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Abstract. Inthis paper it is shown how to speed up the multiplication step on elliptic
curves defined over small odd characteristic finite fields. The method used is a gener-
alization of a recent method of Wlér and Solinas. Various implementation issues are
discussed and described with the use of timings from an implementation of the methods.
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Introduction

In recent years attention has focused on the use of elliptic curves in public-key cryp-
tography, starting with the work of Koblitz [3] and Miller [11]. This is because there is
no known sub-exponential type algorithm to solve the discrete logarithm problem on an
elliptic curve. The standard protocols in cryptography which make use of the discrete
logarithm problem in finite fields, such as Diffie—Hellman key exchange, El Gamal and
Massey—Omura, can all be made to work in the elliptic curve case.

However, elliptic curves come with some disadvantages; for example, addition on the
curve is more expensive than multiplication in a finite field and determining a suitable
curve to use is a rather cumbersome procedure. In this short note we propose using
elliptic curves defined over small finite fields of odd characteristic. Such a proposal has
been made many times before but over fields of even characteristic.

In the first section we show how one can perform a Frobenius expansion method
to speed up the multiplication step over fields of odd characteristic. This procedure is
almost identical to the procedure described hyilet [12] for characteristic two, which
is itself based on ideas in [4] and [9]. In the second section we describe how easy it is
to determine suitable curves. Finally, in the last section we discuss the advantages and
disadvantages of using odd characteristic fields.

141



142 N. P. Smart
We assume that an elliptic curve is given by an equation of the form
E:Y2=X3+aX+h,
wherea, b € Fq, with g = p". To simplify our discussion we assume thmt- 5. Our
curve will be non-singular, so we assume that 4 27b? # 0. In addition, due to the
results in [10], we assume that the curve is not supersingular. So in particular we have
that p does not divide the trace of Frobenitss q + 1 — |E(Fq)|. By Hasse’s theorem

we know thaflt| < 2,/q, a fact which we use throughout.
Theqth-power Frobenius endomorphism we denote by

E—-E
(X, y) = (x9,y9).

The map® satisfies the following equation:
% —td4+q=0.

We are mainly interested in the group of pointsBrover some finite extension &,
sayFgn.

1. Frobenius Expansions
In this section we show how to expand the multiplicatiombynap onE(Fg) in terms
of a polynomial in®. This allows us to replace the usual binary method of computing

the multiplication bym map by a Frobenius expansion. The method is just a small
generalization of the method in [12].

Lemmal. LetSe Z[®]. Thenthereexistsauniqueintegere {—(q—21)/2,..., (Q—
1)/2} and a unique element @ Z[®] such that

S=Qd+R.
Proof. Easy. O
Lemma 2. Let Se Z[®] such that

Nzge1/z(S) < (/A + 2)°/4,
then we can write
3 .
S= Z ad'
i=0

withg € {(—(q+1)/2,...,(q+1)/2},and if(q,t) # (5, £4) or (7, £5), then we can
choosepae {—(q—1)/2,...,(q—1)/2}.
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Proof. Write S= a + b® with a, b € Z, then we have
NZ[(])]/Z(S) = a° + abt + b2q

2
= (a+%> + 1 (4g — t?) b?

(e (- 5)

Now asE is not supersingular and by congruence conditions we obtainghat4 > 3.
Hence ifNze),2(S) < (v2+ 2)?/4, then

bl < Ja+2 _ Ja+2
T V4q-t27 V3
a+2,/4 _4a +2/4
JAdg-t2~ V3
So in all cases we obtaib| < (q — 1)/2, however,a] < (q — 1)/2 + q. Suppose

a> (q—1/2,the casea < —(q — 1)/2 will follow in a similar manner. We then have
thatla — q| < (q — 1)/2 and so we can write

la] =

a+bd=(@—-q)+bd+qg=(@—q) + (b+t)d— 2

However, now we have

-1

J9+2
b+t <
| | V3

Now we assumé +t > (q — 1)/2, again the case+t < —(q — 1)/2 will follow in a
similar manner. We can then write
a+bd =@-q)+b+t—q)e—d*+qd = @-q) +(b+t—qd+(t —1)d*— o°.

