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Resonances of the Dirac Hamiltonian
in the Non Relativistic Limit

L. Amour, R. Brummelhuis, J. Nourrigat

Abstract. For a Dirac operator in IR3, with an electric potential behaving at infin-
ity like a power of |x|, we prove the existence of resonances and we study, when
c → +∞, the asymptotic expansion of their real part, and an estimation of their
imaginary part, generalizing an old result of Titchmarsh.

1 Introduction

We are interested in the following Dirac operator D(c) in IR3, depending on a
parameter c > 1,

D(c) =
(

V (x) cσ ·Dx

cσ ·Dx V (x)− 2c2

)
. (1)

Here σ · Dx denotes σ1D1 + σ2D2 + σ3D3, where the σj are the Pauli matrices,
and V is a C∞ real-valued function, satisfying the following hypotheses.

(H1) We assume that V can be extended in an holomorphic function in the fol-
lowing open set of IC3, for some positive constants a and r,

Ω = Sa ∪B(0, r) (2)

where Sa is the complex sector {z ∈ IC3, |Argzj| < a, ∀ j = 1, 2, 3}, and B(0, r) be
the open complex ball with center 0 and radius r. We assume also that for some
positive constants k, m0 and R, we have

|V (z)| ≤ m0(1 + |z|k), ∀ z ∈ Sa. (3)

(H2) We have also, if x ∈ IR3 and |x| ≥ R,

|x|k ≤ m0V (x). (4)

(H3) We have also, if x ∈ IR3 and |x| ≥ R,

|x|k ≤ m0x · ∂V
∂x

. (5)

We see easily that D(c) is essentially self-adjoint, and Titchmarsh proved, when
V is radial, that D(c) has the whole real line as a purely absolutely continuous
spectrum (see Thaller [14]). Let H be the corresponding Schrödinger operator

H = −1
2
∆ + V (x). (6)
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The spectrum of H is discrete. We shall prove that, when c is large enough, D(c)
has resonances near the eigenvalues of H and we shall study their asymptotic
behaviour when c → +∞. Recall that, in the semiclassical limit, the asymptotic
behaviour of the resonances is studied in Parisse [9] (see also Balslev-Helffer [2]).
For the Dirac operator in one dimension, with potential V (x) = |x|, Titchmarsh
[15] gave an explicit computation of the resonances (see also Veselic [16] and Thaller
[14]).

For the definition of resonances, we need the analytic dilations (see Aguilar-
Combes [1]). For each θ ∈ IC such that |
θ| < a, we denote by D(θ, c) the following
Hamiltonian

D(θ, c) =
(

V (eθx) e−θcσ ·Dx

e−θcσ ·Dx V (eθx)− 2c2

)
, (7)

with domain

B1(IR3, IC4) = {u ∈ H1(IR3, IC4), |x|ku ∈ L2(IR3, IC4)}. (8)

We shall prove in Section 2 the following theorem.

Theorem 1 D(θ, c) has pure point spectrum for small positive 
 θ. Each eigenvalue
λj(θ, c) is isolated and of finite even multiplicity, and does not depend on θ.

The eigenvalues of D(θ, c), denoted by Ej(c) since they do not depend on θ, will
be called resonances. We shall prove in Section 3 the following theorem.

Theorem 2 If 
 θ is small enough, we have the following properties.
(i) Let K be a compact set of IC containing no eigenvalue of H. Then, if c is

large enough, K contains no resonance.
(ii) Let D be a compact disc centered at an eigenvalue E0 of H, of multiplicity

µ, and containing no other eigenvalue. Then, if c is large enough, D contains a
finite number of resonances, and the sum of their multiplicities is 2µ.

Theorem 3 If 
 θ is small enough, we have the following property. If D is a disc
as in Theorem 2, if E0 is a simple eigenvalue of H, then D contains, for c large
enough, one resonance λ(c) of multiplicity 2, and there exists a C∞ function f in
a neighborhood of 0 such that f(0) = E0 and, for c large enough

λ(c) = f(
1
c2
). (9)

This theorem is proved in Section 4. Recall that, when V (x) = O(< x >−s)
(s > 0), if E0 is an isolated simple eigenvalue of H, Grigore-Nenciu-Purice [3]
proved that for c large enough, D(c) has a double eigenvalue λ(c) defined by an
equality like (9), but where f is analytic. If V is a polynomial, we may think that
the function f in (9) belongs perhaps in some Gevrey class related to the degree
of V .
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Now, we can study the imaginary part of the resonances. We consider the
following Agmon metric ds2c in IR3, depending on c (see Wang [17])

ds2c =
1
c2
V (x)+ (2c2 − V (x))+ dx2, (10)

where x+ = sup(x, 0). For each ε > 0, we consider the ”sea”

M(c, ε) = {x ∈ IR3, V (x) ≥ (2− ε)c2}. (11)

We denote by S(c, ε) the distance, for the metric ds2c , of the origin to M(c, ε).

Theorem 4 Under the hypothesis of Theorem 2 (point ii), for each ε > 0, there
exists Cε > 0 such that the resonances Ej(c) contained in D satisfy

|
Ej(c)| ≤ Cεe
−(2−ε)S(c,ε). (12)

We are very grateful to X.P. Wang for useful discussions about the exterior
scaling, used in Section 5.

2 Proof of Theorem 1.

We remark first that D(c) is essentially self-adjoint, since we have easily the fol-
lowing implication :

u ∈ L2(IR3, IC4), 
 z < 0, (D(c)− z)u = 0 ⇒ u = 0. (13)

Now c is fixed. It can be seen using Cauchy’s estimate that (H1) implies

|∂αz V (z)| ≤ Cα(1 + |z|)k−|α|, ∀z ∈ S a
2
. (14)

From the calculus adapted to the harmonic oscillator, straightforward modi-
fications are easily made, to obtain a calculus for global elliptic pseudo-differential
operators, adapted to first order systems with a potential behaving like |x|k. There-
fore, we briefly give the main aspects. See Shubin[12] for more considerations.

For each m ∈ IR, let Γm be the space of d ∈ C∞(IR6,M4(IC)) such that for
all α and β in IN3, there exists Cαβ such that, for all (x, ξ) ∈ IR6,

|∂αx ∂
β
ξ d(x, ξ)| ≤ Cαβ(1 + |x|k + |ξ|)m− |α|

k −|β|.

