterates; typically,lr = i if hr(x0) ∈ Ji . Sinceh is expanding, the finite vectors
(lr , lr+1, . . . , lr+s), s ≥ 0, determine the value ofhr(x0) ever more precisely
as s → ∞. Under conditions such as in Hofbauer and Keller (1982), the label
process is proved to be absolutely regular (Ibragimov and Rozanov, 1978), and
the ‘stochastic’ behaviour of thehr(x0) sequence is then deduced from that of
the lr sequence. Our coupling argument has a somewhat similar flavour, but with
an important difference. In Theorem 3.5, we are able to approximate the finite
sequence{hr(x0), 0 ≤ r ≤ N} by a sequence{x′

r , 0 ≤ r ≤ N} which ism-
dependent, wherem = m(N) need only grow logarithmically withN to achieve
a uniform accuracy of approximation of orderN−s , for any chosens > 0. Being
able to work with anm-dependent process instead of with an absolutely regular
mixing process brings substantial advantages.

The purpose of this paper is twofold: first, to introduce the coupling approach to
the sequence of iterates, and then to illustrate how it can be used to sharpen various
stochastic limit theorems. Berry–Esseen theorems with rateN−1/2 have already
been established under a variety of circumstances (Rousseau-Egele 1983, Coelho
and Parry 1990, Heinrich 1996) for the distribution of the centred and normal-
ized partial sums of the sequence. Here, we use them-dependent approximation
and Stein’s method to obtain, in Theorem 4.5, a near optimal convergence rate
of N−1/2 log3N for the multivariate central limit theorem. We have also obtained
rates of similar order with respect to appropriate Wasserstein metrics for the func-
tional central limit theorem, and for approximation of the empirical process: details
can be found on

ftp://iamassi.unizh.ch:/pub/Barbour/Iterates.ps

Dembo and Zeitouni (1996) have used the results of this paper to obtain information
about moderate deviations.

The structure of the paper is as follows. In Section 2, we establish the properties
of h andf which we need in order to prove that our coupling is successful. We
do so assuming A1–A3, and making heavy use of the results of Keller (1985); the
arguments simplify somewhat ifλ itself is invariant, which requires that∑

x∈h−1(y)

1/|h′(x)| = 1

for all y /∈ h(U). In Section 3, we demonstrate that the coupling of time reversals
of h-sequences is successful. In Section 4, we use the coupling method to prove
the stochastic properties ofh-sequences in which we are primarily interested.

2. Properties ofh and f

In order to prove that the coupling of the next section is successful, we need to
show that the seth−1

r (y) of pre-images of a typical pointy under the iterateshr
of h becomes dense asr → ∞. More precisely, starting with any intervalK ⊂ I ,
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we show that there is anr0 = r0(K) < ∞ such thathr(K)
.= I for all r ≥ r0: this

is the substance of Theorem 2.6. We cannot in general claim thathr(K) = I for
suchr, since it need not (quite) be the case thath(I) = I , and this generates some
technical complication. The following lemma describes what happens.

Lemma 2.1. UnderA1 andA3, the setI\h(I) is at most finite.

Proof . Sinceh(I) ⊂ I , it follows that the setshr(I ) are decreasing. DefineI ∗ =
∩r≥0hr(I ). Thenh(I ∗) = I ∗, so thatI ∗ is invariant, and by A1 we then have
λ(I ∗) ∈ {0,1}.

Now, sinceµ is invariant, we have

µ(hr(I )) = µ(h−1
r hr (I )) ≥ µ(I) = 1 ,

for all r ≥ 0, and thusµ(I ∗) = 1. Hence, sinceµ � λ, we haveλ(I ∗) = 1 also,
from which it follows thatλ(h(I)) = 1 also. Buth is piecewise continuous, and
soh(I) is a finite union of intervals. ThusI\h(I) is at most finite. ut

We will now usually restrict attention toI ∗, so that all the inversesh−1
r are

properly defined; note that, from Lemma 2.1,I\I ∗ is at most countable. We use
the notationA∗ to denoteA ∩ I ∗.

As a first step in showing thathr0(K)
.= I for some r0, we prove that,

if Ar = h−1
r hr (K), then

A = lim
r→∞Ar

.= I . (2.1)

Note that the setsAr are increasing, and that

h−1
r hr (A) = h−1

r hr (∪n>rAn) = ∪n>rh−1
r hr (An)

= ∪n>rh−1
r hrh

−1
n hn(K) = ∪n>rh−1

r h−1
n−rhn(K)

= ∪n>rh−1
n hn(K) = A .

This motivates a further definition: a setB is called preinvariant if
h−1
r hr (B)

.= B for all r ≥ 1.

Lemma 2.2. The family of preinvariant sets is closed under Boolean operations.

Proof . If B1 andB2 are preinvariant andr ≥ 1, then

h−1
r hr (B1 ∩ B2) ⊂ h−1

r hr (B1) ∩ h−1
r hr (B2)

.= B1 ∩ B2 ;
however,B ⊂ h−1

r hr (B) for anyB, so that in facth−1
r hr (B1 ∩B2)

.= B1 ∩B2 for
all r.

Now, for anyy ∈ h−1
r hr (B

c), there exists anx ∈ Bc such thathr(x) = hr(y),
or equivalently such thatx ∈ h−1

r hr (y) ⊂ h−1
r hr (B)

.= B, if alsoy ∈ B. The set
of suchx has to haveλ-measure zero; hence the same is true ofh−1

r hr (B
c) ∩ B,

sinceh is piecewise monotoneC1. ut

Lemma 2.3. If B is preinvariant, then so ishr(B) for anyr ≥ 0,andµ(hr(B)) =
µ(B).
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Proof . For anys ≥ 0, observe that

h−1
s hshr(B) = h−1

r hr{h−1
s hshr(B)} = hr{h−1

r+shr+s(B)} .= hr(B) ,

becauseB is preinvariant, proving the first part. The second part follows becauseµ

is invariant, so thatµ(hr(B)) = µ(h−1
r hr (B)) = µ(B). ut

Theorem 2.4. Let K ⊂ I be a non-empty interval, and let A = limr→∞
h−1
r hr (K). UnderA1 andA3, we haveA

.= I .

Proof . A is preinvariant, and so are the setsBr = hr(A), for all r ≥ 1, and all
sets obtainable from them by finitely many Boolean operations, by Lemmas 2.2
and 2.3. In addition,λ(A) ≥ λ(K) > 0.

If λ(A) = 1, the theorem is proved. If not, given anyε > 0, there can be
no more than 21/ε distinctBr [that is,λ(Br4Bs) = 0 if r 6= s] such that all the
Boolean atoms derived from them haveλ-measure zero or at leastε. Thus, under
A1, there are two possibilities: eitherλ(Br) = 1 for some (periodic)Br , in which
caseλ(A) = λ(h−1

r Br) = 1 also, and the theorem is proved; or else all theBr are
distinct, and, for anyε > 0, there exists a preinvariant setC, derived by finitely
many Boolean operations from theBr , such that 0< λ(C) < ε. Indeed, since
supp(µ) = I andµ is λ-absolutely continuous, we can take 0< µ(C) < ε also.
It remains to be shown that this latter possibility cannot in fact occur.

If it were possible, pickr2 so large thatc(h)r2 > 4, in which case|h′
r2
(x)| > 4

for all x. Now U(hr2) dissectsI into a finite number of intervalsJj = Jj (hr2);
let η1 = minj λ(Jj ) > 0, η2 = minj µ(Jj ) > 0 andη = min(η1, η2). Choose
a preinvariant setC as above with 0< λ(C), µ(C) < η. SinceA is the limit of
finite unions of intervals andC is derived by Boolean operations on the setshr(A),
C contains a non-empty intervalI0 which is entirely contained in someJj . Thus
hr2(I0) is also an interval, and of length at least 4λ(I0). If it covers one of theJj ,
stop and setk = 0. If not, it contains an intervalI1 of length at least 2λ(I0) which
is contained in someJj . Continue the process of applyinghr2 and selecting a new
sub-interval until, for somek, hr2(Ik) covers one of theJj : this must happen in
finitely many steps, since, at each stage,λ(Ij ) ≥ 2λ(Ij−1). Then, ifhr2(Ik) ⊃ Jj ,
it follows thatµ{h(k+1)r2(I0)} ≥ µ(Jj ) ≥ η. But h(k+1)r2(I0) ⊂ h(k+1)r2(C), and
so, by Lemma 2.3,

µ{h(k+1)r2(I0)} ≤ µ(h(k+1)r2(C)) = µ(C) < η ,

the desired contradiction. ut
Let the dissection ofI induced byh fromU(h),

0 = v0 < v1 < · · · < vm2 < vm2+1 = 1 ,

be denoted by

V = V (h) = {v1, . . . , vm2} = {h(u+), h(u−); u ∈ U(h)}\{0,1} , (2.2)
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and, forH = hr1, letV = V (H)be defined accordingly; because of A2,|H−1(y)| ≥
4 for all y /∈ H(U(H)). Set

η3 = min
0≤i≤m2(H)

µ{(vi, vi+1)} ,

with η3 > 0, because supp(µ) = I . Now, for anyA ⊂ I , writingAi = A∩ Ji(H)
(see (1.1)), we have

µ(H(A)) ≤
∑
i

µ(H(Ai)) =
∑
i

∫
Ai

f (H(x))|H ′(x)| dx ≤ Kλ(A) ,

by (1.3) and because|H ′| ≤ C(h)r1; whereasµ(A) = ∫
A
f (x) dx is bounded

below by somew(λ(A)) with w(y) > 0 for all y > 0, because supp(µ) = I .
Hence there is anη4 > 0 such that, ifµ(H(A)) ≥ η3, thenµ(A) ≥ η4 also.

