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Abstract. Consider a d-dimensional Brownian motionX = (X1, . . . , Xd) and a function
F which belongs locally to the Sobolev spaceW 1,2. We prove an extension of Itô’s formula
where the usual second order terms are replaced by the quadratic covariations [fk(X),X

k]
involving the weak first partial derivativesfk of F . In particular we show that for any
locally square-integrable functionf the quadratic covariations [f (X),Xk] exist as limits
in probability for any starting point, except for some polar set. The proof is based on new
approximation results for forward and backward stochastic integrals.

1. Introduction

The behavior of a smooth functionF onRd along the paths of d-dimensional Brow-
nian motion is described as follows by Itô’s formula. LetPx be the distribution of
Brownian motion with initial pointx, and letX = (X1, . . . , Xd) denote the co-
ordinate process on the canonical path space� = C([0,∞), Rd). Consider the
processA defined by

At = F(Xt)− F(X0)−
d∑
k=1

∫ t

0
fk(Xs)dX

k
s , (1.1)

where we denote byfk = ∂F
∂xk

the partial derivatives ofF . Itô’s formula provides
an alternative description of the processA:

At = 1

2

∫ t

0
1F(Xs)ds Px − a.s. (1.2)

for anyt ≥ 0, and for any starting pointx ∈ Rd .
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Note, however, that the description (1.2) in terms of the Laplace operator1

involves second order differentiability ofF , while definition (1.1) requires only
differentiability of first order. In fact, the process in (1.1) is well defined whenever
F belongs to the Sobolev spaceW1,2, at least locally. In this case, we choose an
appropriate version ofF and use the weak first derivativesfk in order to define
(1.1)Px – almost surely for allx /∈ E, whereE is some polar set. Thus the question
arises how to formulate an analogue to (1.2) for a general functionF ∈ W1,2

loc . Of
course we can always approximateF by smooth functionsF (n) in such a way that
the terms in (1.1) converge to the corresponding terms forF , and then we get the
description

At = lim
n→∞

1

2

∫ t

0
1F(n)(Xs)ds . (1.3)

But rather we are interested in an intrinsic description which directly involves the
functionF itself.

It turns out that such an intrinsic description can be given in terms of quadratic
covariation. We show that for any initial pointx ∈ Rd , except for some polar set,
the quadratic covariations [fk(X),Xk] exist as limits in probability of the usual
sums under the measurePx . Our extension of It̂o’s formula consists in identifying
the processA defined by (1.1) as

At = 1

2

d∑
k=1

[fk(X),X
k]t Px − a.s. (1.4)

for all x except for some polar set.
If F is the difference of two positive superharmonic functions so that the dis-

tribution 1
21F is given by a signed measureµ, then (1.4) provides an explicit de-

scription of the additive functional associated toµ which appears in the extended
Itô formula of Brosamler (1970) and Meyer (1978). In the general caseF ∈ W1,2,
the processF(X)may not be a semimartingale, i.e., the processA defined by (1.1)
and characterized by (1.4) may have paths of unbounded variation. Note, however,
that we can viewF as a function in the Dirichlet space associated to d-dimensional
Brownian motion. From this point of view,A is the process of zero energy appearing
in Fukushima’s decomposition of the processF(X); cf. Fukushima (1980). Thus,
our formula (1.4) provides an explicit construction of the process of zero energy in
terms of quadratic covariation.

In the one-dimensional cased = 1, our version (1.4) of It̂o’s formula and
its time dependent analogue was shown in Föllmer, Protter and Shiryaev (1995).
Chitashvili ad Mania (1997) consider a related problem. In their time dependent
extension of the one-dimensional Itô formula they find necessary and sufficient
conditions on the functionF(t, x) such thatF(t,Xt ) is a semimartingale.

In this paper we consider the multidimensional cased ≥ 2. The basic idea is the
same as in F̈ollmer, Protter and Shiryaev (1995): The existence of the quadratic co-
variations in (1.4) is shown by proving that the forward and the backward stochastic
integrals offk(X) can be approximated by the corresponding sums. But in contrast
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to the one-dimensional case, these approximation results hold only for all initial
pointsx outside some exceptional set of capacity zero, and the proofs are more
subtle. In section 2 we fix a starting pointx0 ∈ Rd and a measurable functionf
onRd . We formulate two integrability conditions onf which depend onx0, and
which guarantee that both the forward and the backward stochastic integral can be
constructed in a straightforward manner as limits in probability

∫ t

0
f (Xs)dX

k
s = lim

n→∞
∑
ti∈Dn
0<ti<t

f (Xti )(X
k
ti+1

−Xkti ) (1.5)

and ∫ t

0
f (Xs)d

∗Xks = lim
n→∞

∑
ti∈Dn
0<ti<t

f (Xti+1)(X
k
ti+1

−Xkti ) (1.6)

under the measurePx0. This implies the existence of the quadratic covariations

[f (X),Xk]t = lim
n→∞

∑
ti∈Dn
0<ti<t

{f (Xti+1)− f (Xti )}(Xkti+1
−Xkti ) (1.7)

as limits in probability under the measurePx0, and their identification as differences