For each d ∈ Γm, let Op(d) be the corresponding operator, associated to d by the
standard calculus

(Op(d)ϕ)(x) = (2π)−3
∫

ei〈x−y,ξ〉d(y, ξ)ϕ(y) dydξ, ∀ϕ ∈ S(IR3; IC4).

The operator Op(d) (d ∈ Γm) is said globally elliptic if, for some positive real
number C,

(|x|k + |ξ|)m ≤ C(1 + |Detd(x, ξ)|)1/4,
for all (x, ξ) ∈ IR6.
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The notation 〈·, ·〉 stands for the inner scalar product of L2(IR3; IC4) and ‖ · ‖
denotes the corresponding norm. For j ∈ IN, let

Bj(IR3; IC4) =
{
φ ∈ L2(IR3; IC4), xαDβ

xφ ∈ L2(IR3; IC4), for
|α|
k

+ |β| ≤ j

}
.

In particular, for d ∈ Γm, Op(d) maps Bs−m(IR3; IC4) into Bs(IR3; IC4) for any
s ∈ IN.

It is seen in Lemma 3 that for small positive 
 θ, the family D(θ, c) is Kato
analytic. The resonances are defined as the eigenvalues ofD(θ, c), for small positive

 θ.

Lemma 1 There exists τ0 > 0 such that, if 0 < 
θ < τ0 then D(θ, c) is globally
elliptic.

Proof: The symbol d of D(θ, c) satisfies

Det d(x, ξ, c, θ) =
(
Vθ(x)

(
Vθ(x)− 2c2

)
− c2e−2θ|ξ|2

)2
(15)

where Vθ(x) = V (eθx). We write θ = σ + iτ , σ, τ ∈ IR and K,C, τ0 denotes three
positives real numbers independent of x and τ . The real numbers K,C (resp. τ0)
may increase (resp. decreases).

Following the analyticity of V , there exists τ0 > 0 such that, for 0 < 
θ < τ0,
for all x ∈ IR3,

Vθ(x) = V (xeσ) + iτeσ
3∑

j=1

xj
∂V

∂xj
(xeσ) + τ2M(x, θ).

There exists K,C, τ0 > 0 such that

∀ θ ∈ IC with 0 < 
θ < τ0, ∀ |x| ≥ C, |M(x, θ)| ≤ K|x|k. (16)

Then, for some K,C, τ0 > 0, if 0 < 
θ < τ0, if |x| ≥ C

K−1τ ≤ ArgVθ(x), Arg(Vθ(x)− 2c2) ≤ Kτ,

|Vθ(x)|, |Vθ(x)− 2c2| ≥ K−1|x|k. (17)

From (17), there exist K,C, τ0 > 0 such that, for all θ and x such that 0 < 
θ < τ0
and |x| ≥ C,

K−1τ ≤ Arg(Vθ(x)(Vθ(x)− 2c2)) ≤ Kτ. (18)

Then (18) shows that, for some K,C, τ0 > 0 (τ0 < π/2), if 0 < 
θ < τ0, if |x| ≥ C,
then |Vθ(x)

(
Vθ(x)− 2c2

)
− c2e−2θ|ξ|2|

≥ sin(K−1τ)|Vθ(x)(Vθ(x)− 2c2)|+ c2 sin(2τ)|ξ|2. (19)

The proof of Lemma 1 follows from (15),(17),(19). ✷

Theorem 1 will follow from the two Lemma below.
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Lemma 2 There exists τ0 > 0 such that, if 0 < 
θ < τ0, then the resolvant set of
D(θ, c) is not empty.

Proof. For m ∈ IN, let Γ̃m be the space of a(, ·, ·, ρ) ∈ C∞(IR6,M4(IC)), depend-
ing on a parameter ρ ≥ 1, such that, for all α and β in IN3, there exists Cα,β,
independent on ρ, such that, for all (x, ξ, ρ) ∈ IR6 × [1,+∞),

|∂αx ∂
β
ξ a(x, ξ, ρ)| ≤ Cα,β(1 + |ξ|+ |x|k + ρ)m− |α|

k −|β|.

The operator Op(a(ρ)) (a ∈ Γ̃m), is said globally elliptic with parameter ρ,
if there exists C > 0 such that, for all (x, ξ, ρ) ∈ IR6 × [1,+∞),

(|ξ|+ |x|k + ρ)m ≤ C(1 + |Det a(x, ξ, ρ)|)1/4.

As in the proof of Lemma 1, θ = σ + iτ , σ, τ ∈ IR and K,C, τ0 are three positives
real numbers independent on x and τ which may change. Let ρ > 0, α ∈ [0, 2π),
and set P = D(θ, c)+ρeiα. The symbol p(x, ξ, ρ) of P (associated with the standard
calculus) belongs to Γ̃1. Take K,C, τ0 such that (17) holds, and set α = Kτ . There
exists K,C, τ0 (possibly different) such that, if 0 < 
θ < τ0, if |x| ≥ C then

K−1τ ≤ Arg(Vθ(x) + ρeiα), Arg(Vθ(x) + ρeiα − 2c2) ≤ Kτ,
|Vθ(x) + ρeiα| ≥ cos(Kτ)(|Vθ(x)|+ ρ) ≥ K−1(|x|k + ρ),

|Vθ(x) + ρeiα − 2c2| ≥ cos(Kτ)(|Vθ(x)− 2c2|+ ρ) ≥ K−1(|x|k + ρ). (20)

Then (20) shows that, for some K,C, τ0 > 0 (τ0 < π/2), if 0 < 
θ < τ0, if |x| ≥ C,
then |(Vθ(x) + ρeiα)(Vθ(x) + ρeiα − 2c2)− c2e−2θ|ξ|2|

≥ sin(K−1τ)|(Vθ(x) + ρeiα)(Vθ(x) + ρeiα − 2c2)|+ c2 sin(2τ)|ξ|2. (21)

Following (20),(21), P is globally elliptic with parameter ρ. Then, there are q(ρ)
and r(ρ) in Γ̃−1 such that

(D(θ, c) + ρeiα)Op(q(ρ)) = I +Op(r(ρ)). (22)

Moreover, supρ≥1 ρ‖Op(r)‖L(L2(IR3)) < ∞. Thus, the r.h.s. of (22) is invertible for
a sufficiently large ρ. This proves Lemma 2. ✷

Lemma 3 There exists τ0 > 0 such that the family of operators {D(θ, c), 0 < 
θ <
τ0} is analytic in the sense of Kato.