Lemma 2.5. Let W be any union of k non-empty intervals such that
µ(W) < η4. Define

H = H(W) = {J : J a maximal interval s.t.λ(J ) > 0

and H−1(J\V (H)) ⊂ W } . (2.3)

Then, underA1–A3,
∑
J∈H µ(J ) ≤ µ(W) < η4 and|H| ≤ k − 1.

Proof . For the first part, observe that the intervalsJ ∈ H are non-overlapping,
and hence

∑
J∈H

µ(J ) = µ

( ⋃
J∈H

J

)
= µ

(
H−1

( ⋃
J∈H

J ∗
))

,

becauseµ is invariant; however, from the definition ofH, H−1
(⋃

J∈H J ∗
)

⊂ W .
For the second part, ifW is such a union, thenW\U(H) is a collection of

l ≤ k +m1(H) intervalsI1, . . . , Il . Write

Gj = H(Ij ) = 〈aj , bj 〉, 1 ≤ j ≤ l , (2.4)

where the angle brackets indicate that the endpoints may or may not belong to the
interval. We now partition theGj into overlapping clusters. Define an equivalence
relation on{1,2, . . . , l} by j ∼ j ′ if there exists at andj1, . . . , jt such that

Gj ∩Gj1 6= ∅, Gj1 ∩Gj2 6= ∅, . . . , Gjt ∩Gj ′ 6= ∅ . (2.5)

Let the equivalence classes beP1, . . . , Pu. Sinceµ(W) < η4, it follows that
µ(H(W)) < η3, and hence that each contiguous cluster

0i =
⋃
j∈Pi

Gj (2.6)
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contains at most one point ofV . If |0i ∩ V | = 0, setsi = 0. If 0i ∩ V = {vj }, set

si = |{t ∈ Pi : bt = vj }| + |{t ∈ Pi : at = vj }| . (2.7)

We now count the intervals ofH which are contained in a cluster0i .
To do this, we further define

wi = |H−1(y)| for vi−1 < y < vi, 1 ≤ i ≤ m2 + 1 ; (2.8)

note that|H−1(y)| is indeed constant over such intervals. We then define the index
setsJ(y) = {j : Ij ∩ H−1(y) 6= ∅}. If J ∈ H andy ∈ J ∩ (vi−1, vi), we must
have

|J(y)| = wi ≥ 4 . (2.9)

This is the key observation for the counting argument. We now distinguish five
cases.

Case 1: 0i ⊂ (vj−1, vj ) for somej .
If J ∈ H andJ ⊂ 0i , identify J with anr, 1 ≤ r ≤ |Pi |, defined by

r = r(J ) = max{R(r ′); r ′ ∈ Pi, br ′ = supJ } , (2.10)

whereR(r ′) is the rank indescendingorder ofbr ′ among{bt , t ∈ Pi}: within
ties, take any fixed order. Because of (2.9),r ≥ wj ; also distinct intervalsJ , being
non-overlapping, have distinctr(J ). Hence

|{J ∈ H : J ⊂ 0i}| ≤ |Pi | − (wj − 1) ≤ |Pi | − (si ∨ 3) , (2.11)

the last inequality being true becausewj ≥ 4 andsi = 0 in this case.

Case 2: 0i 3 vj and|J(v+
j )| < wj+1, |J(v−

j )| < wj .
In this case,vj is not covered by an intervalJ ∈ H, though it may still happen

thatH−1(vj ) ∈ W .
ForJ ∈ H such thatJ ⊂ 0i ∩ (vj ,1], identify it with

r̄ = r̄(J ) = max{R(r ′); r ′ ∈ Pi, ar ′ = inf J } , (2.12)

whereR(r ′) is the rank ofar ′ among{at ; t ∈ Pi} in ascendingorder. Because
of (2.9) and the assumption of Case 2,ar̄ > vj , and distinct intervalsJ have
different r̄(J ).

ForJ ∈ H such thatJ ⊂ 0i∩ [0, vj ), identifyJ with r(J ) as defined in (2.10),
obtaining distinct indicesr with br < vj , so that they are also distinct from ther̄
obtained above. Hence, in this case,

|{J ∈ H : J ⊂ 0i}| ≤ |Pi | − |{t ∈ Pi : at = vj }| − |{t ∈ Pi : bt = vj }|
≤ |Pi | − si ; (2.13)

also, arguing as in Case 1, one has

|{J ∈ H : J ⊂ 0i}| ≤ |Pi | − (min(wj ,wj+1)− 1) ≤ |Pi | − 3 . (2.14)

Case 3: 0i 3 vj and|J(v+
j )| = wj+1, |J(v−

j )| < wj .
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Use the algorithm of Case 1, identifying eachJ with r(J ). As before,r(J ) ≥
wj+1. Also, noJ has supremumvj , because of the assumption of Case 3. Thus

|{J ∈ H : J ⊂ 0i}| ≤ |Pi | − (wj+1 − 1)− |{t ∈ Pi : bt = vj }|
≤ |Pi | − (si − 1) ∨ 3 . (2.15)

Case 4: 0i 3 vj and|J(v+
j )| < wj+1, |J(v−

j )| = wj .
In this case, the argument is similar to that of Case 3, leading again to the

estimate

|{J ∈ H : J ⊂ 0i}| ≤ |Pi | − (si − 1) ∨ 3 . (2.16)

Case 5: 0i 3 vj and|J(v+
j )| = wj+1, |J(v−

j )| = wj .
In this case, there is an intervalJ ∈ H which containsvj , so noJ has supre-

mumvj . Now argue as in Case 3, obtaining the same inequality.

Collecting the results of Cases 1–5, we find that

|H| ≤ l −
∑
i

(si − 1) ∨ 3 ,

implying that

|H| ≤ l − 3 = k + (l − k)− 3 , (2.17)

and that

|H| ≤ l −
∑
i

3si/4 ≤ l − 3(l − k)/2 = k − (l − k)/2 . (2.18)

Taking the worst value ofl − k for (2.17) and (2.18) still gives|H| ≤ k − 1, as
claimed. ut

Theorem 2.6. Under A1–A3, given any non-empty intervalK ⊂ I , there exists
an r0 = r0(K) and a finite setN = N(K) ⊂ I such thathr0(K) = I\N .

Proof . By Theorem 2.4, there exists anr2 such thatµ(h−1
r2
hr2(K)) > 1 − η4. By

the invariance ofµ, µ(hr2(K)) > 1 − η4, and [hr2(K)]
c is of the formW0 ∪ N0,

whereW0 is a union of some numberk0 of intervals as for Lemma 2.5, andN0
is a finite set. Furthermore, applyingH = hr1, W1 = ⋃

J∈H(W0)
J is, but for a

finite set of exceptional points, just [Hhr2(K)]
c, and by Lemma 2.5, is a union of

k1 ≤ k0 − 1 intervals and satisfiesµ(W1) < η4. Thus, recursively applyingH
in all k′ ≤ k times and using Lemma 2.5 at each step, we arrive at a point where
Hk′hr2(K) = hk′r1+r2(K) consists of all but finitely many points ofI . ut

The remainder of the section is concerned with showing that the invariant den-
sity f has ‘nice’ properties outside a set ofλ-measure zero. The properties off
implied by (1.3) apply only off certain null sets. We shall use some specific conse-
quences of (1.3).
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Lemma 2.7. UnderA1–A3, there exists anN = N2.7 ⊂ I with λ(N) = 0 and a
K2.7 < ∞ such that, for any0< ε < 1,∫ 1

0
Mx(f, ε;N) dx ≤ K2.7ε

ζ ,

where

Mx(f, ε;N) = sup
y,z∈Sx(ε)\N

|f (y)− f (z)| . (2.19)

Proof . By successively removing countably many null sets fromI , whose union
we callN , we can ensure that

sup
y,z∈Sjr\N

|f (y)− f (z)| ≤ osc(f ; 2−r , xjr ) ,

whereSjr = Sxjr (2
−r ) andxjr = j2−r for 1 ≤ j ≤ 2r − 1, r ≥ 1. Then, given

0< ε < 1/4, pickr = r(ε) = [− log2 ε]−1; it follows thatSx(ε) ⊂ Sjr ⊂ Sx(6ε),
wherexjr is the nearest of the set{xir , 1 ≤ i ≤ 2r − 1} to x. Hence

∫ 1

0
Mx(f, ε;N) dx ≤ 2−r+1

2r−1∑
j=1

osc(f ; 2−r , xjr )

≤ 2
∫ 1

0
osc(f ; 6ε, x) dx

≤ 2K(1.3)(6ε)
ζ ,

and the lemma follows. ut

Lemma 2.8. UnderA1–A3, there existsN = N2.8 ⊂ I with λ(N) = 0 such that

fmax = sup
x∈I∗\N

f (x) < ∞; fmin = inf
x∈I∗\N

f (x) > 0 .