[f (X),Xk]t =
∫ t

0
f (Xs)d

∗Xks −
∫ t

0
f (Xs)dX

k
s (1.8)

of backward and forward stochastic integrals. In section 3 we consider a measurable
functionf such that

Px0

[∫ t

0
f 2(Xs)ds < ∞

]
= 1 . (1.9)

at least for somex0 and for somet . Note that condition (1.9) is clearly a minimal
requirement if we want to talk about stochastic integrals off (X). Using results of
Höhnle and Sturm (1993) on multidimensional analogues of the Engelbert-Schmidt
0 - 1 law, we showthat condition (1.9) implies that our integrability conditions in
section 2 for the existence of the quadratic covariations [f (X),Xk] are satisfied for
all starting points except for some polar set. In section 4 we apply these results to the
weak derivativesfk of a functionF ∈ W1,2. This leads us to our characterization
(1.4) of the processA defined by (1.1).

Using the identification (1.8) of the quadratic covariations [fk(X),X
k] in terms

of forward and backward stochastic integrals, our version (1.4) of Itô’s formula can
also be written in the form

F(Xt)− F(X0) =
d∑
k=1

∫ t

0
fk(Xs) ◦ dXks , (1.10)
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where for a functionf ∈ L2
loc(R

d) we define the Stratonovich integral as∫ t

0
f (Xs) ◦ dXks = 1

2

(∫ t

0
f (Xs)dX

k
s +

∫ t

0
f (Xs)d

∗Xks

)
. (1.11)

The idea of deriving an extended Itô formula in terms of quadratic covariations de-
fined by (1.8) or in terms of Stratonovich integrals defined as in (1.11) has appeared
independently in Russo and Vallois (1996) in a general semimartingale context, and
in Lyons and Zhang (1994) in the context of Dirichlet spaces. Note that it makes
sense to use both (1.8) and (1.11) as adefinitionof the quantities appearing on the left
hand side whenever the processesXk are semimartingales after time reversal. How-
ever, the explicit approximation of the stochastic integrals in (1.5) and (1.6) and the
resulting identification of the quadratic covariations as limits in probability of the
sums in (1.7) is another matter. Such an approximation is of course straightforward
if f is continuous. Russo and Vallois (1996) consider a different approximation
where they first smoothe the right hand side of (1.7) by taking integrals over time
instead of the usual sums. In Lyons and Zhang (1994), the identification (1.7) of
the quadratic covariations [f (X),Xk] is shown under the regularity assumption
that the functionf belongs to the Dirichlet space, and convergence in probability
is formulated with respect to a reversible reference measure.

In this paper, we concentrate on the classical case of Brownian motion. But here
we insist on two improvements. First, the approximations (1.5), (1.6) and (1.7) are
established with respect to a given starting pointx0 ∈ Rd under explicit integrability
conditions involvingf andx0. The second point is that we remove any smoothing
and any regularity assumptions on the measurable functionf . We require only the
minimal integrability conditions which are needed in order to guarantee existence
of the forward stochastic integrals in (1.11). Thus, the existence of the quadratic
covariations in (1.4) is established on exactly the same level of generality which is
appropriate for defining the stochastic integrals in (1.1).

2. Existence of quadratic covariation

Letf be a measurable function onRd whered ≥ 2. Our purpose in this section is to
establish the existence of the quadratic covariations [f (X),Xk] under appropriate
integrability hypotheses onf , but without assuming any regularity conditions.
Consider the sums

∑
ti∈Dn
0<ti<t

{f (Xti+1)− f (Xti )}(Xkti+1 −Xkti ) (2.1)

along a sequence of partitionsDn of R+. As in Föllmer, Protter and Shiryaev
(1995), the idea is to decompose (2.1) and to show that the two sums∑

ti∈Dn
0<ti<t

f (Xti )(X
k
ti+1

−Xkti )
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and ∑
ti∈Dn
0<ti<t

f (Xti+1)(X
k
ti+1 −Xkti )

converge separately, to respectively a forward and a backward stochastic integral. To
this end we assume that the sequence of partitions satisfies the following conditions:

lim
n→∞ sup

ti∈Dn
(ti+1 − ti ) = 0, M := sup

n
sup

0<ti∈Dn

ti+1

ti
< ∞ ; (2.2)

note that the second condition is satisfied whenever the partitions are equidistant.
For a given pointx0 ∈ Rd we define two norms forf :

||f ||1(x0) =
∫

|f (y)| ||x0 − y||1−ddy (2.3)

and

||f ||2(x0) =
(∫

f (y)2v(||x0 − y||)dy
) 1

2

, (2.4)

where

v(r) =
{
(− logr) ∨ 1 if d = 2
r2−d if d ≥ 3

(2.5)

Remark (2.6). Suppose thatf has compact support. Iff is also bounded then both
norms||f ||i (x0) (i = 1, 2) are clearly finite for every pointx0 ∈ Rd . This is still
true if f is inLp for somep > d; see remark (3.24). In section 3 we will see that,
in view of a general result on the existence of quadratic covariation, it is natural to
assume finiteness of both norms for all pointsx0 /∈ E, whereE is an exceptional
set which is not hit by Brownian motion. We do not assumef (x0) < ∞, and this
is the reason to excludet0 = 0 in (2.1).

