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Resonances of the Dirac Hamiltonian
in the Non Relativistic Limit

L. Amour, R. Brummelhuis, J. Nourrigat

Abstract. For a Dirac operator in IR3, with an electric potential behaving at infin-
ity like a power of |z|, we prove the existence of resonances and we study, when
¢ — 400, the asymptotic expansion of their real part, and an estimation of their
imaginary part, generalizing an old result of Titchmarsh.

1 Introduction

We are interested in the following Dirac operator D(c) in IR3, depending on a

parameter ¢ > 1,
_ V(x) co- D,
D(e) = < co-D, V(z)-—2c > ‘ (1)

Here o - D, denotes 01D + 02D3 + 03 D3, where the o; are the Pauli matrices,
and V is a C'*° real-valued function, satisfying the following hypotheses.

(H1) We assume that V' can be extended in an holomorphic function in the fol-
lowing open set of €3, for some positive constants ¢ and r,

Q =S, UB(0,r) (2)

where S, is the complex sector {z € €3, |Argz;| < a, Vj =1,2,3}, and B(0,7) be
the open complex ball with center 0 and radius r. We assume also that for some
positive constants k, mg and R, we have

[V (2)] < mo(1+ |27, Vze S, (3)
(H2) We have also, if z € R? and |z| > R,
j2* < moV(2). (4)

(H3) We have also, if z € R? and |z| > R,

ov
k< P 5
ol < moz - 5 5)
We see easily that D(c) is essentially self-adjoint, and Titchmarsh proved, when
V is radial, that D(c) has the whole real line as a purely absolutely continuous

spectrum (see Thaller [14]). Let H be the corresponding Schrédinger operator

H= —%A—kV(m). (6)
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The spectrum of H is discrete. We shall prove that, when ¢ is large enough, D(c)
has resonances near the eigenvalues of H and we shall study their asymptotic
behaviour when ¢ — +4o00. Recall that, in the semiclassical limit, the asymptotic
behaviour of the resonances is studied in Parisse [9] (see also Balslev-Helffer [2]).
For the Dirac operator in one dimension, with potential V' (x) = ||, Titchmarsh
[15] gave an explicit computation of the resonances (see also Veselic [16] and Thaller
[14]).

For the definition of resonances, we need the analytic dilations (see Aguilar-
Combes [1]). For each 6 € € such that |36| < a, we denote by D(0, c¢) the following
Hamiltonian () .

V(e’x e Yco- D,
D0, ¢) = ( e lco-D, V(efz)—2c? ) ’ (7)

with domain
BY(R*,€*) = {u € H'(R?,€"), |z["u € L*(R?,C*)}. (8)
We shall prove in Section 2 the following theorem.

Theorem 1 D(6,c) has pure point spectrum for small positive 0. Each eigenvalue
Aj(0,¢) is isolated and of finite even multiplicity, and does not depend on 6.

The eigenvalues of D(6,c), denoted by E;(c) since they do not depend on 6, will
be called resonances. We shall prove in Section 3 the following theorem.

Theorem 2 If 36 is small enough, we have the following properties.

(i) Let K be a compact set of € containing no eigenvalue of H. Then, if ¢ is
large enough, K contains no resonance.

(ii) Let D be a compact disc centered at an eigenvalue Ey of H, of multiplicity
u, and containing no other eigenvalue. Then, if ¢ is large enough, D contains a
finite number of resonances, and the sum of their multiplicities is 2.

Theorem 3 If S 6 is small enough, we have the following property. If D is a disc
as in Theorem 2, if Ey is a simple eigenvalue of H, then D contains, for c large
enough, one resonance A(c) of multiplicity 2, and there exists a C* function f in
a neighborhood of 0 such that f(0) = Ey and, for c large enough

Me) = (). )

This theorem is proved in Section 4. Recall that, when V(z) = O(< =z >7%)
(s > 0), if Ey is an isolated simple eigenvalue of H, Grigore-Nenciu-Purice [3]
proved that for ¢ large enough, D(c) has a double eigenvalue A(c) defined by an
equality like (9), but where f is analytic. If V' is a polynomial, we may think that
the function f in (9) belongs perhaps in some Gevrey class related to the degree
of V.
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Now, we can study the imaginary part of the resonances. We consider the
following Agmon metric ds? in IR?, depending on ¢ (see Wang [17])

1
ds? = C_2V(:L')+ (2¢2 — V(2))4 da?, (10)
where z = sup(z,0). For each £ > 0, we consider the ”sea”
M(c,e) = {z € R®, V(x) > (2 —¢)c?}. (11)

We denote by S(c,¢) the distance, for the metric ds?, of the origin to M(c, ).

Theorem 4 Under the hypothesis of Theorem 2 (point ii), for each € > 0, there
exists Ce > 0 such that the resonances E;(c) contained in D satisfy

IS Ej(c)| < Coe=@2)5(e), (12)

We are very grateful to X.P. Wang for useful discussions about the exterior
scaling, used in Section 5.