Proof . The first claim follows directly from (1.3). Then, sinceµ is invariant, we
can takef to satisfy

f (y) =
∑

x∈h−1
r (y)

f (x)/|h′
r (x)| (2.20)

(see (1.5)) for ally ∈ I ∗ and allr ≥ 1. Take any of the intervalsSjr defined in
Lemma 2.7, and letr0 = r0(Sjr ) be as in Theorem 2.6, so thatNjr = I\hr0(Sjr )
is finite. If inf{f (x): x ∈ I ∗\{hr0(N2.7) ∪ Njr}} = 0, then (2.20) implies thatSjr
contains a zero off or points wheref is arbitrarily small, so that then

sup
y∈Sjr\N2.7

f (y) ≤ osc(f ; 2−r , xjr ) .



Iterates of expanding maps 161

Hence, taking

N = N2.8 =
{⋃
r≥0

hr(N2.7)

}
∪
{⋃
r≥1

⋃
1≤j≤2r−1

Njr

}
,

it follows as in the proof of Lemma 2.7 that, if infx∈I∗\N f (x) = 0, then∫ 1
0 f (x) dx = 0, which is impossible, sinceµ(I) = 1. ut

The points ofU(h) split I into intervalsJi = Ji(h), 1 ≤ i ≤ m1 + 1. Let
Bi = h(Ji), and letφi denote the inverse ofh|Ji . Fory ∈ B∗

i \N2.8, define

qi(y) = f (φi(y))|φ′
i (y)|/f (y) . (2.21)

Lemma 2.9. There exists aK2.9 < ∞ and anN = N2.9 ⊂ I with λ(N) = 0 such
that, for any0< ε < 1 and for eachi,∫ 1

0
Mx(qi, ε;N) dx ≤ K2.9ε

ζ .

Proof . TakeN = N2.9 = ∪r≥0hr(N2.8). Then the functionsf ◦ φi and|φ′
i | are

bounded offN , andf is also bounded away from zero offN . Hence, forx ∈ Bi
andy, z ∈ (Bi ∩ Sx(ε))\N ,

|qi(y)− qi(z)| ≤ K1|f (y)− f (z)| +K2|f (φi(y))− f (φi(z))|
+K3|φ′

i (y)− φ′
i (z)| , (2.22)

for suitable constantsKl , 1 ≤ l ≤ 3. Now, for suchy, z, |f (y) − f (z)| ≤
Mx(f, ε;N), and|f (φi(y))−f (φi(z))| ≤ Mφi(x)(f, ε/c(h);N), since also|φ′

i | ≤
1/c(h); and, by A3,|φ′

i (y) − φ′
i (z)| ≤ K(1.3)ε

ζ . Thus, in view of Lemma 2.7, it
remains to be shown that∫ 1

0
Mφi(x)(f, ε/c(h);N) dx ≤ K4ε

ζ , (2.23)

for someK4 < ∞. However, sinceµ is invariant forh,∫ 1

0
Mφi(x)(f, ε/c(h);N) dx ≤ fmax

fmin

∫ 1

0
Mx(f, ε/c(h);N) dx ,

so that Lemmas 2.7 and 2.8 conclude the proof. ut
The importance of theqi comes from the fact thatf is the invariant density,

since then, from (1.6), fory ∈ B∗
i \N2.9, we find thatqi(y) = p(y, φi(y)) is a

transition probability of the time reversal of the stationaryh-process. In view of
Lemma 2.8, eachqi is uniformly bounded away from zero onBi\N2.9; furthermore,
if

F(ε, a) =
⋃
i

{x :Mx(qi, ε;N2.9) > a} , (2.24)
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it follows from Lemmas 2.8 and 2.9 that

µ(F(ε, a)) ≤ K2.9fmaxε
ζ /a (2.25)

for all a > 0 and 0< ε < 1.

3. Coupling

Consider a Markov chain(Yn, n ≥ 0) on the setT = I ∗\N2.9 ⊂ I with transition
probabilities given by

y 7→ φi(y) with probability qi(y)1Bi (y) ; (3.1)

note thatλ(T ) = 1 and thath−1(T ) ⊂ T , so that the chain is almost surely well
defined for alln ≥ 0 if IP[Y0 ∈ T ] = 1, and in particular ifY0 ∼ µ. The Markov
chain(Yn, n ≥ 0) can be recursively constructed in the following standard fashion,
as a function of a sequence(Un, n ≥ 0) of independentU [0,1] random variables
and a starting valuey0, which may depend onU0. GivenYn = y, set

Yn+1 = φi(y) if
i−1∑
r=1

qr(y)1Br (y) < Un+1 ≤
i∑
r=1

qr(y)1Br (y) . (3.2)

In what follows, we shall usually be interested in realizing two or more such chains
simultaneously, in such a way that, as far as possible, their paths remain close to-
gether. The main result is that of Theorem 3.4, showing that a pair of realizations
with almost arbitrary starting points can be coupled so as to approach each other
geometrically fast. This is then used in Theorem 3.5, to show that any chainY con-
structed in accordance with (3.2) can be closely approximated by anm-dependent
sequenceY ′, withm = m(N) = O(logN).

The joint realization of two such chains,(Y 1
n , n ≥ 0) and (Y 2

n , n ≥ 0), is
achieved by realizingY 1 as in (3.2) from a sequenceU1 of independent uniform
random variables, and then realizingY 2 as a function ofY 1 and a second se-
quenceU2 of uniform random variables, according to the following rules. Define
I
j
n = i wheneverY jn ∈ Ci , where(Ci, 1 ≤ i ≤ m2(h) + 1) are the intervals into

which V (h) dissectsI , and setJ jn+1 = r wheneverY jn+1 = φr(Y
j
n ), j = 1,2.

Then, givenY 2
n and the whole pathY 1, determineY 2

n+1 according to (3.2) with
U2
n+1 for Un+1 if I1

n 6= I2
n ; if I1

n = I2
n , define

Y 2
n+1 =


φr(y2) if U2

n+1 ≤ pr2/pr1;

φl(y2) if U2
n+1 > pr2/pr1 and

Rl−1 < (1 − U2
n+1)/(1 − pr2/pr1) ≤ Rl ,

(3.3)

where

r = J 1
n+1; y1 = Y 1

n ; y2 = Y 2
n ; prj = qr(yj ), j = 1,2 , (3.4)
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and

Rl =
l∑
s=1

(ps2 − ps1)
+1Bs (y2)

/ m2(h)+1∑
s=1

(ps2 − ps1)
+1Bs (y2) . (3.5)

This construction makesY 2 choose the same branch asY 1 with as high a probability
as possible whenY 1 andY 2 are both in the same setCi . It follows, in particular,
that

IP[J 2
n+1 6= J 1

n+1 |612
∞n ∩ {I1

n = I2
n } ∩ {J 1

n+1 = r}]
= 1 − (qr(Y

1
n ) ∧ qr(Y 2

n ))/qr(Y
1
n ) , (3.6)

where6jl = σ(Y
j
s , 0 ≤ s ≤ l) and612

ln = 61
l ∨ 62

n, and hence that, for
someK(3.7) < ∞,

IP[J 2
n+1 6= J 1

n+1 | {I1
n = I2

n } ∩612
∞n] ≤ K(3.7)|qJ 1

n+1
(Y 1
n )− qJ 1

n+1
(Y 2
n )| . (3.7)

Now define

Dsl =
l⋂

n=0

{Y 1
n /∈ En+s} ∈ 61

l ,

where

Er = {y ∈ T : min
v∈V (h)∪{0,1}

|y − v| < c−r} ∪ F(c−r , c−rζ ′
) , (3.8)

now henceforth withc = c(h) and withζ ′ fixed, 0< ζ ′ < ζ : F(ε, a) as in (2.24).
The setsDsl are those in whichY 1 does not too soon approach points where theqi
may change abruptly.