Let τ0 be as in Lemma 1, and set θ ∈ IC with 0 < 
θ < τ0. The existence of
parametrixes for the global elliptic operator D(θ, c) shows that

∃C > 0, ∀φ ∈ B1, ‖φ‖B1 ≤ C (‖D(θ, c)φ‖+ ‖φ‖) .

It implies that, for all θ ∈ IC with 0 < 
θ < τ0, D(θ, c) is closed on B1.



588 L. Amour, R. Brummelhuis, J. Nourrigat Ann. Henri Poincaré

There exists another τ0 > 0 and K > 0 such that, for all θ, h ∈ IC satisfying
0 < 
z,
θ < τ0 and for all x ∈ IR3,

(V (xeθ+h − V (xeθ))/h = eθ
3∑

j=1

xj
∂V

∂xj
(xeθ) + hN(x, θ, h),

|eθ
3∑

j=1

xj
∂V

∂xj
(xeθ)|, |N(x, θ, h)| ≤ K〈x〉k. (23)

Fix u, v ∈ L2(IR3, 〈x〉2kdx), and let F be the map: θ �→ 〈Vθu, v〉L2(IR3;IC). ¿From
(23), if 0 < 
θ < τ0, then (F (θ+h)−F (θ))/h has a limit as h → 0 (0 < 
h < τ0).
For each u ∈ L2(IR3, 〈x〉2kdx), θ �→ Vθu is a (weakly) analytic vector valued
function. Then, for each φ ∈ B1, D(θ, c)φ is a vector valued analytic function of
θ ∈ {z ∈ IC, 0 < 
z < τ0}.

The above closure and analyticity results, added to Lemma 2, imply that
{D(θ, c), 0 < 
θ < τ0} is an analytic family of type (A) [7, VII.2]. ✷

Proof of Theorem 1. Using Lemma 2, there exists z ∈ IC such that (D(θ, c)− z)−1

maps L2(IR3; IC4) into B1(IR3; IC4), hence is a compact operator of L2(IR3; IC4).
Therefore, the spectrum of D(θ, c) is a sequence of eigenvalues λj(c, θ) of finite
multiplicity. It is clear that D(θ, c) = U(� θ)D(
 θ, c)U(�θ)−1, that is to say,
D(θ, c) is unitarily equivalent to D(
 θ, c). Therefore each λj(c, θ) does not depend
on � θ. In addition, Lemma 3 implies that, each λj(c, θ) depends analytically on θ
with, at most, algebraic singularities. As [11, pf of th1(i)], it can be proved using
Puiseux series, that each λj(c, θ) is a constant function of θ. The multiplicity of
each of these eigenvalues λj(c, θ) is even. This can be proved like in Parisse [9].
This completes the proof. ✷

3 Proof of Theorem 2.

By arguments similar to that of Section 2, the spectrum of the following
Schrödinger operator

Hθ = −1
2
e−2θ∆+ V (xeθ) (24)

is discrete, and the eigenvalues are the same as H, with the same multiplicities.
(The only difference with Section 2 is that the sign of 
 θ plays no role, and there
is τ > 0 such that the family (Hθ)|�θ|<τ is analytic in the sense of Kato). If z is
not in this spectrum, we set

Rzθ∞ =
(

(Hθ − z)−1I2 0
0 0

)
. (25)

We set also
B+(θ0) = {θ ∈ IC, |θ| < 1, 0 < 
θ < θ0}
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and
Vθ(x) = V (xeθ). (26)

Lemma 4 There exists θ0 > 0 and R > 0 such that, for each θ ∈ B+(θ0), there
exists Aθ > 0 such that, if |x| ≥ R

< x >k≤ Aθ
Vθ(x), < x >k≤ Aθ
eθ−θVθ(x). (27)

Proof. By the hypotheses (H1) and (H2), we can write, if θ = σ + iτ ∈ B+(a/2)

Vσ+iτ (x) = Vσ(x) + iτeσ
3∑

j=1

xj
∂V

∂xj
(xeσ) +O(τ2 < x >k). (28)

If |x| is large enough and 0 < 
θ < θ0, (where θ0 depends on the constants of
hypotheses (H2) and (H3)), there exists Aθ > 0 such that (27) is valid. ✷

For each ε > 0, we set

∆ε =
(

1 0
0 ε

)
. (29)

The points i) and ii) of Theorem 2 are consequences of the points ii) and iii)
of the following Lemma.

Lemma 5 i) Let K be a compact set of IC and θ such that 0 < 
θ < θ0. Then
there exists Bθ > 0 (independent of c) such that, if c is large enough, for each

u =
(

u1
u2

)
in S(IR3, IC4) (uj ∈ S(IR3, IC2)), for each z ∈ K and c ≥ 1, we have

‖ < x >k/2 u1‖+ ‖ < x >−k σ.Du1‖+ ‖u2‖ ≤ . . .

. . . ≤ Bθ

(
‖∆−1

c (D(θ, c)− z)∆−1
c u‖+ ‖u1‖

)
. (30)

ii) If K contains no eigenvalue of H, there exists Aθ > 0 (independent of c)
such that, if c is large enough

‖u‖L2(IR3,IC4) ≤ Aθ‖∆−1
c (D(θ, c)− z)∆−1

c u‖L2(IR3,IC4), (31)

for all u ∈ S(IR3, IC4), and z ∈ K, and therefore,

‖u‖L2(IR3,IC4) ≤ Aθ‖(D(θ, c)− z)u‖L2(IR3,IC4). (32)

iii) If D is a disc centered at an eigenvalue of H, and containing no other
eigenvalue, then, if 0 < 
θ < θ0,

lim
c→+∞

sup
z∈∂D

‖(D(θ, c)− z)−1 −Rzθ∞‖ = 0. (33)



590 L. Amour, R. Brummelhuis, J. Nourrigat Ann. Henri Poincaré

Proof of point i). The equality ∆−1
c (D(θ, c)− z)∆−1

c u =
(

f
g

)
is equivalent to

f = (Vθ − z)u1 + e−θσ.Du2, (34)

g = e−θσ.Du1 +
(
Vθ − z

c2
− 2
)
u2. (35)

It follows from the two last equalities that

〈u1, e
θ−θ(Vθ − z)u1〉 − 〈

(
Vθ − z

c2
− 2
)
u2, u2〉 = 〈u1, e

θ−θf〉 − 〈g, u2〉 (36)

and therefore, taking the imaginary parts in the last equality and applying Lem-
ma 4,

‖ < x >k/2 u1‖2 + c−2‖ < x >k/2 u2‖2 ≤ . . .