Proposition (2.7). Let f be a measurable function onRd with compact support,
and letx0 ∈ Rd be such that||f ||2(x0) < ∞. Then the forward stochastic integral
satisfies

∫ t

0
f (Xs)dX

k
s = lim

n→∞
∑
ti∈Dn
0<ti<t

f (Xti )(X
k
ti+1

−Xkti ) in L2(Px0) (2.8)

for eachk ∈ {1, . . . , d}.
Proof. It suffices to consider only the caset = 1.

1) Define the processesφ andφn by

φ(ω, s) = f (Xs(ω)) , (2.9)
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φn(ω, s) =
∑
ti∈Dn

f (Xti (ω))I(ti ,ti+1](s) . (2.10)

The convergence in (2.8) is equivalent to

lim
n→∞ ||φ − φn||2 = 0 , (2.11)

where we use the norm

||ψ ||2 = Ex0[
∫ 1

0
ψ(ω, s)2ds]

1
2 (2.12)

for any measurable functionψ on� × [0, 1]. Observe that iff ∈ Cb(R
d), then

(2.11) holds by Lebesgue’s dominated convergence theorem. The general case will
follow by approximatingf by continuous functions in the norm|| · ||2(x0).

2) Note that the Gaussian density

ps(z) = (2πs)−
d
2 exp(−||z||2/2s)

satisfies the inequality

∫ 1

0
ps(z)ds ≤ c(R)v(||z||) (2.13)

for any z ∈ Rd with ||z|| ≤ R, wherec(R) is some constant depending onR;
see, e.g., Dynkin (1965, VIII, 8.16). Denoting byK the compact support off and
choosingR ≥ supy∈K ||y − x0||, we obtain the estimate

||φ||22 =
∫ 1

0

∫
f 2(y)ps(y − x0)dy ds

≤ c(R)

∫
f 2(y)v(||y − x0||)dy , (2.14)

hence
||φ||2 ≤ a2||f ||2(x0) , (2.15)

wherea2 = √
c(R).

3) In order to obtain a similar estimate for the approximating processφn, note that

pti (z) ≤ (2πti)
− d

2 exp(−||z||2/2s) ≤ M
d
2ps(z) , (2.16)

for ti ≤ s ≤ ti+1, due to our assumption (2.2). Again using (2.13) we get

||φn||22 =
∫
f 2(y)

∑
ti∈Dn
0<ti<1

pti (y − x0)((ti+1 ∧ 1)− ti )dy

≤ M
d
2

∫
f 2(y)

∫ 1

0
ps(y − x0)ds dy

≤ M
d
2 c(R)||f ||22(x0) , (2.17)
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hence

||φn||2 ≤ b2||f ||2(x0) (2.18)

whereb2 = √
c(R)M

d
4 .

4) Next we choose a continuous functiong with compact support such that||g −
f ||2(x0) ≤ ε, and denote byψ andψn the processes associated tog as in (2.9) and
(2.10). We have

||φ − φn||2 ≤ ||φ − ψ ||2 + ||ψ − ψn||2 + ||ψn − φn||2 . (2.19)

But

lim
n

||ψ − ψn||2 = 0 (2.20)

sinceg is bounded and continuous, and also

||ψn − φn||2 = ||(ψ − φ)n||2 ≤ b2||f − g||2(x0) , (2.21)

due to our estimate (2.18) applied to the functionf − g. This together with (2.15)
implies

lim sup
n→∞

||φ − φn||2 ≤ ||φ − ψ ||2 + lim sup
n→∞

||ψn − φn||2
≤ a2||f − g||2(x0)+ b2||f − g||2(x0)

≤ (a2 + b2)ε . (2.22)

Sinceε > 0 was arbitrary we have shown (2.11) and hence (2.8).

Proposition (2.23). Letf be a measurable function onRd with compact support,
and letx0 ∈ Rd be such that||f ||i (x0) < ∞ for i = 1, 2. Then the backward
stochastic integral satisfies∫ t

0
f (Xs)d

∗Xks = lim
n→∞

∑
ti∈Dn
0<ti<t

f (Xti+1)(X
k
ti+1

−Xkti ) in L1(Px0) (2.24)

for eachk ∈ {1, . . . , d}.
Proof. It suffices to consider the caset = 1.
1) LetP ∗

x0
be the distribution of the time reversed processX ◦R underPx0, where

(RX)t = X1−t . The time reversed processX ◦ R is a d-dimensional Brownian
bridge tied down tox0 ∈ Rd and starting with initial distributionN(x0, I ), where
I is the identity matrix. UnderP ∗

x0
, each componentXk is a semimartingale with

decomposition

Xkt = Xk0 +Wk
t +

∫ t

0

xk0 −Xks

1 − s
ds , (2.25)
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whereWk (k = 1, . . . , d) are independent Wiener processes. The convergence in
(2.24) fort = 1 is equivalent to the convergence∫ 1