Lemma 3.1. For anyy1, y2 ∈ T satisfying|y2 − y1| < c−s , we have

IP

[
l⋂

n=0

{|Y 2
n − Y 1

n | < c−(s+n)} |Y 2
0 = y2, Y

1
0 = y1, 6

1
∞ ∩Dsl

]
≥ 1−K3.1c

−sζ ′
,

whereK3.1 = K(3.7)c/(c − 1).

Proof . If s is such thatK3.1c
−sζ ′ ≥ 1, there is nothing to prove. Otherwise, since

|φ′
r (y)| ≤ c−1 for all r and ally ∈ Br , it follows that, for ally, z ∈ Ck and allr

such thatBr ⊃ Ck, we have|φr(y) − φr(z)| ≤ c−1|y − z|. Hence it suffices to
show that, if|y2 − y1| < c−s , then

IP

[
l⋂

n=0

{J 1
n = J 2

n }
∣∣∣∣∣Y 2

0 = y2, Y
1
0 = y1, 6

1
∞ ∩Dsl

]
≥ 1 −K3.1c

−sζ ′
.

However, from (3.7), (3.8) and (2.24), it follows that

IP

[
J 2
n+1 6= J 1

n+1

∣∣∣∣∣
n⋂
r=1

{J 1
r = J 2

r } ∩ {|Y 2
0 − Y 1

0 | < c−s} ∩Dsl ∩612
∞n

]
≤ K(3.7)c

−(s+n)ζ ′
, (3.9)

and the lemma follows. ut
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Remark.By choosings ≥ s0 for a suitables0, the lower bound in Lemma 3.1 can
be made to exceed 9/10.

Now define

P(s, y) = IP[Ds∞ |Y 1
0 = y]; π(s, y) = IE

∑
n≥0

1En+s (Y
1
n )

∣∣∣Y 1
0 = y

 ,

(3.10)
and observe that

1 − P(s, y) = IP

∑
n≥0

1En+s (Y
1
n ) > 0

∣∣∣Y 1
0 = y

 ≤ π(s, y) .

SinceY 1 is stationary ifY 1
0 ∼ µ, it follows that

∫ 1

0
π(s, y) µ(dy) =

∑
n≥0

µ(En+s)

≤ fmax

∑
n≥0

[
2(m2(h)+1)c−(s+n)+µ

{
F(c−(s+n), c−(s+n)ζ

′
)
}]

≤ fmax{2(m2(h)+1)c−s/(c−1)+K2.9c
−s(ζ−ζ ′)/(cζ−ζ

′ −1)} ,
(3.11)

where the final estimate comes from (2.25). Chooses = s1 ≥ s0 large enough to
make the final bound in (3.11) smaller than 1/10. Then the set

S = {y ∈ T :π(s1, y) < 1/10}

hasµ(S) > 0, and, for eachy ∈ S, P(s1, y) > 9/10.
We next show that, ifY 1

0 ∈ S andY 2
0 is close enough toY 1

0 , then there is a good
chance that the paths ofY 1 andY 2 never get far from one another.

Lemma 3.2. For anyy1 ∈ S andy2 ∈ T such that|y2 − y1| < c−s1, we have

IP

[⋂
n≥0

{|Y 2
n − Y 1

n | < c−s1−n}
∣∣∣Y 1

0 = y1, Y
2
0 = y2

]
≥ 8/10 .

Proof . From Lemma 3.1 and becauses1 ≥ s0,

IP

[⋂
n≥0

{|Y 2
n − Y 1

n | < c−s1−n}
∣∣∣Y 2

0 = y2, Y
1
0 = y1, 6

1
∞ ∩Ds1,∞

]
≥ 9/10 .

(3.12)
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Hence

IP

[⋂
n≥0

{|Y 2
n − Y 1

n | < c−s1−n}
∣∣∣Y 2

0 = y2, Y
1
0 = y1

]
≥ IP[Ds1,∞ |Y 1

0 = y1]

×IE

{
IP

[⋂
n≥0

{|Y 2
n − Y 1

n | < c−s1−n}
∣∣∣Y 2

0 = y2, Y
1
0 = y1, 6

1
∞ ∩Ds1,∞

]}
≥ 9P(s1, y1)/10> 81/100 ,

which proves the lemma. ut
Now take anyy0 ∈ S and setJ = Sy0(c

−s1) ∩ T . The next lemma shows that
if Y 1

0 andY 2
0 are both inJ , thenY 1 andY 2 stay close to one another for ever with

substantial probability.

Lemma 3.3. For anyy1, y2 ∈ J , it is possible to couple two Markov chainsY 1

andY 2 with transitions governed by(3.1) in such a way that

IP

⋂
n≥0

{cn|Y 2
n − Y 1

n | < 2c−s1}
∣∣∣Y 2

0 = y2, Y
1
0 = y1

 ≥ 6/10 .

Proof . Realize a chaiñY according to (3.2) with̃Y0 = y0. Then realize two
processesY andŶ with Y 0 = y1 andŶ0 = y2, each coupled tõY as in (3.3). Apply
Lemma 3.2 to each pair, and then observe that, by the triangle inequality,

|Yn − Ŷn| ≤ |Yn − Ỹn| + |Ỹn − Ŷn| .

Now setY 1 = Y andY 2 = Ŷ . ut

Lemma 3.3 shows thatY 1 andY 2 can be constructed in such a way that they stay
close for all time with substantial probability, provided that they are both initially
in the (small) setJ . We can now greatly extend the scope of this result, proving
thatY 1 andY 2 can be realized in such a way that their paths are eventually close
for all time with probability 1, whatever their starting states.

Theorem 3.4. If A1–A3 hold, then there existK3.4 < ∞ and 0 < β < ζ such
that, for a suitable joint realization ofY 1 andY 2,

IP

[
sup
r≥0

cr |Y 2
r − Y 1

r | ≥ x

∣∣∣Y 2
0 = y2, Y

1
0 = y1

]
≤ K3.4x

−β ,

uniformly for allx > 0 andy1, y2 ∈ T \N , whereN = N3.4 is finite.
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Proof . From Theorem 2.6, there exists anr0 such thathr0(Sy0(c
−s1)) = I\N ,

with N = N3.4 finite. Hence, for anyy ∈ T \N , h−1
r0

∩ J is non-empty. Thus,
lettingY 1 andY 2 evolve independently forr0 steps, it follows that

IP
[
Y 1
r0

∈ J, Y 2
r0

∈ J |Y 2
0 = y2, Y

1
0 = y1

]
≥ {inf

i,y
qi(y)}2r0 = δ > 0 ,

by Lemma 2.8, for all pairsy1, y2 ∈ T \N . Hence, from Lemma 3.3,

IP

[⋂
n≥r0

{cn|Y 2
n − Y 1

n | < 2cr0−s1}
∣∣∣Y 2

0 = y2, Y
1
0 = y1

]
≥ 6δ/10 , (3.13)

for all such pairs.
Now, giveny1, y2 ∈ T \N , defineY 1 andY 2 for all time as follows. LetY 1

0 =
y1 andY 2

0 = y2, and letY 1 andY 2 evolve independently forr0 steps. Then, if
{y1, y2} 6⊂ J , setN1 = r0; otherwise, using the Markov property, letY 1 andY 2

continue to evolve according to a coupling constructed as for Lemma 3.3, and set

N1 = inf {n ≥ r0 : cn|Y 2
n − Y 1

n | ≥ 2cr0−s1} ≤ ∞ . (3.14)

If N1 = ∞, the chainsY 1 andY 2 are fully defined. IfN1 < ∞, use the strong
Markov property to restart the whole construction from new initial valuesY 1

N1

andY 2
N1

, covering all times 0≤ n ≤ N1 + N2 ≤ ∞, and continue to repeat until
someNj = ∞. Note that, in view of (3.9), for anyj, l ≥ 0,

IP[NjI [Nj < ∞] ≥ l] =
∑
t≥l

IP[Nj = r0 + t ] ≤
∑
t≥l

K(3.7)c
−(s1+t)ζ ′ ;

hence, from (3.13), the sum
∑
j≥1NjI [Nj < ∞] is stochastically dominated by a

sumN∗ = ∑τ
j=1 Ñj of independent random variables̃Nj , each with distribution

IP[Ñj = r0 + l] = K(3.7)c
−(s1+l)ζ ′

, l ≥ 1;
IP[Ñj = r0] = 1 −K(3.7)c

−s1ζ ′
/(c − 1) ,

whereτ is independent of{Ñj , j ≥ 1} and has geometric distribution

IP[τ ≥ l] =
(
1 − 6δ

10

)l
, l ≥ 0 .