. . . ≤ Bθ

[
‖f‖2 + ‖u1‖2 + ‖g‖‖u2‖+ c−2‖u2‖2] . (37)

Taking now the real parts in (36), we obtain, with another Bθ,

‖u2‖2 ≤ Bθ

[
‖f‖2 + ‖u1‖2 + ‖g‖‖u2‖+ c−2‖u2‖2] .

The inequality (30) (with another Bθ) follows easily, if c is large enough, from the
two last ones.

Proof of point ii). Suppose that the inequality (31) were false. Then there would
exist a sequence (un) in S(IR3, IC4), a sequence (zn) inK, and a sequence cn → +∞
such that

‖un‖ = 1 ‖∆−1
cn (D(θ, cn)− zn)∆−1

cn un‖ → 0. (38)

Taking a subsequence, we can assume that zn → z ∈ K. Let us set un =
(

ϕn

ψn

)
and ∆−1

cn D(θ, cn)∆−1
cn un =

(
fn
gn

)
. If we set Vθ(x) = V (xeθ), we have the relations

(34) and (35) with f , u1, u2 replaced by fn, ϕn, ψn. By (30), the sequences
< x >k/2 ϕn and < x >−k σ.Dϕn are bounded in L2(IR3, IC2). Note that the
operator < x >k + < x >−k (σ.D)2 < x >−k has compact resolvant. By these
properties, we may assume (after taking subsequences) that there exist ϕ and ψ
in L2(R3, IC2) such that ϕn → ϕ (strongly) and ψn → ψ (weakly) in L2(R3, IC2).
We have

(Vθ − z)ϕ+ e−θσ.Dψ = 0 (39)

and
e−θσ.Dϕ− 2ψ = 0, (40)

and therefore (Hθ − z)ϕ = 0. If ϕ = 0, it follows that ‖ϕn‖ → 0, and, since
‖fn‖+‖gn‖ → 0, the point i) shows that ‖ψn‖ → 0, and this gives a contradiction
since ‖ϕn‖2 + ‖ψn‖2 = 1. Therefore, there exists ϕ �= 0 in L2(IR3, IC2) such that
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(Hθ − z)ϕ = 0, and there is a contradiction since z ∈ K and K contains no
eigenvalue of Hθ. The inequality (31) is proved, and (32) follows easily.

Proof of point iii) Suppose that there exist θ such that 0 < 
θ < θ0, a sequence
(Fn) in L2(IR3, IC4), a sequence (zn) in ∂D, a sequence cn → +∞, and δ > 0 such
that

‖Fn‖ = 1, ‖(D(θ, cn)− zn)−1Fn −Rznθ∞Fn‖ ≥ δ. (41)

Let us set

Fn =
(

fn
gn

)
, Un = (D(θ, cn)− zn)−1Fn =

(
ϕn

ψn

)
. (42)

By the point ii) (applied to the compact ∂D), the sequence ‖Un‖ is bounded. By
the point i) (applied to the function ∆cnUn), we have

‖ < x >k/2 ϕn‖+ ‖ < x >−k σ.Dϕn‖+ cn‖ψn‖ ≤ Bθ[‖Fn‖+ ‖ϕn‖] = O(1). (43)

Therefore ‖ψn‖ → 0, which implies, together with (41), that, for n large enough

‖ϕn − (Hθ − zn)−1fn‖ ≥ δ

2
. (44)

By (43), we may assume, (after taking a subsequence), that there exist ϕ and ψ
in L2(R3, IC2) such that ϕn → ϕ (strongly) and cnψn → ψ (weakly) in L2(R3, IC2).
We may assume also that zn → z ∈ ∂D and that fn weakly converges to f ∈
L2(IR3, IC4). It follows that

(Vθ(x)− z)ϕ+ e−θσ.Dψ = f,

e−θσ.Dϕ− 2ψ = 0,

and therefore (Hθ − z)ϕ = f . Since the operator (Hθ − z)−1 is compact, we may
assume also that

(Hθ − zn)−1fn → ϕ̃ ∈ L2(IR3, IC2) (45)

(strong convergence). We have (Hθ − z)ϕ̃ = (Hθ − z)ϕ = f , and there is a contra-
diction with (44) since ‖ϕ− ϕ̃‖ ≥ δ/2 and z is not in the spectrum of Hθ.

Proof of of Theorem 2. The point i) is a consequence of Lemma 5 (point ii). For
the point ii), let E0 be a simple eigenvalue of H. Let D be a disc, centered at E0,
with radius ρ > 0, containing no other eigenvalue of H inside it, and Γ be the
boundary of D. By the point i), we know that, for c large enough, D(θ, c) − z is
invertible for all z ∈ Γ. We define then an operator Πθc by

Πθc =
1
2iπ

∫
Γ
(D(θ, c)− z)−1dz (46)

Similarly we define Πθ∞ by

Πθ∞ =
1
2iπ

∫
Γ
Rzθ∞dz (47)
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where Rzθ∞ is defined in (25). It follows from Lemma 5 (point iii) that

lim
c→+∞

‖Πθc −Πθ∞‖ = 0. (48)

The point ii) follows easily. ✷

4 Proof of Theorem 3.

If D = B(E0, ρ) is a disc like in the Theorems 2 and 3, and if E0 is a simple
eigenvalue of H, we know, by Theorem 2, that, for c large enough, D(θ, c) has
only one eigenvalue λ(c) of multiplicity 2 in B(E0, ρ). Since E0 is also a simple
eigenvalue of the dilated Schrödinger operator Hθ defined in (24) (section 3), let
ϕθ be a normalized eigenvector (Hθϕθ = E0ϕθ, ‖ϕθ‖ = 1). By the global ellipticity
of Hθ, we know that ϕθ is in S(IR3). Let

ψθ =


ϕθ

0
0
0

 . (49)

If Πθc is defined in (46), (where Γ is the boundary of D), Πθcψθ is in the eigenspace
of D(θ, c) corresponding to the eigenvalue λ(c) and, by (48), if c is large enough,
Πθcψθ �= 0. Therefore

λ(c) =
(D(θ, c)Πθcψθ,Πθcψθ)

‖Πθcψθ‖2 , E0 =
(HθΠθ∞ψθ,Πθ∞ψθ)

‖Πθ∞ψθ‖2 (50)

(since Πθ∞ψθ = ψθ).