0
f (Xs)dX

k
s = lim

n→∞
∑
si∈D∗

n
0<si<1

f (Xsi )(X
k
si+1

−Xksi ) in L1(P ∗
x0
) , (2.26)

whereD∗
n = {1− ti |ti ∈ Dn}. Let us now use the decomposition (2.25) ofXk under

P ∗
x0

, and let us first show that condition||f ||2(x0) < ∞ implies

lim
n→∞

∑
si∈D∗

n
0<si<1

f (Xsi )(W
k
si+1

−Wk
si
) =

∫ 1

0
f (Xs)dW

k
s in L2(P ∗

x0
) . (2.27)

This follows as in the proof of proposition (2.7). We have only to check that the
estimates (2.15) and (2.18) have analogues in terms of the norm||ψ ||∗2 defined by

||ψ ||∗2
2 = E∗

x0

[∫ 1

0
ψ2(ω, s)ds

]
(2.28)

for any measurable functionψ on�× [0, 1]. This is clear for (2.15) since

||φ||∗2
2 = E∗

x0

[∫ 1

0
f 2(Xs)ds

]

= Ex0

[∫ 1

0
f 2(X1−s)ds

]

= ||φ||22 ≤ a2||f ||22(x0) . (2.29)

In order to obtain an analogue to (2.18), consider the term

||φn||∗2
2 = E∗

x0

[ ∑
si∈D∗

n
0<si<1

f 2(Xsi )(si+1 − si)

]

= Ex0

[ ∑
ti∈Dn
0<ti<1

f 2(Xti+1)(ti+1 − ti )

]

=
∫
f 2(y)

∑
ti∈Dn
0<ti<1

pti+1(y − x0)(ti+1 − ti )dy . (2.30)

For ti ≤ s ≤ ti+1 and for anyz ∈ Rd we have

pti+1(z) ≤ (2πs)−
d
2 exp

(
−||z||2

2ti+1

)

≤ (2πs)−
d
2 exp

(
−||M− 1

2 z||2
2s

)
= ps(M

− 1
2 z) (2.31)
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due to (2.2). Using again the estimate (2.13), and observing thatv(M− 1
2 r) ≤ αv(r)

for some constantα which only depends onM andd, we get

∑
ti∈Dn
0<ti<1

pti+1(z)(ti+1 − ti ) ≤
∫ 1

0
ps(M

− 1
2 z)ds ≤ c(R)v(||M− 1

2 z||)

≤ αc(R)v(||z||) . (2.32)

Returning to (2.30) we see that

||φn||∗2 ≤ b∗
2||f ||2(x0) (2.33)

for some constantb∗
2. Using the estimates (2.29) and (2.33), we can now conclude

as in part 3) of the proof of proposition (2.7) that (2.27) holds.
2) It remains to show

lim
n→∞

∑
si∈D∗

n
0<si<1

f (Xsi )

∫ si+1

si

Xks − xk0

1 − s
ds =

∫ 1

0
f (Xs)

Xks − xk0

1 − s
ds in L1(P ∗

x0
)

(2.34)
or, equivalently,

lim
n→∞

∑
ti∈Dn
0<ti<1

f (Xti+1)

∫ ti+1

ti

Xks − xk0

1 − s
ds =

∫ 1

0
f (Xs)

Xks − xk0

1 − s
ds in L1(Px0) .

(2.35)
Let us define the norm

||ψ ||1 = Ex0

[∫ 1

0
|ψ(ω, s)| |X

k
s − xk0|
s

ds

]
(2.36)

for any measurable functionψ on�× [0, 1]. For the processφ defined in (2.9) we
have

||φ||1 = Ex0

[∫ 1

0
|f (Xs)|

|Xks − xk0|
s

ds

]

=
∫

|f (y)||yk − xk0|
∫ 1

0

ps(y − x0)

s
ds dy . (2.37)

However for the Gaussian densityps there is a constanta1 such that

||z||
∫ 1

0

ps(z)

s
ds ≤ a1||z||1−d (2.38)
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for anyz ∈ Rd ; see, e.g., Dynkin (1980, VIII, 8.45). Combining (2.37) and (2.38)
yields

||φ||1 ≤ a1||f ||1(x0) . (2.39)

3) We also need an estimate of the form (2.39) for the approximating processes

φ∗
n(ω, s) =

∑
ti∈Dn

f (Xti+1(ω))I(ti ,ti+1](s) . (2.40)

We will write
∑
i for

∑
ti∈Dn,0<ti<1. Then

||φ∗
n||1 =

∑
i

Ex0

[
|f (Xti+1)|

∫ ti+1

ti

|Xks − x0|
s

ds

]

=
∑
i

Ex0

[∫ ti+1

ti

|Xks − xk0|
s

ds|f (Xti+1)|
]

=
∑
i

∫ ti+1

ti

1

s
Ex0

[
Ex0

[
|Xks − xk0||Xti+1

]
|f (Xti+1)|

]
ds . (2.41)

