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Abstract. Consider a d-dimensional Brownian motiah= (X%, ..., X?) and a function

F which belongs locally to the Sobolev spa#é-2. We prove an extension ofds formula
where the usual second order terms are replaced by the quadratic covarigtions k]
involving the weak first partial derivativeg, of F. In particular we show that for any
locally square-integrable functiofi the quadratic covariationsf[X), X¥] exist as limits

in probability for any starting point, except for some polar set. The proof is based on new
approximation results for forward and backward stochastic integrals.

1. Introduction

The behavior of a smooth functighon R? along the paths of d-dimensional Brow-
nian motion is described as follows by formula. LetP, be the distribution of
Brownian motion with initial pointr, and letX = (X1, ..., X?) denote the co-
ordinate process on the canonical path space C([0, co), R?). Consider the
processA defined by

d .t
Ar=F(X)) = F(Xo)— ) _ fo feX)dX{ (1.1)
k=1

where we denote by, = % the partial derivatives of. Itd’s formula provides
an alternative description of the process

1 [t
Ay = 5/ AF(X5)ds P, —a.s. (1.2)
0

for anyr > 0, and for any starting point € R?.
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Note, however, that the description (1.2) in terms of the Laplace opetator
involves second order differentiability @f, while definition (1.1) requires only
differentiability of first order. In fact, the process in (1.1) is well defined whenever
F belongs to the Sobolev spaé!?, at least locally. In this case, we choose an
appropriate version of and use the weak first derivativgs in order to define
(1.1) P, —almost surely for alt ¢ E, whereE is some polar set. Thus the question
arises how to formulate an analogue to (1.2) for a general funﬁi@leéf. Of
course we can always approximatéyy smooth functiong ™ in such a way that
the terms in (1.1) converge to the corresponding termgfand then we get the
description

t

A, = lim 1 / AF™ (X)ds . (1.3)
n— oo 0

But rather we are interested in an intrinsic description which directly involves the

function F itself.

It turns out that such an intrinsic description can be given in terms of quadratic
covariation. We show that for any initial poimte R?, except for some polar set,
the quadratic covariationsf{(X), X¥] exist as limits in probability of the usual
sums under the measulg. Our extension of fi's formula consists in identifying
the process defined by (1.1) as

1 d
Av=3 kZ:jl [fi(X), X", P —as (1.9)

for all x except for some polar set.

If F is the difference of two positive superharmonic functions so that the dis-
tribution %AF is given by a signed measuge then (1.4) provides an explicit de-
scription of the additive functional associated.tavhich appears in the extended
Itd formula of Brosamler (1970) and Meyer (1978). In the general aseW -2,
the proces$ (X) may not be a semimartingale, i.e., the procéstefined by (1.1)
and characterized by (1.4) may have paths of unbounded variation. Note, however,
that we can viewF as a function in the Dirichlet space associated to d-dimensional
Brownian motion. From this point of view, is the process of zero energy appearing
in Fukushima’s decomposition of the procésgX); cf. Fukushima (1980). Thus,
our formula (1.4) provides an explicit construction of the process of zero energy in
terms of quadratic covariation.

In the one-dimensional case = 1, our version (1.4) of &'s formula and
its time dependent analogue was shown @tirer, Protter and Shiryaev (1995).
Chitashvili ad Mania (1997) consider a related problem. In their time dependent
extension of the one-dimensionab lformula they find necessary and sufficient
conditions on the functioif (¢, x) such thatF'(¢, X;) is a semimartingale.

In this paper we consider the multidimensional case 2. The basic idea is the
same as in &limer, Protter and Shiryaev (1995): The existence of the quadratic co-
variations in (1.4) is shown by proving that the forward and the backward stochastic
integrals off (X) can be approximated by the corresponding sums. But in contrast
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to the one-dimensional case, these approximation results hold only for all initial
pointsx outside some exceptional set of capacity zero, and the proofs are more
subtle. In section 2 we fix a starting poirg € R? and a measurable functiof

on R%. We formulate two integrability conditions oft which depend ong, and

which guarantee that both the forward and the backward stochastic integral can be
constructed in a straightforward manner as limits in probability

t
/0 FX)dX{ = lim Y7 f(X) (X, — X5) (1.5)
i
and
t
fo XX = lim D f (X ) (XE, — X7) (1.6)
;€D
O<t; <t

under the measurB,,. This implies the existence of the quadratic covariations

[FO. X = lim Y (f(Xiy) = XN, — X5 (L7)
ti€Dp

O<t; <t

as limits in probability under the measurg,, and their identification as differences

t t
LF (X0, X4, = /O FOE)A X — /0 F(X;)dxk (1.8)

of backward and forward stochastic integrals. In section 3 we consider a measurable
function f such that