Direct enumeration of all the cases for whigh- 1| > (q — 1)/2, leads us to deduce
the result stated in the lemma. O

That the required Frobenius expansions exist and are not arbitrarily long follows from
the following theorem.

Theorem 3. Let Se Z[®], then we can write

k
S= ZriCDi,
i=0

wheref € {—(q+ 1)/2,...,(q + 1)/2}, with at most onejrbeing of absolute value
(q + 1)/2 which can only occur wherqg, t) = (5, +4) or (7, £5). In addition k <

[2log, 2,/Nzje)/z(9)]1 + 3.
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Proof. From Lemma 1 we can obtain an expansion of the form
S=95=SP+rg=(SP+r)d +rg

J
D rdl + g0t
i=0

withr; € {—(q — 1)/2, ..., (q — 1)/2}. Using the triangle inequality we see, putting

Il - I = /Nzep/z(.), that
_ ISl _ IS+ @—=1/2

1§+l < T T
_ sl @-9 qu
q(H-l)/2 2 L
IS, @-1 (1—q7Uth2
=gzt T a1
1Sl | v3+1
= qi+D/2 5

Now if j > [2log, 2[|SlT — 1, then

Sl
qU+Dr2

1
< -.
-2
Hence

+2)?
Nzie1/2(§+1) < #

and so by Lemma 2 we know th& 1 has a Frobenius expansion, with the required
properties, of length at most 4. O

We can then implement the multiplication lmy map on the elliptic curve using
Frobenius expansions. We first consiseras an element oZ[®] and compute its
Frobenius expansion,

K
m:ZricDi,
=0

wherek < [2log, 2m] + 3. We can then computa P for P € E(IF¢n) using Horner’s
method;

K
mP = > rd'(P)
=0
— B (D (rD(P) + I 1P) +--- +I1P) + roP.

Note at each stage of the expansion we add on an element of the Fomere|r| <
(q + 1)/2. To speed up this step we could precompute a table of such multiplications,
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this would be particularly useful if we wanted to perform many multiplications of the
same point.

What Frobenius expansions have allowed us to do is replace many expensive elliptic
curve doublings and additions with fewer elliptic curve additions and some power evalu-
ations in a finite field. Just as in [12] one can also derive block versions of the Frobenius
expansion method.

As an example, suppose we have an elliptic cUtvdefined oveif,3 with trace of
Frobeniust = —1. Let P denote a point ol (F,3) and suppose we wish to compute
[m] P wherem = 1(P. Using the standard binary method we would compute

[M]P = [2°](P + [2°](P + [2°](P + [2°](P + [21(P + [2](P + [2]P))))).

So we require 6 elliptic curve additions and 19 elliptic curve doublings. The worst case
situation for a six-digit multiplier would require 19 additions and 19 doublings.
Now look at the Frobenius expansion afi[P for this curve,

[MP = &(®(P(P(P(P(P(P(—D(P) +[2]P)) +[7]P) — [3]P) — [9]P) — [5] P)
— [41P) — [8]P) + [6] P.

Assuming we have a precomputed table of valueslI® ffor | € {1,...,11} and
noting that negation on an elliptic curve takes negligible time, we see that the Frobenius
expansion method requires 9 elliptic curve additions, 9 table look ups, 9 applications of
the Frobenius morphism and a single multiplication by a small integer. Each action of
the Frobenius morphism requires only two powering operations in thefigld The
worst-case situation of the Frobenius method for a six-digit multiplier would require
12 elliptic curve additions and applications of the Frobenius morphism.

As in the case considered by Solinas [14], we can reduce the length of the Frobenius
expansion by nearly 50%. To show this we need to consider a small generalization of
Euclidean domains:

Definition 1. Let A be a positive real number, &t denote a commutative ring and
suppose that there exists a multiplicative function

w: A\{O} — N.
The ring will be called.-Euclidean if for alla, b € A, with b £ 0, we can findy,r € A
with
a=bq+r
such that either = 0 orW¥ (r) < AW (b).