Hence

IP

[
sup
r≥0

cr |Y 2
r − Y 1

r | ≥ 2cl+r0−s1
∣∣∣Y 2

0 = y2, Y
1
0 = y1

]
≤ IP[N∗ ≥ l] ,

uniformly in y1, y2 ∈ T \N .
Now Ñj has a probability generating functioñ0(z) which converges in|z| <

cζ
′
. Hence the probability generating function ofN∗ also converges for some 1<
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z0 < cζ
′
, implying that IP[N∗ ≥ l] ≤ z−l0 IE{zN∗

0 }. Hence, given anyx > 0, take
l = [s1 − r0 + log(x/2)/ logc], giving

IP

[
sup
r≥0

cr |Y 2
r − Y 1

r | ≥ x

]
≤ IE{zN∗

0 }e−l logz0 ≤ K3.4x
−β ,

for suitableK3.4 < ∞ andβ > 0. ut

Remark. Note that the value ofβ indicated by the proof is smaller thanζ , and,
through the probability generating function ofN∗, is also small withδ. It is not
in general obvious how to make good estimates of the best possibleβ from the
properties ofh, except in very simple cases. In the traditional approach, some
progress has been made in the analogous problem: see Liverani (1995).

An important consequence of Theorem 3.4 is that, in a certain limited sense,
the value ofYn has little effect on that ofYn+m whenm is large. This can be made
precise in the following theorem.

Theorem 3.5. Suppose that the chain(Yn, n ≥ 0) is constructed as in(3.2) from
a sequence of independentU [0,1] random variables(Un, n ≥ 0), withU0 deter-
mining the value ofY0. Then it is possible to construct a sequence(Y ′

n, n ≥ 0) of
m-dependent random variables in such a way that

IP

N+m⋃
j=m

{|Y ′
j − Yj | ≥ N−2}

 ≤ K3.4N
−2 , (3.15)

if m ≥ (2 + 3/β) logN/ logc.

Proof . With (Yn, n ≥ 0) constructed as in (3.2), and for any fixedm, con-
struct random variables(Y ′

n+m, n ≥ 0) using an additional, independent sequence
(U ′

n, n ≥ 0) of independentU [0,1] random variables; for eachn ≥ 0, start a chain

(Y
(n)
n+r , r ≥ 0) by lettingU ′

n determineY (n)n , and then runY (n) using (3.2) and the

original values(Un+r , r ≥ 1); setY (n)n+m = Y ′
n+m. Because of Theorem 3.4, for

eachn ≥ 0, we have

IP[|Y ′
n+m − Yn+m| ≥ xc−m] ≤ K3.4x

−β, x > 0 ,

and (3.15) follows ifm ≥ (2 + 3/β) logN/ logc. ut

Thusm need only be of order logN for Y ′ to be a uniformly small perturbation
of Y throughout an index set of lengthN . The advantage of the sequenceY ′ is that
longer term dependence has been entirely eliminated.
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4. Rates of approximation

4.1. Decay of correlations

The first set of implications of Theorem 3.4 concern the rate of decay of the depen-
dence upon initial conditions inh-sequences. This rate itself depends on the form of
the initial condition – ifx0 were exactly known, there would be no decay at all. The
quantities in terms of which we express our rates are derived from the following
measure of the average smoothness of a function. For anyg : [0,1] → IR, we
define

m̄(g, η) =
∫ 1

0
sup

{z:|x−z|<η}∩T
|g(z)− g(x)| dx ≤ ∞ . (4.1)

Note that, from Lemma 2.7,

m̄(f, η) ≤ K2.7η
ζ . (4.2)

Let g0 be the density ofX0 with respect toλ, and letgn denote the density of
Xn = hn(X0).

Theorem 4.1. As n → ∞, gn → f in L1. Furthermore, if g0 satisfies
limη→0 m̄(g0, η) = 0, then

lim
n→∞ sup

x∈T \N3.4

|gn(x)− f (x)| = 0 ,

whereT is as in Section3.

Remark.The class of densitiesg0 such that limη→0 m̄(g0, η) = 0 is just the class
of Riemann integrable densities, and includes in particular all densities belonging
toD[0,1].

Proof . We start by assuming thatg0 satisfies limη→0 m̄(g0, η) = 0, proving the
first part by approximation when the second is known. LetX′

r = hr(X
′
0), 1 ≤ r ≤ n,

with X′
0 ∼ µ, and setYr = X′

n−r , 0 ≤ r ≤ n. For anyA ⊂ I , we have∫
A

gn(x) dx =
∫
I

1A(hn(x))g0(x) dx

= IE{1A(X′
n)g0(X

′
0)/f (X

′
0)}

= IE{1A(Y0)g0(Yn)/f (Yn)} , (4.3)

so that IE{g0(Yn)/f (Yn) |Y0 = y}f (y), y ∈ T , is a version ofgn. Hence, realizing
Y 1 andY 2 together as for Theorem 3.4, withY 1

0 = y ∈ T \N3.4 andY 2 ∼ µ, we
have, for anykn > 0,

|gn(y)/f (y)− 1| = |IE{g0(Y
1
n )/f (Y

1
n )} − IE{g0(Y

2
n )/f (Y

2
n )}|

≤ 2GK3.4k
−β
n +

∫
T

f (x) sup
{y:|y−x|<knc−n}∩T

|(g0(y)/f (y))− (g0(x)/f (x))| dx

≤ 2GK3.4k
−β
n +Gm̄(f, knc

−n)+ m̄(g0, knc
−n) , (4.4)
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whereG = supx∈T g0(x)/f (x) < ∞, by Lemma 2.8 and becausēm(g0, η)

< ∞ for η sufficiently small. Choosing(kn, n ≥ 1) in such a way thatkn → ∞
andknc−n → 0, and recalling (4.2), the second part of the lemma follows.

Now if g0 does not satisfy limη→0 m̄(g0, η) = 0, it can still be approximated
arbitrarily closely inL1 by densitiesgε0 which do. Hence we can write∫

I

|gn(x)− f (x)| dx ≤
∫
T

|gn(x)− gεn(x)| dx +
∫
T

|gεn(x)− f (x)| dx ,

with the latter integral converging to zero asn → ∞ by the first part;gεn denotes
the density ofXn whenX0 ∼ gε0. For the former integral, we have, fory ∈ T ,

|(gn(y)− gεn(y))/f (y)| ≤ IE{|g0(Y
1
n )− gε0(Y

1
n )|/f (Y 1

n ) |Y 1
0 = y} ,

and hence it follows that∫
T

|gn(y)− gεn(y)| dy ≤
∫
T

IE{|g0(Y
1
n )− gε0(Y

1
n )|/f (Y 1

n ) |Y 1
0 = y}f (y) dy

=
∫
I

|g0(x)− gε0(x)| dx , (4.5)

which can be made arbitrarily small by choice ofgε0. ut
With slightly stronger assumptions ong0, we can prove a geometric rate for the

convergence in Theorem 4.1. For 0< γ ≤ 1, define

mγ (g) = sup
0<η≤1

η−γ m̄(g, η) ≤ ∞;

m0(g) = sup
x,y∈T

|g(x)− g(y)| = m̄(g,1) . (4.6)

Note thatmγ (g) is increasing withγ , and that, ifg1 andg2 are such that infx gi(x) ≤
0 ≤ supx gi(x), i = 1,2, then supx |gi(x)| ≤ 2m0(gi), and hence

mγ (g1g2) ≤ 4mγ (g1)mγ (g2) . (4.7)

Note also thatmζ (f ) < ∞, from (4.2).

Theorem 4.2. Suppose thatmγ (g0) < ∞ for some0 < γ ≤ 1, and setγ ′ =
min(γ, ζ ) andα = c−βγ ′/(β+γ ′). Then there exists aK4.2 < ∞ such that, for all
x ∈ T \N3.4 and alln ≥ 0,

|gn(x)− f (x)| ≤ K4.2α
n{1 +mγ ′(g0)} .

Proof . All that is required is to make estimates of the quantities appearing in (4.4):
G ≤ {1 + 2mγ ′(g0)}/fmin, m̄(f, η) ≤ ηζmζ (f ) andm̄(g0, η) ≤ ηγmγ (g0). Then
choosekn = c−nγ ′/(β+γ ′). ut

Theorem 4.2 implies a corresponding rate of decay of correlations.
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Corollary 4.3. Suppose thatu1 andu2 are integrable functions,and thatmγ (u1) <

∞ for some0< γ ≤ 1. Suppose also thatX0 has a densityg0 satisfyingmγ (g0) <

∞. Then, for someK4.3 < ∞,∣∣∣∣IE{u1(X0)u2(hn(X0))} −
∫
I

u1(x)g0(x) dx

∫
I

u2(x)f (x) dx

∣∣∣∣
≤ K4.3α

n

∫
I

|u2(x)| dx
{∫

I

|u1(x)|g0(x) dx +mγ ′(g0)mγ ′(|u1|)
}
,

where, as before, γ ′ = min(γ, ζ ) andα = c−βγ ′/(β+γ ′).