2 Proof of Theorem 1.

We remark first that D(c) is essentially self-adjoint, since we have easily the fol-
lowing implication :
ue L*(R%,CY), S2<0, (D(c) —2)u=0=u=0. (13)
Now c is fixed. It can be seen using Cauchy’s estimate that (H1) implies
102V (2)] < Co(1 4 |2])F~ 1o, Vz € Sa. (14)

From the calculus adapted to the harmonic oscillator, straightforward modi-
fications are easily made, to obtain a calculus for global elliptic pseudo-differential
operators, adapted to first order systems with a potential behaving like |«|*. There-
fore, we briefly give the main aspects. See Shubin[12] for more considerations.

For each m € IR, let I'™ be the space of d € C*°(IR®, M4(C)) such that for
all & and 3 in IN3, there exists C,p such that, for all (z,€) € RS,

_ el
10208 d(x,€)] < Cap(1 + |z|F + [¢)™F ~1AL.

For each d € T, let Op(d) be the corresponding operator, associated to d by the
standard calculus

(Op(d)p) () = (2m)8 / IOy Ooly) dyde, Vi € SIRHTY).

The operator Op(d) (d € T'"™) is said globally elliptic if, for some positive real
number C,
(J2[* + [)™ < C(1 + [Detd(x, §))M/*,

for all (z,¢) € RC.
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The notation (-,-) stands for the inner scalar product of L?(IR?;C*) and || - ||
denotes the corresponding norm. For j € IN, let

BJ'(IR3;(D4) = {(b € LQ(IR3;(D4), ang(b € LQ(IRF);(L%)7 for % + 18] < j} .
In particular, for d € T™, Op(d) maps B*~™(IR*;C*) into B*(IR*;C*) for any
s € IN.

It is seen in Lemma 3 that for small positive S0, the family D(6,c) is Kato
analytic. The resonances are defined as the eigenvalues of D(0, ¢), for small positive
3.

Lemma 1 There exists 79 > 0 such that, if 0 < S0 < 79 then D(6,c) is globally
elliptic.

Proof: The symbol d of D(0, c) satisfies
Det d(z, &, ¢,0) = (Vo(z) (Va(z) — 2¢%) — e 2|¢2)? (15)

where Vy(z) = V(e?x). We write § = o + i1, 0,7 € IR and K, C, 7y denotes three
positives real numbers independent of 2 and 7. The real numbers K, C' (resp. 79)
may increase (resp. decreases).

Following the analyticity of V', there exists 79 > 0 such that, for 0 < 30 < 7y,
for all z € R3,

3
Vo(x) = V(ze?) +ite® ;xj%(xeo) + 72 M (z,0).
There exists K, C, 79 > 0 such that
VO €T with 0 < S0 < 79, Vx| > C, |M(z,0)| < K|z|*. (16)
Then, for some K,C, 19 > 0,if 0 < S0 < 79, if |z| > C

K~'r < ArgVpy(x), Arg(Vo(z) — 2¢%) < K,

Vo ()], [Vo(z) — 2¢*| > K~ "[a]". (17)

From (17), there exist K, C, 79 > 0 such that, for all # and x such that 0 < 30 < 7
and |z| > C,
K17 < Arg(Vo(2)(Va(x) — 26%)) < K. (18)

Then (18) shows that, for some K, C, 79 > 0 (19 < 7/2), if 0 < S0 < 79, if || > C,
then [Vy(z) (Vo(z) — 2¢*) — e >[¢]?|
> sin(K 1) |[Vy(2) (Vg () — 2¢2)| + ¢ sin(27) €)% (19)

The proof of Lemma 1 follows from (15),(17),(19). O
Theorem 1 will follow from the two Lemma below.
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Lemma 2 There exists 19 > 0 such that, if 0 < S0 < 19, then the resolvant set of
D(6,c) is not empty.

Proof. For m € N, let ™ be the space of a(y+,+p) € C°(IRS, My(T)), depend-
ing on a parameter p > 1, such that, for all @ and 8 in IN3, there exists Cy g,
independent on p, such that, for all (z,¢, p) € IR® x [1,4+00),

(0% M7mf
10207 a(x, €. p)| < Cap(1+ €] + |2]F + p)m =+~ 1AL,

The operator Op(a(p)) (a € I'™), is said globally elliptic with parameter p,
if there exists C' > 0 such that, for all (z,&,p) € IR® x [1, +00),

(€1 + |2F + p)™ < C(1 + Det a(z, &, p)|)*/*.

As in the proof of Lemma 1, § = o + i1, 0,7 € IR and K, C, 7y are three positives
real numbers independent on x and 7 which may change. Let p > 0, a € [0, 27),
and set P = D(0, c)+pe'®. The symbol p(z, &, p) of P (associated with the standard
calculus) belongs to I'l. Take K, C, 7y such that (17) holds, and set & = K. There
exists K, C, 7o (possibly different) such that, if 0 < S8 < 79, if |x| > C then

Klr< Arg(Vp(z) + pe'®), Arg(Vy(x) + pe'® — 2¢%) < K,
V(@) A+ pe™®| = cos(Km)(|Vp(x)| + p) = 1(|ff|k +0),
Vo () + pe'™ — 2¢%| = cos(KT)([Va(x) — 26| + p) = K~ (2" + ). (20)

Then (20) shows that, for some K,C, 19 > 0 (19 < 7/2),if 0 <30 < 70, if [2| > C,
then |(Vp(z) + pei®) (Vy(z) + pe® — 262) — 220 |¢[?]