Recall that a normal random variableZ with lawN(m, σ 2) satisfies

E[|Z|] = m
(
28

(m
σ

)
− 1

)
+
√

2

π
σ exp

(−m2

2σ 2

)
≤ |m| +

√
2

π
σ (2.42)

where8 denotes the distribution function ofN(0, 1). In the conditional expectation
appearing in (2.41), the normal random variableZ = Xks −xk0 has conditional mean

m = s

ti+1
(Xkti+1

− xk0) (2.43)

and conditional variance

σ 2 = s

ti+1
(ti+1 − s) ≤ (M − 1)s , (2.44)

where we use our assumption (2.2). Thus, (2.42) implies

Ex0[|Xks − xk0||Xti+1] ≤ Ai(s)+ Bi(s) (2.45)

where we put

Ai(s) = s

ti+1
||Xti+1 − x0||, Bi(s) =

√
2Ms

π
(2.46)

for ti ≤ s < ti+1. Returning to (2.41) we obtain the estimate

||φ∗
n||1 ≤ Ex0

[∑
i

∫ ti+1

ti

|f (Xti+1)|
s

(Ai(s)+ Bi(s))ds

]
. (2.47)
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4) Let us first consider the term

Ex0

[∑
i

∫ ti+1

ti

|f (Xti+1)|
s

Ais ds

]
=
∫

|f (y)| ||y−x0||
∑
i

ti+1 − ti

ti+1
pti+1(y−x0)dy .

(2.48)
Due to (2.31) and (2.38) we obtain the estimate

||z||
∑
i

ti+1 − ti

ti+1
pti+1(z) ≤ ||z||

∫ 1

0

1

s
ps(M

− 1
2 z)ds

≤ cM
d
2 ||z||1−d . (2.49)

Returning to (2.48) we see that

Ex0

[∑
i

∫ ti+1

ti

1

s
|f (Xti+1)|Ais ds

]
≤ k1

∫
|f (y)|||y − x0||1−ddy

= k1||f ||1(x0) (2.50)

wherek1 = cM
d
2 .

5) As to the second term on the right hand side of (2.47), we again use (2.31) to
obtain the estimate

Ex0

[∑
i

∫ ti+1

ti

|f (Xti+1)|
s

Bi(s) ds

]

=
√

2M

π

∫
|f (y)|

∑
i

∫ ti+1

ti

1√
s
pti+1(y − x0)ds dy

≤
√

2M

π

∫
|f (y)|

∫ 1

0

1√
s
ps(M

− 1
2 (y − x0)ds dy . (2.51)

But for anyz ∈ Rd we have

∫ 1

0

1√
s
ps(z)ds ≤ c2||z||1−d (2.52)

for some constantc2, and so (2.51) implies

Ex0

[∑
i

∫ ti+1

ti

|f (Xti+1)|
s

Bi(s)ds

]
≤ l1

∫
|f (y)| ||y − x0||1−ddy

= l1||f ||1(x0) (2.53)

wherel1 =
√

2
π
c2M

d
2 .

6) Combining (2.47) with (2.50) and (2.53) we see that

||φ∗
n||1 ≤ b1||f ||1(x0) , (2.54)
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whereb1 = k1 + l1. Using the estimates (2.54) and (2.39), we can now conclude as
in part 3) of the proof of proposition (2.7) that||φ − φ∗

n||1 tends to 0. This implies
the convergence in (2.35) and (2.34), and so the proposition is proved.
We combine propositions (2.7) and (2.23) to obtain:

Corollary (2.55). Let f be a measurable function onRd , let x0 ∈ Rd , and let
Km (m ≥ 1) be a sequence of compact sets such that

lim
m→∞Px0[Xt ∈ Km ∀ t ∈ [0, T ]] = 1 ∀ T > 0 . (2.56)

Assume that for anym ≥ 1 the restrictionfm of f toKm satisfies

||fm||i (x0) < ∞ (i = 1, 2) . (2.57)

Then the quadratic covariation

[f (X),Xk]t ≡ lim
n→∞

∑
ti∈Dn
0<ti<t

{f (Xti+1)− f (Xti )}(Xkti+1
−Xkti )

=
∫ t

0
f (Xs)d

∗Xks −
∫ t

0
f (Xs)dX

k
s (2.58)

exists in probability underPx0 and satisfies

[f (X),Xk]t =
∫ t

0
f (Xs)d

∗Xks −
∫ t

0
f (Xs)dX

k
s , (2.59)

for eachk ∈ {1, . . . , d}.

Proof. Let t be fixed andε > 0, and letTm = inf {t > 0 |Xt /∈ Km} be the exit
time fromKm. We denote bySn the n-th sum in (2.58), byS the difference of the
forward and backward stochastic integrals, and bySmn andSm the corresponding
terms if the functionf is replaced byfm. SinceSn = Smn andS = Sm Px0 – a.s.
on {Tm > t}, we have

Px0[|Sn − S| ≥ ε] ≤ Px0[Tm ≤ t ] + Px0[|Smn − Sm| ≥ ε] (2.60)

for anym ≥ 1. Applying propositions (2.7) and (2.23) to the functionfm we see
that the last term converges to 0 asn tends to∞. Thus,

lim sup
n→∞

Px0[|Sn − S| ≥ ε] ≤ Px0[Tm ≤ t ] , (2.61)

and due to (2.56) the result follows by lettingm tend to∞.