Proof . It is enough to prove the corollary for nonnegativeu1, since a generalu1
can be split into its negative and nonnegative parts. Note also that a constant may
be added tou2 without changing the quantity to be estimated. Ifu1(x) ≥ 0 for
all x, define

g(x) = g0(x)u1(x)
/∫

I

g0(y)u1(y) dy ,

and observe that

IE{u1(X0)u2(hn(X0))} =
∫
I

g0(x)u1(x)u2(hn(x)) dx

=
∫
I

g(x)u2(hn(x)) dx

∫
I

g0(y)u1(y) dy . (4.8)

By Theorem 4.2, we have∣∣∣∣∫
I

g(x)u2(hn(x)) dx −
∫
I

u2(y)f (y) dy

∣∣∣∣
≤ K4.2α

n{1 +mγ ′(g)}
∫
I

|u2(y)| dy , (4.9)

and the corollary follows, since, from (4.7),

mγ ′(g) ≤ 4mγ ′(g0)mγ ′(u1)
/∫

I

g0(y)u1(y) dy .
ut

Remark.The quantity estimated in Corollary 4.3, although perhaps the most useful
expectation estimate, is neither a correlation nor even a covariance, since, in the
product of integrals, IEu2(hn(X0)) is replaced by its limiting value asn → ∞,∫
I
u2(x)f (x) dx. To obtain a true correlation estimate, first observe that a constant

may be added tou2 without changing the quantity to be estimated, so thatu2 can
be taken to be centered at its expectationū2(n) = IE{u2(hn(X0))}. Then, substi-
tuting g0 for g in (4.9), it follows that a similar estimate holds for the covariance
as well:

Cov{u1(X0), u2(hn(X0))} ≤ Kαn
∫
I

|u2(x)− ū2(n)|gn(x) dx

×
{∫

I

|u1(x)|g0(x) dx +mγ ′(g0)mγ ′(|u1|)
}
,
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with the constantK incorporating a factor{inf gn(x)}−1, which approaches 1/fmin
as n → ∞, in view of Theorem 4.2. This in turn leads to an estimate of the
correlation:

Corr{u1(X0), u2(hn(X0))} ≤ Kαn{1 + R(u1)} ,
whereK depends on the properties ofg0 as well as onh, and where

R(u1) = mγ ′(|u1 − IEu1(X0)|)/
√

Varu1(X0) .

The final result of this nature concerns probabilities of sets more general than
product sets.

Theorem 4.4. If X0 ∼ µ0, whereµ0 has densityg0 such thatmγ (g0) < ∞, then
the Ĺevy–Prohorov distanceρ between the distribution of(X0, hn(X0)) andµ0×µ
satisfies

ρ ≤ K4.4α
n{1 +mγ ′(g0)}

for someK4.4 < ∞, whereγ ′ = min(γ, ζ ) andα = c−βγ ′/(β+γ ′) are as usual.

Proof . Let A be any measurable subset ofI × I , and letAx = {y : (y, x) ∈ A}
denote the corresponding section. Then

µ0{x : (x, hn(x)) ∈ A}
= IE{[g0(Yn)/f (Yn)]I [(Yn, Y0) ∈ A] |Y0 ∼ µ}
=
∫
I

IE{[g0(Yn)/f (Yn)]I [Yn ∈ Ax ] |Y0 = x}f (x) dx (4.10)

For x ∈ T \N3.4, let (Yn,x, n ≥ 0) be a Markov chain with transitions governed
by (3.1) havingY0,x = x, and letY ′ be another withY ′

0 ∼ µ, realized together as
in (3.3) withY ′ = Y 1 andYn,x = Y 2. Then since, for anyη ≥ 0,

I [Yn,x ∈ Ax ] ≤ I [Y ′
n ∈ Aηx ]I [|Y.,x − Y ′

n| < η] + I [|Yn,x − Y ′
n| ≥ η] , (4.11)

it follows from Theorem 3.4 that

µ0{x : (x, hn(x)) ∈ A}
≤
∫
T

IE{[g0(Yn,x)/f (Yn,x)]I [Y ′
n ∈ Aηx ]I [|Yn,x − Y ′

n| < η]}f (x) dx

+G
∫

IP[|Yn,x − Y ′
n| ≥ η]f (x) dx

≤
∫
T

IE{[g0(Y
′
n)/f (Y

′
n)]I [Y ′

n ∈ Aηx ]}f (x) dx

+
∫
T

IE
{∣∣∣g0(Yn,x)

f (Yn,x)
− g0(Y

′
n)

f (Y ′
n)

∣∣∣I [|Yn,x − Y ′
n| < η]

}
f (x) dx +GK3.4(ηc

n)−β

≤ (µ0 × µ){Aη} +Gm̄(f, η)+ m̄(g0, η)+GK3.4(ηc
n)−β ,

this last from (4.4):G = supx{g0(x)/f (x)} as before. Hence, takingη =
c−nβ/(β+γ ′), it follows that

µ0{x : (x, hn(x)) ∈ A} ≤ (µ0 × µ){Aε} + ε , (4.12)

with ε = K4.4α
n{1 +mγ ′(g0)}, for a suitableK4.4. ut
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4.2. Multivariate normal approximation

Let X0 have distributionµ, whereµ is the invariant measure. Then recall that,
for anyN , (X0, . . . , XN) is time-reversible, and its time reversal(Y0, . . . , YN) is
stationary, withY0 ∼ µ. Thus for any functionu, in distribution,

L(u(X0, . . . , XN)) = L(u(Y0, . . . , YN)) .

Hence limit theorems for functions of(X0, . . . , XN) can be obtained by deriv-
ing limit theorems for functions of(Y0, . . . , YN). Due to stationarity, these are
equivalent to limit theorems for functions of(Ym, . . . , Ym+N), for any fixedm.
The latter process we can approximate by the above stationarym-dependent pro-
cess(Y ′

m, . . . , Y
′
m+N) for which known results can easily be applied. For normal

approximations, there is a vast literature about rates of convergence for stationary
m-dependent sequences. However, we will want to get an explicit dependence onm,
and therefore will have to rule out results such as Stein (1972), Tikhomirov (1980),
where the rate of convergence is given in terms of a constant that depends on the
distribution of them-dependent sequence in an unspecified way. Moreover, there
are results about Edgeworth expansions (see Heinrich (1982), Heinrich (1985),
Loh (1994), G̈otze and Hipp (1983)), but these involve the cumulants of the distri-
bution of them-dependent sequence and are therefore too complex for our goals.
Instead, we will apply a result by Rinott and Rotar (1996) for multivariate normal
approximation.

LetJ = (J1, . . . , Js) ∈ INs be a fixed vector with 0= J1 ≤ J2 ≤ · · · ≤ Js , and
let I = {i + J; i = 1, . . . , N}, where we abbreviatei + J = (i + J1, . . . , i + Js).
For eachi, 1 ≤ i ≤ N , put

Xi+J = (Xi+J1, . . . , Xi+Js ) ∈ {X1, . . . , XN+Js }s ;
let u(i) be a Lipschitz continuous function from [0,1]s to Rd , with Lipschitz con-
stantτ (i) and satisfying IEu(i)(X1+J) = (0, . . . ,0). Here, and in what follows, the
norm of any vector or matrix is understood to be the sum of the absolute values of
its elements, and vectors are understood to be column vectors.

We also write‖u‖ = maxy∈[0,1]s
∑d
j=1 |u(y)j | ≤ sτ (j), whereu(y)j denotes

thej th coordinate ofu(y), and we set

u(i)(Xi+J) = u(i)(Xi+J1, . . . , Xi+Js ); W =
N∑
i=1

u(i)(Xi+J) .

Further, we define

6N = (σi,j )i,j=1,...,d = Var (W); τ = max
1≤i≤N

τ (i); εN = sτ |6− 1
2

N | .