> sin(K~10)| (Vo (@) + pe®) (Va(w) + pei® — 2¢%)| + 2sin(2r)[¢2. (21

Following (20),(21), P is globally elliptic with parameter p. Then, there are q(p)
and 7(p) in T~1 such that

(D(0,¢) + pe'*)Op(a(p)) = I + Op(r(p))- (22)
Moreover, sup,,~1 p||Op(r) | z(2(rs)) < 0o. Thus, the r.h.s. of (22) is invertible for
a sufficiently large p. This proves Lemma 2. ]

Lemma 3 There exists 7o > 0 such that the family of operators {D(0,c¢), 0 < 30 <
To} @s analytic in the sense of Kato.

Let 79 be as in Lemma 1, and set § € € with 0 < &0 < 79. The existence of
parametrixes for the global elliptic operator D(6, c) shows that

30 >0, Vo e B, [¢p <C(IDO,c)o| +ll9]l) -

It implies that, for all € € with 0 < 36 < 79, D(6,¢) is closed on B!.
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There exists another 79 > 0 and K > 0 such that, for all §,h € C satisfying
0 < 32,30 < 19 and for all x € R3,

2 ov
(V(ze?™ =V (ze®))/h = €’ ;xjaTj(azee) + hN(z,0,h),
|602$] (ze”)[, IN(z,0,h)| < K(x)". (23)

Fix u,v € L?(IR?, (z)?*dz), and let F be the map: 6 — (Vou,v)r2(rag). (From
(23),if 0 < S0 < 79, then (F(0+h)— F(0))/h has a limit as h — 0 (0 < Sh < 79).
For each u € L2?(IR?, (z)?*dx), 0 — Vpu is a (weakly) analytic vector valued
function. Then, for each ¢ € B, D(0,c)¢ is a vector valued analytic function of
fe{zeC, 0<Sz< 10}

The above closure and analyticity results, added to Lemma 2, imply that
{D(0,c), 0 < 30 < 70} is an analytic family of type (A) [7, VIL.2]. O

Proof of Theorem 1. Using Lemma 2, there exists z € € such that (D(f,c) — z)~!
maps L2(IR3;C*) into B!(IR?;C?), hence is a compact operator of L?(IR3;C*).
Therefore, the spectrum of D(f,c¢) is a sequence of eigenvalues A;(c,6) of finite
multiplicity. It is clear that D(0,c¢) = U(RO)D(30,c)U(RO)~L, that is to say,
D(0, ¢) is unitarily equivalent to D(3 6, ¢). Therefore each A;(c, #) does not depend
on RN 6. In addition, Lemma 3 implies that, each X;(c, ) depends analytically on ¢
with, at most, algebraic singularities. As [11, pf of th1(i)], it can be proved using
Puiseux series, that each \;(c,#) is a constant function of §. The multiplicity of
each of these eigenvalues \;(c, ) is even. This can be proved like in Parisse [9].
This completes the proof. O

3 Proof of Theorem 2.

By arguments similar to that of Section 2, the spectrum of the following
Schrédinger operator

Hy = —%e*%)A -V (e (24)

is discrete, and the eigenvalues are the same as H, with the same multiplicities.
(The only difference with Section 2 is that the sign of & 6 plays no role, and there
is 7 > 0 such that the family (Hp)g¢|<- is analytic in the sense of Kato). If z is
not in this spectrum, we set

R.poe = ( (Ho _2)71% 8 > (25)

We set also
BT (o) ={0€C, 10|<1, 0<S0<by}
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and
Vo(z) = V(ze?). (26)

Lemma 4 There exists 6 > 0 and R > 0 such that, for each € Bt (6y), there
exists Ag > 0 such that, if |x| > R

<z >F< 4,3 Vi(a), <z >F< ApSe? V(). (27)

Proof. By the hypotheses (H1) and (H2), we can write, if § = o + it € BT (a/2)
L ov

Votir(z) = Vo (z) +iTe E zj—(2e”) + O(1% < = >F). (28)
=1 an

If |z| is large enough and 0 < S0 < 6y, (where 6y depends on the constants of
hypotheses (H2) and (H3)), there exists Ag > 0 such that (27) is valid. m|

For each € > 0, we set
1 0
(1), -

The points i) and ii) of Theorem 2 are consequences of the points ii) and iii)
of the following Lemma.

Lemma 5 i) Let K be a compact set of C and 6 such that 0 < S0 < 6y. Then
there exists By > 0 (independent of ¢) such that, if ¢ is large enough, for each

u= < Zl ) in S(R,€*) (u; € S(R3,C?)), for each z € K and ¢ > 1, we have
2

| <a>F2u| + || <z>"FoDu|| +|Jugl < ...

oo < By (|A;H(D(6,) = 2)A; "l + [[ua]) - (30)

it) If K contains no eigenvalue of H, there exists Ag > 0 (independent of c)
such that, if c is large enough

UllL2(r3o4) < Agl|A ,€) — 2)AL Ul L2(R3 @4)
[[ul < Apl|ATHD(B, ¢) — 2)A7 | (31)
for all u € S(IR?,€*), and z € K, and therefore,

||UHL2(IR3,(D4) < A9||(D(9, C) — Z)'LLHLZ(IRS,(D4). (32)

i11) If D is a disc centered al an eigenvalue of H, and containing no other
eigenvalue, then, if 0 < 30 < b,

lim sup |[(D(6,¢) — 2)"" — R.p0|| = 0. (33)
€—=+00 ;oD
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c