Py Ut F2(Xy)ds < oo] =1. (1.9)
0

at least for someg and for some. Note that condition (1.9) is clearly a minimal
requirement if we want to talk about stochastic integralg ©f ). Using results of
Hohnle and Sturm (1993) on multidimensional analogues of the Engelbert-Schmidt
0 - 1 law, we showthat condition (1.9) implies that our integrability conditions in
section 2 for the existence of the quadratic covariatighX[), X¥] are satisfied for
all starting points except for some polar set. In section 4 we apply these results to the
weak derivativesf; of a functionF € W12, This leads us to our characterization
(1.4) of the procesd defined by (1.1).

Using the identification (1.8) of the quadratic covariatiofigk), X*]in terms
of forward and backward stochastic integrals, our version (1.4p&ffiormula can
also be written in the form

d .t
F(X,) — F(Xo) = Zfo fi(Xg) odXxk | (1.10)
k=1
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where for a functionf e ,ffﬁjc(Rd) we define the Stratonovich integral as

ftf(Xs) odXk = 1 </[f(XS)dX"§ +/tf(XS)d*X"§> ) (1.11)
0 2 \Jo 0

The idea of deriving an extended ftormula in terms of quadratic covariations de-
fined by (1.8) or in terms of Stratonovich integrals defined as in (1.11) has appeared
independently in Russo and Vallois (1996) in a general semimartingale context, and
in Lyons and Zhang (1994) in the context of Dirichlet spaces. Note that it makes
sensetouse both (1.8) and (1.11) dsfinitionof the quantities appearing on the left
hand side whenever the proces&ésare semimartingales after time reversal. How-
ever, the explicit approximation of the stochastic integrals in (1.5) and (1.6) and the
resulting identification of the quadratic covariations as limits in probability of the
sums in (1.7) is another matter. Such an approximation is of course straightforward
if f is continuous. Russo and Vallois (1996) consider a different approximation
where they first smoothe the right hand side of (1.7) by taking integrals over time
instead of the usual sums. In Lyons and Zhang (1994), the identification (1.7) of
the quadratic covariationsf[ X), X*] is shown under the regularity assumption
that the functionf belongs to the Dirichlet space, and convergence in probability
is formulated with respect to a reversible reference measure.

In this paper, we concentrate on the classical case of Brownian motion. But here
we insist on two improvements. First, the approximations (1.5), (1.6) and (1.7) are
established with respect to a given starting peine R? under explicitintegrability
conditions involvingf andxg. The second point is that we remove any smoothing
and any regularity assumptions on the measurable fung¢ti®e require only the
minimal integrability conditions which are needed in order to guarantee existence
of the forward stochastic integrals in (1.11). Thus, the existence of the quadratic
covariations in (1.4) is established on exactly the same level of generality which is
appropriate for defining the stochastic integrals in (1.1).

2. Existence of quadratic covariation

Let f be a measurable function ®{ whered > 2. Our purpose in this section is to
establish the existence of the quadratic covariatighiX]), X*] under appropriate
integrability hypotheses oif, but without assuming any regularity conditions.
Consider the sums

Y A Ki) = FXDNX g — XP) 2.1
05t
along a sequence of partition3, of R*. As in Follmer, Protter and Shiryaev
(1995), the idea is to decompose (2.1) and to show that the two sums

> TG, = X
ti€Dp
O<t; <t
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and

Y FXpa)(Xf g = X5)
t;€Dp
O<t; <t

converge separately, to respectively aforward and a backward stochastic integral. To
this end we assume that the sequence of partitions satisfies the following conditions:
. ) lit1
lim sup(ti41—16)=0, M:=sup sup — < o0 ; (2.2)
=00 rep, n O<t;eD, li
note that the second condition is satisfied whenever the partitions are equidistant.
For a given poinkg € R? we define two norms foy:

11 f111(x0) = f L) lxo — ylI*dy (2.3)
and
3
I1f12(x0) = ( f F2u(llxo — y||)dy) , (2.9)
where
_J(=logryv1 ifd=2
v(r) = {er if d >3 (25)

Remark (2.6). Suppose thaf has compact support. ffis also bounded then both
norms|| fl; (xo) (i = 1, 2) are clearly finite for every pointy € R?. This is still

true if £ isin ZP for somep > d; see remark (3.24). In section 3 we will see that,
in view of a general result on the existence of quadratic covariation, it is natural to
assume finiteness of both norms for all poings¢ E, whereE is an exceptional

set which is not hit by Brownian motion. We do not assufiieg) < oo, and this

is the reason to excludg = 0 in (2.1).

Proposition (2.7). Let f be a measurable function ok’ with compact suppoyt
and letxp € R? be such that| f||2(xo) < oo. Then the forward stochastic integral
satisfies

t
/O f(Xo)dXk = lim_ D FXDXE, - XE) in L3(Py) (2.8)
R
foreachk € {1, ...,d}.
Proof. It suffices to consider only the case- 1.
1) Define the processé@sandg, by

$(w,s) = f(Xs(@) , (2.9)
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Pn(@,5) = D X @D 1,11(5) - (2.10)

tieDy,

The convergence in (2.8) is equivalent to

lim ||¢_¢n||2:0 , (211)
n—00

where we use the norm

1
ll2 = Ex /0 Vo, s)2ds]? (2.12)

for any measurable functiop on Q x [0, 1]. Observe that iff € %,(R?), then
(2.112) holds by Lebesgue’s dominated convergence theorem. The general case will
follow by approximatingf by continuous functions in the norfh- ||2(xo).
2) Note that the Gaussian density
d
ps(2) = (2s)~ 2exp(—||z]?/2s)

satisfies the inequality

1
fo ps()ds < c(Ryv(llzI) (2.13)

for anyz € RY with ||z|]| < R, wherec(R) is some constant depending @&
see, e.g., Dynkin (1965, VIII, 8.16). Denoting the compact support of and
choosingR > sup,cx ||y — xoll, we obtain the estimate

1
o135 = /0 / F2()ps(y — xo)dy ds

< c(R)/fZ(y)v(Ily—XOll)dy ) (2.14)
hence
llpll2 < azll fll2(x0) , (2.15)

whereas = +/c(R).
3) In order to obtain a similar estimate for the approximating proggssote that
d d
Py (2) < i)~ 2exp(—lIzl|?/2s) < M2 py(2) (2.16)
for#; <s < t;4+1, due to our assumption (2.2). Again using (2.13) we get

a3 = [ 1200 2 iy = 300(a A D — i)y

t;€Dp
O<t; <1

1
/fz(y)/o Ds(y — xg)ds dy
c(R)| f115(x0) , (2.17)

NI

<M

NI

<M
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hence
[lpnll2 < b2ll fll2(x0) (2.18)

whereb, = JTI?)M%.

4) Next we choose a continuous functigiwith compact support such thgg —
fll2(x0) < &, and denote by, andy, the processes associategtas in (2.9) and
(2.10). We have

[l — Pull2 <1l — ¥ll2 + 1Y — Ynll2 + [0 — Pull2 - (2.19)
But

im |4 = ]2 = O (2.20)

sinceg is bounded and continuous, and also

¥ = @nll2 = [1(¥ — Phnll2 < b2|lf — gll2(x0) , (2.21)

due to our estimate (2.18) applied to the functjor- g. This together with (2.15)
implies

limsupll¢ — ¢nll2 < ll¢ — ¥ll2 + limsup||y, — ¢ull2

n—oo n—oo
< a2l f — gll2(x0) + b2[l f — gll2(x0)
< (a2 +b2)e . (2.22)

Sinces > 0 was arbitrary we have shown (2.11) and hence (2.8).

Proposition (2.23). Let f be a measurable function af with compact support
and letxg € R? be such that| f||;(xo) < oo for i = 1, 2. Then the backward
stochastic integral satisfies

t
fo XX = lim D fX )X, — Xp) In 2N Py)  (2.24)
t;€Dp
O<t; <t

foreachk € {1,...,d}.

Proof. It suffices to consider the case-= 1.