Theorem 4.5. With the above definitions,

sup{|IEg(W)− IEg(σ
1
2
NN)| : g ∈ G} ≤ O

{
(logN + Js)

3(Nε2
N + 1)εN

}
,

whereG is the set of indicators of convex sets inRd andN denotes a standard
normal random vector inRd .
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Remark. A detailed form of the error estimate, derived from that given in Rinott
and Rotar (1996), is given below. Although it appears rather complicated, it makes
the dependence of the order terms on the parameters of the problem very explicit.
In fact, there exist universal constantsc = c(d) anda = a(d) such that

sup{|IEg(W)− IEg(6
1
2
NN)| : g ∈ G} ≤ a(2 +K3.4)εNN

−1 +K3.4N
−2

+3c
{
4abεN +Nb2ε2

N [logN + 2| logεN | + log(4b)]
[
8aεN +N−2ψ

]}
,

(4.13)

where

b = m+ Js + 1; ψ = 8(1 +K3.4)+ (1 − α)−1K4.3(1 + s−1K1.4) , (4.14)

and

m = max

{
2 + 3

β

logc
,

2

log 1
α

}
logN . (4.15)

It is also shown in Rinott and Rotar (1996) that similar estimates are valid, with

different choices ofa, for other classesG, and that the order of the bound can
be slightly improved ifd = 1. In many applications,|6−1/2

N | = O(N−1/2) and
Js = O(logN), giving an error in the approximation of orderO(N−1/2 log3N).

Proof of Theorem 4.4.Let {Y1, . . . , YN+Js } be the time reversal of{X1, . . . ,

XN+Js }, so that

W =
N∑
i=1

u(N−i+1)(Yi+Js−J) .

We approximate the time-reversed process by them-dependent process(Y ′
i )i=1,2,...

constructed above, with the particular choice ofm given in (4.15). By stationarity,
we may shift the indices inI bym + Js without changing the distribution ofW.
Alternatively, we may suppose the process to have started at time−m− Js , which
allows us to maintain the notation(Y ′

1, . . . , Y
′
N).

Put

W ′ =
N∑
i=1

ũ(N−i+1)(Y ′
i−J) ,

whereũ(j)(Y ′
i−J) = u(j)(Y ′

i−J)− IEu(j)(Y ′
1+Js−J), and note that‖ũ(j)‖ ≤ sτ ;

let
6′
N = (σ ′

i,j )i,j=1,...,d = Var (W ′)

be the covariance matrix ofW ′.
First, we transformW ′; we put

WZ = 6
− 1

2
N

( N∑
i=1

u(N−i+1)(Yi−J)
)

and W ′
Z = 6

− 1
2

N

( N∑
i=1

ũ(N−i+1)(Y ′
i−J)

)
.
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Note that, asG is closed under affine transformations, we have

sup{|IEg(W)− IEg(6
1
2
NN)| : g ∈ G}

= sup{|IEg(WZ)− IEg(N)| : g ∈ G}
≤ sup{|IEg(WZ)− IEg(W ′

Z)| + |IEg(W ′
Z)− IEg(N)| : g ∈ G} .

Our strategy is now to estimate the difference IEg(WZ) − IEg(W ′
Z), and then to

apply Rinott and Rotar’s result to them-dependent sequenceu(Y ′
i−J). We have

|IEg(WZ)− IEg(W ′
Z)|

≤ IE

(
|g(WZ)− g(W ′

Z)|
∣∣∣∣∣
N⋃
j=1

{|Y ′
j − Yj | ≥ N−2}

)

× IP

[
N⋃
j=1

{|Y ′
j − Yj | ≥ N−2}

]

+ IE

(
|g(WZ)− g(W ′

Z)|
∣∣∣∣∣
N⋂
j=1

{|Y ′
j − Yj | < N−2}

)

× IP

[
N⋂
j=1

{|Y ′
j − Yj | < N−2}

]
. (4.16)

The first summand can easily be bounded, usingm ≥ (2 + 3/β) logN/ logc and
Theorem 3.5:

IE

(
|g(WZ)− g(W ′

Z)|
∣∣∣∣∣
N⋃
j=1

{|Y ′
j − Yj | ≥ N−2}

)

× IP

[
N⋃
j=1

{|Y ′
j − Yj | ≥ N−2}

]
≤ IP

[
N+m⋃
j=m

{|Y ′
j − Yj | ≥ N−2}

]
≤ K3.4N

−2 .

(4.17)

For the second summand, we have

IE

(
|g(WZ)− g(W ′

Z)|
∣∣∣∣∣
N⋂
j=1

{|Y ′
j − Yj | < N−2}

)

= IE

(∣∣∣∣∣g
(
6

− 1
2

N

N∑
i=1

ũ(N−i+1)(Y ′
i−J)

+6− 1
2

N

N∑
i=1

(
u(N−i+1)(Yi−J)− ũ(N−i+1)(Y ′

i−J)

))

−g
(
6

− 1
2

N

N∑
i=1

ũ(N−i+1)(Y ′
i−J)

)∣∣∣ ∣∣∣∣∣
N⋂
j=1

{|Y ′
j − Yj | < N−2}

)
.

On the set
⋂N
j=1{|Y ′

j − Yj | < N−2}, we have, from the Lipschitz property ofu(j),
that
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∣∣u(N−i+1)(Yi−J)− ũ(N−i+1)(Y ′
i−J)

∣∣
≤

s∑
k=1

τ |Y ′
i−Jk − Yi−Jk | + |IEu(N−i+1)(Y ′

1+Js−J)|

≤ sτN−2 + |IEu(N−i+1)(Y ′
1+Js−J)| .

But now|IEu(N−i+1)(Y ′
1+Js−J)| ≤ IE|u(N−i+1)(Y ′

1+Js−J)− u(N−i+1)(Y1+Js−J)|,
and splitting the expectation again as in (4.16) gives|IEu(N−i+1)(Y ′

1+Js−J)| ≤
sτ (1 +K3.4)N

−2; hence∣∣u(N−i+1)(Yi−J)− ũ(N−i+1)(Y ′
i−J)

∣∣ ≤ sτ (2 +K3.4)N
−2 (4.18)

and∣∣∣∣∣6− 1
2

N

[
N∑
i=1

(
u(N−i+1)(Yi−J)− ũ(N−i+1)(Y ′

i−J)
)]∣∣∣∣∣ ≤ (2 +K3.4)εNN

−1 .

This implies that, withδN = (2 +K3.4)εNN
−1,

IE

( ∣∣g (WZ)− g
(
W ′

Z

)∣∣ ∣∣∣∣∣
N⋂
j=1

{|Y ′
j − Yj | < N−2}

)

≤ IE

(
g+
δN

(
W ′

Z

)− g−
δN

(
W ′

Z

)∣∣∣∣∣
N⋂
j=1

{|Y ′
j − Yj | < N−2}

)
,

where, following G̈otze (1991) and Rinott and Rotar (1996), for anyδ > 0, we
define

g+
δ (x) = sup{g(x + y) : |y| ≤ δ}; g−

δ (x) = inf {g(x + y) : |y| ≤ δ} ,
observing also that, for allδ > 0, the functionsg+

δ (x) andg−
δ (x) are inG, and that

sup{(IEg+
δ (N)− IEg−

δ (N)) : g ∈ G} ≤ aδ (4.19)

for a universal constanta = a(d) > 1. Thus we have

IE

(
|g(WZ)− g(W ′

Z)|
∣∣∣∣∣
N⋂
j=1

{|Y ′
j − Yj | < N−2}

)
IP

[
N⋂
j=1

{|Y ′
j − Yj | < N−2}

]

≤ IE
(
g+
δN
(W ′

Z)− g−
δN
(W ′

Z)
)

= IE
(
g+
δN
(W ′

Z)− g+
δN
(N)

)− IE
(
g−
δN
(W ′

Z)− g−
δN
(N)

)
+ IE

(
g+
δN
(N)− g−

δN
(N)

)
≤ 2 sup{|IEg(W ′

Z)− IEg(N)| : g ∈ G} + aδN

= 2 sup{|IEg(W ′
Z)− IEg(N)| : g ∈ G} + a(2 +K3.4)εNN

−1 ,
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which, combined with (4.17), gives

|IEg(WZ)− IEg(W ′
Z)|

≤ K3.4N
−2 + a(2 +K3.4)εNN

−1 + 3 sup{|IEg(W ′
Z)− IEg(N)| . (4.20)

Thus it remains to bound sup{|IE(g(W ′
Z) − IEg(N)| : g ∈ G}, for which we

apply Theorem 2.1 in Rinott and Rotar (1996). They considerW = ∑N
j=1 Zj ,

whereZj are bounded random vectors taking values inRd , that is,|Zj | ≤ B , 1 ≤
j ≤ N for some constantB. (Rinott and Rotar haveX instead ofZ, H for G, and
n for N .)

