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Lattice Points, Perturbation Theory and
the Periodic Polyharmonic Operator
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1 Introduction

Consider the polyharmonic operator acting in L2(Rd), perturbed by a real-valued
periodic function:

H = H0 + V, H0 = (−∆)l, l > 0. (1.1)

The spectrum of H is formed from closed intervals (spectral bands), possibly sep-
arated by gaps (see [6], [10]). We shall concentrate on one aspect of this structure,
known as the Bethe-Sommerfeld conjecture, which states that the number of spec-
tral gaps is finite. This hypothesis was put forward by H. Bethe and A. Sommerfeld
for the Schrödinger operator in dimension three, i.e. for l = 1, d = 3. Ever since,
the case l = 1 was a subject of intensive study by a number of authors, which lead
to the justification of the conjecture for d = 2 in [9], [1], for d = 3 in [13] and for
d = 2, 3, 4 in [2]. In dimensions d ≥ 5 the problem was solved only for rational
lattices of periods (see [12]). For arbitrary l the number of gaps was shown to be
finite for 2l > d, d ≥ 3 in [11], [12]. Later, in [3] (see also [4]), these conditions were
relaxed to 4l > d + 1, d ≥ 2. In our recent paper [7] we prove the conjecture for
6l > d + 2, d ≥ 2.

The aim of the present paper is to loosen the condition from [7] further.
Namely, we show that the number of gaps in the spectrum of H is finite if 8l > d+3,
d ≥ 2. In the physically most relevant case l = 1 (i.e. for the Schrödinger operator),
this requirement is fulfilled for d = 2, 3 or 4. These are exactly the dimensions
for which the conjecture was justified in the papers cited above. However, our
method has a considerable advantage that it relies only on elementary perturbation
theoretic arguments and treats all dimensions d and exponents l satisfying 8l >
d + 3, in a unified fashion. In connection with this, it is appropriate to note that
the study of the polyharmonic operator with an arbitrary l > 0 (rather than
with l = 1 only) is useful and instructive as it allows one to understand better
the mechanisms responsible for the quantitative characteristics of the spectrum,
and to find out how far one can push the perturbation theoretic argument in its
investigation.

Our approach follows the plan of [7] and comprises two main ingredients:

1. Number-theoretic estimates, more precisely, estimates on the number of lat-
tice points inside a ball of a large radius;
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2. An estimate on the difference between the counting functions of the per-
turbed and unperturbed problems.

All the necessary number-theoretic facts were obtained in the previous article
[7] and are used here without any modifications (see Proposition 3.1). On the
contrary, for ingredient 2 we now rely on a bound (see Proposition 3.2), borrowed
from [5], which is more precise than the corresponding bound established in [7].
This modification enabled us to improve the sufficient condition of validity of the
Bethe-Sommerfeld conjecture from 6l > d+2 to 8l > d+3. Before we learnt about
the existence of paper [5] we established an alternative version of Proposition 3.2,
which required the condition V ∈ C∞, which is more restrictive in comparison
with [5]. This version can be found in [8].

Notation. By bold lowercase letters we denote vectors in R
d and Z

d, e.g. x ∈
R

d, m ∈ Z
d. Bold uppercase letters G,F are used for d × d constant positive

definite matrices. The notations ab and aGb stand for the scalar product in
R

d and the bilinear form of the matrix G respectively. For any function f ∈
L1(O), O = [0, 2π)d the Fourier transform is defined as follows:

f̂(m) =
1

(2π)d/2

∫
O

e−imxf(x)dx.

Throughout the paper we also use the following notation:

δ = δd =

{
0, d �= 1(mod 4);
arbitrary positive number, d = 1(mod 4).

(1.2)

By C and c (with or without indices) we denote various positive constants whose
precise value is unimportant.

2 Main result and preliminaries

2.1 Notation and main result

Using a linear change of coordinates, (1.1) can be transformed to the following
form:

H =H0 + V,

H0 =H
(l)
0 = (DGD)l, D = −i∇,

where G is a constant positive-definite d × d -matrix, and V is a bounded real-
valued function periodic with respect to the cubic lattice Γ = (2πZ)d. As V is
bounded, the operator H is self-adjoint on the domain D(H0) = H2l(Rd). We use
the following notation for the fundamental domains of the lattice Γ and its dual
lattice Γ† = Z

d:
O = [0, 2π)d, O† = [0, 1)d.
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Let us also introduce the torus T
d = R

d/Γ. To describe the spectrum of H we
use the Floquet decomposition of the operator H (see [10]). We identify the space
L2(Rd) with the direct integral

G =
∫

O†
Hdk, H = L2(O).

The identification is implemented by the Gelfand transform

(Uu)(x,k) = e−ikx
∑

m∈Zd

e−i2πkmu(x + 2πm), k ∈ R
d,

which is initially defined on functions from the Schwarz class and extends by
continuity to a unitary mapping from L2(Rd) onto G. It is readily seen that

(UH0U
−1u)( · ,k) = H0(k)u( · ,k),

H0(k) =
(
(D + k)G(D + k)

)l
, k ∈ R

d,

with the domain D(H0(k)) = H2l(Td). The family H(k) = H0(k) +B(k) realises
the decomposition of H in the direct integral:

UHU−1 =
∫

O†
H(k)dk.

