
Ann. Henri Poincaré 2 (2001) 675 – 711
c© Birkhäuser Verlag, Basel, 2001
1424-0637/01/040675-37 $ 1.50+0.20/0 Annales Henri Poincaré

Semi-classical Estimates on the Scattering Determinant

Vesselin Petkov and Maciej Zworski

Abstract. We present a unifying framework for the study of Breit-Wigner formulæ,
trace formulæ for resonances and asymptotics for resonances of bottles. Our ap-
proach is based on semi-classical estimates on the scattering determinant and on
some complex function theory.

1 Introduction

The purpose of this paper is to present a semi-classical estimate on the scattering
determinant and its applications. We work in the technically simplest setting of
compactly supported perturbations of −h2∆ on R

n, and concentrate on presenting
a complex analytic framework for a general study of Breit-Wigner formulæ, trace
formulæ for resonances, and asymptotics for resonances of bottles. This allows us
to make the paper essentially self-contained.

The scattering matrix constitutes a mathematical model for the data obtained
in a scattering experiment or a chemical reaction. Resonances model states which
live for certain times but eventually decay – the real part of a resonance gives the
rest energy of the state and its imaginary part the rate of its decay. A basic intuition
connects resonances and scattering matrices via the time delay operator or the
Breit-Wigner approximation: the long living states should contribute peaks in the
derivatives of expressions obtained from the scattering matrix (i.e. expressions
which at least in principle are obtained from scattering data). Mathematically
this connection is expressed most simply through the fact that the resonances are
the poles of the meromorphic continuation of the resolvent. We refer to [37] for a
basic introduction to the theory of resonances and for references.

The scattering determinant, that is the determinant of the scattering matrix,
is a natural mathematical object to study. It is closely related to the scattering
phase which replaces the counting function of eigenvalues for problems on non-
compact domains – see [16] for an introduction and references. The connection
between the asymptotics of the scattering phase and resonances was first explored
by Melrose [15] who proved the Weyl law for the scattering phase using bounds
on the resonances. The further connections between resonances and the scattering
phase were then investigated by Guillopé and the authors [11],[18],[35], and the
present paper is a semi-classical continuation of these works. We are however
using, rather than proving, asymptotics of the scattering phase, as established in
the generality we consider by Christiansen [6] and Bruneau and the first author
[4], who followed, among other things, the ideas of Robert [20].
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Related problems have been recently studied by Bony [2] and Bony-Sjöstrand
[3] without a direct appeal to scattering theory, but following Sjöstrand’s work on
local trace formulæ [22],[23]. That approach allows obtaining some of the appli-
cations directly and in greater generality. For instance, it is shown in [2] that
for a large class of perturbations, if λ > 0 is a non-critical energy level, and
Ch < δ < 1/C, then we have

# {z : z ∈ Res (P (h)) , |z − λ| < δ} = O(δ)h−n ,

where Res (P (h)) denotes the set of resonances. This provides a fine upper bound
on resonances in small sets, generalizing [18, Proposition 2] and Lemma 6.1 below.

The basic estimate on the scattering determinant which follows directly from
adapting the proofs in the classical case [18],[34] is:

|detS(z, h)| ≤ eCh−n

, Im z ≥ 0 , z ∈ Ω � {Re z > 0} , (1.1)

where S(z, h) is the scattering matrix and where Im z > 0 is the “physical half
plane” (that is the half plane where S(z, h) is holomorphic). It is interesting and
useful that the constant in (1.1) depends only on the size of the support of the
perturbation not on its properties.

The difficulty in using (1.1) lies in the need for a lower bound

∀ 0 < h ≤ h0 ∃z0 = z0(h) ∈ Ω , Im z0 > δ, |detS(z0, h)| ≥ e−Ch
−n

. (1.2)

Here z0 clearly can depend on h but δ > 0 is fixed.
When we can find z0’s such that (1.2) holds with Ω = (a, b) + i(−c, c) , 0 <

a < b , c > 0 we can factorize detS(z, h):

detS(z, h) = eg(z,h)P (z̄, h)
P (z, h)

, |g(z, h)| ≤ C(N(h) + h−n) + C, z ∈ Ω ,

P (z, h) =
∏

w∈Res (P (h))∩Ωε

(z − w) , Ωε = Ω+D(0, ε) ,

N(h) = #
(
Res (P (h)) ∩ Ωε

)
,

(1.3)

where we denoted the set of resonances of P (h) by Res P (h).
In particular, this shows that we have an improved estimates |detS(z, h)| ≤

C exp(C Im zh−n), Im z ≥ 0. The factorization is essentially equivalent, via the
Birman-Krein formula, to the local trace formula of Sjöstrand [22],[23], just as the
earlier global formulæ of Bardos-Guillot-Ralston, Melrose and Sjöstrand-Zworski,
were equivalent to global factorization of the scattering determinant [11],[35] – see
Sect.5.

Finer analysis under stronger spectral assumptions leads to factorization in
sets of size h and that gives for 0 < δ < h/C the semi-classical Breit-Wigner
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formula:

σ(λ+ δ, h)− σ(λ− δ, h) =
∑

|z−λ|<h
z∈Res (P(h))

ωC−(z, [λ− δ, λ+ δ]) +O(δ)h−n ,

σ(λ, h) =
1
2πi

log detS(λ, h) , σ(0, h) = 0 ,

ωC−(z,E) = −
1
π

∫
E

Im z
|z − t|2 dt , E ⊂ R = ∂C− ,

which generalizes the classical formula from [18] where references on earlier rig-
orous work on the Breit-Wigner approximation can also be found. As in [18], the
Breit-Wigner formula can be used to relate the distribution of resonances close to
the real axis to the properties of the scattering phase, and the applications given
in [18, Sect.6] can be adapted to the semi-classical setting.

When we exploit the fact that the constant in (1.1) does not depend on the
perturbation (only on the radius of its support) we obtain uniform bounds on the
number of resonances away from the real axis, and asymptotics of resonances for
bottles, improving, in our setting, results of Sjöstrand [23] and including earlier
results of Vodev [33] – see Sect.7.

We now discuss the condition (1.2). In the generality we work in, that is
without considering special nature of the perturbation, we can only obtain (1.2)
when n ≥ 5. In that case it follows from a strange observation on a resonances free
region close to 0 (Proposition 2.3).

For all n we can obtain a weaker estimate (Lemma 4.5), in which the constants
depend on the perturbation – that estimate is sufficient for all applications except
for the study of fully semi-classical bottles (Theorem 4).

When the dependence on h is homogeneous, P (h) = h2P (that is, we work
in the high energy régime), (1.2) always holds but h0 there depends on the pertur-
bation (while it does not when n ≥ 5). It is an interesting problem if (1.2) holds
in lower dimensions.

Finally, we should stress that the assumption on the support of the perturba-
tion was used only in the proof of the estimate (1.1) (see Lemma 4.3), and in the
proof of the strong version of (1.2) for dimensions greater than 4 (see Lemma 4.6).
The remaining arguments are either purely complex-analytic or depend on asymp-
totics of the scattering phase known in great generality. We expect that using the
results of Gérard-Martinez [8] on the meromorphic continuation of the scattering
matrix, (1.1) can be proved for short range perturbations dilation analytic near
infinity, and for relative scattering matrices for long range perturbations.

Except for the definition of the scattering matrix, the Birman-Krein formula
and the asymptotics of the scattering phase, which are all quoted from other works,
the paper is essentially self-contained. We denote by C a large constant the value
of which may change from line to line.
Acknowledgments. We would like to thank M. Christ, W.K. Hayman and J.
Sjöstrand for helpful conversations, and the France Berkeley Fund for providing
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for partial support and to the Université de Bordeaux for the generous hospitality
in June 2000, when part of this work was done.

2 Review of scattering theory

We start by recalling the framework of “black box” scattering from [24], adapted
now to the semi-classical setting. This framework allows a general treatment of
resonance and scattering phenomena without going into the particular nature of
the perturbation in a compact set.

Thus we consider a complex Hilbert space H with an orthogonal decomposi-
tion

H = HR0 ⊕ L2(Rn \B(0, R0)),

where R0 > 0 is fixed and B(x,R) = {y ∈ R
n : |x − y| < R}. We assume that

P (h), 0 < h ≤ 1, is a family of self-adjoint operators, P (h) : H −→ H, with
domain D ⊂ H, satisfying the following conditions:

1lRn\B(0,R0)D = H2(Rn \B(0, R0)),

1lRn\B(0,R0)P (h) = −h2∆|Rn\B(0,R0),

(P (h) + i)−1 is compact,

P (h) ≥ −C, C ≥ 0 .

For convenience1 we will also add the reality condition:

Pu = Pū ,

which is satisfied in interesting situations.
Under the above conditions, it is known that the resolvent R(z, h) = (P (h)−

z)−1 : H −→ D continues meromorphically from {z : Im z > 0}, through (0,∞),
to the double cover of C when n is odd, and to the logarithmic plane Λ, when n
is even (see the proof of Proposition 4.1 for a direct argument). The first sheet,
where R(z, h) is meromorphic on H (with poles corresponding to eigenvalues) is
called the physical plane. This continuation is as an operator from Hcomp to Dloc,
and the poles are of finite rank.

The poles are called resonances of P (h). We will denote the set of reso-
nances by Res (P (h)), and will always include them according to their multiplicity,
mR(z, h), which for z �= 0 is defined as

mR(z, h) = rank
∫
γε(z)

R(w, h)dw , γε(z) = {z + εeit : 0 ≤ t ≤ 2π} , 0 < ε� 1 ,

1in Proposition 2.2 only, where it also could be avoided
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see [24] and [35] for a discussion of this. We remark that we include the point
spectrum of P (h), denoted by σ(P (h)), in the set Res (P (h)). Strictly speaking,
resonances have non-zero imaginary parts and a distinction could be made.

In order to guarantee a polynomial bound on the counting function of res-
onances, we need a spectral condition on P (h). It is formulated in terms of a
reference operator constructed from P (h): let

H� = HR0 ⊕ L2(Tn
R1
\B(0, R0)) , T

n
R1
= R

n/(R1Z
n) , R1 � R0 ,

and define P �(h) by replacing −h2∆Rn by −h2∆Tn
R1
in the definition of P (h) (see

[24] and [22]). The assumptions on P (h) imply that P �(h) has discrete spectrum
and we assume that if N(P �(h), λ) is the number of eigenvalues of P �(h) in [−λ, λ]
then

N(P �(h), λ) = O
((

λ

h2

)n	/2
)
, for λ ≥ 1 (2.1)

for some number n� ≥ n. As was observed in [24], this assumption does not depend
on R1, only on P (h).