Theorem (Rinott and Rotar). For eachj = 1, . . . , N assume that we have two
representations ofW, W = Uj + Vj andW = Rj + Tj , such that|Uj | ≤ A1,
and|Rj | ≤ A2 for constants satisfyingA1 ≤ A2. Define

χ1 =
N∑
j=1

IE|IE(Zj | Vj )|, χ2 =
N∑
j=1

IE|IE(ZjUTj )− IE(ZjUTj | Tj )|,

χ3 = |I −
N∑
j=1

IE(ZjUTj )| ,

whereI denotes the identity matrix. Then for anyd ≥ 1, there exists a constantc
depending only on the dimensiond such that

sup{|IEg(W)− IEg(N)| : g ∈ G } ≤ c{aA2 +NaA1A2B(| logA2B| + logN)

+χ1 + (| logA1B| + logN)(χ2 + χ3)} ,
(4.21)

with a as in(4.19).

To apply this theorem, for eachi = 1, . . . , N , put

Zi−J = 6
− 1

2
N ũ(N−i+1)(Y ′

i−J); W ′
Z =

N∑
i=1

Zi−J .

Clearly,

|Zi−J| ≤ sτ |6− 1
2

N | = εN , (4.22)

showing that we can takeB = εN in (4.21). Moreover, to find the two representa-
tions ofW ′

Z needed for (4.21), we define neighbourhoods of dependence

Bj = {i = 1, . . . , N : i ≤ j + Js +m and i + Js ≥ j −m},
Nj =

⋃
i∈Bj

Bi
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for 1 ≤ j ≤ n. Because of them-dependence, ifi 6∈ Bj , thenZj−J andZi−J are
independent. Ifi 6∈ Nj , and ifk ∈ Bj , thenZi−J andZk−J are independent. Let

Uj =
∑
i∈Bj

Zi−J, Vj =
∑
i 6∈Bj

Zi−J, Rj =
∑
i∈Nj

Zi−J, Tj =
∑
i 6∈Nj

Zi−J .

Then W ′
Z = Uj + Vj = Rj + Tj . To bound|Uj | and |Rj |, note that, for all

j = 1, . . . , N ,

|Bj | ≤ 2(Js +m)+ 1 ≤ 2b

and
|Nj | ≤ 4(Js +m)+ 1 ≤ 4b ,

whereb is as in (4.14), so that therefore

|Uj | ≤ sτ |Bj | |6−1/2
N | ≤ 2bεN and |Rj | ≤ sτ |Nj | |6−1/2

N | ≤ 4bεN ,

so that we can take 2A1 = A2 = 4bεN in (4.21). It thus only remains to bound
theχi .

From the choice of neighbourhoods andm-dependence, the first two character-
istics in the theorem vanish:χ1 = 0 andχ2 = 0. For the third characteristic, we
get

χ3 =
∣∣∣I −

N∑
i=1

IE(Zi−JUTi )
∣∣∣ =

∣∣∣I − IE(W ′
Z(W

′
Z)

T )

∣∣∣
=
∣∣∣∣I −6

− 1
2

N 6′
N6

− 1
2

N

∣∣∣∣ ≤
∣∣∣∣6− 1

2
N

∣∣∣∣2 ∣∣6N −6′
N

∣∣ .
To bound this quantity, observe that

|6N −6′
N | =

∣∣∣ N∑
i,j=1

IE
(
u(N−i+1)(Yi−J)u(N−j+1)(Yj−J)

T

−ũ(N−i+1)(Y ′
i−J)ũ

(N−j+1)(Y ′
j−J)

T
)∣∣∣

≤
∣∣∣ N∑
j=1

∑
i∈Bj

IE
(
u(N−i+1)(Yi−J)u(N−j+1)(Yj−J)

T

−ũ(N−i+1)(Y ′
i−J)ũ

(N−j+1)(Y ′
j−J)

T
)∣∣∣

+
∣∣∣ N∑
j=1

∑
i 6∈Bj

IE
(
u(N−i+1)(Yi−J)u(N−j+1)(Yj−J)

T
)∣∣∣ . (4.23)

Consider the first term in (4.23), for which we have
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∣∣∣ N∑
j=1

∑
i∈Bj

IE
(
u(N−i+1)(Yi−J)u(N−j+1)(Yj−J)

T

−ũ(N−i+1)(Y ′
i−J)ũ

(N−j+1)(Y ′
j−J)

T
)∣∣∣

≤
N∑
j=1

∑
i∈Bj

IE

{∣∣u(N−i+1)(Yi−J)u(N−j+1)(Yj−J)
T

−ũ(N−i+1)(Y ′
i−J)ũ

(N−j+1)(Y ′
j−J)

T
∣∣∣∣∣ N⋂
j=1

{|Yj − Y ′
j | < N−2}

}

× IP
( N⋂
j=1

{|Yj − Y ′
j | < N−2}

)

+
N∑
j=1

∑
i∈Bj

IE

{∣∣u(N−i+1)(Yi−J)u(N−j+1)(Yj−J)
T

−ũ(N−i+1)(Y ′
i−J)ũ

(N−j+1)(Y ′
j−J)

T
∣∣∣∣∣ N⋃
j=1

{|Yj − Y ′
j | ≥ N−2}

}

× IP
( N⋃
j=1

{|Yj − Y ′
j | ≥ N−2}

)
.

In the first sum, we bound the probability by one, giving

N∑
j=1

∑
i∈Bj

IE

{∣∣u(N−i+1)(Yi−J)u(N−j+1)(Yj−J)
T

−ũ(N−i+1)(Y ′
i−J)ũ

(N−j+1)(Y ′
j−J)

T
∣∣∣∣∣ N⋂
j=1

{|Yj − Y ′
j | < N−2}

}

× IP
( N⋂
j=1

{|Yj − Y ′
j | < N−2}

)
≤

N∑
j=1

∑
i∈Bj

IE

{∣∣u(N−i+1)(Yi−J)
[
u(N−j+1)(Yj−J)

T − ũ(N−j+1)(Y ′
j−J)

T
]∣∣

+∣∣[u(N−i+1)(Yi−J)− ũ(N−i+1)(Y ′
i−J)

]
ũ(N−j+1)(Y ′

j−J)
T
∣∣∣∣∣ N⋂

j=1

{|Yj − Y ′
j | < N−2}

}
≤ 4(2 +K3.4)(sτ )

2bN−1 ,
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using (4.18);b as before, in (4.14). For the second sum, we use Theorem 3.5 and
the fact thatm ≥ (2 + 3/β) logN/ logc to obtain

N∑
j=1

∑
i∈Bj

IE

{∣∣u(N−i+1)(Yi−J)u(N−j+1)(Yj−J)
T

−ũ(N−i+1)(Y ′
i−J)ũ

(N−j+1)(Y ′
j−J)

T
∣∣∣∣∣ N⋃
j=1

{|Yj − Y ′
j | ≥ N−2}

}

× IP
( N⋃
j=1

{|Yj − Y ′
j | ≥ N−2}

)
≤ 4Nb(sτ)2K3.4N

−2 = 4bN−1K3.4(sτ )
2 .

For the second term in (4.23), we need to bound the sum over all indicesi that are not
inBj . Using Corollary 4.3 withg0 = f and since, by choice ofm,Nαm+1 ≤ N−1,
we obtain

∣∣∣ N∑
j=1

∑
i 6∈Bj

IE
(
u(N−i+1)(Yi−J)u(N−j+1)(Yj−J)

T
)∣∣∣

≤ K4.3

N∑
j=1

∑
i 6∈Bj

α|i−j |‖u‖(‖u‖ + τK1.4)

≤ K4.3N
αm+1

1 − α
sτ(sτ + τK1.4) ≤ K4.3

1 − α
N−1(sτ )2(1 + s−1K1.4) .

Collecting these estimates of (4.23), we get

|6N −6′
N | ≤ bN−1(sτ )2

{
4(2 +K3.4)+ 4K3.4 + K4.3

1 − α

(
1 + s−1K1.4

)}
= bN−1(sτ )2ψ , (4.24)

and thusχ3 ≤ bN−1ε2
Nψ . Substituting our estimates ofA1,A2,B andχ3 into (4.21),

and using (4.20), the theorem follows. ut
The freedom to choose theu(j) to be different for eachj enables one for instance

to consider the joint distributions of the partial sum process(N−1/2∑[Nt ]
i=1 Xi, 0 ≤

t ≤ 1) at a finite number of different time points. Another natural multivariate cen-
tral limit theorem involves the joint distribution of(M1(X), . . . ,Md(X)), where
Mk(X) = ∑N

i=1 I [Xi ∈ Lk], for a set ofd intervalsL1, . . . , Ld ∈ I . The Lipschitz
assumption on theu(j) in Theorem 4.5 does not directly allow this example. How-
ever, by choosingm to be a possibly larger multiple of logN , it is easy to construct
M (X) andM (Y ′) so as to be identical, except on an event of negligible probability,
andm-dependent theory can be used once again forM (Y′): the details are omitted.
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