Proof of point i). The equality A;1(D(0,¢) — 2)A u = ( J; > is equivalent to

f=WVo—2)ur + e_OU.DUQ, (34)

Vy —
g=-e¢%.Duy + ( 6 5 S 2) Us. (35)
c
It follows from the two last equalities that

Y 5 S 2) ug,uz) = (w1, e’ 0f) — (guz)  (36)

C

(e (Vo — 2)ur) — <(

and therefore, taking the imaginary parts in the last equality and applying Lem-
ma 4,
| <z >k/2 w|*+c?| <z >k/2 wl* < ...

oo < By [P+ lunll® + Nglllluzll + ™2 |luz]|?] (37)

Taking now the real parts in (36), we obtain, with another By,
[uz]|* < Bo [[IFII* + llua|* + llglllluzll + =2 [luz]?] -

The inequality (30) (with another By) follows easily, if ¢ is large enough, from the
two last ones.

Proof of point ii). Suppose that the inequality (31) were false. Then there would
exist a sequence (u,,) in S(IR3,C*), a sequence (z,) in K, and a sequence ¢,, — +00
such that

[[un]| =1 IAZHD(O, cn) = 20) AL M unl| — 0. (38)

Un
and AZ1D(0, cn) A7 uy = ( ?;” ) If we set Vp(2) = V(ze?), we have the relations

(34) and (35) with f, wi, us replaced by fn, ¢©n, ¥n. By (30), the sequences
< a >F? ¢, and < © >7% 5.Dyp, are bounded in L?(IR®,€?). Note that the
operator < z >* + < 2 >7F (0.D)? < z >7* has compact resolvant. By these
properties, we may assume (after taking subsequences) that there exist ¢ and 1
in L2(R3,0?) such that ¢, — ¢ (strongly) and ¢, — 1 (weakly) in L?(R3,@?).
We have

Taking a subsequence, we can assume that z, — z € K. Let us set u,, = ( Pn >

(Vo —2)p+e oDy =0 (39)
and
e %0.Dp — 2 =0, (40)

and therefore (Hy — z)p = 0. If ¢ = 0, it follows that ||¢,| — 0, and, since
I £l + 1lgnl — O, the point i) shows that ||1),,|| — 0, and this gives a contradiction
since [|¢n]|? + [[1n]|?> = 1. Therefore, there exists ¢ # 0 in L?(IR3,C?) such that
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(Hyp — 2)p = 0, and there is a contradiction since z € K and K contains no
eigenvalue of Hy. The inequality (31) is proved, and (32) follows easily.

Proof of point iii) Suppose that there exist  such that 0 < 36 < 6y, a sequence
(F,) in L?(IR3,€*), a sequence (z,) in D, a sequence ¢, — +00, and § > 0 such
that

[ Fnll =1, 1(D(O, cn) — Zn)_an — R, 000 Pl > 6. (41)

Let us set

F, = ( I ) , Un = (D6, cn) — 20) "' F = ( o ) L4

In

By the point ii) (applied to the compact D), the sequence ||U,]| is bounded. By
the point i) (applied to the function A, U, ), we have

I <a>*2 gul 1| < & >7* 0.Doull + eallynll < Boll Full + llpull] = O(1). (43)

Therefore |1, || — 0, which implies, together with (41), that, for n large enough

5
lion = (Ho = 20) " full = 3 (44)

By (43), we may assume, (after taking a subsequence), that there exist ¢ and 1
in L?(R3,C?) such that ¢,, — ¢ (strongly) and ¢, 1, — 1 (weakly) in L?(R3,C?).
We may assume also that z, — z € dD and that f, weakly converges to f €
L?(IR3,€*). Tt follows that

(Vo(z) — 2)p+ e Yo Dy = f,
e 0Dy — 2 =0,

and therefore (Hyg — z)¢ = f. Since the operator (Hp — z)~
assume also that

1 is compact, we may

(Ho — 20) " fn — ¢ € L*(IR?,C?) (45)

(strong convergence). We have (Hy — 2)p = (Hp — 2)¢ = f, and there is a contra-
diction with (44) since ||¢ — @|| > 6/2 and z is not in the spectrum of Hy.

Proof of of Theorem 2. The point i) is a consequence of Lemma 5 (point ii). For
the point ii), let Ey be a simple eigenvalue of H. Let D be a disc, centered at Ey,
with radius p > 0, containing no other eigenvalue of H inside it, and I' be the
boundary of D. By the point i), we know that, for ¢ large enough, D(0,¢) — z is
invertible for all z € I'. We define then an operator Iy, by

1
HOC =

=5 F(D(H,c) —2)tdz (46)

Similarly we define Iy by

1
o 227T/1—~ foct® (47)
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where R,p is defined in (25). It follows from Lemma 5 (point iii) that

lim |[Hgc —poc|| = 0. (48)
The point ii) follows easily. a

4 Proof of Theorem 3.

If D = B(Ey,p) is a disc like in the Theorems 2 and 3, and if Ey is a simple
eigenvalue of H, we know, by Theorem 2, that, for ¢ large enough, D(6,¢) has
only one eigenvalue A(c) of multiplicity 2 in B(FEjy, p). Since Ejy is also a simple
eigenvalue of the dilated Schrodinger operator Hy defined in (24) (section 3), let
g be a normalized eigenvector (Hgpg = Eopg, ||pe|| = 1). By the global ellipticity
of Hy, we know that ¢ is in S(IR?). Let

0
0

Yo = N E (49)
0

If Iy, is defined in (46), (where I is the boundary of D), Iy is in the eigenspace
of D(6,¢) corresponding to the eigenvalue A(c) and, by (48), if ¢ is large enough,
IIp.1p9 # 0. Therefore

(D(8, c)lgctpg, Moctpp)
Tgctba]|? ’

(HoIlpoo g, Mgocthy)
[Mgocla]|?