1) Let P be the distribution of the time reversed proc&ss R underPy,, where
(RX); = X1-;. The time reversed processo R is ad-dimensional Brownian
bridge tied down torg € R? and starting with initial distributiomv (xo, 1), where
1 is the identity matrix. UndeP, each componerx* is a semimartingale with
decomposition

txk_Xk
x§<=X§+W,k+/ 01 ds (2.25)
o 1—
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whereW* (k = 1, ..., d) are independent Wiener processes. The convergence in
(2.24) fort = 1 is equivalent to the convergence

Si+1

1
/Of(XS)deznleoo D fXOXE, - X5 ingNpr) . (2.26)

*
s; €Dy
O<s; <1

whereD} = {1—1t; € D,}. Letus now use the decomposition (2.25)xdfunder

Py, and let us first show that conditighy||2(xo) < oo implies

1
lim_ > Wk —wh =/0 fXdWE in 2(PY) . (2.27)
xieD;;

O<s; <1

This follows as in the proof of proposition (2.7). We have only to check that the
estimates (2.15) and (2.18) have analogues in terms of the |t defined by

1
Iy I5* = EX, [ fo VA (o, s)ds} (2.28)

for any measurable functiop on Q2 x [0, 1]. This is clear for (2.15) since

1
Ipl15> = EX, [ fo fz(Xy)ds}

1
= E,, [ / fz(Xl—x)dS:|
0
= l¢113 < azll f113(x0) . (2.29)

In order to obtain an analogue to (2.18), consider the term

||¢n||;2=E;‘O[ >, fz(xs,-)(siﬂ—si)}

*
s; €Dy
O<s;<1

= Exo[ > f2<xz,.+1><ri+l—r,->]

t;€Dp
O0<t;<1

= /fz(y) Z Py — x0)(tig1 — tp)dy . (2.30)

1;€Dp
O0<t; <1

Fort; <s < t;41 and for anyz € R? we have

praa(@ < @rs)~4 exp( ~LZI°
B 2ti41

_1 .-
M3z

< (2ns)‘% exp(— >
S

) = py(M™22) (2.31)
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dueto (2.2). Using again the estimate (2.13), and observing([ha’f%r) < av(r)
for some constarit which only depends on andd, we get

1
_1 _1
> Pua @i — 1) s/o ps(M™22)ds < c(R)v(||M~2z]))
tieDn
0<t; <1

< ac(R)v(|lzl]) . (2.32)

Returning to (2.30) we see that

llgnll5 < b3l f12(x0) (2.33)

for some constarit;. Using the estimates (2.29) and (2.33), we can now conclude
as in part 3) of the proof of proposition (2.7) that (2.27) holds.
2) It remains to show

5 o [ g 8 e
s . s ; *
n||m f(Xsi),/s- 1 ds = f(Xs) 1S ds InZL7(Py)
sieDyy !
O<s; <1

(2.34)
or, equivalently,

. tivn xk xé 1 Xk — xg .
lim_ > f(X,,.H)'[ S ds=/0 F(Xs) =2 ds in £Y(Py) .

1—s 1—5
tj€Dy
O<; <1
(2.35)
Let us define the norm
! | XF — xf|
¥l = Exg fo o, 10 (2.36)

for any measurable functiop on Q2 x [0, 1]. For the proces$ defined in (2.9) we
have

! | X5 — xb|
1112 = Ex, /Olf(XS)I—ds

S
1 J—
=/|f(y)||yk—xl(§|/0 Mdsdy ) (2.37)

However for the Gaussian densijpy there is a constana; such that

1
s(Z) _
||z||/O pTds <aflz||" (2.38)
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for anyz € R?; see, e.g., Dynkin (1980, VIII, 8.45). Combining (2.37) and (2.38)
yields

llpll1 < aill fll1(x0) - (2.39)
3) We also need an estimate of the form (2.39) for the approximating processes