On Itô’s formula for multidimensional Brownian motion 13

3. Exceptional sets

Letf be a measurable function onRd . In our approximation (2.55) of the quadratic
covariation

[f (X),Xk]t =
∫ t

0
f (Xs)d

∗Xks −
∫ t

0
f (Xs)dX

k
s . (3.1)

as a limit in probability underPx0, we have assumed integrability conditions on
f which are formulated in terms of the initial pointx0. In this section we show
that it is no loss of generality to make these assumptions for allx0 outside some
exceptional set which is not hit by Brownian motion.

Definition (3.2). A measurable setE ⊆ Rd is calledpolar if

Px [Xt ∈ E for somet > 0] = 0 ∀ x ∈ Rd . (3.3)

Remark (3.4). This probabilistic notion of an exceptional set is equivalent to the
potential theoretic notion of a set ofcapacity zero; see, e.g., Fukushima (1980,
Th. 4.3.1 and Example 4.3.1). Equivalently, we can define these exceptional sets
in terms of the Bessel capacity of order (1,2) as in Ziemer (1989, 2.6); see, e.g.,
Fukushima (1993, p.25).

Note first that in order to introduce the forward stochastic integral in (3.1) with
respect to the measurePx0, at least for somex0 ∈ Rd and somet > 0, we clearly
need the condition

Px0

[∫ t

0
f 2(Xs)ds < ∞

]
= 1 . (3.5)

But the results in Ḧohnle and Sturm (1993, Th.1.1) show that the validity of (3.5)
for somex0 ∈ Rd and somet0 > 0 implies that the functionf satisfies condition
(3.5) for all t > 0 and for all initial pointsx /∈ E whereE is some polar set.
Moreover, it follows that all the assumptions we used in theorem (2.55) hold for
any starting point lying outside some polar set:

Proposition (3.6). Letf be a measurable function onRd such that condition(3.5)
holds for somex0 ∈ Rd and somet < ∞. Then there exist a sequence of compact
setsKm ⊆ Rd (m ≥ 1) and a polar setE such that the conditions

lim
m→∞Px0[Xt ∈ Km ∀ t ∈ [0, T ]] = 1 ∀ T > 0 (3.7)

and ∫
f 2
m(x)dx < ∞, ||fm||i (x0) < ∞ (i = 1, 2) (3.8)

are satisfied for allx0 /∈ E and for allm ≥ 1, wherefm denotes the restriction
f · IKm of f to the setKm.
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Proof.1) It is shown in Ḧohnle and Sturm (1993, Th. 3.5 and 3.7) that the validity
of (3.5) for somex0 ∈ Rd and somet < ∞ is equivalent to the fact that there exists
a polar setE2 and a sequence of compact setsKm (m ≥ 1) with∫

Km

f 2(x)dx < ∞ (m ≥ 1) (3.9)

such that the conditions (3.7) and∫
Km

v(‖ x0 − y ‖)f 2(y)dy < ∞ (m ≥ 1) (3.10)

are satisfied for anyx0 /∈ E2. Thus, the restrictionsfm of f toKm satisfy

fm ∈ L2(Rd), ||fm||2(x0) < ∞ (3.11)

for all x0 /∈ E2.
2) It remains to verify the integrability condition

||fm||1(x0) < ∞ (3.12)

for all x0 outside some polar set. In view of 1) we may assume thatf has compact
supportK and is square integrable. Consider the Bessel potentialg1 ∗ |f | of order
1 defined by

(g1 ∗ |f |)(x) =
∫
g1(x − y)|f |(y)dy , (3.13)

wheregα is defined as that function whose Fourier transform is

ĝα(x) = (2π)−
α
2 (1 + ||x||2)− α

2 . (3.14)
Note that

gα(z) = 1

γ (α)
||z||α−d + o(||z||α−d) (3.15)

with some constantγ (α) as||z|| → 0; see, e.g., Ziemer (1989, p. 65). Thus, there
is a constantc such that

||y − x0||1−d ≤ c · g1(x0 − y) onK (3.16)

and so we have

||f ||1(x0) =
∫
K

|f |(y)||y − x0||1−ddy

≤ c · (g1 ∗ |f |)(x0) . (3.17)

But the functionu = g1∗f , being the Bessel potential with indexα = 1 associated
to the square integrable functionf , belongs to the Sobolev spaceW1,2; see Ziemer
(1989, Th. 2.6.1). This implies that the versionũ defined by

ũ(x) := lim
δ↓0

1

vol(Bδ(x))

∫
Bδ(x)

u(z)dz (3.18)
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satisfiesũ(x) < ∞ outside some polar setE1; see, e.g., Ziemer (1989, Th.3.1.4
and 3.10.2) or Fukushima (1993, Th. 2.1). Since

lim
δ↓0

1

vol(Bδ(x))

∫
Bδ(x)

g1(y − z)dz = g1(y − x) (3.19)

for anyy 6= x by Lebesgue’s theorem, we obtain

u(x) =
∫

|f |(y) lim
δ↓0

1

vol(Bδ(x))

∫
Bδ(x)

g1(y − x)dz dy

≤ lim inf
δ↓0

1

vol(Bδ(x))

∫
Bδ(x)

u(z)dz , (3.20)

using Fatou’s lemma and Fubini’s theorem. Forx0 /∈ E1, we have thus shown
u(x0) < ∞, hence||f ||1(x0) < ∞ due to (3.17).