The spectra of all H(k) consist of discrete eigenvalues λj(k), j = 1, 2, . . . , that we
arrange in non-decreasing order counting multiplicity. It is clear that λj( · ) are
continuous functions of k. The images

�j = ∪
k∈O†

λj(k),

of the functions λj are called spectral bands. The spectrum of the initial operator
H has the following representation:

σ(H) = ∪j�j .

The bands with distinct numbers may overlap. To characterise this overlapping
we introduce the function m(λ) = m(λ, V ) called the multiplicity of overlapping,
which is equal to the number of bands containing given point λ ∈ R:

m(λ) = #{j : λ ∈ �j};

and the overlapping function ζ(λ) = ζ(λ, V ), λ ∈ R, defined as the maximal
number t such that the symmetric interval [λ− t, λ+ t] is entirely contained in one
of the bands �j :

ζ(λ) = max
j

max{t : [λ− t, λ + t] ⊂ �j}.
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These two quantities were first introduced by M. Skriganov (see e.g. [12]). It is
easy to see that ζ is a continuous function of λ ∈ R.

To state the main result we have to impose additional smoothness conditions
on the potential V . It will be convenient to formulate them in terms of the Fourier
coefficients V̂ (θ) of the potential V . We shall assume that∑

θ∈Zd

|V̂ (θ)| |θ|ν < ∞, (2.1)

with

ν >




(d− 1)/2, d ≥ 3;

2(l + 1)/3, d = 2.
(2.2)

This condition is exactly the same as in Section 1 of [5]. The main results of the
paper are stated in the following theorem. Recall that the parameter δ = δd used
in the Theorem is defined in (1.2).

Theorem 2.1. Let l > 0, d ≥ 2 and let V ∈ C∞(Td) be a real-valued function
satisfying the conditions (2.1), (2.2). Suppose that 8l > d + 3. Then there is a
number λl = λl(V, δ) ∈ R such that

m(λ) ≥ c0λ
d−1
4l −δ, ζ(λ) ≥ c0λ

1− d+1
4l −δ (2.3)

for all λ ≥ λl with a constant c0 independent of V .

Clearly, this Theorem implies the validity of the Bethe-Sommerfeld conjec-
ture.

The proof of Theorem 2.1 exploits the connection between the functions
m(λ), ζ(λ) and the counting functions

N
(
λ;H(k)

)
=

∑
λj(k)≤λ

1, n
(
λ;H(k)

)
=

∑
λj(k)<λ

1.

Denote
N+(λ) = max

k
N
(
λ;H(k)

)
, N−(λ) = min

k
N
(
λ;H(k)

)
,

and similarly define n±(λ). It is easy to deduce from the definitions of m(λ), ζ(λ)
(see e.g. [12], [13]) that

m(λ) = N+(λ) − n−(λ),
ζ(λ) = sup{t : N−(λ + t) < N+(λ− t)}, (2.4)

which immediately implies that

m(λ) ≥ N+(λ) −N−(λ). (2.5)

The proof of Theorem 2.1 is completed in the next section.
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3 Proof of the main theorem

We begin with a description of two key ingredients of the proof of Theorem 2.1.

3.1 Integer points in the ellipsoid

In this subsection we collect some facts from number theory that will play a crucial
role.

Let C ⊂ R
d be a measurable set and let C(k), k ∈ O† be the family of sets

obtained by shifting C by the vector −k, i.e.

C(k) = {ξ ∈ R
d : ξ + k ∈ C}.

The characteristic function of the set C will be denoted by χ( · ;C). Denote by
#(k;C) the number of integer points in C(k), i.e.

#(k;C) =
∑

m∈Zd

χ(m + k;C).

Introduce the notation
〈f〉 =

∫
O†

f(k)dk

for the average value of a function f ∈ L1(O†). Then the previous formula imme-
diately leads to the equality

〈#(C)〉 = vol(C).

We shall need an estimate for the number of integer points inside an (closed)
ellipsoid determined by the matrix G. Precisely, for any ρ > 0 let E(ρ) = E(ρ,F) ⊂
R

d be the ellipsoid
{ξ ∈ R

d : |Fξ| ≤ ρ}, F = G1/2.

There is a very simple connection between integer points in the ellipsoid and the
eigenvalues of the unperturbed problem. Indeed, the eigenvalues of the operator
H0(k) equal |F(m + k)|2l, m ∈ Z

d, which ensures that for all ρ ≥ 0


N
(
ρ2l;H0(k)

)
= #

(
k;E(ρ)

)
,〈

N(ρ2l;H0)
〉

=
〈
#(E(ρ))

〉
= wd ρ

d,
(3.1)

where

wd =
Kd√
detG

, Kd =
πd/2

Γ(d/2 + 1)
,

Kd being the volume of the unit ball in R
d. We are interested in the lower bound for

the deviation of the function N(ρ2l;H0(k)) from the volume wd ρ
d of the ellipsoid

E(ρ) as ρ → ∞:
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Proposition 3.1. Let the number δ be as defined in (1.2). Then for all sufficiently
big ρ the estimate holds:〈∣∣#(

E(ρ)
)
− wd ρ

d
∣∣〉 ≥ Cρ

d−1
2 −δ,

with a constant C = C(d,G, δ).