The scattering matrix for a “black box” perturbation is defined just as in the
usual obstacle or potential scattering (see [16], [6] and references given there). We
recall the stationary definition here: for any λ > 0 and a function f ∈ C∞(Sn−1),
there exists u ∈ Dloc, such that for |x| > R0

(P − λ)u = 0 , u(x) = |x|−n−1
2

(
e−

i
√

λ|x|
h f(x/|x|) + e

i
√

λ|x|
h g(x/|x|) +O(1/|x|)

)
,

(2.2)
where g ∈ C∞(Sn−1). By Rellich’s Uniqueness Theorem (see for instance [38,
Sect.3]), u is unique up to a compactly supported eigenfunction ũ ∈ Dcomp, (P −
λ)ũ = 0. From the black box assumptions we know that the set of such λ’s is
discrete, and the compact support of the eigenfunctions ũ, makes them irrelevant
in our study of scattering.

The function f can be considered as the incoming data, and g as the outgoing
data. This is consistent with our notion of the outgoing resolvent, R(z, h), which
is bounded on H for Im z > 0: the outgoing term exp(i

√
z|x|/h) is bounded in L2

for Im z > 0.
The absolute scattering matrix relates the two data:

S̃(λ, h) : f �−→ g ,

and we denote by S̃0(λ, h) the free scattering matrix corresponding to P = −h2∆.
It is essentially given by the antipodal map:

S̃0(λ, h)f(ω) = i1−nf(−ω) , λ > 0

(see the proof of Proposition 2.1 below). We then define the standard (relative)
scattering matrix as

S(λ, h) = S̃0(λ, h)−1S̃(λ, h) .
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It has the form (see (2.5) below):

S(λ, h) = I +A(λ, h), A(λ, h) ∈ C∞(Sn−1 × S
n−1) .

Under our assumptions, it continues meromorphically in λ to the double cover of
C (Riemann surface for z = w2) for n odd and to the logarithmic plane, Λ when
n is even. It is holomorphic in Im z > 0, Re z > 0 and the poles of its continuation
correspond to resonances of P (h) (see Proposition 2.2 below). We recall also the
crucial unitarity

S(z, h)−1 = S(z̄, h)∗ . (2.3)

It follows from the pairing formula recalled in the proof of Proposition 2.1.
We now present one of many possible representations of A(z, h) in terms of

the resolvent (see [17, Sect.2] and [36, Sect.3]) and its proof contains the proof of
the general statements about S(z, h) made above.

Proposition 2.1 For φ ∈ C∞c (Rn) let us denote by

E
φ
±(z, h) : L

2(Rn)→ L2(Sn−1) (2.4)

the operator with the kernel φ(x) exp(±i
√
z〈x, ω〉/h), with

√
z positive on the real

axis. Let us choose χi ∈ C∞c (Rn), i = 1, 2, 3, such that χi ≡ 1 near B(0, R0), and
χi+1 ≡ 1 on suppχi, i = 1, 2.

Then for Im z > 0, Re z > 0 we have

A(z, h) = cnh−nz
n−2

2 E
χ3
+ (z, h)[h

2∆, χ1]R(z, h)[h2∆, χ2]tE
χ3
− (z, h), cn = iπ(2π)

−n ,
(2.5)

where t
E denotes the transpose of E.

We remark that the transpose is defined using the Schwartz kernel: tE(x, ω) =
E(ω, x).
Proof. We give a direct proof in the spirit of [30] and use the pairing formula: if
λ > 0 and

(P − λ)ui = fi ∈ H , fi|Rn\B(0,R0) ∈ S,

ui(x) = |x|−
n−1

2

(
e−

i
√

λ|x|
h a−i (x/|x|) + e

i
√

λ|x|
h a+

i (x/|x|) +O(1/|x|)
)
, |x| −→ ∞ ,

then

〈u1, f2〉H − 〈f1, u2〉H = 2ih
√
λ
(
〈a−1 , a−2 〉L2(Sn−1) − 〈a+

1 , a
+
2 〉L2(Sn−1)

)
.

Let us introduce the operators E±(λ, h) with Schwartz kernels exp(±i
√
λ〈x, ω〉/h)

and assume that λ > 0 is not an eigenvalue of P . For g1, g2 ∈ C∞(Sn−1) let us put

u1 = (1− χ1)tE−(λ, h)g1,

u2 =
(
(1− χ2)tE−(λ, h)−R(λ, h)[h2∆, χ2]tE−(λ, h)

)
g2
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so that (P − λ)u2 = 0 and

(P − λ)u1 = [h2∆, χ1]tE−(λ, h)g1 .

A stationary phase argument now gives

a−1 = αng1 ,

a+
1 = αni

1−ng1(−•) ,
αn = λ−

1
4 (n−1)h

1
2 (n−1)e

i
4π(n−1)(2π)

1
2 (n−1).

For u2 we note that since R(λ, h) is the outgoing resolvent, the only incoming
contribution comes from the free term (1− χ1)tE−(λ, h)g2 (that R(λ, h) has not
incoming term is seen, for instance, from the properties of the free resolvent and
(4.2) below). Hence

a−2 = αng2 ,

a+
2 = αni

1−nSg2(−•) .

Using the fact that (1 − χ2)[h2∆, χ1] = 0, and the pairing formula above we see
that

〈g1,E+(λ, h)[h2∆, χ1]R(λ, h)[h2∆, χ2]tE−(λ, h))g2〉L2(Sn−1)

= −〈[h2∆, χ1]tE−(λ, h)g1, (1− χ2)tE−(λ, h)g2 −R(λ, h)[h2∆, χ2]tE−(λ, h)g2〉H
= 〈u1, (P − λ)u2〉H − 〈(P − λ)u1, u2〉H
= 2iλ−

1
2 (n−2)hn(2π)n−1〈g1, (I − S(λ, h))g2〉L2(Sn−1) .

The general result follows from analytic continuation – in fact, we proved here
that the scattering matrix has an analytic continuation, once that of R(z, h) is
established. ✷

Remark. It is interesting to note that the representation (2.5) does not depend
on the cut-off functions, and that we can reverse the condition χ2 ≡ 1 on the
support of χ1 to χ1 ≡ 1 on the support of χ2. Both facts follow directly from the
properties of the scattering matrix but here we propose a direct argument based
on the standard properties of “quantum flux”. Suppose that χ2 is equal to one on
the supports of functions χ1, χ̃1, which are equal to 1 near B(0, R0). We claim
that

E
χ3
+ (z, h)[h

2∆, χ2]R(z, h)[h2∆, χ1 − χ̃1]tE
χ3
− (z, h) ≡ 0 .

This will follow from showing that

(−h2∆− z)vj = 0 , j = 1, 2 =⇒ 〈R(z, h)[h2∆, χ1 − χ̃1]v1, [h2∆, χ2]v2〉H = 0 ,

which is clear as the left hand side is equal to
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〈R(z, h)(−P (χ1 − χ̃1)− (χ1 − χ̃1)h2∆)v1, [h2∆, χ2]v2〉H
= −〈(χ1 − χ̃1)v1, [h2∆, χ2]v2〉H = 0 ,

since (χ1− χ̃1)[h2∆, χ2] = 0 . Similarly, if χ1 ≡ 1 on the support of χ̃1, and χ̃1 ≡ 1
near B(0, R0), then

E
χ3
+ (z, h)[h

2∆, χ2 − χ̃1]R(z, h)[h2∆, χ1]tE
χ3
− (z, h) ≡ 0 ,

which shows that we can switch the conditions on χ1 and χ2. Yet another argument
of the same type shows that

E
χ3
+ (z, h)[h

2∆, χ2]R0(z, h)[h2∆, χ1]tE
χ3
− (z, h) ≡ 0 , R0(z, h) = (−h2∆− z)−1 .

In the next proposition we list two well known facts:

Proposition 2.2 If we define the multiplicity of a pole or a zero of detS(z, h) as

mS(z, h) = −
1
2πi
tr
∫
γε(z)

S(w, h)−1 d

dw
S(w, h)dw , (2.6)

γε(z) = {z + εeit : 0 ≤ t ≤ 2π} , 0 < ε� 1 , then

• detS(w, h) = (w − z)−mS(z,h)gz(w), for w near z, with gz(z) �= 0,

• mS(z, h) = mR(z, h) − mR(z̄, h), Re z > 0, where one of z, z̄, is in the
physical, and one in the non-physical half-plane.

In particular, the non-negative eigenvalues of P (h) do not contribute to the poles
of the scattering matrix. We outline the proof for the reader’s convenience:
Proof. The first part is a direct application of a classical result of Gohberg and Sigal
[10]. To see the second part we will use the continuity properties of the multiplic-
ities and the generic simplicity of resonances (see [13]): this makes the argument
considerably simpler. By continuity property we mean the fact that for any w0 and
ε > 0,

∑
|w−w0|<εm•(w, h) is constant for sufficiently small perturbations, which

follows from the definition of multiplicities using integrals.
Consequently we can assume that mR(w, h) ≤ 1 as the general statement fol-

lows from a deformation to the generic case. Suppose then that−π/2 < argw0 < 0,
that is, that w0 is in the first sheet of the non-physical plane, and thatmR(w0, h) =
1. The proof of the meromorphic continuation (see the derivation of (4.2) below)
shows that in this case

R(w, h) =
A

w − w0
+B(w) ,

where B(w) is holomorphic in w near w0. The reality of P implies that R(w, h) is
symmetric (with respect to the indefinite form 〈•, •̄〉H) and consequentlyA = φ⊗φ,
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Au = 〈φ, ū〉Hφ. Another look at the structure of the resolvent (see (4.2), and for
a more detailed discussion [38, Lemma 1]) shows that φ = R0(w0, h)g, where
g ∈ C∞c (Rn) and R0(z, h) is the free resolvent. Proposition 2.1 shows that

S(w, h) =
A1

w − w0
+B1(w) , A1 = cnz

n−2
2 h−nE+(w0, h)g ⊗ E−(w0, h)g . (2.7)

In fact, all that needs to be checked is that

E∓(z, h)g = E∓(z, h)[h2∆, χ]R0(z, h)g , g ∈ C∞c (Rn) , (1− χ)g = 0 ,

and that follows from integration by parts: for z ∈ (0,∞) and χ ∈ C∞c (Rn),

〈〈[h2∆, χ]R0(z, h)g, tE±(z, h)f〉H
= −〈(−h2∆− z)χR0(z, h)g, tE±(z, h)f〉H + 〈g, tE±(z, h)f〉H
= 〈g, tE±(z, h)f〉H .