Such an idea is not new as one can see by looking at the survey article [6]. Suppose
A has field of fraction¥, then we can extend to K\ {0} in the obvious way. We then
have

Lemma4. Thering A will ber-Euclidean if for all xe K we can find a y A such
that

U(X—Y) <A.
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Proof. Leta,b € Awith b # 0, then sex = a/b € K. So by the condition there
exists ay € Asuch thatv(a/b — y) < 1. However, asl is multiplicative we see that,

if a £ by,
V(a—by) < AW (b).
The result follows on setting = a — by. O

The main result we use orEuclidean rings is the following:

Theorem 5. Supposeb? — t® + q = 0, thenZ[®] is A-Euclidean for some. such
that0 < A < (9+ 4q)/4.

Proof. Let W denote the standard norm function Bfd] and setD = t?> — 4q < 0.
We have two cases to consider:

Casel:t =0 (mod2. Inthis case a basis @[ ®] is given by 1 +/d, where 4l = D.

If x =r 4 sv/d e Q[®], then we sely = m + n/d with m being the nearest integer
tor andn being the nearest integer $pwith some fixed convention for numbers of the
form (2i 4+ 1)/2. Then, as-d = q — t?/4 < g, we have

W(x—y) = NgajoX—y) = —m?—d(s—n)?

1-d_4+q
- 4 — 4
_9+4
- 4

Case2:t =1 (mod2. In this case a basis &[®] is given by 1 (1 + +/D)/2. Let
X =r +s(1++/D)/2 € Q[®]. As before we sen to be the nearest integer itpn to
be the nearest integer $pand lety = m+ n(1+ +/D)/2. Then

n—s\? (n—s)2D
U(x—y) = N@[¢1/Q(x—y=((r—m)+ 5 ) + 2
< <1+%)2—%=%1(9—D>
9+ 4q 0
— 4 .

We can now apply this result to reduce the length of our Frobenius expansion. Consider
the integerm, we wish to multiplyP by as being an element & ®]. As m ~ ", the
norm ofmwill be equal tom? ~ g2". However, we note that if we are considering points
P € E(Fq), then we have the identity

®"P = P.

So we can “divide’m by " — 1 to obtain a remainde&rwith

9+ 4q
Ngrey/o(r) < ANgpey/(®" — 1) < Nofey/o(®" — 1) ~ g™

4
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Hence we can replace multiplication by multiplication byr . Asr has norm roughly
q"*1, its Frobenius expansion will be nearly half the length of the Frobenius expansion
of m. This should provide a 50% improvement in the performance of our algorithm.

For completeness we give the formulae to compui®m m, t, n andgq; first define
a,ay € Z by

a +ad = o" — 1 (modd? —td + Q).
Let A = a2 + taya, + qa3 and definexy, x, € Q by

_ m(a; + tayp)
N A

—agm

, X2 =
A

X1
We can then let =r; + r,® with ry, r, € Z given by the following formulae:

Casel:t =0(mod2. Leth = [x; + x2t/2], where [] denotes the function which
returns the nearest integer, then

ri =h—[xt, r2 = 2[xz].

Case2:t =1(mod2. Now lett =2v + 1 and seh = [x; + x,v], then

ri=h—[x]v, r2 = [xa].

We end this section with some timings we have obtained. The Frobenius expansion
method was implemented in software using two methods: The first used the LIDIA [8]
C++ library. To represent the finite fields we used the standard LiDIA dategfypase
In particular this meant that we did not use a normal basis presentation, instead we
used the more standard polynomial representation. The LiDIA library does not use
special code for characteristics which fit into a single word, so some efficiency was lost
in this implementation. The elliptic curve routines were implemented using an affine
representation, so more divisions were carried out than would be strictly necessary.

Our second implementation used a normal basis representation of the field. This made
the implementation of the Frobenius map rather simple as it then becomes a cyclic shift
of the coefficients of the representation of the field elements. This field arithmetic was
implemented in a way which allowed us to make use of the fact that the characteristic
fitted into a single word. Again arithmetic on the curve was implemented in affine
representation.

For comparison we also implemented the standard binary method of multiplication.
As the binary method does not make use of exponentiatioq ioythe finite field we
only implemented this using the polynomial representation of the field elements.