Ac) = Ey = (50)

(since Hgoo’(/)g = ¢9)

Lemma 6 Let 1) be a function in S(IR?,C*) and ' be the boundary of D = B(Ey, p).
Let F(g, z) be the function defined, for € small enough and z € T" by

F(e,2) = (D(0,1/2) — 2) ™", if e#0, (51)

F(&‘, Z) = RZQOO¢7 'Lf e=0 (52)

where R,po is defined in (25). Then e — F(g,z) is C™ from some neighborhood
of 0 to H = L*>(IR3,@*), and depends continuously of z in T.

Proof. It A, is the operator defined in (29), we can write, by (34) and (35)

AZY(D(O,¢) —2)A; = A+ 2B (53)

( Vo—2 e b.D {0 0
A_<e_90.D -2 )’ B_(O ng>'

where
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By Lemma 5, there is ty > 0 such that A+tB : B! — H is invertible if 0 < ¢t < ¢,
and there exists K > 0 such that

I(A+¢B)~ fI| < KIIf1I, 0<t<ty, VfeH (54)

Moreover, if we set (A +tB)~!f = ( ZE;; ), we have, by Lemma 5

| <z >*2 )+ <z >"Fo.Du®)|| +|v@)] < ...

L SK A+ Ju@)]D, 0 <t <ty, vVfeH.
In the other hand, if Hy is the operator defined in (24), and z € T, the operators
D*(Hy — z)~'D# are bounded in L*(IR3) if |a + 8| < 2 (we construct easily a
parametrix of this operator in a suitable class). Therefore, the following operator
S is bounded in H
-0
o ( (Hy — )" e Y (Hy—2)"'0.D )

260

%O’.D(H@ —2)7' “—0.D(Hy—z)"'o.D-1

and it satisfies AS = I. Moreover v € H and (A + tB)u = 0 imply u = 0
(0 <t < tp). It follows easily from these properties that, if f € H, the function
G(t)f defined by

Gt)f =(A+tB)"'f if 0<t<t, G)f =Sf (55)

is continuous in [0, %] to H. Let E be the space of f € H such that, for each m,
< x >" u is in ‘H. Using the commutation relation

zj(A+tB)' = (A+tB) 'z; —ie ’(A+tB) ta;(A+tB)~?
where a; = ( 004 Uoj ), it follows that, for each integer m, there is K, such that
J
| <z>™(A+tB)"'f| < Kpl <z >™ f, VfEE, 0<t<t,

and that, for each f € E, the function < x >™ G(t)f is continuous in [0, £] to H.
It follows that, for each f € E, the function G(t)f is C* on [0,tg] to H, and that

GOVt f = (—1)P(A+tB)" " (B(A+tB)™)" if 0<t<ty (56)

and G (0)f = (—1)?S(BS)Pf. This property can be proved, by induction on p,
using the previous remarks. The Lemma follows easily since F(e,z) = A.G(g?)

A,

Proof of Theorem 3. Since 1)y defined in (49) is in S(IR?,C*), (this can be proved
by using a parametrix of Hy), it follows from (50) and Lemma 6 that the function
g defined in some neighborhood of 0 by

g(e) = A(1/e) if e#0 (57)
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9(0) = Eo (58)
is C*°. We remark that

JD(0,¢)J = Dy, J= ( é _0[ ) (59)
Since 1y defined in (49) satisfies Jiyy = 1)p, it follows that g is an even function of
g, and there exists a C° function f in a neighborhood of 0 such that g(e) = f(g?),
which proves Theorem 3.

5 Imaginary part of the resonances.

In this section, we need another definition of the resonances, using the exterior
scaling. We are very grateful to X.P. Wang for this suggestion. For each € > 0 and
¢ > 1, we have to introduce two auxiliary Hamiltonians : one of them (denoted by
Dy;5(0,¢)) is obtained from D(c) by an exterior complex scaling (cf. Hunziker [6]),
and the other one, denoted by Dy(c), is obtained from D(c) by a modification of
the potential (cf. Wang [17] and Parisse [9]).

For the construction of the distorted operator Dg;s(6,c¢), we use, for each
e € (0,1), a function ¢ € C*(IR) such that ¢(t) = 0if t <2 — 5 and ¢(t) = 1 if
t > 2. For each § € € and z € IR3, we set

co(z) =2+ 0Xo(z),  Xo(z) =z (‘2@) . (60)

If 0] is small enough, we can define a system pg = (pg,1, po,2,o,3) of differential
operators by

po =" (@) De = SV (), o) = detghla), (61

and a distorted Dirac operator Dy; (8, c) by

4 _ [ Viee(z)) co-p
Dis(0,¢) = ( o P V(W(x))e_gcz ) (62)

Proposition 1 With the previous notations, if |0| is small enough, if D is a disc
as in Theorem 2 (point ii), and if ¢ is large enough, the spectrum of Dg;s(6,c) in
D is the same sequence of eigenvalues E;(c) as for the operator D(0,c) defined in
(7), with the same multiplicities.

