
Ann. Henri Poincaré 2 (2001) 525 – 551
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Abstract. In this paper we use a general procedure [11] allowing to study the asymp-
totic behavior of eigenfunctions (even for eigenvalues that are embedded in the con-
tinuous spectrum) and prove exponential decay of eigenfunctions for a large class
of perturbed periodic Schrödinger Hamiltonians.

1 Introduction

In this paper we consider the problem of obtaining upper bounds for the rate
of decay at infinity for eigenfunctions of perturbed periodic Schrödinger opera-
tors. More precisely, let us fix a Hamiltonian of the form HI := H + VI where
H := −∆ + V is a periodic Schrödinger operator in dimension n and VI is a
perturbation decaying at infinity (faster then |x|−1). We shall suppose that the
spectrum of H has an isolated part at the bottom that can be described by N
analytic eigenvalues with analytic associated eigenprojectors (for example if the
first band is isolated), more precisely we shall impose our Hypothesis 1.1 below.
Under these conditions we show that any eigenvalue of the perturbed Hamiltonian
HI that is a regular value (more precisely see Definition 1.2), has eigenfunctions
that decay exponentially at infinity, with an exponent linear in |x| (see Theorem
1.4). Let us remark that our result covers also the case of embedded eigenvalues
as long as they are regular.

Let us point out that the existence of embedded eigenvalues for perturbations
of periodic Schrödinger operators has been subject to intensive work. In [10] it is
shown that for any continuous V and any number E belonging to the spectrum
of H, there exists a function VI which is O(< x >−1) at infinity such that E is
an eigenvalue of H + VI . In more than one dimension the situation is less clear.
Anyway, if n = 2 or 3, for some classes of periodic V ’s, eigenvalues embedded into
the spectrum of H are forbidden if one imposes the very restrictive condition

|VI(x)| ≤ Cexp(−|x|4/3+ε)

for a strictly positive ε (see [9]).
We obtain our result (Theorem 1.4) by first proving a weighted estimation of

Hardy type (with exponential weights) for the unperturbed periodic Hamiltonian
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H (Theorem 1.3). In fact, inspired by [1], [2], [3], [4], [5], [8], we elaborate a general
scheme (see also [11]) for obtaining Hardy type inequalities for a Hamiltonian
starting from a conjugate operator of a special form imposed by the form of the
weight function. In [11] we have used this general method for Hamiltonians given
by convolution with analytic functions. In our case we shall isolate the bounded
energy region of the first N bands for which we shall apply a generalization of our
previous method and the rest of the spectrum for which we shall use a variant of
the general method of Agmon [1].

We shall denote by ∇ and ∆ the usual gradient and Laplace operators on
C∞

0 (Rn) and by H2(Rn) the Sobolev space of second order. Let p = 2 for n=1,2,3,
p > n/2 for n ≥ 4 and let V ∈ Lp

loc(R
n;R) be Z

n-periodic on R
n. By some

obvious modifications one can also consider a general type of lattice. We consider
the Hamiltonian :

H = −∆+ V (1.1)

to be the usual self-adjoint operator in L2(Rn) (having domain H2(Rn), see [12]).
The well-known Floquet representation allows one to decompose H as a direct
integral corresponding to the representation : L2(Rn) ∼= L2(Tn;L2(Ω)) , where :

T
n := R

n/Zn ∼= (S1)n; Ω := [0, 1)n (1.2)

are the n-dimensional torus and the fundamental domain associated to Zn. In the
following we identify functions defined on T

n with periodic functions on R
n.

The HamiltonianH is decomposable with respect to the above representation
and each ”fibre Hamiltonian” H(τ) (for τ ∈ T

n) has compact resolvent and thus a
discrete spectrum {λa(τ)}a∈N

, defining the so-called ”band functions”. Due to the
fact that our procedure relies on the regularity of the functions : T

n � τ �−→ λa(τ)
and being well known that for n > 1 some difficult problems appear in this context,
we are obliged to impose some implicit conditions that we now formulate.

We shall constantly denote :

C
n
δ := {z ∈ C

n| |Imzj | < δ, ∀ j ∈ {1, ..., n}} , δ > 0
P(L2(Ω)) :=

{
P ∈ B(L2(Ω)) | P 2 = P = P ∗} . (1.3)

Hypothesis 1.1. By denoting σ(H) the spectrum of the operator H, we assume :
a) σ(H) = σ0 ∪ σ∞, where : (inf σ∞)− (supσ0) = d0 > 0 ;
b) there is some N ∈ N

∗ and for each a ∈ {1, ..., N} two functions :

λa : T
n → R , πa : T

n → P(L2(Ω)) (1.4)

that are analytic (with respect to the uniform topology on P(L2(Ω)) in the second
case) and admit holomorphic extensions to some strip Cn

δ for some δ > 0, such
that the Hamiltonian H reduced to the spectral subspace associated to σ0 is unitar-
ily equivalent, in the Floquet representation, to multiplication with the following
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operator-valued function of τ ∈ T
n:

N∑
a=1

λa(τ)πa(τ). (1.5)

Let us remark that our Hypothesis covers the usual case in which the spec-
trum of H has an isolated band at its bottom, but also the situation of several
bands, even overlapping, as long as one can assure the analyticity of the eigenvalues
and of the eigenprojections.