The timings in Table 1 illustrate the speed up one achieves by using Frobenius ex-
pansions. All times are in hundreths of a second and are averages taken over a number
of multiplications by random numbers of size the ordegdfFor larger base fields the
time to perform the initial precomputation step will start to dominate the time to perform
a multiplication, hence the average timings for the Frobenius expansion method do not
include the time for the precomputation step, which is why we list this time separately.
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Table 1. Comparison of the Binary and Frobenius methods.

Normal basis Polynomial basis
Frobenius Table Frobenius Table
p n log, | E(IFpn )| Binary expansion creation expansion creation

5 32 74 447 63 2 186 5

5 53 123 1040 433 10 398 6

5 75 174 2567 1649 28 975 11
11 22 76 249 18 3 92 10

11 36 124 799 113 13 278 18

11 51 176 1542 401 37 497 25
23 17 76 178 8 5 59 19
23 28 126 625 46 18 214 36

23 39 176 1216 156 43 372 50
41 14 75 121 6 6 35 24
41 23 123 456 23 20 129 53

41 33 177 1232 86 52 354 96
127 11 76 87 2 13 26 53
127 18 125 338 11 37 97 121

127 25 175 750 32 80 227 196

2. Finding Suitable Curves

There are three standard techniques that one uses to determine elliptic curves which
are suitable for use in cryptography. The problem is that we need to determine non-
supersingular curves which have a large cyclic subgroup. In particular this cyclic sub-
group should have order larger tharf4.0

If we choose a field of definition of the elliptic curve of order around®Léhen we
encounter two problems. Firstly we cannot use a Frobenius expansion method to perform
multiplications and secondly determining the group order of a given curve is in general
complicated as we need to apply Schoof’s algorithm, see [13], [2] and [7]. We can choose
curves at random, compute their orders and then factor their orders to see if we can find
one with a large prime factor but this is a lot of work, especially if we wish to produce
suitable elliptic curves “on line”. For example, Lercier [7] gives a time of 86 seconds to
compute the order of a group of points on an elliptic curve definedBxer Whilst his
program takes 235 minutes to determine five suitable curves for cryptographic purposes
overFoss.

Another way of proceeding is to decide on a prime base field of large order and then
using the theory of curves with complex multiplication to produce curves with a cyclic
subgroup of large prime order [5]. Again this is possible but it involves extracting roots
of large degree polynomials over large finite fields so this may be far too slow for the
generation of suitable curves.

Although Schoof’s algorithm and root extraction in finite fields both run in polynomial
time they are non-trivial algorithms which require careful coding. Itis not surprising that
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Table 2. Curves over even characteristic fields with a large prime divisor in the group order
over an extension field.

r n t logyl r n t logyol ron t logyo!
1 163 1 49 1 181 1 44

2 79 1 47 2 97 1 53

3 47 -1 41 3 59 -1 52 3 47 3 41
3 59 3 52

4 37 -5 43 4 37 -3 43 4 37 -1 43
4 41 -1 44 4 47 -1 49 4 37 3 43
4 47 3 45 4 47 7 55

5 31 -9 40 5 37 -5 49 5 31 -3 45
5 29 9 40

although they are asymptotically efficient they are not particularly quicker at finding
suitable curves than more naive methods.

One way around these problems, which has often been proposed, is to use elliptic
curves defined over very small finite fields of characteristic two [9], [12], [14]. The
reason is that it is easy to compute the number of points over a smallfiglénd
computing the number of points over extension fields is then simple due to the following
result.

Theorem 6. LetFq denote any finite field and let E denote an elliptic curve defined
overFy. Write E(Fg) =q+1—cyand E(Fg) =q" + 1 —cp, then

Ch = C1Ch—1 — qGCh—2,

where ¢ = 2.

The trouble with restricting attention to characteristic two is that there are not many
curves defined over small finite fields with the required subgroup of large prime order,
unless one uses a very large extension field. Table 2 demonstrates this by listing those
values oft, q andn with g = 2" < 32 andg" < 220 which give rise to curves defined
overFq with group orders oveFy» divisible by a prime|, with more than 40 decimal
digitsin it.