Lemma 6 Let ψ be a function in S(IR3, IC4) and Γ be the boundary of D = B(E0, ρ).
Let F (ε, z) be the function defined, for ε small enough and z ∈ Γ by

F (ε, z) = (D(θ, 1/ε)− z)−1ψ, if ε �= 0, (51)

F (ε, z) = Rzθ∞ψ, if ε = 0 (52)

where Rzθ∞ is defined in (25). Then ε → F (ε, z) is C∞ from some neighborhood
of 0 to H = L2(IR3, IC4), and depends continuously of z in Γ.

Proof. If ∆ε is the operator defined in (29), we can write, by (34) and (35)

∆−1
c (D(θ, c)− z)∆−1

c = A+ c−2B (53)

where

A =
(

Vθ − z e−θσ.D
e−θσ.D −2

)
, B =

(
0 0
0 Vθ − z

)
.
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By Lemma 5, there is t0 > 0 such that A+ tB : B1 → H is invertible if 0 < t ≤ t0,
and there exists K > 0 such that

‖(A+ tB)−1f‖ ≤ K‖f‖, 0 < t ≤ t0, ∀f ∈ H. (54)

Moreover, if we set (A+ tB)−1f =
(

u(t)
v(t)

)
, we have, by Lemma 5

‖ < x >k/2 u(t)‖+ ‖ < x >−k σ.Du(t)‖+ ‖v(t)‖ ≤ . . .

. . . ≤ K(‖f‖+ ‖u(t)‖), 0 < t ≤ t0, ∀f ∈ H.

In the other hand, if Hθ is the operator defined in (24), and z ∈ Γ, the operators
Dα(Hθ − z)−1Dβ are bounded in L2(IR3) if |α + β| ≤ 2 (we construct easily a
parametrix of this operator in a suitable class). Therefore, the following operator
S is bounded in H

S =

(
(Hθ − z)−1 e−θ

2 (Hθ − z)−1σ.D
e−θ

2 σ.D(Hθ − z)−1 e−2θ

4 σ.D(Hθ − z)−1σ.D − I
2

)
and it satisfies AS = I. Moreover u ∈ H and (A + tB)u = 0 imply u = 0
(0 ≤ t ≤ t0). It follows easily from these properties that, if f ∈ H, the function
G(t)f defined by

G(t)f = (A+ tB)−1f if 0 < t ≤ t0, G(0)f = Sf (55)

is continuous in [0, t0] to H. Let E be the space of f ∈ H such that, for each m,
< x >m u is in H. Using the commutation relation

xj(A+ tB)−1 = (A+ tB)−1xj − ie−θ(A+ tB)−1αj(A+ tB)−1

where αj =
(

0 σj
σj 0

)
, it follows that, for each integer m, there is Km such that

‖ < x >m (A+ tB)−1f‖ ≤ Km‖ < x >m f‖, ∀f ∈ E, 0 ≤ t ≤ t0,

and that, for each f ∈ E, the function < x >m G(t)f is continuous in [0, t0] to H.
It follows that, for each f ∈ E, the function G(t)f is C∞ on [0, t0] to H, and that

G(p)(t)f = (−1)p(A+ tB)−1 (B(A+ tB)−1)p if 0 < t ≤ t0 (56)

and G(p)(0)f = (−1)pS(BS)pf . This property can be proved, by induction on p,
using the previous remarks. The Lemma follows easily since F (ε, z) = ∆εG(ε2)
∆εψ.

Proof of Theorem 3. Since ψθ defined in (49) is in S(IR3, IC4), (this can be proved
by using a parametrix of Hθ), it follows from (50) and Lemma 6 that the function
g defined in some neighborhood of 0 by

g(ε) = λ(1/ε) if ε �= 0 (57)
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g(0) = E0 (58)

is C∞. We remark that

JD(θ, c)J = Dθ,−c J =
(

I 0
0 −I

)
(59)

Since ψθ defined in (49) satisfies Jψθ = ψθ, it follows that g is an even function of
ε, and there exists a C∞ function f in a neighborhood of 0 such that g(ε) = f(ε2),
which proves Theorem 3.

5 Imaginary part of the resonances.

In this section, we need another definition of the resonances, using the exterior
scaling. We are very grateful to X.P. Wang for this suggestion. For each ε > 0 and
c > 1, we have to introduce two auxiliary Hamiltonians : one of them (denoted by
Ddis(θ, c)) is obtained from D(c) by an exterior complex scaling (cf. Hunziker [6]),
and the other one, denoted by D0(c), is obtained from D(c) by a modification of
the potential (cf. Wang [17] and Parisse [9]).

For the construction of the distorted operator Ddis(θ, c), we use, for each
ε ∈ (0, 1), a function ϕ ∈ C∞(IR) such that ϕ(t) = 0 if t ≤ 2− ε

2 and ϕ(t) = 1 if
t ≥ 2. For each θ ∈ IC and x ∈ IR3, we set

ϕθ(x) = x+ θXc(x), Xc(x) = xϕ

(
V (x)
c2

)
. (60)

If |θ| is small enough, we can define a system pθ = (pθ,1, pθ,2, pθ,3) of differential
operators by

pθ =t (ϕ′
θ(x))

−1Dx −
i

2
∇(ln Jθ(x)), Jθ(x) = detϕ′

θ(x), (61)

and a distorted Dirac operator Ddis(θ, c) by

Ddis(θ, c) =
(

V (ϕθ(x)) cσ · pθ
cσ · pθ V (ϕθ(x))− 2c2

)
. (62)

Proposition 1 With the previous notations, if |θ| is small enough, if D is a disc
as in Theorem 2 (point ii), and if c is large enough, the spectrum of Ddis(θ, c) in
D is the same sequence of eigenvalues Ej(c) as for the operator D(θ, c) defined in
(7), with the same multiplicities.

For the proof of this Proposition, we shall use the following Lemma.

Lemma 7 There exist A > 0 and θ0 > 0 with the following properties. If z ∈ IC,

 z < 0, c ≥ 1, if θ ∈ Ω, where

Ω = {θ ∈ IC, |θ| < θ0, 0 < 
 θ <
|
 z|

A(c2 + |Re z|)} (63)
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then z −D(θ, c) : B1 → H = L2(IR3, IC4) is invertible and

‖(z −D(θ, c))−1‖L(H) ≤
A

|
 z| . (64)

Moreover, for each f ∈ H, the function θ → (z −D(θ, c))−1f (θ ∈ Ω), extended
by (z −D(c))−1f for real θ, is holomorphic in Ω and weakly continuous in Ω.