Gr@.8) = Y f(Xp 1 (@) .0,01(5) - (2.40)
tieD,
We will write »°; for >, ., o, ~1- Then

li+1 |Xk — Xo|
g3l =) Ex [|f<x,,.+1)| / %ds]
i li
tiy1 |X§? _ x’5|

=Y | [ i)
. ti
l liv1 1 " X

=Y [ SR (B [ it il ds - @a)
i Yl

Recall that a normal random varialitewith law N (m, o2) satisfies

E[1Z]] = m (2<1> (;) . 1) + \/go exp(ZT’";) < Im| + \/ga (2.42)

where® denotes the distribution function 8f(0, 1). In the conditional expectation
appearing in (2.41), the normal random variable- X* —xg has conditional mean

ol k k
= —(Xr - 2.43
n ti+1( tis1 %) ( )
and conditional variance
2= > (ii1—s)<M—1s , (2.44)
tit1

where we use our assumption (2.2). Thus, (2.42) implies

Exo[IX* — x§11X1,,1] < Ai(s) + Bi(s) (2.45)

s 2Ms
Ai(s) = Ellxziﬂ —xoll.  Bi(s) =,/ - (2.46)
l

for; <s < t;+1. Returning to (2.41) we obtain the estimate

where we put

il f(X,
111 < Exg [E / M(Ai(@ + Bi(s))ds] . (2.47)
i
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4) Let us first consider the term

1 F Xl N
Exo[Z / S Al ds | = / O y=sall 3 i oy
i i i i

(2.48)
Due to (2.31) and (2.38) we obtain the estimate
1
tit1 — 1 1 _1
IIZIIlZ -~ pz,-ﬂ(z)SIIzII/O ;ps(M 2z)ds
< ceM2|z|td (2.49)
Returning to (2.48) we see that
i+l 1 ; 1d
B Z/ S (Xl A ds Skl/lf(y)llly—xoll dy
;S
= kall f1l1(x0) (2.50)

wherek; = cM%.
5) As to the second term on the right hand side of (2.47), we again use (2.31) to
obtain the estimate

fiy1 X,
Exg [Z [ S S””)'B,-(s)ds}
2M liv1 1
=,/7/|f(y)|2i:l 73 Pinly — xo)dsdy

i

2M 11 _1
< —flf(y)lf —ps(M™2(y — xp)ds dy . (2.51)
T 0 Vs

But for anyz € R? we have

1
1

—ps(2)ds < eollz||7? (2.52)
I

for some constanty, and so (2.51) implies

lit
Exo [Zf lv(iABi(s)ds} Sh/lf(y)l 1y = xoll*~“dy
i v
= llf1l1(xo0) (2.53)

wherel; = \/gczM%.
6) Combining (2.47) with (2.50) and (2.53) we see that

llgnlle < ball flla(xo) (2.54)
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whereb; = k1 + /1. Using the estimates (2.54) and (2.39), we can now conclude as
in part 3) of the proof of proposition (2.7) thi® — ¢;||1 tends to 0. This implies

the convergence in (2.35) and (2.34), and so the proposition is proved.

We combine propositions (2.7) and (2.23) to obtain:

Corollary (2.55). Let f be a measurable function oR?, let xo € R?, and let
K,, (m > 1) be a sequence of compact sets such that

im Py[X, €K, Vte[0,T]]=1 VT >0. (2.56)

m—00

Assume that for any: > 1 the restrictionf,, of f to K,, satisfies
1 fmllixo) <00 (i=1,2) . (2.57)

Then the quadratic covariation

[f(X), X*],

H E k k
nll—>moo {f(Xt,url) - f(Xt;)}(XtiJrl - Xti)
1;€Dy
O<t; <t

t
/ f(Xpd* Xk — / [ f(Xydx* (2.58)
0 0

exists in probability undeP,, and satisfies

t t
[f(X), X", = / f(Xs)d*x* — / f(X)dxk (2.59)
0 0
foreachk € {1,...,d}.

Proof. Let ¢ be fixed anck > 0, and letT,, = inf{t > 0 |X; ¢ K,,} be the exit

time from K,,,. We denote bys, the n-th sum in (2.58), by the difference of the
forward and backward stochastic integrals, andSfiyand S the corresponding
terms if the functionf is replaced byf,,. SinceS, = S andS = S P, —a.s.

on{T,, > t}, we have

Pxo[|Sn ) 8] = Pxo[Tm = t] + Pxo[|Syrln - Sm| > 5] (2-60)
for anym > 1. Applying propositions (2.7) and (2.23) to the functigip we see
that the last term converges to Oratends toco. Thus,

lim SUpPyo[1S, — S| = &] < PlTn <11 . (2.61)

n—oo

and due to (2.56) the result follows by lettingtend tooo.
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3. Exceptional sets

Let f be a measurable function ®&{. In our approximation (2.55) of the quadratic
covariation

t t
[f(X), X" :/o f(Xs)d*Xf—fo f(XdXy . 3.1

as a limit in probability under,,, we have assumed integrability conditions on
f which are formulated in terms of the initial poimg. In this section we show
that it is no loss of generality to make these assumptions fonasutside some
exceptional set which is not hit by Brownian motion.