Combining proposition (3.6) with corollary (2.55) we obtain:

Theorem (3.21). Letf be a measurable function onRd such that condition(3.5)
holds for somex0 ∈ Rd and somet < ∞. Then there exists a polar setE such that
for anyx0 /∈ E the quadratic covariation

[f (X),Xk]t ≡ lim
n→∞

∑
ti∈Dn
0<ti<t

{f (Xti+1)− f (Xti )}(Xkti+1
−Xkti )

=
∫ t

0
f (Xs)d

∗Xks −
∫ t

0
f (Xs)dX

k
s (3.22)

exists in probability underPx0 and satisfies

[f (X),Xk]t =
∫ t

0
f (Xs)d

∗Xks −
∫ t

0
f (Xs)dX

k
s , (3.23)

for eachk ∈ {1, . . . , d}.
Remark (3.24). If f ∈ L

p

loc(R
d) for somep > d then the conlusion of the

theorem holds foreverystarting pointx0 ∈ Rd , without exception. To see this
we may assume thatf has compact support. In this case, the assumption that
f ∈ Lp(Rd) for somep > d implies

||f ||i (x0) < ∞ (i = 1, 2) (3.25)

for everyx0 ∈ Rd . Thus, our assumptions in corollary (2.55) for the existence of
quadratic covariation are satisfiedeverywhere. Conditions (3.25) can be verified
directly, using Ḧolder’s inequality. They also follow from the Sobolev embedding
theorem. Note that the functionu2 defined by

u2(x) =
∫
f 2(y)v(‖ x − y ‖)dy (3.26)

belongs toW2,p/2; see Gilbarg and Trudinger (1983, Th. 9.9). This impliesu2 ∈
C(Rd) for p > d, hence||f ||2(x) < ∞ for anyx ∈ Rd ; see Ziemer (1989, Th.
2.4.2). Note also that forf ∈ Lp the Bessel potentialu = g1 ∗ |f | belongs to
W1,p; see Ziemer (1989, Th. 2.6.1). This impliesu ∈ C(Rd) for p > d, again by
Ziemer (1989, Th. 2.4.2), hence||f ||1(x) < ∞ for anyx ∈ Rd , due to (3.17).
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4. Itô’s formula

Let W1,2 denote the Sobolev space of functions inL2(Rd) such that the weak
first partial derivatives belong toL2(Rd). Recall that a function inW1,2 can be
defined everywhere, except for a polar set, in terms of its integral averages, i.e., we
can choose a versionF and a polar setE0 such that

F(x) = lim
δ↓0

1

vol(Bδ(x))

∫
Bδ(x)

F (y)dy (4.1)

for all x ∈ E0; see, e.g., Fukushima (1993, Th. 2.1 and p.25) or Ziemer (1989, Th.
3.1.4).

Let us now consider a function inW1,2
loc , i.e., a measurable function onRd which

coincides on each compact set with a function inW1,2. We fix a versionF such
that (4.1) holds outside some polar setE0, and we denote by

fk = ∂F

∂xk
∈ L2

loc(R
d) (4.2)

the k-th weak partial derivative ofF . With probability 1, Brownian motion does
not enter a given polar set after time 0, and so the valuesF(Xt(ω)) of the function
F along a Brownian path are well definedPx – almost surely for any starting point
x /∈ E0.

Theorem (4.3). LetF ∈ W1,2
loc be given as above. For allx0 ∈ Rd except for some

polar set, the quadratic covariation

[fk(X),X
k]t = lim

n

∑
ti∈Dn
ti≤t

(fk(Xti+1)− fk(Xti ))(X
k
ti+1

−Xkti ) (4.4)

exists as a limit in probability underPx0 for eachk ∈ {1, . . . , d}, and Itô’s formula
holds in the form

F(Xt) = F(X0)+
d∑
k=1

∫ t

0
fk(Xs)dX

k
s + 1

2

d∑
k=1

[fk(X),X
k]t Px0 −a.s. (4.5)

for all t ≥ 0.

Proof. 1) By a localization argument as in the proof of corollary (2.55), we can
assume thatF has compact support and belongs toW1,2. Sincefk ∈ L2(Rd), we
have

Px0

[∫ t

0
f 2
k (Xs)ds < ∞

]
= 1 (4.6)

for all x0 except for some polar set; see Fukushima (1980, (5.4.23)). Due to (3.21)
we can conclude that the quadratic covariations [fk(X),X

k]t are well defined as
limits in probability underPx0 for all x0, except for some polar set. Alternatively we
can apply propositions (2.7) and (2.23), using the estimates||fk||i (x0) < ∞ (i =
1, 2) for x0 /∈ E1 ∪ E2 which are implied by (4.20) and (4.25) below.
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2) Letx0 ∈ Rd . Suppose that we can approximateF by functionsF (n) ∈ C2(Rd)

with compact support in such a way that

F(x) = lim
n→∞F

(n)(x) (4.7)

for all x outside some polar set, and that the partial derivativesf
(n)
k = ∂

∂xk
F (n)

satisfy
lim
n→∞ ||f (n)k − fk||i (x0) = 0 (i = 1, 2) (4.8)

for the two norms introduced in section 2. Due to our estimates (2.15), (2.29), (2.39)
we can conclude, as in the proof of (2.7) and (2.23), that

lim
n→∞

∫ t

0
f
(n)
k (Xs)dX

k
s =

∫ t

0
fk(Xs)dX

k
s in L2(Px0) (4.9)

and

lim
n→∞

∫ t

0
f
(n)
k (Xs)d

∗Xks =
∫ t

0
fk(Xs)d

∗Xks in L1(Px0) . (4.10)