Proof of the Lemma. If we set u =
(

u1
u2

)
, the equality (D(θ, c)−z)u = f implies



[
eθ〈f, u〉

]
= 


[
eθ
∫

Vθ(x)|u(x)|2dx
]
−


(
eθz
)
‖u‖2 − 2c2


(
eθ
)
‖u2‖2.

By the hypotheses on the potential V , there exist R, A and ε0, independent on all
the parameters, such that


θ < x >k≤ A

[
eθVθ(x)

]
, if |θ| ≤ 1, 0 < 
θ < ε0, |x| ≥ R

and
|

(
eθVθ(x)

)
| ≤ A
θ, if |θ| ≤ 1, 0 < 
θ < ε0, |x| ≤ R.

It follows that, with other constants A and ε0, if 
z < 0, |θ| < 1, 0 < 
θ < ε0,
and if (D(θ, c)− z)u = f , we have

|
z|‖u‖2 ≤ A
[
‖f‖‖u‖+ |
θ|(c2 + |Re z|)‖u‖2] .

If moreover, 0 ≤ 
θ ≤ |
z|/(2A(c2 + |Re z|)), then

‖u‖H ≤ 2A
|
 z|‖(z −D(θ, c))u‖H. (65)

By the results of Section 2, it follows that, for each θ ∈ Ω (with another A),
z −D(θ, c) : B1 → H is invertible and that the inverse depends holomorphically
on θ in Ω. The result about weak continuity follows from (64), using the implication
(13). ✷

End of the proof of the Proposition. Once the Lemma 7 is established, the proof of
Proposition 1 follows the classical proof of the Aguilar-Balslev-Combes theorem
[1] (see Hislop-Sigal [5] or Laguel [8] for more details). For real θ, small enough,
we define an operator Uθ : H → H by

(Uθf)(x) = e3θ/2f(xeθ) (66)

and an operator Ũθ : H → H by

(Ũθf)(x) = Jθ(x)1/2f(ϕθ(x)). (67)
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Then Uθ and Ũθ are unitary, and we have

D(θ, c) = UθD(c)U−1
θ , Ddis(θ, c) = ŨθD(c)Ũ−1

θ . (68)

There exists a subspace A in H = L2(IR3, IC4) and θ0 > 0 such that, for each
f ∈ A, the functions θ → Uθf and θ → Ũθf extend to holomorphic functions from
B(0, θ0) to H, and such that, for each θ ∈ B(0, θ0), UθA and ŨθA are dense in H.
If f, g ∈ A, |θ| < θ0 and 
θ > 0, we set

Ffg(z, θ) =< Uθf, (z −D(θ, c))−1Uθg >, (69)

F̃fg(z, θ) =< Ũθf, (z −Ddis(θ, c))−1Ũθg > . (70)

By the results of Section 2 and their analogous for D(θ, c), we know that, if c ≥ 1,
these functions of z are meromorphic in D. Let A and θ0 be the constants of
Lemma 7. There is an analogous of Lemma 7 with D(θ, c) replaced by D(θ, c), and
we may assume that the constants A and θ0 are the same. If E0 is the center of
D and ρ its radius, let

ω = {θ ∈ IC, |θ| < θ0, 0 < 
 θ <
ρ

2A(c2 + |E0|+ ρ)
}.

By Lemma 7, if z ∈ D and 
z < −ρ
2 , the functions θ → Ffg(z, θ) and θ → F̃fg(z, θ)

are holomorphic in ω and continuous in ω. By (68), they are equal in ω ∩ IR, and
therefore they are equal in ω. Now, if θ ∈ ω, the functions z → Ffg(z, θ) and
z → F̃fg(z, θ) are meromorphic in D and equal in {z ∈ D, 
z < −ρ

2}, and
therefore they are equal on D. A point z0 ∈ D is an eigenvalue of D(θ, c) (resp. of
Ddis(θ, c)) iff there are f and g ∈ A such that z0 is a pole of z → Ffg(z, θ) (resp.
of z → F̃fg(z, θ)). Therefore, these eigenvalues are the same. ✷

Therefore, under the hypotheses of theorem 2, if D is a disc centered at E0,
of radius ρ, and containing no other eigenvalue of H, if Ej(c) (1 ≤ j ≤ 2µ) are the
resonances in D, there exists an orthonormal system of functions ψj in L2(IR3, IC4)
(1 ≤ j ≤ 2µ), such that, if c is large enough,

Ddis(θ, c)ψj = Ej(c)ψj . (71)

Now we shall define a modified real-valued potential, like in Wang [17] and
Parisse [9] in the semiclassical study of multiple wells or resonances for the Dirac
operator. For that, we can choose a function ψ ∈ C∞(IR), nondecreasing, such
that ψ(t) = t if t ≤ 2− ε

2 , ψ(t) ≤ t for all t, and ψ(t) = 2− ε
4 if t ≥ 2. Using this

function, we define a modified potential V0 (depending on ε and c) by

V0(x) = c2ψ

(
V (x)
c2

)
. (72)

Let d(x, V0, c) be the distance from x ∈ IR3 to the origin for the Agmon metric
defined as in section 1, but with the potential V0 instead of V . We set

Σ(c, ε) = inf
V (x)≥(2− ε

2 )c2
d(x, V0, c). (73)
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Lemma 8 If ε < 1/2, there exists Kε > 0 such that

i) V (x) ≥ 3
2
c2 ⇒ c ≤ Kεd(x, V0, c).

ii) < x >≤ Kε(1 + d(x, V0, c)), ∀x ∈ IR3.

iii) S(c, ε) ≤ Σ(c, ε).

Proof. Let x ∈ IR3, and t → x(t) be a C1 curve such that x(0) = 0 and x(1) = x.
Suppose that V (x) ≥ (3/2)c2. Let t0 and t1 such that

0 < t0 < t1 < 1, V (x(t0)) =
1
2
c2, V (x(t1)) = c2,

and
1
2
c2 ≤ V (x(t)) ≤ c2, ∀t ∈ [t0, t1].

For each t ∈ [t0, t1], we have V0(x(t)) ≥ 1
2c

2 and 2c2−V0(x(t)) ≥ ε
4c

2, and therefore

1
c

∫ 1

0

[
V0(x(t)+(2c2 − V0(x(t))

]1/2 |x′(t)|dt ≥ c
√
ε

4
|x(t1)− x(t0)|.