Note that we do not need any upper bound on the l.h.s. of the above inequal-
ity. We refer to [7] for the proof and discussion of Proposition 3.1.

3.2 An estimate for the counting function N(ρ2l;H(k))

As in [7], the second crucial ingredient of the proof is an estimate for the deviation
of N(λ;H(k)) from the unperturbed counting function N(λ;H0(k)), averaged in
k ∈ O†. In contrast to [7], we use a more precise estimate established in [5]:

Proposition 3.2. Let d ≥ 2, 2l > 1. Suppose that the potential satisfies the condi-
tions (2.1), (2.2). Then〈∣∣N(ρ2l;H) −N(ρ2l;H0)

∣∣〉 ≤ Cρd+1−4l ln ρ, (3.2)

for sufficiently large ρ.

The bound (3.2) was derived in [5] as an intermediate result for obtain-
ing the corresponding estimate for the integrated density of states D(ρ2l;H) =
〈N(ρ2l;H)〉. Indeed, by (3.1), the unperturbed density of states D(ρ2l;H0) coin-
cides with wd ρ

d, so that (3.2) leads to

D(ρ2l;H) = wd ρ
d + ρd+1−4lO

(
ln ρ

)
, ρ → ∞.

For l = 1 and V ∈ C∞(Td) a similar estimate with the remainder O(ρd−3+η) with
arbitrary η > 0 was proved in [2] for all d ≥ 2.

Note also that for V ∈ C∞(Td) and arbitrary l > 1/2 an estimate similar to
(3.2) with the remainder O(ρd+1−4l+η) with arbitrary η > 0 was found in [8].

3.3 Proof of Theorem 2.1

Observe that under the condition 8l > d + 3 we have d + 1 − 4l < (d − 1)/2.
Therefore Proposition 3.2 and (3.1) give the equalities

lim ρ−β〈
∣∣N(ρ2l;H) −N(ρ2l;H0)

∣∣〉 = 0, (3.3)

lim ρ−β
∣∣〈N(ρ2l;H)〉 − wd ρ

d
∣∣ = 0, (3.4)

as ρ → ∞, for β = (d− 1)/2− δ with a sufficiently small δ (see (1.2) for definition
of δ). Note that〈

|N(λ;H) − 〈N(λ;H)〉|
〉
≥

〈
|N(λ;H0) − wd ρ

d|
〉

−
〈
|N(λ;H) −N(λ;H0)|

〉
− |〈N(λ;H)〉 − wd ρ

d|, λ = ρ2l.
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Now, using Proposition 3.1 and (3.1) for the first term in the r.h.s., and the rela-
tions (3.3) and (3.4) for the remaining terms, we obtain that

〈∣∣N(ρ2l;H) − 〈N(ρ2l;H)〉
∣∣〉 ≥ cρβ,

for all ρ ≥ ρ0 with a sufficiently large ρ0 > 0. Noticing that the function in the
l.h.s. is of average zero, we see that

max
k

N
(
ρ2l;H(k)

)
≥ 〈N(ρ2l;H)〉 + cρβ ,

min
k

N
(
ρ2l;H(k)

)
≤ 〈N(ρ2l;H)〉 − cρβ ,

which implies, in view of (3.4), that




maxk N
(
ρ2l;H(k)

)
≥ wd ρ

d + cρβ ,

mink N
(
ρ2l;H(k)

)
≤ wd ρ

d − cρβ ,
(3.5)

for ρ ≥ ρ0. According to (3.5) for all non-negative t ≤ ρ2l/2 we have

N+(ρ2l − t) ≥ wd(ρ2l − t)
d
2l + C(ρ2l − t)

β
2l

≥ wd ρ
d + Cρβ − ctρd−2l, ∀ρ ≥ 2ρ0.

Similarly,

N−(ρ2l + t) ≤ wd(ρ2l + t)
d
2l − C(ρ2l + t)

d
2l

≤ wd ρ
d −Cρβ + ctρd−2l, ∀ρ ≥ ρ0.

Now one concludes from (2.5) that

m(ρ2l) ≥ N+(ρ2l) −N−(ρ2l) ≥ 2Cρβ, ∀ρ ≥ 2ρ0,

and hence

m(λ) ≥ cλ
β
2l ,

which yields (2.3) for all λ ≥ λl = (2ρ0)2l. This completes the proof of the lower
bound for m(λ). To estimate ζ(λ) write

N+(ρ2l − t) −N−(ρ2l + t) ≥ 2Cρβ − 2ctρd−2l.

From the formula (2.4) one can now infer (2.3) for ζ(λ), λ ≥ (2ρ0)2l.
Theorem 2.1 is proved.
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