The essentially standard Rellich’s Uniqueness Theorem type argument (see [38,
Sect.3]) shows that for arg z �= 2πk, k = 0, 1, E±(w0, h)g �= 0. We can then find
invertible operators, Fk(w), k = 1, 2, holomorphic near w0, such that

S(w, h) = F1(w)
(

P1

w − w0
+ P0(w)

)
F2(w) , P 2

1 = P1 ,

with P0(w), holomorphic near w0. As shown in [10], the operators Fk(w) make no
contribution to the integral in (2.6), and consequently we can assume that S(w, h)
is given by the expression in the middle. The representation (2.7) shows that

dS−1(w0)
def= dim{ψ ∈ L2(Sn−1) : S−1(z, h)ψ = O(|z −w0|k)} ≤ 1 ,

and that the only power k which can occur is k = 1. In fact using the projection
P1 we can construct an element of the kernel and hence dS−1(w0) = mR(w0, h).
On the other hand, for k ≥ 1 we have

dS(w0)
def= dim{ψ ∈ L2(Sn−1) : S(z, h)ψ = O(|z −w0|k)} = 0 ,

since the equality (2.3) implies that S−1(z, h) is continuous at w0.
If we apply [10, Theorem 2.1] in this situation, we obtain that

mR(w0, h) = dS−1(w0)− dS(w0) = −
1
2πi
tr
∫
γε(w0)

S(w, h)−1 d

dw
S(w, h)dw

and that proves the second part of the proposition for Im z < 0, as thenmR(z̄, h) =
0. For Im z > 0, we use (2.3), which shows than that mS(z, h) = −mS(z̄, h) =
−mR(z̄, h). As now mR(z, h) = 0, we obtain our formula. ✷
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Remark.We could avoid the results of [13] which strictly speaking do not apply to
the whole logarithmic plane when the dimension is even (but apply in the region
considered here), and used instead the direct argument of [11, Sect.2] which is
based on [10].

Proposition 2.1 has the following strange consequence which perhaps has
been observed before:

Proposition 2.3 Suppose that n ≥ 5. Then S(z, h) is holomorphic in On(h,R0) =
h2R−2

0 On,
On = {reiθ ; rn−4 ≤ αn sin2 θ , 0 < r ≤ 1}

where αn is a constant depending on the dimension. Moreover,

1
2
≤
∣∣∣detS(z, h)∣∣∣ ≤ 2 , z ∈ On(h,R0) .

We recall that it is well known that if n ≥ 5 and 0 is a pole of the resolvent,
than it is an eigenvalue. The proposition shows that this phenomenon of absence
of resonances propagates to a set near zero.

Proof. We can take R0 = 1 as the general result follows from scaling. To show
that S(z, h) is holomorphic in On(h, 1) ∩ {Im z < 0}, we will show that S(z, h)
is invertible in On(h, 1) ∩ {Im z > 0}. That is done by showing that ‖A(z, h)‖ is
small there. In fact, for χ ∈ C∞c (Rn), χ ≡ 1 near B(0, 1),

‖[h2∆, χ]tEφ
±(z, h)‖L2(Sn−1)→L2(Rn) ≤ Cχ(h2 + |z|)eCχ|z|

1
2 /h ,

‖Eφ
±(z, h)[h

2∆, χ]‖L2(Rn)→L2(Sn−1) ≤ Cχ(h2 + |z|)eCχ|z|
1
2 /h ,

‖(1− χ)R(z, h)(1− χ)‖L2(Rn)→L2(Rn) ≤
C

Im z
, Im z > 0 .

Hence

‖A(z, h)‖ ≤ C |z|
Im z

eC|z|
1
2 /h

(
(h−2|z|)n−4

2 + (h−2|z|)n2
)
, Im z > 0 ,

where the constants depend on the cut-off functions used and the dimension. By
choosing αn in the definition of On small enough we can make ‖A(z, h)‖ small in
On(h, 1).

To estimate the determinant we observe that

e−‖(I+A(z,h))−1‖‖A(z,h)‖tr ≤ |detS(z, h)| ≤ e‖A(z,h)‖tr , Im z > 0 .

Since ‖A(z, h)‖tr ≤ C‖(I −∆Sn−1)
n+1

2 A(z, h)‖, the determinant estimate follows
from the previous argument by observing that

‖(I −∆Sn−1)
n+1

2 E
φ
±(z, h)[h

2∆, χ]‖L2(Rn)→L2(Sn−1)
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≤ C(1 + (h−2|z|)n+1
2 )(|z|+ h2) , |z| ≤ h2 .

✷

The standard object of study in scattering theory is the scattering phase
which is defined as

σ(λ, h) =
1
2πi

log s(λ, h) , (2.8)

with some choice of the logarithm, for instance, σ(0, h) = 0. It is related to the
spectral shift function which is defined using normalized traces of functions of P (h).
To present this relation we introduce a normalized trace: for g ∈ S(R) we let

t̃rg(P (h)) = trH
(
g(P (h))− (1− χ)g(−h2∆)(1− χ)

)
− trL2(Rn)

(
g(−h2∆)− (1− χ)g(−h2∆)(1− χ)

)
,

(2.9)

where χ ∈ C∞c (Rn), χ ≡ 1 on B(0, R0 + a) , a > 0.
The Birman-Krein formula then takes the following well known form

t̃rg(P (h)) = −
∫
dg

dλ
(λ)σ(λ, h)dλ+

∑
λ∈σ(P (h))

g(λ) , g ∈ S((0,∞)) , (2.10)

and for the adaptation of the standard proof to the black box case we refer to [6].
By using the assumption (2.1) and the representation of the scattering phase (see
[4, Theorem 3]) we have, for every J � R

+,

|σ(λ, h)| ≤ C(J)h−n	

, λ ∈ J , 0 < h ≤ h0(J) . (2.11)

If we define

N �(λ, h) = # σ(P �(h)) ∩ (0, λ]−# σ(−h2∆Tn
R1
) ∩ (0, λ] ,

then, as shown recently by Bruneau and the first author [4, Theorem 3], for E > 0
and µ > 0 we have

σ(E + µ, h)− σ(E, h) +
∑

λ∈σ(P (h))

δλ((E,E + µ])

= N �(E + µ, h)−N �(E, h) +O(h−n	+1) . (2.12)

In particular, in the interesting situation when n = n�,

N �(E + µ, h)−N �(E, h)) =W (E,µ)h−n +O(h−n+1) , (2.13)

and σ(P (h)) ∩ (0,∞) = ∅, we have

σ(E + µ, h)− σ(E, h) =W (E,µ)h−n +O(h−n+1) , (2.14)

where the Weyl termW (E,µ) is assumed to be smooth in µ as is the case for spec-
tral asymptotics near non-degenerate energy levels (see for instance [7, Sect.11]).
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3 Some complex analysis

In the aspects of scattering theory studied here we apply the following principle
of complex analysis: if a holomorphic function is not identically zero then, at most
points, it is bounded from below by a constant times the reciprocal of its upper
bound provided we have control on the lower bound of the function at one point.

This follows from a precise statement for the disc:

Lemma 3.1 Suppose f(z) is holomorphic in the disc |z| ≤ r and that f(0) �= 0.
Suppose that the number of zeros of f(z) in |z| ≤ r is equal to N . Then for any
θ ∈ (0, 1) we have

min
|z|=ρ

log |f(z)| > −
(
r + ρ
r − ρ max|z|=r

log |f(z)|+N log 1
θ

)
+

2r
r − ρ log |f(0)| , (3.1)

for ρ ∈ (0, r) \ ∪Kk=1(ρk − δk, ρk + δk), 0 < δk < ρ ,
∑K

k=1 δk ≤ 6θr .

The proof follows from the classical lemma of Cartan (see for instance [12, Lemma
6.17]) and the Poisson-Jensen formula (see [12, Lemma 6.18]). We recall that N
can be estimated using Jensen’s formula by(

log(1 +
ε

r
)
)−1

(
max

|z|=r+ε
log |f(z)| − log |f(0)|

)
, ε > 0 .

For future use we will recall here Cartan’s beautiful estimate:

Given arbitrary numbers zm ∈ C, m = 1, ...,M , for any η > 0 there exists a set,⋃L
l=1D(al, rl), formed by the union of L ≤ M discs, D(al, rl), centered at some
points al ∈ C, such that

∑L
l=1 rl < 2eη and

M∏
m=1

|z − zm| > ηM , z ∈ C \
L⋃
l=1

D(al, rl) . (3.2)

Lemma 3.1 is then a consequence of this, and of the Carathéodory or Harnack
inequalities (see the proof of Proposition 4.2 for a direct application of a similar
argument).

We will also need a result in the case of a cone for which we quote [5, Theorem
56]:

Lemma 3.2 Suppose that f is holomorphic in {z : 0 < arg z < π/k + ε}, ε > 0
and that log |f(z)| ≤ B1|z|k, log |f(z0)| ≥ −B2 with 0 < arg z0 < π/k. Then for
any δ > 0,

log |f(reiθ)| > −Cδrk , r > r0 , θ ∈ (0, θ0) \Σ(r) , |Σ(r)| < δ ,
Cδ = Cδ(ε, z0, B1, B2) , r0 = r0(ε, z0, B1, B2) .

(3.3)
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We remark that this estimate also follows from the estimates obtained more
directly by Sjöstrand [23, Sect.7].

We recall also the standard Carleman inequality which in a similar context
was already used in [18] (see for instance [29, 3.7]):

Lemma 3.3 Let f(z) be holomorphic in |z − λ| ≤ R, Im z ≥ 0, with λ ∈ R. Let zj
denote the zeros of f(z) and let 0 < ρ < r < R be such that no zeros of f(z) lie on
|z − λ| = ρ and |z − λ| = r, and on the real axis. Then for 0 < δ < 1− ρ

r we have∑
ρ<|zj−λ|<(1−δ)r

Im zj
|zj − λ|2

≤ 1
δ

(
1
πr

∫ π

0
log |f(λ+ reiθ)| sin θdθ

− 1
πρ

∫ π

0
log |f(λ+ ρeiθ)| sin θdθ

+
1
2π

∫ r

ρ

(
1
y2
− 1
r2

)
log |f(λ+ y)f(λ− y)|dy

)
.