However, if we allow finite fields of characteristic larger than three, then we can find
many more suitable curves. Table 3 lists the curves we found over prime figlosf
order less than 24. We looked at extensidhs, of these prime fields witk" < 22%,

We tried to find curves with a primé, dividing the group order of at least 40 decimal
digits. To reduce the number of curves with a “smooth” group order we restricted our
attention to prime values of. In addition, for very large group orders we did not try

to produce a complete factorization so we may have missed some suitable curves. The
whole computation took only 7 minutes or around 5 seconds per suitable curve found.

One could extend this table further. We found 11 examples of suitable curves defined
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Table 3. Curves over odd prime fields with a large prime divisor in the group order over an
extension field.

q n t logyol q n t logyo! q n t logyg!

5 61 -4 41 5 83 -2 45 5 79 -1 50

5 83 -1 52 5 71 1 44 5 73 1 50

5 79 1 54 5 73 4 45

7 53 -4 43 7 59 -4 49 7 61 -2 46

7 53 -1 43 7 59 -1 41 7 59 2 49

7 67 3 52 7 47 4 39 7 61 5 51

7 67 5 51
11 53 -5 54 11 47 -3 42 1 41 -2 41
11 47 -2 44 11 53 -2 54 1 53 -1 50
11 47 2 43 11 53 50 11 53 6 50
13 47 -6 47 13 53 -6 51 13 37 -5 40
13 47 -5 51 13 47 -4 47 13 47 -3 48
13 53 1 54 13 41 40 13 47 4 45
13 43 5 46 13 41 40
17 43 -8 51 17 37 -7 44 17 41 -7 46
17 43 -6 51 17 47 -6 54 17 37 -4 44
17 43 -3 51 17 43 -2 48 17 47 -1 53
17 4 2 41 17 37 41 17 47 4 52
17 47 5 51 17 43 42 17 47 7 56
19 37 -8 46 19 37 -7 43 19 41 -7 44
19 41 -5 42 19 37 -4 46 19 37 -3 42
19 43 -1 49 19 37 2 42 19 41 2 49
19 37 4 41 19 37 43 19 41 7 40
19 37 8 46 19 41 51
23 37 -7 45 23 41 -7 51 23 37 -6 45
23 43 -5 49 23 31 -4 40 23 37 -4 42
23 41 -4 51 23 31 -3 40 23 43 -3 57
23 41 -1 50 23 43 1 57 23 37 3 49
23 43 3 52 23 37 46 23 31 8 41
23 41 8 48 23 43 57

overlF4; with groups of points defined ov&y with n < 37, and 8 examples of suitable
curves defined ovéf,7 with groups of points defined ovéh,» with n < 23.

3. Advantages and Disadvantages

Using elliptic curves defined over small finite fields but with the group of points defined
over a prime extension allows us to compute the order of the group of points easily.
This in turn allows us to determine suitable elliptic curves for cryptographic purposes
in a fast and efficient manner. In addition, for such curves we can replace the standard
binary multiplication method with a Frobenius expansion method. If we are computing
a multiple of a fixed point, then the use of look-up tables will greatly speed up the
multiplication step in such a system.
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If the base field has characteristic two, then we can use efficient algorithms for the
field arithmetic which are more suitable for a practical system. Our very rough timings
seem to indicate, compared with [12], that using fields of odd characteristic is between
ten and one hundred times slower than using even characteristic base fields of the same
order. On the other hand with small fields of odd characteristic we have far more suitable
elliptic curves at our disposal.

So why do some practical systems make use of elliptic curves define@f pushere
pis alarge prime, oF »? This is because itis not beyond the realms of possibility that the
extra structure obtained in having the curve defined over a small finite field will render
the system less secure. After all, the grdeiy+) contains a subgroufa (Fqy) which is
stable under the action of the Frobenius morphism. However, nobody has yet used such
a structure to show that the proposed curves are any weaker than general curlgs over
or Fon.

Our timings of the multiplication routines show that some research still needs to be
done as to what size the base field should be. A larger value for the base field implies
that the degree of the field extension needed can be smaller. This in turn means that
arithmetic will be much faster. A large value for the size of the base field also means that
the length of the Frobenius expansion will be short. However, the larger the base field
then the greater the size of the look up table required to perform the multiplication step.
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