For the proof of this Proposition, we shall use the following Lemma.
Lemma 7 There exist A > 0 and 6y > 0 with the following properties. If z € C,
S z2<0,c>1,if0 €, where

S 2|

0= S0< 5
{0C, 0] <0y, 0<\S€<A(c2+\Rez|)}

(63)
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then z — D(0,c) : B! — H = L*(IR?,@*) is invertible and

A

RE

I(z = D@ )" leoy < (64)

Moreover, for each f € H, the function § — (z — D(6,¢))"'f (6 € Q), extended
by (2 — D(c))~Lf for real 0, is holomorphic in Q and weakly continuous in 2.

Proof of the Lemma. If we set u = ( Zl ), the equality (D(0,c)—z)u = f implies
2

S (fu)] =S [ea/%(x)|u(m)|2da:] — S (e?2) [Jul? — 2¢°S (e?) [|uzl®.

By the hypotheses on the potential V', there exist R, A and ¢, independent on all
the parameters, such that

S0 <z >F< AS ['Va(2)] if 10]<1, 0<30<ey, |v|>R

and
1S (e V() | < A0, if 10]<1, 0<30<ep, |z| <R

It follows that, with other constants A and e, if Sz < 0, |6] < 1, 0 < 36 < &,
and if (D(0,¢) — z)u = f, we have

[Szllul® < Al Fllull +361(c* + |Re 2])|[ul?] -
If moreover, 0 < 30 < |Sz|/(2A(c® + |Re z|)), then

2A
[ullz < mll(z = D(0, ))ulln. (65)
By the results of Section 2, it follows that, for each § € Q (with another A),
2z — D(0,c) : B — H is invertible and that the inverse depends holomorphically
on 6 in Q. The result about weak continuity follows from (64), using the implication
(13). O

End of the proof of the Proposition. Once the Lemma 7 is established, the proof of
Proposition 1 follows the classical proof of the Aguilar-Balslev-Combes theorem
[1] (see Hislop-Sigal [5] or Laguel [8] for more details). For real 6, small enough,
we define an operator Uy : H — H by

(Uaf)(x) = €*/2 f(we?) (66)
and an operator Uy : H — H by

(Uof) (@) = Jo(@)"/* f(po(@))- (67)
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Then Uy and (79 are unitary, and we have
D(0,¢) = UsgD(c)U, Dais(0,¢) = UpD(c)U, . (68)

There exists a subspace A in H = L*(IR?,0*) and 6y > 0 such that, for each
f € A, the functions § — Uy f and 0 — Up f extend to holomorphic functions from
B(0,6p) to H, and such that, for each § € B(0, ), Up.A and Uy A are dense in H.
If f,ge A, |0] <6y and S0 > 0, we set

Fig(2,0) =< Ugf, (z = D(0,¢) " Upg >, (69)

Frg(2,0) =< Usf, (z — Dyis(0,¢)) ' Ugg > . (70)
By the results of Section 2 and their analogous for D(, ¢), we know that, if ¢ > 1,
these functions of z are meromorphic in D. Let A and 6y be the constants of
Lemma 7. There is an analogous of Lemma 7 with D(0, ¢) replaced by D(6, ¢), and
we may assume that the constants A and 6, are the same. If Ej is the center of
D and p its radius, let

p
=1{0 C, 0l <6y, 0<S6O< .
o= Plto <0< @t imT+ )

By Lemma 7,if z € D and Sz < —£, the functions  — Fyy(2,0) and § — ﬁfg(z, 0)
are holomorphic in w and continuous in @. By (68), they are equal in @ N IR, and
therefore they are equal in w. Now, if § € w, the functions z — Fyy(z,6) and
z — ffg(z,ﬂ) are meromorphic in D and equal in {z € D, Sz < —£}, and
therefore they are equal on D. A point zg € D is an eigenvalue of D(8, c) (resp. of
Dgis(0,¢)) iff there are f and g € A such that zg is a pole of z — Fy4(z,0) (resp.
of z — ﬁfg(z, 0)). Therefore, these eigenvalues are the same. O

Therefore, under the hypotheses of theorem 2, if D is a disc centered at Ey,
of radius p, and containing no other eigenvalue of H, if E;(c) (1 < j < 2pu) are the
resonances in D, there exists an orthonormal system of functions 1; in L?(IR3,C*)
(1 < j <2pu), such that, if ¢ is large enough,

Dgais (0, c)pj = Ej(c)y;. (71)

Now we shall define a modified real-valued potential, like in Wang [17] and
Parisse [9] in the semiclassical study of multiple wells or resonances for the Dirac
operator. For that, we can choose a function ¢ € C*°(IR), nondecreasing, such
that (t) =tif t <2 — 5, 4(t) <t forall ¢, and ¥(t) =2 — § if £ > 2. Using this
function, we define a modified potential V; (depending on € and c¢) by

Vo) = ¢34 (V(f”)) . (72)

2

Let d(z, Vo, c) be the distance from x € IR? to the origin for the Agmon metric
defined as in section 1, but with the potential Vg instead of V. We set

Y(c,e) = V(a:)zl?Qf—g)& d(z, Vo, c). (73)
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Lemma 8 If e < 1/2, there exists K. > 0 such that

i) V(z) > 202 = c< K.d(z,Vy, c).
i) <x>< K. (1+d(z,Vp,c)), vz € R,
141) S(c,e) < X(e,e).