(3.4)

For future reference we recall the following lemma already used in [19]2.

Lemma 3.4 Suppose that u is harmonic in D(0, 1), and that

|u(z)| ≤ K

| Im z| , u(z) = −u(z̄) , z ∈ D(0, 1) .

Then, for every 0 < ε < 1, there exists C = C(ε) such that

|u(z)| ≤ CK| Im z| , z ∈ D(0, 1− ε) .

Proof. We use the Poisson formula and the symmetry (and we can assume that
the hypotheses hold in a slightly bigger disc):

u(reiθ) =
1
2π

∫ 2π

0

(1− r2)u(eiϕ)
1− 2r cos(θ − ϕ) + r2 dϕ

=
1
π

∫ π

0

8(1− r2)r sin θ sinϕu(eiϕ)
(1− 2r cos(θ − ϕ) + r2)(1− 2r cos(θ + ϕ) + r2)dϕ .

Since we know that
|u(eiϕ)| ≤ K/ sinϕ , 0 ≤ ϕ ≤ π ,

we conclude that for r < 1− ε,

|u(z)/ Im z| ≤ 8ε−4K .

✷

Finally, we present a version of a semi-classical maximum principle related
to [27, Lemma 2].

2This lemma was pointed out to us by W.K. Hayman.
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Lemma 3.5 Suppose that F (z, h) is holomorphic in z ∈ Ω0(h), continuous in
Ω0(h), Ωε(h) = (a+ ε, b− ε) + i(0, hM ), ε ≥ 0, and that log |F (z, h)| ≤ Ch−K for
z ∈ Ω0(h). If 2M > K then

log |F (z, h)| ≤M0(h) +M1(h) +O(1) , z ∈ Ωε(h) , 0 < h ≤ h(ε) , ε > 0,

M0(h) = max
Ω0(h)∩{Im z=0}

log+ |F (z, h)| , M1(h) = max
Ω0(h)∩{Im z=hM}

log+ |F (z, h)| ,

where log+ x = max(0, log x).

Proof. For ε > 0 let us introduce,

fε(z, h) =
h−L/2√
π

∫ b−ε/2

a+ε/2
exp(−h−L(x− z)2)dx , L < 2M ,

so that |fε(z, h)| ≤ e on Ω0(h), |fε(z, h)| ≥ 1/2 on Ωε(h), if h ≤ h(ε), and
|fε(z, h)| ≤ C exp(−Cεh−L), on Ω0(h) \ Ωε/4(h). We then apply the maximum
principle to the subharmonic function

log |G(z, h)| = log |F (z, h)|+ log |fε(z, h)| −M0(h)−M1(h)− 1 .

If we choose L > K then, on ∂Ω0(h) we have log |G(z, h)| ≤ 0 and on Ωε(h) we
get log |fε(z, h)| = O(1). ✷

4 Estimates on the scattering determinant

We will give a self-contained discussion of the estimates for the number of reso-
nances, the cut-off resolvent and the scattering determinant in the setting of semi-
classical compactly supported black box perturbations. Our presentation comes
largely from [28, Sect.4] and it is based on the works of Melrose [14], Sjöstrand
[22],[24], Vodev [31], and the second author [34],[36]. We also adapt the meth-
ods of [18] to the semi-classical setting to obtain the estimate on the scattering
determinant (Lemma 4.3), and its factorization (Proposition 4.4).

We start with a polynomial bound on the number or resonances:

Proposition 4.1 If n� is as in (2.1) and Ω � {z : Re z > 0} is a pre-compact
neighborhood of E ∈ R+, then

# {z : z ∈ Res (P (h)) ∩ Ω} = O(h−n	

) , Ω � C . (4.1)

Remark. This proposition can be improved by replacing h−n
	

by a more precise
bound on the number of eigenvalues of the reference operator, Φ(h−2) – see [22].
For a large class of majorants Φ, the proof given here can be improved following
[31]. Consequently we can replace h−n

	

by Φ(Ch−2) in all subsequent estimates,
which we avoid for the sake of clarity. The most interesting case is of course n� = n
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and a nice case where Φ(t) = tn
	/2, n� > n is given by finite volume hyperbolic

quotients [24].

Proof. Let R0(z, h) be the meromorphic continuation of the free resolvent (−h2∆−
z)−1 from Im z > 0 to Ω̃, Ω � Ω̃ � C. Let us also consider the following cut-off
functions χi ∈ C∞c (Rn), i = 0, 1, 2, χ0 ≡ 1 near B(0, R0), χi ≡ 1 near supp χi−1
and χ ≡ 1 near supp(χ2). We then define

Q0 = Q0(z, h) = (1− χ0)R0(z, h)(1− χ1) ,
Q1 = Q1(z0, h) = χ2R(z0, h)χ1 , Im z0 > 0 ,

so that

(P (h)− z)(Q0(z, h) +Q1(z0, h)) = I +K0(z, h) +K1(z0, z, h),

K0(z, h) = −[h2∆, χ0]R0(z, h)(1− χ1),

K1(z0, z, h) = −[h2∆, χ2]R(z0, h)χ1 + χ2(z0 − z)R(z0, h)χ1 .

We now put
K = K(z0, z, h) = K0(z, h)χ+K1(z0, z, h)χ

which is a compact operator H → H and the norm of K(z0, z0, h) is O(h). Hence
(I+K(z0, z0, h))−1 exists for h small enough and consequently (via analytic Fred-
holm theory) (I +K(z0, z, h))−1 is meromorphic in z (under our assumptions, on
the Riemann surface of z = w2 for n odd and z = ew for n even). Hence

R(z, h)χ = (Q0(z, h)χ+Q1(z0, h)χ)(I +K(z0, z, h))−1 , (4.2)

and we have essentially reviewed the proof of the meromorphic continuation of the
resolvent from [24].

We now introduce

f(z, h) = det(I +Kn	+1(z, h)) ,

where n� is as in (2.1) and, as we will see below, the choice of the power justifies
the existence of the determinant. By Weyl inequalities (see for instance [9, Chapter
II, Corollary 3.1]), |f(z, h)| ≤M(h), z ∈ Ω̃, where

M(h) = supz∈Ω̃ det(I +K
∗K)

n	+1
2 ) .

To estimateM(h) we need to estimate the eigenvalues of (K∗K)
1
2 , that is the

characteristic values µj(K) of K. The standard properties of characteristic values
(see [9, Chapter II]) show that it is enough to estimate the characteristic values of
various summands.
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We start by proving that

µj([h2∆, χ2]R(z0, h)χ1) ≤ Ch
(
j

h

)− 1
n	

,

µj(χ2R(z0, h)χ1) ≤ C
(
j

h

)− 2
n	

.

In fact, for all N,M ,

χ2R(z0, h)χ1 − χ2(P �(h)− z0)−1χ1 = O(hN ) : H −→ DM ,

(see the proof of [24, Proposition 5.4]). From this the estimates follow from the
estimates on the characteristic values of χ2(P �(h)− z0)−1χ1 which in turn follow
from (2.1).

Greater difficulty lies in estimating the K0χ term, where we encounter expo-
nential growth. We start by observing that for Im z ≥ 0,

µj([h2∆, χ2]χR0(z, h)χ) ≤ Ch
(
j

h

)− 1
n	

(see, for instance, [34, Lemma 4]). For Im z < 0 we write

χR0(z, h)χ = χ(−h2∆− z)−1χ+ χ(R0(z, h)− (−h2∆− z)−1)χ ,

where R0(z, h) is the meromorphic continuation of the resolvent from Im z > 0 and
(−h2∆−z)−1 is the resolvent, holomorphic on L2 for z ∈ C\R+. This reduces the
problem to estimating the characteristic values of χ(R0(z, h)−(−h2∆−z)−1)χ .We
rewrite this operator using the standard representation of the spectral projection
(see for instance the proof of [34, Lemma 1]):

χ(R0(z, h)− (−h2∆− z)−1)χ = c̃nh−nz
n−2

2 t
E
χ
+(z, h)E

χ
−(z, h) ,

where E
χ
± are as in (2.4). Hence,

µj(χ(R0(z, h)− (−h2∆− z)−1)χ) ≤ |c̃n||z|
n−2

2 h−n‖tEχ
+(z, h)‖µj(E

χ
−(z, h))

and we estimate

µj(E
χ
−(z, h)) = µj((I −∆Sn−1)−k(I −∆Sn−1)kE

χ
−(z, h))

≤ µj((I −∆Sn−1)−k)‖(I −∆Sn−1)kEχ
−(z, h)‖

≤ Ckj−
2k

n−1 (2k)! exp(C/h)

≤ C exp(Ch−1 − j 1
n−1 /C) ,

(4.3)

where we used the Cauchy inequalities and then optimized in k. By summing up
the contributions from different terms in K, we obtain the following estimate on
the determinant

M(h) = O(eCh−n	

) . (4.4)
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Since I +K(z0, z0, h)n
	+1 can be inverted by Neumann series, and since the same

estimates hold for

(I +K(z0, z0, h)n
	+1)−1 = I −K(z0, z0, h)n

	+1(I +K(z0, z0, h)n
	+1)−1 ,

we can estimate f(z0, h)−1 so we get

|f(z0, h)| > e−Ch
−n	

. (4.5)

Let us now put Ω0 = D(z0, r), Ω0 ⊂ Ω̃, | Im z0| < r < Re z0 (choosing z0
appropriately for that). Let N(h) be the number of zeros, wj(h), of f(z, h) in
D(z0, r + ε) ⊂ D(z0, r + 2ε) ⊂ Ω̃. Then by the Jensen inequality

N(h) ≤ Cε( max
D(z0,r+2ε)

log |f(z, h)| − log |f(z0, h)|) (4.6)

≤ Cε(logM(h)− log |f(z0, h)|) ≤ Ch−n
	

.