By the hypotheses on the potential V , there exists K > 0 and K ′ > 0 such that,
if c is large enough,

1
2
c2 ≤ |V (x(t0))− V (x(t1))| ≤ K|x(t0)− x(t1)| [< x(t0) > + < x(t1) >]k−1

. . . ≤ K ′|x(t0)− x(t1)|V (x(t1))(k−1)/k ≤ K ′|x(t0)− x(t1)|c2−2/k

The point i) follows from the last inequalities. For the point ii), we can find R > 0
such that V0(x) ≥ 1 if |x| ≥ R. If |x| ≥ R and if x(t) is a curve as above, there
exists t0 ∈ [0, 1] such that |x(t0)| ≤ R and |x(t)| ≥ R if t ∈ [t0, 1]. It follows that

1
c

∫ 1

0

[
V0(x(t)+(2c2 − V0(x(t))

]1/2 |x′(t)|dt ≥ ε

2
|x− x(t0)|

and therefore |x| ≤ R+ 2
εd(x, V0, c). The proof of the point iii) is straightforward.

✷

We denote by D0(c) the modified Hamiltonian corresponding to the modified
potential V0

D0(c) =
(

V0(x) cσ ·Dx

cσ ·Dx V0(x)− 2c2

)
. (74)

We see easily that D0(c) is essentially self-adjoint and, using the arguments of
Section 3, we see that, if D is a neighborhood of E0 like in the Theorem 2 (point
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ii), D∩ IR contains, for c large enough, 2µ eigenvalues λj(c) (1 ≤ j ≤ 2µ) of D0(c)
(if they are repeated according to their multiplicities). Let ϕj = ϕj(c) (1 ≤ j ≤ 2µ)
be an orthonormal system of corresponding eigenfunctions,

D0(c)ϕj = λj(c)ϕj , ‖ϕj‖ = 1, (75)

and we have, if ρ is the radius of D and if c is large enough

|λj(c)−E0| ≤
ρ

2
. (76)

The following result about the exponential decay at infinity of the functions
ϕj(c) is well-known (see Wang [17]).

Proposition 2 With the previous notations, for each ε > 0, there exists Cε > 0,
independent of c such that the functions ϕj (1 ≤ j ≤ 2µ) satisfy

‖e(1−ε)d(.,V0,c)ϕj‖2 +
1
c2
‖e(1−ε)d(.,V0,c)∇ϕj‖2 ≤ Cε. (77)

Proof. The proof is the same as in Wang [17] but, since it is written in [17] in
the semiclassical context, we give a sketch of the proof here. By a direct calculus,
we see, like in Wang [17] (Proposition 2.1) that, for each real-valued function Φ,
bounded, uniformly lipschitzian on IR3, we have

c2
∫

IR3
|∇(eΦϕj)|2 dx+

∫
IR3

δ(x, c)|eΦϕj |2 dx = 0 (78)

where
δ(x, c) = [V0(x)− λj(c)]

[
2c2 − V0(x) + λj(c)

]
− c2|∇Φ(x)|2. (79)

There exists Rε > 0 such that, if 0 ≤ ε ≤ 1

|x| ≥ Rε ⇒ V0(x) ≥
8(|E0|+ (ρ/2)) + 4

2ε2 − ε3
.

If Φ satisfies Φ(0) = 0 and

c2|∇Φ|2 ≤ V0(x)+ (2c2 − V0(x)) (1− ε)2 (80)

using (76), we see that

δ(x, c) ≥ c2, if |x| ≥ Rε. (81)

We can find Kε > 0, independent on c, such that

c−2|δ(x, c)|+ |Φ(x)| ≤ Kε, if |x| ≤ Rε. (82)

It follows that∫
IR3

|∇(eΦ(x)ϕj(x))|2 dx+
∫
|x|≥Rε

|eΦ(x)ϕj(x)|2 dx ≤ . . . (83)
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. . . ≤ Kε

∫
|x|≤Rε

|eΦ(x)ϕj(x)|2 dx ≤ Kεe
Kε . (84)

Since, for c large enough, |∇Φ(x)|2 ≤ 6c2, it follows from (84) and (82) that∫
|x|≥Rε

|eΦ(x)∇ϕj(x)|2 dx ≤ (2 + 12c2)Kεe
Kε . (85)

Since ϕj satisfies (75), we remark also that∫
|x|≤Rε

|eΦ(x)∇ϕj(x)|2 dx ≤ 3
e2Kε

c2

[
‖D0(c)ϕj‖2 + ‖V0ϕj‖2 + ‖c2ϕj‖2

]
(86)

≤ K ′
εc

2 (87)

where K ′
ε is independent on c. We used |λj(c)| ≤ |E0| + (ρ/2) and V0(x) ≤

(2 − (ε/4))c2. Therefore, with K ′′
ε > 0 independent on c, and on the function

Φ satisfying (80)
1
c2
‖eΦ∇ϕj‖2 + ‖eΦϕj‖2 ≤ K ′′

ε . (88)

The Proposition follows by the argument of [17]. ✷

Now we shall study the decay at infinity of the orthonormal system of func-
tions ψj satisfying (71), following the technique of Sigal [13]. For that, we set

d̃(x, V0, c) = inf(d(x, V0, c), Σ(c, ε)). (89)

Proposition 3 With the previous notations, for each ε > 0, there exists Kε > 0,
independent of c such that the functions ψj (1 ≤ j ≤ 2µ) satisfy

‖e(1−ε)d̃(.,V0,c)ψj‖ ≤ Kεc
(1−2/k)+ . (90)

In the proof, and also later, we shall use a cut-off function defined as follows.
We can choose a function h ∈ C∞(IR) such that 0 ≤ h(t) ≤ 1 for all t, h(t) = 1 if
t ≤ 2− ε and h(t) = 0 if t ≥ 2− ε

2 . We set

χ(x) = h

(
V (x)
c2

)
, ∀x ∈ IR3. (91)

We remark that, with Aε independent on c

|∇χ(x)| ≤ Aεc
−2/k. (92)

We remark also that
χD(θ, c) = χD0(c) (93)

and therefore
Ddis(θ, c)χ− χD0(c) = [D0(c), χ] = c(Dχ).α (94)
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where

(Dχ).α =
(

0 σ · (Dχ)
σ · (Dχ) 0

)
.