In particular,

[fk(X),X
k]t =

∫ t

0
fk(Xs)d

∗Xks −
∫ t

0
fk(Xs)dX

k
s

= lim
n→∞ [f (n)k (X),Xk]t in L1(Px0) . (4.11)

Applying Itô’s formula to the functionsF (n), we obtain

1

2

d∑
k=1

[fk(X),X
k]t = lim

n→∞
1

2

d∑
k=1

[f (n)k (X),Xk]t

= lim
n→∞(F

(n)(Xt )− F (n)(X0)−
d∑
k=1

∫ t

0
f
(n)
k (Xs)dX

k
s )

= F(Xt)− F(X0)−
d∑
k=1

∫ t

0
fk(Xs)dX

k
s Px0 − a.s.,

(4.12)

where we have applied once more (4.9) in the last step.
3) In order to construct such an approximation, let us take functionsF (n) ∈ C2(Rd)

with compact support such that

∞∑
n=1

||F (n) − F ||1,2 < ∞ (4.13)

where|| · ||1,2 denotes the Sobolev norm inW1,2. In particular, the functions

hk :=
∞∑
n=1

|f (n)k − fk| (4.14)



18 H. Föllmer, P. Protter

belong toL2(Rd) since

(∫
h2
k(x)dx

) 1
2

≤
∞∑
n=1

(∫
|f (n)k − fk|2dx

) 1
2

≤
∞∑
n=1

||F (n) − F ||1,2 < ∞ . (4.15)

It follows as in part 2) of the proof of proposition (3.6) that the Bessel potential

(g1 ∗ hk)(x) =
∫
g1(x − y)hk(y)dy , (4.16)

is finite for allx0 outside some polar setE1. But due to (3.17) we have

||hk||1(x0) ≤ c · (g1 ∗ hk)(x0) , (4.17)

for some constantc, and so we have shown that||hk||1(x0) < ∞ for all x0 /∈ E1.
This implies

∞∑
n=1

||f (n)k − fk||1(x0) < ∞ , (4.18)

by monotone integration, and so we get the desired approximation

lim
n→∞ ||f (n)k − fk||1(x0) = 0 (4.19)

for all x0 /∈ E1.
4) Let us define

h̃k :=
( ∞∑
n=1

(f
(n)
k − fk)

2

) 1
2

. (4.20)

Since ∫
h̃2
kdx =

∞∑
n=1

∫
(f

(n)
k − f2)

2dx < ∞ , (4.21)

part 1) of the proof of (3.6) shows that∫
Km

v(||x0 − y||)h̃2
k(y)dy < ∞ (4.22)

for allm ≥ 1 and for allx0 except for some polar setE2, where(Km) is a sequence
of compact sets satisfying (3.7). In view of the localization argument in the proof
of (2.55), we can assume without loss of generality thatF vanishes outsideKm0

for somem0 ≥ 1. Then we get

∞∑
n=1

∫
v(||x0 − y||)(f (n)k − fk)

2(y)dy < ∞ (4.23)
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for all x0 /∈ E2, and this implies the desired approximation

lim
n→∞ ||f (n)k − fk||2(x0) = 0 (4.24)

for all x0 /∈ E2.
5) Let us also check that (4.7) holds for all pointsx0 except for some polar set. We
have

(F − F (n))(x0) = lim
δ↓0

1

vol(Bδ(x0))

∫
Bδ(x0)

(F − F (n))(x)dx (4.25)

for all pointsx0 except for the polar setE0 involved in the choice of the versionF .
Since ∞∑

n=1

|F − F (n)| ∈ W1,2 (4.26)

due to (4.13), we get the existence of

lim
δ↓0

1

vol(Bδ(x0))

∫
Bδ(x0)

∞∑
n=1

|F − F (n)|(x)dx < ∞ (4.27)

for all x0 except for a polar setE3. Forx0 /∈ E0 ∪ E3, we can conclude that

∞∑
n=1

|F − F (n)|(x0) ≤
∞∑
n=1

lim inf
δ↓0

1

vol(Bδ(x0))

∫
Bδ(x0)

|F − F (n)|(x)dx

≤ lim inf
δ↓0

1

vol(Bδ(x0))

∫
Bδ(x0)

∞∑
n=1

|F − F (n)|(x)dx < ∞ ,

(4.28)

and this implies (4.7). Thus, all properties of the approximation which were used
in part 2) of the proof are satisfied for anyx0 /∈ E0 ∪ E1 ∪ E2 ∪ E3.
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