By Lemma 3.1, we can cover Ω by discs centered at z̃ at which (4.5) holds with z0
replaced by z̃. Hence by repeating the argument we obtain (4.1). ✷

The next result holds in greater generality (see [27, Lemma 1] and references
given there), but we will give a direct argument following directly from the proof
of Proposition 4.1:

Proposition 4.2 If Ω is as in (4.1), then for 0 < h ≤ h0 we have

‖χR(z, h)χ‖H→H ≤ CΩ exp(CΩh
−n	

log(1/F (h))) ,

z ∈ Ω \
⋃

zj(h)∈ResP (h)

D(zj(h), F (h)) , 0 < F (h)� 1 ,

where R(z, h) is the meromorphically continued resolvent, zj(h) are the resonances
of P (h) and χ ∈ C∞c (Rn), χ ≡ 1 near B(0, R0).

Proof. To estimate the resolvent we now use, with the notation of the proof of
Proposition 4.1 the following inequality

‖χR(z, h)χ‖ ≤ (‖Q0χ‖+ ‖Q1χ‖)‖(I +K(z0, z, h))−1‖

≤ (‖Q0χ‖+ ‖Q1χ‖)
det(I + (K∗K)

n	+1
2 )

|det(I +Kn	+1)|
≤ eChM(h)|f(z, h)|−1 .

Here in the second inequality we have used [9, Chapter V, Theorem 5.1]. Hence
the problem is reduced to lower bounds on |f(z, h)|. We could apply Lemma 3.1
but instead we trade the quality of the lower bound for an explicit characterization
of the exceptional set.
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Thus, again with the same notation as in the proof of Proposition 4.1, we
write

f(z, h) = eg(z,h)
N(h)∏
j=1

(z − wj(h)) , z ∈ D(z0, r) ,

where g(z, h) is holomorphic in D(z0, r) and wj(z) are the zeros of f(z, h) in
D(z0, r+ ε). Next using the estimate (3.2) for

∏N(h)
j=1 (z−wj(h)) with some η0 > 0,

the bound (4.6) for N(h), the estimate (4.4) and the maximum principle for the
harmonic function Re g(z, h), we deduce an upper bound Re g(z, h) ≤ Ch−n	

, z ∈
D(z0, r). Carathéodory’s inequality (see for instance [29, 5.5]) gives

max
|z−z0|=ρ

|g(z, h)| ≤ 2ρ
r − ρ max

|z−z0|=r
Re g(z, h) +

r + ρ
r − ρ |g(z0, h)| , r > ρ . (4.7)

Taking 0 < Im z0 < Re z0, z0 /∈
⋃N(h)
j=1 D(wj(h), F (h)), we get log |f(z0, h)| >

−Ch−n	

and

log |
N(h)∏
j=1

(z0 − wj(h))| ≥ N(h) logF (h) ≥ −Ch−n
	

log
1

F (h)
,

which yields
|Re g(z0, h)| ≤ Ch−n

	

log(1/F (h)) .

We can choose appropriately Im g(z0, h) so that |g(z0, h)| ≤ Ch−n
	

log(1/F (h)),
and that gives the lower bound

log |f(z, h)| ≥ −Ch−n	

log(1/F (h))) for z ∈ D(z0, ρ) \
N(h)⋃
j=1

D(wj(h), F (h)) .

Now recall that the resonances zj(h) are included in the set of zeros of f(z, h),
so applying the maximum principle for the operator-valued holomorphic function
χR(z, h)χ, outside the discs centered at zj(h), we obtain the conclusion of the
proposition for z ∈ D(z0, ρ) \

⋃
zj(h)∈ResP (h)D(zj(h), F (h)). Covering Ω by discs

and using the successive lower bounds for |f(z, h)|, gives the result for general
domains. ✷

We now give the crucial estimate on the scattering determinant. It gener-
alizes the estimate given in [34, Proposition 2, (14)]. Its interest comes from its
universality: it does not depend in any way on the structure of the perturbation,
only on the size of its support:

Lemma 4.3 If s(z, h) = detS(z, h) and Ω is as in (4.1), then

|s(z, h)| ≤ CeCh−n

, z ∈ Ω ∩ C+ , C = C(R0,Ω) . (4.8)
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Proof. This is an almost immediate consequence of Proposition 2.1, the estimates
(4.3), the resolvent estimate of Proposition 4.2.

As before, we use Weyl inequalities to have

|s(z, h)| ≤
∞∏
j=1

(1 + µj(A(z, h))) .

For Im z > hM , M fixed, we have that R(z, h) = O(h−M ) : H → H, and the
equation, (1− χ1)(−h2∆− z)R(z, h) = 1− χ1, then gives

‖[h2∆, χ2]R(z, h)[h2∆, χ1]‖L2(Rn)→L2(Rn) = O(h−M+2) .

Hence,
µj(A(z, h)) ≤ Cn(Ω)h−n−M+2‖Eχ3

+ (z, h)‖µj(E
χ3
− (z, h)) .

We now use the estimate (4.3) to obtain

µj(A(z, h)) ≤ exp(CMh−1 − j 1
n−1 /C) .

Consequently, the product of 1 + µj(A(z, h)) over j ≥ Ch−n+1 is bounded by
exp(Ch−1), which implies that

|s(z, h)| ≤ eCh−1
(1 + ‖A(z, h)‖)Ch−n+1

≤ eC(Im
√
zh−n+(n+M−2) log(1/h)h−n+1) , Im z > hM , (4.9)

where, as in the proof of Proposition 2.3, we estimated ‖A(z, h)‖ by Ch−n−M+2

exp(C Im
√
z/h).

Since |s(z, h)| = 1 for z ∈ R, we can apply a version of the three lines theorem
given in Lemma 3.5 to conclude the proof. For that we need some weak estimate
valid everywhere and we claim that

|s(z, h)| ≤ eCh−(n	+1)n
, Im z ≥ 0 , z ∈ Ωε = Ω+D(0, ε) . (4.10)

In fact, Proposition 4.2 shows that for every x ∈ Ωε ∩ R we can find x′ ∈ Ω2ε ∩ R

such that |x− x′| < ε and for z ∈ x′ + i[0, hM ] and 0 < h ≤ h(ε) we have

‖χR(z, h)χ‖H→H = O(eh
−n	−1

) .

Hence
‖[h2∆, χ2]R(z, h)[h2∆, χ1]‖L2(Rn)→L2(Rn) = O(eh

−n	−1
) .

Consequently, by the same argument as above,

µj(A(z, h)) ≤ exp(Ch−n
	−1 − j 1

n−1/C) ,

which proves (4.10) and concludes the proof of the proposition. ✷
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As recalled in Sect.2, the poles of the scattering determinant are given by
the poles of the resolvent, away from the real axis. That, and the unitarity (2.3),
immediately imply a factorization of the scattering determinant. The issue is the
estimate on the non-vanishing term in that factorization and this is addressed in

Proposition 4.4 Let s(z, h) = detS(z, h) be the scattering determinant. Then

s(z, h) = eg(z,h)P (z̄, h)
P (z, h)

, |g(z, h)| ≤
{
Cεh

−n	

, n ≥ 1
Cε(N(h) + h−n), n ≥ 5 , z ∈ R ,

P (z, h) =
∏

w∈Res (P (h))∩Rε

(z − w) ,

N(h) = #
(
Res (P (h)) ∩Rε

)
,

(4.11)

where g(z, h) is holomorphic in Rε and

R = (a, b) + i(−c, c) , 0 < a < b , 0 < c , Rε = R+D(0, ε) .

In particular for n = n� we have an improved estimate

|s(z, h)| ≤ CeC Im zh−n

, z ∈ R ∩ C+ . (4.12)

To obtain this proposition we need the following

Lemma 4.5 For any Ω = [a, b] + i(0, c), 0 < a < b, c > 0, there exist δ > 0 and C,
such that for any 0 < h ≤ h0, there exists z0 = z0(h), which satisfies

log |s(z0, h)| ≥ −Ch−n
	

, z0 ∈ Ω , Im z0 > δ . (4.13)

The constant C in (4.13) depends on P (h).

Proof. If we factorize s(z, h) as in (4.11), then Cartan’s lemma (3.2) and the
bound on the number of resonances (4.1) show that we need to find z0 for which
Re g(z0, h) ≥ −Ch−n

	

.
We normalize g(z, h) by assuming that

|g(ã, h)| ≤ 2π , a < ã < b ,

and note that Lemma 4.3 and Cartan’s lemma imply that

Re g(z, h) ≤ Ch−n	

, z ∈ Ω ∩ {Im z ≥ 0} .

We claim that
| Im g(z, h)| ≤ Ch−n	

, z ∈ R ∩ R .
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In fact, for λ real we have

Im g(λ, h)− Im g(ã, h) = 2π(σ(λ, h)− σ(ã, h)) + 2
∑

w∈Res (P (h))∩Rε

∫ λ

ã

Imw
|w − t|2 dt .

Using (4.1) and the estimate∫ λ

ã

y

y2 + (x− t)2 dt ≤ π ,

we see that the second term on the right hand side is O(h−n	

). The first term
satisfies the same estimate in view of (2.11).

If we put fh(z) = g(z, h)hn
	

, then we know that

fh(z̄) = −fh(z), z ∈ R, |fh(z)| ≤ C1, z ∈ R∩R,Re fh(z) ≤ C, z ∈ R∩{Im z ≥ 0},

and we want to show that

∃ δ > 0 , C2 > 0, ∀ 0 < h ≤ h0, ∃ z0 = z0(h) ∈ R, Im z0 > δ , Re fh(z0) ≥ −C2 .
(4.14)

If not, we would have a sequence of holomorphic functions gN such that

gN (z̄) = −gN(z) , z ∈ R , |gN (z)| ≤ C1 , z ∈ R ∩ R ,

Re gN ≤ −N , Im z > 1/N , Re gN ≤ C , Im z ≥ 0 .