Proof of Proposition 3. Let γ be the boundary of D (a circle with center E0, and
with radius ρ). If c is large enough, all the resonances Ej(c) (1 ≤ j ≤ 2µ) are
contained in B(E0, ρ/2). The same arguments as for Lemma 5 (point ii) show
that, for c large enough

‖(z −D(θ, c))−1‖ ≤ K (95)

for all z ∈ γ, where K is independent on c. Let P be the projection defined, for c
large enough, by

Pf =
1
2iπ

∫
γ

(z −Ddis(θ, c))−1f dz. (96)

First, we shall prove that the functions Pϕj satisfy the estimations of the
proposition. It follows from (94) that, for each z ∈ γ, and for all f ∈ L2(IR3, IC4),

(z −Ddis(θ, c))−1(χf) =
[
χ+ c(z −Ddis(θ, c))−1(Dχ).α

]
(z −D0(c))−1f. (97)

Applying this equality with f = ϕj and integrating over γ, we obtain, by (96)

P (χϕj) = χϕj + gj , gj =
c

2iπ

∫
γ

(z −Ddis(θ, c))−1(Dχ).αϕj

z − λj(c)
dz. (98)

We can write

‖e(1−ε)d̃(.,V0,c)Pϕj‖ ≤ e(1−ε)Σ(c,ε)‖P ((1−χ)ϕj)‖+‖e(1−ε)d̃(.,V0,c)χϕj)‖+ . . . (99)

. . .+ ‖e(1−ε)d̃(.,V0,c)gj‖. (100)

By (95), the L2 norm of the projector P is bounded by some constant K indepen-
dent of c. By the definition of Σ(c, ε) and by the Proposition 2,

e(1−ε)Σ(c,ε)‖P ((1− χ)ϕj)‖ ≤ Kε (101)

for some constant Kε, independent on c. If c is large enough, using (95) and (76),
we see that

‖e(1−ε)d̃(.,V0,c)gj‖ ≤ K0ce
(1−ε)Σ(c,ε)‖(∇χ)ϕj‖ (102)

with some other constant K0. Therefore, using also (92) and the definition of
Σ(c, ε), we obtain,

‖e(1−ε)d̃(.,V0,c)gj‖ ≤ K ′
εc

1−(2/k)‖e(1−ε)d(.,V0,c)ϕj‖ ≤ K ′′
ε c

1−(2/k) (103)

where K ′
ε and K ′′

ε are independent on c. We used Proposition 2, which shows also
that

‖e(1−ε)d̃(.,V0,c)(χϕj)‖ ≤ ‖e(1−ε)d(.,V0,c)ϕj‖ ≤ Cε. (104)
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Summing up, we proved that, for some other Kε independent on c

‖e(1−ε)d̃(.,V0,c)Pϕj‖ ≤ Kεc
(1−(2/k))+ . (105)

Now we shall orthogonalize the system (Pϕj) (1 ≤ j ≤ 2µ). We remark that

Pϕj − ϕj =
1
2iπ

∫
γ

(z −Ddis(θ, c))−1
(
Ddis(θ, c)−D0(c)

)
ϕj

z − λj(c)
dz. (106)

It follows that
‖Pϕj − ϕj‖ ≤ K0‖

(
Ddis(θ, c)−D0(c)

)
ϕj‖ (107)

where K0 is independent of c. We have, if Vθ is defined in (26) and V0 in (72)

‖
(
Ddis(θ, c)−D0(c)

)
ϕj‖ ≤ K

∫
V (x)≥(2−ε/2)c2

|∇ϕj(x)|2 dx+ . . .

. . .+K

∫
V (x)≥(2−ε/2)c2

[1 + |Vθ(x)− V0(x)|2|]ϕj(x)|2 dx (108)

for some constant K, and we have also |Vθ(x)− V0(x)| ≤ K < x >k. By Lemma 8
and proposition 2, it follows that, for some Kε

‖Pϕj − ϕj‖ ≤ Kεe
−Σ(c,ε).

By Lemma 8, ‖Pϕj − ϕj‖ → 0 when c → +∞. Hence the Gram matrix S =
(Pϕj , Pϕk)1≤j,k≤2µ tends to identity when c → +∞. Therefore, if c is large
enough, T = S−1/2 is defined, and bounded independently of c. If we set T = (ajk),
the system of functions ψj =

∑
ajkPϕk is an orthonormal basis of ImP , which

satisfies the estimations (90). ✷

End of the proof of Theorem 4. We consider again the function χ defined in (91)
and an orthonormal system of eigenfunctions ψj satisfying (71). By Proposition 3,
we can write ∫

supp (1−χ)
|ψj(x)|2 dx ≤ K2

ε c
2e−2(1−ε)Σ(c,ε). (109)

It follows by Lemma 8 (point i)) that, if c is large enough∫
(1− χ(x))|ψj(x)|2 dx ≤ 1

2
. (110)

If we write the imaginary part of the scalar product of both sides of (71) with χψj ,
we obtain, using (93)

(
Ej(c))
∫

IR3
χ(x)|ψj(x)|2 dx = 
〈D(θ, c)ψj , χψj〉 = . . .
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. . . = 
〈D0(c)ψj , χψj〉 = −1
2
〈[D0(c), χ]ψj , ψj〉. (111)

Using (110) and (92), we have, for some constants K, K ′ and K ′′
ε

|
Ej(c)| ≤ |
(
[D0(c), χ]ψj , ψj

)
| ≤ Kc

∫
|∇χ(x)||ψj(x)|2 dx ≤ . . .

. . . ≤ K ′c1−(2/k)
∫

supp(1−χ)
|ψj(x)|2 dx ≤ K ′′

ε c
3e−2(1−ε)Σ(c,ε).

The estimation (12) of Theorem 4 follows, with another ε, using Lemma 8.

References

[1] J. Aguilar, J.M. Combes, A class of analytic perturbations for one-body
Schrödinger Hamiltonians, Comm. Math. Physics, 22, 280–294 (1971).

[2] E. Balslev, B. Helffer, Limiting absorption principle and resonances for the
Dirac operator. Advances in Appl. Math, 13, 186–215 (1992).

[3] D. Grigore, G. Nenciu, R. Purice, On the nonrelativistic limit of the Dirac
Hamiltonian, Ann. Inst. H. Poincaré, Phys. Th. 51, 231–263 (1989).
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[9] B. Parisse, Résonances pour l’opérateur de Dirac. Helvetica Physica Acta, 64,
557–591 (1991).
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