Definition (3.2). A measurable sef C R is calledpolar if

P.[X, € E forsomer >0]=0 VxeR?. (3.3)

Remark (3.4). This probabilistic notion of an exceptional set is equivalent to the
potential theoretic notion of a set ahpacity zerp see, e.g., Fukushima (1980,
Th. 4.3.1 and Example 4.3.1). Equivalently, we can define these exceptional sets
in terms of the Bessel capacity of order (1,2) as in Ziemer (1989, 2.6); see, e.g.,
Fukushima (1993, p.25).

Note first that in order to introduce the forward stochastic integral in (3.1) with
respect to the measurg,, at least for someg < R4 and some > 0, we clearly
need the condition

Py, [/Ot F2(X)ds < oo] =1. (3.5)

But the results in Bhnle and Sturm (1993, Th.1.1) show that the validity of (3.5)
for somexg € R? and someg > 0 implies that the functiorf satisfies condition
(3.5) for allr > 0 and for all initial pointsx ¢ E where E is some polar set.
Moreover, it follows that all the assumptions we used in theorem (2.55) hold for
any starting point lying outside some polar set:

Proposition (3.6). Let f be a measurable function atf such that conditiot3.5)
holds for someg € R? and some < co. Then there exist a sequence of compact
setsk,, € RY (m > 1) and a polar set£ such that the conditions

mli_r]lo PylXi€eKnw Ytel0,T]]=1 VT >0 (3.7)
and
/f,ﬁ(X)dx <00, |lfmllitx0) < o0 (i=12 (3.8)

are satisfied for allkg ¢ E and for allm > 1, where f,, denotes the restriction
f Ik, of f tothe sekX,,.
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Proof. 1) It is shown in Hbhnle and Sturm (1993, Th. 3.5 and 3.7) that the validity
of (3.5) for somexg € R? and some < oo is equivalent to the fact that there exists
a polar sett and a sequence of compact skts (m > 1) with

f F2(x)dx <oo (m>1) (3.9)
K
such that the conditions (3.7) and

/K vl xo—y DF2(dy <00 (m > 1) (3.10)

are satisfied for anyg ¢ E». Thus, the restrictiong,, of f to K,, satisfy

fn € LERY, | full2(x0) < 00 (3.11)
for all xg ¢ E>.
2) It remains to verify the integrability condition

Il fmll1(x0) < o0 (3.12)

for all xg outside some polar set. In view of 1) we may assume fHads compact
supportk and is square integrable. Consider the Bessel potential f| of order
1 defined by

(g1*|fhx) = fgl(x = WIfIdy (3.13)
whereg, is defined as that function whose Fourier transform is
ga() = 2m) 21+ |Ix|H77 . (3.14)
Note that
1
8a(2) = ——11zl1*" + o(llz]|*™%) (3.15)
y(a)

with some constant («) as||z|| — O; see, e.g., Ziemer (1989, p. 65). Thus, there
is a constant such that

lly —xoll*™ <c-g1(xo—y) onk (3.16)

and so we have

||f||1(xo)=/K|f|(y)||y—xolll_ddy
<c-(g1*|f(xo0) . (3.17)

But the functiont = g1 * f, being the Bessel potential with index= 1 associated
to the square integrable functigh belongs to the Sobolev spawél-2; see Ziemer
(1989, Th. 2.6.1). This implies that the versioulefined by

a(x) =l u(z)dz (3.18)

m—-
840 Vol(Bs(x)) JBs(x)
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satisfiesi(x) < oo outside some polar sél;; see, e.g., Ziemer (1989, Th.3.1.4
and 3.10.2) or Fukushima (1993, Th. 2.1). Since

lim —— —2)dz = — 3.19
sl?gvol(Bg(x)) Ba(x)gl(y 2)dz = g1(y — x) (3.19)

for anyy # x by Lebesgue’s theorem, we obtain

u(x) = / I

m—_+
840 Vol(Bs(x)) JB;(x)
u(x)dz (3.20)

g1(y — x)dzdy
<liminf ————
840 Vol(Bs(x)) JBs(x)

using Fatou’'s lemma and Fubini’s theorem. kgr¢ E1, we have thus shown
u(xg) < oo, hencel| f||1(x0) < oo due to (3.17).
Combining proposition (3.6) with corollary (2.55) we obtain:

Theorem (3.21). Let f be a measurable function a& such that conditior§3.5)
holds for someg € R? and some < co. Then there exists a polar sEtsuch that
for anyxg ¢ E the quadratic covariation

[FX0. X = lim D {f (i) = f X)X, = X

t;€Dp
O<t; <t

t t
/ f(Xpd* Xk — / f(Xydx~ (3.22)
0 0

exists in probability undeP,, and satisfies

t
[£(X), XX, = / f(Xpd*xk - / lf(Xs)de : (3.23)
0 0

foreachk € {1,...,d}.

Remark (3.24). If f € y{;C(Rd) for somep > d then the conlusion of the
theorem holds foeverystarting pointrg € R?, without exception. To see this
we may assume that has compact support. In this case, the assumption that

f e 2P(R?) for somep > d implies
| flli(x0) <00 (i =1,2) (3.25)

for everyxg € R?. Thus, our assumptions in corollary (2.55) for the existence of
guadratic covariation are satisfiegterywhereConditions (3.25) can be verified
directly, using Hblder's inequality. They also follow from the Sobolev embedding
theorem. Note that the functiarn defined by

up(x) = / F2udll x —y Ihdy (3.26)

belongs tow?2?/?; see Gilbarg and Trudinger (1983, Th. 9.9). This impligse
C(R?Y) for p > d, hencel| f||2(x) < oo for anyx € RY; see Ziemer (1989, Th.
2.4.2). Note also that fof € #? the Bessel potential = g1 * | f| belongs to
wlr; see Ziemer (1989, Th. 2.6.1). This impliess C(R?) for p > d, again by
Ziemer (1989, Th. 2.4.2), hen¢lf||1(x) < oo for anyx € RY, due to (3.17).
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4, 1t0’s formula

Let # 12 denote the Sobolev space of functionsd?(R?) such that the weak

first partial derivatives belong t&?(R?). Recall that a function in#"-2 can be
defined everywhere, except for a polar set, in terms of its integral averages, i.e., we
can choose a versiaf and a polar seEg such that

1
F(x) =Ilm ———— F(y)dy 4.1)
840 VOI(Bs(x)) J;(x)
for all x € Ep; see, e.g., Fukushima (1993, Th. 2.1 and p.25) or Ziemer (1989, Th.
3.1.4).

Let us now consider a function Wltcz i.e., ameasurable function ®{ which
coincides on each compact set with a functiorviil-2. We fix a versionF such
that (4.1) holds outside some polar &t and we denote by

oF
fi=o— € 22 (RY) (4.2)
Xk
the k-th weak partial derivative of'. With probability 1, Brownian motion does
not enter a given polar set after time 0, and so the valug§ (w)) of the function
F along a Brownian path are well defin@J — almost surely for any starting point
x ¢ Ep.
1.2

Theorem (4.3). LetF € ¥/, be given as above. For ath < R? except for some
polar set the quadratic covariation

[0, XKL = lim D7 (felXiyy) = filX)) (X, = X5 (44)
t;€Dp
exists as a limit in probability undeP,, for eachk € {1, ..., d}, and I0's formula
holds in the form

d . 14
F(X) = F(X0)+Y /0 FXdxXE+2 30, X, P —as @45)
k=1 k=1

forall t > 0.