The Poisson formula applied as in the proof of Lemma 3.4 shows that

Re gN ≤ −N Im z/C , z ∈ D(ã, ρ) , Im z ≥ 0 ,

for some ρ and C independent of N . Since Re gN |R = 0 we conclude that
∂Im z Re gN |R ≤ −N/C. From Cauchy-Riemman equations we now get

∂Re z Im gN (z) ≥ N/C , z ∈ D(ã, ρ) ∩ R ,

and that contradicts the uniform boundedness of gN on R∩R. Hence (4.14) holds
and the lemma is proved. ✷

When the dimension is large enough we obtain the following stronger result:

Lemma 4.6 Suppose that n ≥ 5. For any Ω = [a, b] + i(0, c), 0 < a < b, c > 0,
there exist δ > 0 and C, such that for any 0 < h ≤ h0, there exists z0 = z0(h),
which satisfies

log |s(z0, h)| ≥ −Ch−n , z0 ∈ Ω , Im z0 > δ . (4.15)

The constant C depends only on Ω and the support of the perturbation, B(0, R0).
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Proof. We first make the following observation based on the proof of Lemma 4.3:
fix any H > 0, then for any 0 < h ≤ H, we have, for any compact set Ω1 � C,

|s(z, h)| ≤ CeCh−n

z ∈ Ω1 ∩ {Im z > min(1/C, hM )} , (4.16)

where the constants depend only on M , H, and R0. Put Pρ(h) = ρ−1P (
√
ρh),

ρ > 0. Then P (h)|Rn\B(0,R0) = Pρ(h)|Rn\B(0,R0) and Pρ(h) satisfies the black
box assumptions of Sect.2 (without uniformity with respect to ρ). If sρ(z, h) is
the scattering determinant corresponding to Pρ(h), then we have the following
relation:

s(wρ, h) = sρ(w, h/
√
ρ) .

We can now apply (4.16) to sρ and that gives

|sρ(w, h/
√
ρ)| ≤ C exp(Ch−nρn

2 ) , w ∈ Ω1 � C , Imw > (h/
√
ρ)M .

By scaling, using ρ ∼ |z|, this implies that

|s(z, h)| ≤ C exp(Ch−n|z|n2 ) , Im z > h2/C, Re z > 0 ,

if we take M > 2. We now put fh(w) = s(h2w, h), which in view of the previous
estimate satisfies

log |fh(w)| ≤ C|w|
n
2 + C , Imw > 1/C , Rew > 0 ,

uniformly with respect to h. Proposition 2.3 shows that there exist many w̃’s,
|w̃| ≤ 1, Im w̃ > 1/C, such that

log |fh(w̃)| ≥ −C

holds with a constant independent of h. We can now apply Lemma 3.2 and conclude
that

log |fh(reiθ)| > −Crn/2 , r > r0 , θ ∈ (0, θ0) \Σ(r, h) , |Σ(r, h)| < δ0 .

This implies the existence of z0(h) = h2w0(h), Imw0(h) > δ/h2, |w0(h)| ≤ C/h2,
such that z0(h) satisfies the conditions in (4.15), and

log |s(z0(h), h)| = log |fh(w0(h))| > −C|w0(h)|
n
2 > −Ch−n .

✷

Proof of Proposition 4.4. Since we clearly have a factorization given in (4.11),
the only thing to check is the estimate on g(z, h). The slight difference with the
standard arguments lies in having estimates on |s(z, h)| for Im z ≥ 0 only. The
unitarity implies however that g(z, h) = −g(z̄, h), and hence we only need to
estimate g for Im z ≥ 0. In that region, the bound (4.8), an application of Cartan’s
lemma (3.2), and the maximum principle give

Re g(z, h) ≤ C1(h−n +N(h)) , Im z ≥ 0 , z ∈ Rε/2 .
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Lemmas 4.5 and 4.6, and the trivial bound

|z − w̄|
|z − w| ≤ 1 , Im z ≥ 0 , Imw ≤ 0 , (4.17)

give an existence of z0 = z0(h) ∈ R, Im z0 ≥ δ > 0, such that

Re g(z0, h) ≥
{
−C2h

−n	

, n ≥ 1 ,
−C2h

−n , n ≥ 5 .

When n ≥ 5, Harnack’s inequality, applied to the harmonic function G(z, h) =
2C1(h−n +N(h))−Re g(z, h), positive for Im z ≥ 0, z ∈ Rε/2, shows that

|Re g(z, h)| ≤ 1
ρ
C(N(h) + h−n) , z ∈ Rε/4, Im z > ρ . (4.18)

In fact, if 0 < ρ < Im z0 is such that D(z0, Im z0 − ρ) ⊂ Rε, we have

max
z∈D(z0,Im z0−ρ)

G(z, h) ≤ 2|z0|
ρ
G(z0, h) ≤

2|z0|
ρ

(
(2C1 +C2)h−n + 2C1N(h)

)
.

Using this inequality with different ρ and z0, we get the bound (4.18) for all
z ∈ R, Im z > ρ.

In view of (4.18), we can apply Lemma 3.4 to u(z, h) = (h−n + N(h))−1

Re g(z, h) and deduce the estimate

|Re g(z, h)| ≤ C(h−n +N(h))| Im z|, z ∈ Rε/4 (4.19)

which combined with the Carathéodory inequality gives the bound

|g(z, h)| ≤ C(h−n +N(h)), z ∈ R . (4.20)

Recalling (4.17), it also gives (4.12). We proceed similarly for lower dimensions.

5 Local trace formula for resonances

As an application of the results of Sect.4 we present a proof of a slight improvement
of Sjöstrand’s local trace formula in the setting of semi-classical compactly sup-
ported perturbations. We stress that it depends only on the upper bound on the
number of resonances (4.1), the factorization of the scattering determinant (4.11),
and on the Birman-Krein formula (2.10). It is essentially a localized version of the
arguments of [11] and [35].
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Theorem 1 Suppose that P (h) satisfies the assumptions of Sect.2. Let Ω, Ω �
{Re z > 0}, be an open, simply connected set such that Ω∩R is connected. Suppose
that f is holomorphic on a neighborhood of Ω and that that ψ ∈ C∞c (R) satisfies

ψ(λ) =
{
0, d(Ω ∩ R, λ) > 2ε,
1, d(Ω ∩ R, λ) < ε,

where ε > 0 is sufficiently small. Then

t̃r(ψf)(P (h)) =
∑

z∈Res (P (h))∩Ω

f(z) +EΩ,f,ψ(h) ,

|EΩ,f,ψ(h)| ≤M(ψ,Ω)h−n
	

sup {|f(z)| : 0 < d(z,Ω) < 2ε , Im z ≤ 0} ,
(5.1)

where t̃r is defined in (2.9) and n� is as in (4.1).

Remark. We note that unlike in [22],[23] we only estimate the function f in the
lower half plane to control the error EΩ,f,ψ(h).
Proof. The Birman-Krein formula recalled in Sect.2 shows that

t̃r(ψf)(P (h)) =
∫
(ψf)(λ)

dσ

dλ
(λ, h)dλ+

∑
λ∈σ(P (h))

(ψf)(λ) . (5.2)

Let ψ̃ ∈ C∞c (C) be an almost analytic extension of ψ satisfying

supp ∂̄zψ̃ ⊂ {z : ε ≤ d(z,Ω) ≤ 2ε} ,

which can certainly be arranged. We note that this implies that ψ̃ ≡ 1 on Ω. An
application of Green’s formula gives

t̃r(ψf)(P (h)) =
∑

z∈Res (P (h))

(ψ̃f)(z) +
1
π

∫ ∫
C−

∂̄zψ̃(z)f(z)
∂zs(z, h)
s(z, h)

L(dz) ,

where we used the definition of the scattering phase σ(λ, h) given in (2.8), and
where L(dz) denotes the Lebesgue measure on C. Notice that if λ ∈ σ(P (h)),
then λ ∈ Res (P (h)) so the eigenvalues are included in the first term. On the other
hand, ∂zs(z, h)/s(z, h) is regular on Ω∩R which justifies the application of Green’s
formula.

We first note that the properties of ψ̃ and Proposition 4.1 show that∑
z∈Res (P (h))

(ψ̃f)(z)

=
∑

z∈Res (P (h))

f(z) +O(h−n	

)sup {|f(z)| : 0 < d(z,Ω) < 2ε , Im z ≤ 0} .
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Using the elementary inequality∫ ∫
Ω1

1
|z −w|L(dz) ≤

∫ ∫
D(w,ρ)

1
|z − w|L(dz) +

∫ ∫
Ω1\D(w,ρ)

1
|z − w|L(dz)

≤ 2πρ+ 1
ρ
|Ω1| ≤ 2

√
2π|Ω1| , ρ = (|Ω1|/(2π))

1
2 ,

(5.3)

(4.1) and (4.11) conclude the proof, as, with Ω ⊂ R,∣∣∣∣s′(z, h)s(z, h)

∣∣∣∣ ≤ |g′(z, h)|+ ∑
w∈Res (P (h))∩Rε

(
1

|z − w| +
1

|z − w̄|

)
.

✷

6 Breit-Wigner approximation

We now establish the semi-classical version of the Breit-Wigner approximation
and throughout this section we assume that n = n�. Again, it is a purely complex-
analytic consequence of the estimate on the scattering determinant, and of the
existence of a good remainder in the Weyl law for the scattering phase. It gener-
alizes the large energy result of [18].

Theorem 2 Suppose that σ(P (h)) ∩ (0,∞) = ∅, and that the spectral condition
(2.14) holds for E in a neighbourhood of λ > 0 and for µ sufficiently small. Then
for any 0 < δ < h/C we have

σ(λ+ δ, h)− σ(λ− δ, h) =
∑

|z−λ|<h
z∈Res (P (h))

ωC−(z, [λ− δ, λ+ δ]) +O(δ)h−n , (6.1)

where
ωC−(z, I) = −

1
π

∫
I

Im z
|z − t|2 dt , I ⊂ R = ∂C− .

Remark. The assumption σ(P (h)) ∩ (0,∞) = ∅ is natural when we have a com-
pactly supported black-box perturbation and n = n�, as it is satisfied in all rea-
sonable situations. The arguments below could be modified to include the case of
embedded eigenvalues, using (2.12) and (2.13).

To prove the theorem we start with a lemma which is the semi-classical
version of [18, Proposition 2]. In yet greater generality and by a different method,
the result was recently proved by Bony [2].

Lemma 6.1 Under the assumptions of Theorem 2 we have, for λ > 0, and h/C <
δ < 1/C

# {z : z ∈ Res (P (h)) , |z − λ| < δ} = O(δh−n) . (6.2)
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Proof. We recall that the spectral assumption (2.14) implies that the scattering
phase satisfies

σ(λ+ 2δ, h)− σ(λ− 2δ, h) = O(δh−n) .
As in [18, Proposition 1] we now show that

σ(λ+2δ, h)−σ(λ−2δ, h) ≥ 1
2
# {z ∈ Res (P (h)) : |z−λ| < δ}−O(δh−n) , (6.3)

which then implies the lemma.