Proof. Let z € R3, and t — z(t) be a C! curve such that z(0) = 0 and z(1) = z.
Suppose that V(z) > (3/2)c?. Let to and ¢; such that

1
0<tyg <ty <1, V(z(to)) = 5027 V(z(ty)) = ¢,

and ]
5(:2 < V(z(t) <, Vt € [to, t1].

For each t € [to, t1], we have Vo (z(t)) > 2¢? and 2¢® — Vo (z(t)) > £¢?, and therefore

1t 1/2 NG
L o0+ 0 = Va(al)]) ' 0t = S he(e) — sl
0
By the hypotheses on the potential V', there exists K > 0 and K’ > 0 such that,
if ¢ is large enough,

%Cz < [V(a(to)) = V(x(t1))] < Kla(to) — 2(tr)| [< (to) > + < a(tr) >]"

S K a(to) — 2(t) |V (x(t) YR < K| (to) — a(ty)|2 2k

The point i) follows from the last inequalities. For the point ii), we can find R > 0
such that Vp(x) > 1if || > R. If |x| > R and if z(¢) is a curve as above, there
exists to € [0,1] such that |z(t9)| < R and |z(t)| > R if t € [to, 1]. It follows that

1 /O [Vo((t) 4 (262 — Vo(z(t))]

1/2 9
- Pl (®)ldt > ZJa — a(to)

and therefore |z] < R+ 2d(x, Vp, c). The proof of the point iii) is straightforward.

O
We denote by Dy(c) the modified Hamiltonian corresponding to the modified
potential
o V(x) co - Dy
Do(e) = ( co- Dy Vo(z)—2¢% )° (74)

We see easily that Dy(c) is essentially self-adjoint and, using the arguments of
Section 3, we see that, if D is a neighborhood of Ej like in the Theorem 2 (point
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ii), DNIR contains, for ¢ large enough, 2 eigenvalues A;j(c) (1 < j < 2u) of Dy(c)
(if they are repeated according to their multiplicities). Let ¢; = ¢;(c) (1 < j < 2u)
be an orthonormal system of corresponding eigenfunctions,

Do(c)p; = Aj(c)pj, sl =1, (75)

and we have, if p is the radius of D and if ¢ is large enough

[Aj(e) — Ep| < g. (76)

The following result about the exponential decay at infinity of the functions

@;(c) is well-known (see Wang [17]).

Proposition 2 With the previous notations, for each € > 0, there exists C. > 0,
independent of ¢ such that the functions ¢; (1 < j < 2pu) satisfy

— C 1 - ¢
e=Vo.0) 12 4 C—2||e(1 Vo) g |2 < C.. (77)

Proof. The proof is the same as in Wang [17] but, since it is written in [17] in
the semiclassical context, we give a sketch of the proof here. By a direct calculus,
we see, like in Wang [17] (Proposition 2.1) that, for each real-valued function @,
bounded, uniformly lipschitzian on IR?, we have

02/ |V(eq’goj)|2 dx +/ 6(x, c)|e<I’g0j|2 der =0 (78)
RR3 RR3
where

6(z,¢) = Vo(x) = Aj(0)] [2¢2 = Vo(a) + A;(e)] — Ve (x)*. (79)
There exists R, > 0 such that, if 0 <e <1

|z| > R: = Vo(x) > 8(|Eol + (p/2)) _|_4.

262 — &3
If & satisfies ®(0) = 0 and
AVO|* < Vo()+ (2¢* = Vo(x)) (1 - €)? (80)
using (76), we see that
§(z,c) > 2, if x| > Re. (81)

We can find K. > 0, independent on ¢, such that
¢ 2lb(@, 0)| + [@(2)| < K-, if |z| < R.. (82)

It follows that

/ IV(e‘D(””)st(w))lzda:Jr/ @ () de < ... (83)
I[{S

|| >Re
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... <K. 2@ (x)|? do < K.eXe. (84)
2| <Re

Since, for ¢ large enough, [V®(z)|? < 6¢2, it follows from (84) and (82) that
/ 2@V, (x)|? de < (24 12¢*) K_ee. (85)
|z|>Re

Since ; satisfies (75), we remark also that

o2K-

[Ill?o(C)wI\2 +Vogsll* + lic?wsl?|  (86)

[ Ve @ <37
TS e

< KL (87)

where K. is independent on c¢. We used |A;(c)| < |Eo| + (p/2) and Vo(z) <
(2 — (g/4))c?. Therefore, with K” > 0 independent on ¢, and on the function
® satisfying (80)

1
S0, + le®e; | < K. (55)
The Proposition follows by the argument of [17]. 0

Now we shall study the decay at infinity of the orthonormal system of func-
tions 1); satisfying (71), following the technique of Sigal [13]. For that, we set

d(x, Vp, ¢) = inf(d(x, Vp, ¢), 3(c,€)). (89)