Proof. 1) By a localization argument as in the proof of corollary (2.55), we can
assume thaF has compact support and belongsité-2. Sincef; € #?(R?), we
have

Py, |:/ ka(XS)ds < oo] =1 (4.6)
0

for all xg except for some polar set; see Fukushima (1980, (5.4.23)). Due to (3.21)
we can conclude that the quadratic covariatiofigX), X]; are well defined as
limits in probability undetPy, for all xg, except for some polar set. Alternatively we
can apply propositions (2.7) and (2.23), using the estimafgs; (xo) < oo (@ =

1, 2) for xo ¢ E1 U E2 which are implied by (4.20) and (4.25) below.
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2) Letxg € R?. Suppose that we can approximateéy functionsF ™ e C?(R%)
with compact support in such a way that

F(x) = lim F®™(x) 4.7

for all x outside some polar set, and that the partial derivatﬂ(& = %F(’”
satisfy

Tim (15" = fillic =0 (=12 (4.8)

for the two norms introduced in section 2. Due to our estimates (2.15), (2.29), (2.39)
we can conclude, as in the proof of (2.7) and (2.23), that

lim_ Ol P xpdxk = /0 t fi(XdX* in #2(Py) (4.9)
and
lim_ /Ot X xk = /Ot fiXd*x* in 2Y(P,) . (4.10)
In particular,

[f(X), X*];

t t
ffk(Xs)d*Xf—/ fre(Xs)dX*

0 0
lim [0, X4, in 2Y(Py) . (4.11)

Applying Itd’s formula to the functiong ™, we obtain

1 1w
Ek;[fk(xm"], ngmméglfk ), x"1;

d .
lim (F™(X,) = F"(Xo) = Y / K (X)dxE)

d t
= F(X) - F(X0) = 3 /0 fuXpdxt P, —as,
= (4.12)

where we have applied once more (4.9) in the last step.
3) In order to construct such an approximation, let us take funcfidhise C%(R%)
with compact support such that

o0
D IF®™ = Flla2 < o0 (4.13)
n=1

where|| - ||1,2 denotes the Sobolev norm 12, In particular, the functions

=Y IR = fl (4.14)
n=1
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belong to.#2(R?) since

( / h%(x)dx)z 3 ( 15~ fk|2dx>2
n=1

[|F™ — Fllp2 < 00 . (4.15)

Mé%u

=<

3
Il
N

It follows as in part 2) of the proof of proposition (3.6) that the Bessel potential

(g1 hi)(x) = /gl(x — Whi(y)dy (4.16)
is finite for all xg outside some polar sét;. But due to (3.17) we have

lhkll1(x0) < ¢ - (g1 * hi)(x0) (4.17)

for some constant, and so we have shown thidty||1(xg) < oo for all xg ¢ E1.
This implies

o
STHAY = filla(xo) < 00 (4.18)
n=1
by monotone integration, and so we get the desired approximation
lim 11" = filli(xo) = 0 (4.19)
n—oo
forall xg ¢ E1.
4) Let us define
~ i %
hig = (Z( - fk)2> : (4.20)
n=1
Since
B o0
/ h2dx =" / (" = f2)%dx < o0, (4.21)
n=1
part 1) of the proof of (3.6) shows that
/K v(llxo — yIDAF(ndy < o0 (4.22)

forallm > 1 and for allxg except for some polar sé&b, where(K,,) is a sequence

of compact sets satisfying (3.7). In view of the localization argument in the proof
of (2.55), we can assume without loss of generality thatanishes outsid&,,,,

for somemg > 1. Then we get

> / v(llxo — YDA = f?(y)dy < o0 (4.23)
n=1
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for all xg ¢ E2, and this implies the desired approximation
lim 11" = filla(xo) = 0 (4.24)
n—oo

for all xg ¢ E>.

5) Let us also check that (4.7) holds for all poimgsexcept for some polar set. We
have

1
(F — F™)(xp) = lim ———— (F — F™)(x)dx (4.25)
840 VOI(Bs(x0)) JBs(xo)
for all pointsxg except for the polar séig involved in the choice of the versiaf.

Since
o0

dIF—F®eyt? (4.26)
n=1
due to (4.13), we get the existence of

o0

1

810 vol(Bs(x0)) Bs(x0) ,—1

for all xg except for a polar sef3. Forxg ¢ Eg U E3, we can conclude that

o]

o
. 1
Z|F—F(")|(xo)§ liminf ————— |F — F™|(x)dx
7 810" Vol(B5(x0)) JBs(x0)
o0

n=1 n=

< lim

< liminf ———— |F—F(”)|(x)dx<oo ,
810 VOI(Bs(x0)) JB;(xo) =}

(4.28)

and this implies (4.7). Thus, all properties of the approximation which were used
in part 2) of the proof are satisfied for amy ¢ Eo U E1 U E2 U E3.
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