To see (6.3), we apply (4.11) with R centered at λ, so that

|σ(λ+ 2δ, h)− σ(λ− 2δ, h)| =
∣∣∣∣∣ 12πi

∫ λ+2δ

λ−2δ

s′(t, h)
s(t, h)

dt

∣∣∣∣∣
=

1
2π

∣∣∣∣∣∣
∫ λ+2δ

λ−2δ

g′(t, h)− ∑
z∈Res (P (h))∩Rε

2i Im z
|z − t|2

dt
∣∣∣∣∣∣

≥ 1
π

∫ λ+2δ

λ−2δ

∑
z∈Res (P (h))∩Rε

| Im z|
|z − t|2 −O(δh

−n)

≥ 1
2
# {z ∈ Res (P (h)) : |z − λ| < δ} − O(δh−n) ,

(6.4)

since for 0 < y < δ and |x− λ| < δ we have∫ λ+2δ

λ−2δ

y

(x− t)2 + y2 dt ≥
∫ δ/y

−δ/y

1
1 + r2

dr ≥ π
2
.

✷

We need one more lemma which is a h-local version of Proposition 4.5:

Lemma 6.2 Let Ω(h) = {z : |z − λ| ≤ C1h}, λ > 0, and, for |z − λ| < C2h,
0 < C2 < C1, put

s(z, h) = egλ(z,h)Pλ(z̄, h)
Pλ(z, h)

, Pλ(z, h) =
∏

w∈Res (P (h))∩Ω(h)

(z − w) .

Then under the assumptions of Theorem 2 we can choose gλ so that

|gλ(z, h)| ≤ Ch−n+1, |z − λ| ≤ C2h .

Proof. We will use the factorization in Proposition 4.4 in the domain Rε = Ω =
(λ/2, 3λ/2)+ i(−c, c), c > 0 and we denote by g(z, λ) the corresponding holomor-
phic function and recall that P (z, h) =

∏
w∈Res (P (h))∩Ω(z − w). Comparing the

expressions for s(z, h), we see that

gλ(z, h) = g(z, h) + log
P (z̄, h)Pλ(z, h)
Pλ(z̄, h)P (z, h)

,
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and we need to show that the second term on the right hand side is bounded by
Ch−n+1 for |z − λ| < C2h. In fact, the real part of the first term is bounded by
C| Im z|h−n = O(h−n+1) because of (4.19) and by Carathéodory inequality we
conclude that this term is O(h−n+1).

Now we will show that∣∣∣∣∣ ddz log P (z̄, h)Pλ(z, h)P (z, h)Pλ(z̄, h)

∣∣∣∣∣ =∣∣∣∣∣∣∣
∑

w∈Res (P (h))∩Ω
|w−λ|>C1h

(
1

z − w̄ −
1

z − w

)∣∣∣∣∣∣∣ ≤ Ch−n ,
(6.5)

for |z − λ| < C2h, from which the needed estimate follows by integration and a
choice of the branch of logarithm.

To see (6.5), we proceed as in [19] and rewrite the expression to be estimated
as ∑

w∈Res (P(h))∩Ω
|w−λ|>C1h

(
2| Imw|
|Re z − w|2

+
∫ Im z

0

(
1

((Re z + iy)− w)2 −
1

((Re z + iy)− w̄)2

)
dy

)
. (6.6)

The sum of the integrated terms is harmless as∑
w∈Res (P (h))∩Ω

|w−λ|>C1h

1
|z −w|2 ≤

∑
w∈Res (P (h))∩Ω
|w−z|>(C1−C2)h

1
|z −w|2

≤
C log(1/h)∑

k=1

∑
C32kh≤|z−w|<C32k+1h

1
(C32kh)2

≤ C
C log(1/h)∑

k=1

(2k+1h)h−n

(2kh)2

≤ 2Ch−n−1
∞∑
k=1

1
2k
≤ C̃h−n−1 ,

by Lemma 6.1. Since | Im z| < C2h, an integration in y adds an additional multiple
of h, giving the desired bound O(h−n).
The first term in (6.6) is estimated using Carleman inequality (see Lemma 3.3):∑

w∈Res (P (h))∩Ω
|w−λ|>C1h

| Imw|
|Re z − w|2 ≤C

(
1
r

∫ π

0
log |s(λ+ reiθ, h)| sin θdθ

− 1
h

∫ π

0
log |s(λ+ C1he

iθ, h)| sin θdθ
)
,
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where we used the fact that |s(z, h)| = 1 for z real and r > 0 is chosen so that
Ω ⊂ {w ∈ C : |w−λ| < r}. By Lemma 4.3 the first integral is bounded from above
by Ch−n. To estimate the absolute value of the second integral, we rewrite it as
follows. We put Ωλ,h = {z : Im z ≥ 0 , |z−λ| ≤ C1h}, define Γλ,h, as its boundary,
denote by L(dz) the Lebesgue measure on C and use Green’s formula:

C1

h

∫ π

0
log |s(λ+ C1he

iθ, h)| sin θdθ = − 1
h2 Re

∫
Γλ,h

log |s(z, h)|dz

= − 1
h2 Re

∫ ∫
Ωλ,h

2i ∂̄z log |s(z, h)|L(dz)

=
1
h2 Re

∫ ∫
Ωλ,h

i ∂z log s(z, h)L(dz) .

The integrand in this last integral can be rewritten as

i

h2

g′(z, h)− ∑
w∈Res (P (h))∩Ω

|w−λ|≤C1h

(
1

z −w −
1

z − w̄

)

−
∑

w∈Res (P (h))∩Ω
|w−λ|>C1h

(
1

z −w −
1

z − w̄

) . (6.7)

The integral of the first term is estimated by

1
h2

∫ ∫
Ωλ,h

|g′(z, h)|L(dz) ≤ Ch−n−2|Ωλ,h| ≤ C̃h−n ,

and that of the second one by

1
h2

∣∣∣∣∣∣∣
∫ ∫

Ωλ,h

∑
w∈Res (P (h))∩Ω

|w−λ|≤C1h

(
1

z − w −
1

z − w̄

)
L(dz)

∣∣∣∣∣∣∣
≤ 1
h2

∫ ∫
Ωλ,h

∑
w∈Res (P (h))∩Ω

|w−λ|≤C1h

( 1
|z − w| +

1
|z − w̄|

)
L(dz)

≤ C

h2 |Ωλ,h|
1
2h−n+1 ≤ Ch−n ,

where we used (5.3) and Lemma 6.1.

It remains to estimate the integral of the last term in (6.7) (the sum over
|w− λ| > C1h). That term is exactly the left hand side of (6.5), and we rewrite it
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again as in (6.6)3 The second term in (6.6) is treated the same way as before, and
the first term is estimated using (6.4):

1
h2

∫ ∫
Ωλ,h

∑
w∈Res (P(h))∩Ω

|w−λ|>C1h

| Imw|
|Re z − w|2L(dz) ≤

C

h

∫ λ+Ch

λ−Ch

∑
w∈Res (P (h))∩Ω

|w−λ|>C1h

| Imw|
|t−w|2 dt

≤ C
h
Ch−n+1 ≤ C̃h−n ,

and this estimate completes the proof of the lemma. ✷

Proof of Theorem 2. In the notations of (4.11) and (6.1), and for 0 < δ < h/C we
get

σ(λ+ δ, h)− σ(λ− δ, h) = 1
2πi

∫ λ+δ

λ−δ

s′(t, h)
s(t, h)

dt

=
1
2πi

∫ λ+δ

λ−δ

g′λ(t, h)− ∑
z∈Res (P (h))∩Rε

|z−λ|<h

2i Im z
|z − t|2

 dt
=

∑
z∈Res (P (h))

|z−λ|<h

ωC−(z, [λ− δ, λ+ δ]) +O(δ)h−n ,

which is the statement of the theorem.
By using Lemma 6.2 in place of Proposition 4.4 we obtain, under our as-

sumptions, a slightly stronger version of the h-local trace formula of Bony and
Sjöstrand [3]4:

Theorem 3 Let Ω � C be an open, simply connected neighbourhood of 0, such that
Ω ∩ R is connected. Let χ ∈ C∞c (R, [0, 1]) satisfy

χ(x) =
{
0, d(Ω ∩ R, x) > 2ε,
1, d(Ω ∩ R, x) < ε,

and let f be holomorphic in a neighbourhood of Ωh = λ + hΩ, λ ∈ Ω ∩ R. Then,
under the assumptions of Theorem 2 we have

t̃r
(
χ

(
P (h)− λ

h

)
f(P (h))

)
=

∑
z∈Res (P (h))∩Ωh

f(z) +EΩ,λ,f,χ(h) ,

|EΩ,λ,f,χ(h)| ≤M(χ,Ω, λ)h−n+1sup {|f(z)| : 0 < d(z,Ωh) < 2εh , Im z ≤ 0} ,

where t̃r is defined in (2.9).
3There is something seemingly circular about this argument: we are estimating the left hand

side of (6.5) by its integral! The gain comes precisely from that integration.
4That this formula is implicit in the Breit-Wigner approximation was suggested to us by J.

Sjöstrand.
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Proof. We follow the proof of Theorem 1 using Lemmas 6.1 and 6.2:

t̃r
(
χ

(
P (h)− λ

h

)
f(P (h))

)
=∑

z∈Res (P (h))

χ̃((z − λ)/h)f(z) + 1
πh

∫ ∫
C−

(∂̄zχ̃)((z − λ)/h)f(z)
∂zs(z, h)
s(z, h)

L(dz) ,

where χ̃ is an almost analytic extension of χ. As in the proof of Theorem 1, the
first term, modulo the desired error, gives us the sum over resonances, while the
second term is estimated using

1
πh

∫ ∫
C−

|(∂̄zχ̃)((z − λ)/h)||g′λ(z, h)|L(dz)

≤ 1
h
C|Ωh +D(0, 2εh)| max

Ωh+D(0,2εh)
|g′λ| ≤ Ch−n+1 ,

where by Cauchy’s inequality,

max
Ωh+D(0,2εh)

|g′λ| ≤ C max
|z−λ|≤Ch

|gλ|/h = O(h−n) ,

and

1
πh

∫ ∫
C−

|(∂̄zχ̃)((z − λ)/h)|
∑

w∈Res (P (h))∩(Ωh+D(0,2εh))

(
1

|z − w| +
1

|z − w̄|

)
L(dz)

≤ 1
h
Ch−n+1|Ωh +D(0, 2εh)|

1
2 ≤ C̃h−n+1 ,

by (5.3) and Lemma 6.1. ✷

Remark. It is quite likely that by reversing the argument in the proof of Theorem
3, one can deduce the Breit-Wigner approximation from the h-local trace formula
of Bony and Sjöstrand [3].