Proposition 3 With the previous notations, for each € > 0, there exists K. > 0,
independent of ¢ such that the functions v; (1 <j <2u) satisfy

e < K20, (90)

In the proof, and also later, we shall use a cut-off function defined as follows.
We can choose a function h € C*°(IR) such that 0 < h(t) < 1 for all ¢, h(t) =1 if
t<2—candh(t)=0if t > 2~ 5. We set

x(x) =h (Vc(f)> , vz € R, (91)
We remark that, with A. independent on ¢
|Vx(z)| < Acc™ 2k, (92)
We remark also that
xD(8,¢) = xDo(c) (93)

and therefore
Dgyis(0,¢)x — xDolc) = [Dol(c), x] = e¢(Dx).« (94)
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where
(Dx).a = ( J.((})X) a-(é)X) >

Proof of Proposition 3. Let vy be the boundary of D (a circle with center Ey, and
with radius p). If ¢ is large enough, all the resonances Ej(c) (1 < j < 2u) are
contained in B(FEy, p/2). The same arguments as for Lemma 5 (point ii) show
that, for ¢ large enough

(= = D(6,e)) Y| < K (95)

for all z € 7, where K is independent on c. Let P be the projection defined, for ¢
large enough, by
1
Pf=_—— — Dyis(0,¢)) " fdz.
£ =gz [ (2= Dust0,6) 7 s (96)
First, we shall prove that the functions P¢; satisfy the estimations of the
proposition. It follows from (94) that, for each z € 7, and for all f € L?(IR?,C*),

(2 = Dais(6,6) " (xf) = [xc+ ez = Dais (6,¢)) " (Dx).] (2 = Do) . (97)

Applying this equality with f = ¢, and integrating over «y, we obtain, by (96)

_ ¢ [ (2= Dais(8,¢))""(Dx)-ap; .
- L v dz.  (98)

P(xyj) = xv; + 9j» 9;

We can write
et =edCVo.) P || < eS| P((1=x)ip)) ||+ 40Dy o)+ . (99)

ot [t Vo) g (100)

By (95), the L? norm of the projector P is bounded by some constant K indepen-
dent of ¢. By the definition of X(c¢, &) and by the Proposition 2,

1| P((1 = X)) < K. (01)

for some constant K, independent on ¢. If ¢ is large enough, using (95) and (76),

we see that N
0N g, | < Koo =¥ (7x) (102)

with some other constant Kj. Therefore, using also (92) and the definition of
3(c,e), we obtain,

||€(1_E)J('7V0’c)gj|| < K;cl_@/k)He(l_‘g)d("vo’c)goj|| < K;lcl_@/k) (103)

where K! and K are independent on ¢. We used Proposition 2, which shows also
that N
let =90 (x| < [0 | < € (104)
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Summing up, we proved that, for some other K. independent on ¢
||e(1—8)t;3(<7V07C)P@j|| < K@k (105)

Now we shall orthogonalize the system (Py;) (1 < j < 2u). We remark that

1 / (2 — Da;is(0,¢)) 7! (Ddis(e, c)— Do(c))
2ir J, z=Aj(0)

Po; — ¢, = i 4. (106)
It follows that
1Po; — @5l < Koll(Dais(6, c) — Do(c)) w5l (107)

where K is independent of c. We have, if Vp is defined in (26) and V; in (72)

(D (0.6) = Do)y < K | ( Vi, (@) da + .

2)>(2-¢/2)c?

ot K [+ [Vo(2) = Vo()*[J; (2)]* dz (108)
V(z)>(2—e/2)c?
for some constant K, and we have also |Vp(z) — Vo(z)| < K < 2 >*. By Lemma 8
and proposition 2, it follows that, for some K.

|Po; — ]| < Kee 29,

By Lemma 8, ||[Py; — ¢;|| — 0 when ¢ — +4o00. Hence the Gram matrix S =
(Pyj, Por)i<jk<ou tends to identity when ¢ — +oo. Therefore, if ¢ is large
enough, T' = S~1/2 is defined, and bounded independently of c. If we set T' = (@jk),
the system of functions ¢; = Y a;p Py is an orthonormal basis of ImP, which
satisfies the estimations (90). a

End of the proof of Theorem 4. We consider again the function x defined in (91)
and an orthonormal system of eigenfunctions «; satisfying (71). By Proposition 3,
we can write

e i ()| de < K2c2e2(1mo)% (), (109)
supp (1—x

It follows by Lemma 8 (point 1)) that, if ¢ is large enough

[ =@l @ < 5. (10)

If we write the imaginary part of the scalar product of both sides of (71) with x%;,
we obtain, using (93)

OB©) [ x@ls@ do =3 (D, x) = ..
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1
co = (Do), x¥5) = —5([Do(), XJ¥y, ¥)- (111)
Using (110) and (92), we have, for some constants K, K’ and K/

ISE; (o)l < [([Dole), ], v5)| < KC/ [Vx(@)|[;(2)|* do < ...

S KR / [0 (2)]? de < KB 21-e)%(es)

supp(1—x)

The estimation (12) of Theorem 4 follows, with another ¢, using Lemma 8.
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