7 Resonances for bottles

In the same spirit as in Sect.5, we now discuss resonances for “bottles”, that is for
for black box perturbations, depending on a parameter which does not change the
size of the black box and keeps the Laplacian outside fixed.

In the classical case (P (h) = h2P ) but for a much more general class of
operators, the result was proved by Sjöstrand [22],[23] by a method which did not
involve scattering theory. In our approach, we exploit the fact that the constant in
(4.8) depends only on the size of the black box, not on its “inside”. For the sake of
clarity we assume in this section that σ(P (h))∩(0,∞) = ∅. That is not essential, as
in the general case, we add the spectral contribution to the Birman-Krein formula
(2.10).
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We start with a purely complex-analytic result (which for simplicity we for-
mulate only in the context of scattering):

Proposition 7.1 For γ > 0, let Ωγ = (a − γ, b + γ) − i(0, c), 0 < a < b, 0 < c,
and let z0 = z0(h), z̄0 ∈ Ω0 satisfy Im z0(h) > 2δ > 0, with 0 < δ < 1 fixed.
Suppose that ψ±

ε ∈ C∞c (R; [0, 1]) have the properties that ψ±
ε ≡ 1 in Ω±ε ∩ R and

suppψ±
ε ⊂ Ωε±ε ∩ R. Then we have

# Res (P (h)) ∩ Ω2ε ∩ {Im z < −δ} ≤ C1h
−n − C2 log |s(z0(h), h)| , (7.1)

and ∫
ψ−
ε (λ)

dσ

dλ
(λ, h)dλ−E−

ε (h)

≤ #
(
Res (P (h)) ∩ Ω0

)
≤
∫
ψ+
ε (λ)

dσ

dλ
(λ, h)dλ+E+

ε (h) , (7.2)

where, in the notation of (4.1),

|E±
ε (h)| ≤ A0(

√
δ+ ε)

(
# Res (P (h))∩Ω3ε \Ω−ε

)
+A1h

−n−A2 log |s(z0(h), h)| ,

with the constants A0 = A0(R0,Ω0), Ai = Ai(R0,Ω0, ε, δ), i = 1, 2, which do not
depend on P (h).

Proof.We first observe that Lemma 3.1, Jensen’s inequality, and (4.8) imply (7.1),
and that there exist z’s satisfying

log |s(z, h)| ≥ C1h
−n − C2 log |s(z0(h), h)| , z ∈ Ω2ε ∩ {Im z > δ/2} ,

for any δ > 0. The factorization argument, as in the proof of (4.11), now shows
that for z ∈ Ω2ε, | Im z| > δ, we have

s(z, h) = egδ(z,h)Pδ(z̄, h)
Pδ(z, h)

, Pδ(z, h) =
∏

w∈Res (P (h))∩Ω3ε
Imw<−δ/2

(z − w) , (7.3)

with

|g′δ(z, h)| ≤ C3h
−n −C4 log |s(z0(h), h)| , z ∈ Ω2ε ∩ {| Im z| > δ} ,

where the new constants again depend only on R0 as far as the dependence on
P (h) is concerned.

We now proceed as in the proof of Theorem 1: let ψ̃±
ε ∈ C∞c (C; [0, 1]) be an

almost analytic extension of ψ±
ε satisfying

supp ∂̄zψ̃±
ε ⊂ Ωε±ε \ Ω±ε .
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Green’s formula then gives∫
ψ±
ε (λ)

dσ

dλ
(λ, h)dλ =

∑
z∈Res (P (h))

ψ̃±
ε (z) +

1
π

∫ ∫
C−

∂̄zψ̃
±
ε (z)

∂zs(z, h)
s(z, h)

L(dz)

= @(Res (P (h)) ∩ Ω0) +
∑

z∈Res (P (h))\Ω0

ψ̃±
ε (z)

+
∑

z∈(Res (P (h))∩Ω0)

(
ψ̃±
ε (z)− 1

)
+
1
π

∫ ∫
C−

∂̄zψ̃
±
ε (z)

∂zs(z, h)
s(z, h)

L(dz) ,

and if we call the sum of the last three terms on the right hand side E±
ε (h), then

(7.2) holds and we need to estimate E±
ε (h). We first use (5.3) and deduce from

(4.11) (just as in the proof of Theorem 1) that∣∣∣∣∫ ∫
−δ≤Im z≤0

∂̄zψ̃
±
ε (z)

∂zs(z, h)
s(z, h)

L(dz)
∣∣∣∣

≤ C0
√
δmax

(
h−n,# (Res (P (h)) ∩ (Ω3ε \ Ω−ε))

)
.

For Im z < −δ we use the improved factorization (7.3) which, again as in the proof
of Theorem 1, gives∣∣∣∣∫ ∫

Im z<−δ
∂̄zψ̃

±
ε (z)

∂zs(z, h)
s(z, h)

L(dz)
∣∣∣∣ ≤ C5h

−n − C6 log |s(z0(h), h)| ,

where now Ci, i = 5, 6, depend on δ, z0, R0, ε and the domain Ω0. Next, applying
the estimate (7.1), we obtain∣∣∣∣∣∣

∑
z∈(Res (P (h))\Ω0)

ψ̃±
ε (z)

∣∣∣∣∣∣ ≤ C7h
−n − C8 log |s(z0(h), h)|

+ C9(δ + ε) @
(
Res (P (h)) ∩ (Ω2ε \ Ω−ε)

)
.

We estimate in a similar way the term involving (ψ̃±
ε − 1) and this completes the

proof.
✷

Lemma 4.6 allows us to estimate log |s(z, h)| from below in a way independent
of the perturbation, and hence we can apply Proposition 7.1 to obtain

Theorem 4 Suppose that P (h) satisfies the assumptions of Sect.2. and that n ≥ 5.
Let

Nδ([a, b], h) = #Res (P (h)) ∩ {z : a ≤ Re z ≤ b , δ ≤ | Im z| ≤ c}
with c > 0 fixed, 0 < a < b. Then for any δ > 0 we have

Nδ([a, b], h) ≤ C(R0, δ, a, b)h−n , 0 < h ≤ h0(R0, δ, a, b) .
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If N �([a, b], h) = #
(
σ(P �(h)) ∩ [a, b]

)
is the counting function for the refer-

ence operator, then for any ε > 0 we have

N �([a+ ε, b− ε], h)−E−(h) ≤ N0([a, b], h) ≤ N �([a− ε, b+ ε], h) +E+(h) ,

0 ≤ E±(h) ≤ Cεh−n
	

+ C(R0, ε)h−n + C(ε, P )h−n
	+1 .

Remark. The theorem is stated in a weaker form than actually available: if we use
the optimal version of Proposition 4.1 discussed in the remark following it, we can
replace h−n

	

by a better bound in the estimates on E±(h).
Proof. When we apply (2.12) and (7.2) we only need to check that∫

ψ±
ε (λ)

d

dλ
(σ(λ, h)− σ(a±, h))dλ = −

∫
d

dλ
ψ±
ε (λ)(σ(λ, h)− σ(a±, h))dλ

= −
∫

d

dλ
ψ±
ε (λ)

[
N �([a±, λ], h) +OP (h−n

	+1)
]
dλ

≥ N �([a+ ε, b− ε], h)−Oε,P (h−n
	+1), −

≤ N �([a− 2ε, b+ 2ε], h) +Oε,P (h−n
	+1), +

,

with a+ = a − 2ε, a− = a. An application of Proposition 4.1 to estimate
#Res (P (h)) ∩ (Ω3ε \ Ω−ε) completes the proof (we take δ = ε2 and we change ε
in the estimate involving N �([a− 2ε, b+ 2ε], h)). ✷

With this in place we immediately obtain Sjöstrand’s bottle theorem [23] for
compactly supported perturbations:

Theorem 5 Suppose that P satisfies the assumptions of Sect.2 with h = 1. Let

Nδ(r) = #{z ∈ Res(P ) : 1 ≤ |z| ≤ r ,−π/2 < arg(z) < −δ}.

Then for δ > 0 we have

Nδ(r) ≤ C(δ,R0)rn , r ≥ r0(δ, P ) , (7.4)

where C(δ,R0) does not depend on P .
For any ε > 0, and r ≥ r1(ε, P ), we have

N �((1− ε)r)−E−(r) ≤ N0(r) ≤ N �((1 + ε)r) +E+(r) ,

0 ≤ E±(r) ≤ C0εr
n	

+ C1(R0, ε)rn + C2(ε, P )rn
	−1 .

(7.5)

where, as indicated, the constants C0 and C1(R0, ε) in the error terms do not
depend on P , and where N �(r) = @

(
σ(P �) ∩ [1, r2]

)
is the normalized counting

function of eigenvalues of the reference operator P �. When n ≥ 5 then r0(δ, P ),
and r1(ε, P ) depend only on R0.
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Proof. This is a straightforward application of Theorem 4. We only comment on the
case of n < 5. In that case, we can apply the proof of Lemma 4.6 to obtain a desired
lower bound on the scattering determinant since we always have log |s(z)| > −CP
at some z, Im z > 0, |z| ≤ C. We refer to [19] for more details. ✷

To illustrate the theorem we conclude with two examples which are implicit
in [23]:

Example 7.1 Let P = −∆g be a metric perturbation of the Laplacian which satis-
fies

volg(B(0, R0))� Rn0 .

Then the number of resonances in any conic neighbourhood of the real axis is
comparable to rn, if r is sufficiently large. In fact, a scaling argument shows that
the constants depending on R0 in (7.5) are all bounded by CRn0 . This generalizes
the estimate given in [25, Example 3].

Example 7.2 Suppose that N �(r) ∼ Crp logq r where p + q > n. Such examples
can be obtained by considering hypoelliptic operators – see [26, Example 5.1] and
references given there. Here we use a stronger version of Theorem 5 as discussed
in the remark following the statement of Theorem 4. We then obtain that

N0(r) = Crp logq r(1 + o(1)) ,

which was first proved by Vodev [33].

Note added in proofs. By combining ideas of this paper with the techniques of [23],
some of our results have been generalized to larger classes of perturbations by V.
Bruneau and the first author. A new, slightly simpler, proof of Theorem 2 has
been provided there as well.
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