Definition 1.2. Let us denote by E0(H), the set of points t < inf σ∞ such that ∃ε >
0, ∃α0 > 0 for which |(∇λa)(τ)| ≥ α0, ∀τ ∈ λ−1

a ((t−ε, t+ε)) and ∀a ∈ {1, ..., N}.
We call this set, the regular set of H below σ∞.

Let us remark that E0(H) is the complement in (−∞, inf σ∞) of the set of
critical values of the functions {λ1, ..., λN}. With these notations we can state now
the main results of our work, that will be proved in Section 3.

Theorem 1.3. Let H be a periodic Schrödinger Hamiltonian satisfying the Hypoth-
esis 1.1 and let E ∈ E0(H). Then there exists a constant κ0 ∈ (0, 2πδ) such that
for any κ ∈ (0, κ0) there exists a positive constant C (depending on E and κ) for
which :∥∥eκ<Q>f

∥∥
D(H) ≤ C

∥∥∥√< Q >eκ<Q>(H −E)f
∥∥∥ , ∀f ∈ D(H). (1.6)

We have denoted by ‖.‖D(H) the graph norm with respect to H.

Theorem 1.4. Let H be a periodic Schrödinger operator (1.1) for which Hypothesis
1.1 stands true. Let VI be a potential of class Lp

loc(R
n) (with p as defined before

(1.1)), such that lim
|x|→∞

< x > |VI(x)| = 0. Then for any eigenvalue E of the

Hamiltonian HI := H + VI that belongs to E0(H) there exists κ ∈ (0, δ) such that
for any corresponding eigenvector g :

eκ<Q>g ∈ L2(Rn). (1.7)

An Appendix is dedicated to some technical lemmas needed in the proof of
Theorem 1.3.

2 Some Developments in the Floquet Representation

Let H be a periodic Schrödinger Hamiltonian as in the preceding section. We shall
briefly recall some facts concerning the Floquet representation in order to fix our
notations and to put into evidence some objects and properties that we shall need
in the sequel.
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For x ∈ R
n let x = [x] + x with [x] ∈ Z

n, x ∈ Ω. Then, if we denote
K = L2(Ω), we can define the unitary isomorphism :

L2(Rn) � f �→ U0f ∈ L2(Tn;K)
(U0f)(τ, ξ) := (2π)n/2

∑
α∈Zn

e−i2πα·τf(α+ ξ). (2.8)

For further use let us also give the explicit form of its inverse :

∀
◦
f∈ L2(Tn;K), (U−1

0

◦
f)(x) = (2π)−n/2

∫
Tn

ei2π[x]·τ ◦
f (τ, x)dτ. (2.9)

We constantly distinguish between the two unitarily equivalent representations
H = L2(Rn) and

◦
H= L2(Tn;K) and we use notations of the form

◦
H:= U0HU−1

0 .
For the position operators :

D(Qj) :=
{
f ∈ H |

∫
Rn |xjf(x)|2 dx <∞

}
(Qjf) (x) := xjf(x), Q := (Qj)j=1,...,n

(2.10)

we have the explicit form in the representation
◦
H :(

◦
Q

◦
f

)
(τ, ξ) :=

(
U0QU

−1
0

◦
f

)
(τ, ξ) =

((
i

2π
∇τ +Mξ

)
◦
f

)
(τ, ξ) (2.11)

for any
◦
f∈ C∞(Tn;K), where ∇τ is the gradient operator with respect to the

variable τ ∈ T
n and Mξ is the operator of multiplication with the variable in K.

For any n commuting variables {X1, ...,Xn} let < X >:=

{
n∑

j=1
X2
j

}1/2

.

Then < Q > defines a self-adjoint operator on the domain D(Q) :=
n⋂

j=1
D(Qj)

that is a domain of essential self-adjointness for each Qj .
It is useful to observe that for j = 1, ..., n, one can define the operators :

([Qj ] f) (x) := [xj ] f(x), D([Qj ]) := D(Qj) (2.12)

and they satisfy the relation :

[Qj ] = −
1
2π

U−1
0 (−i∇τ )U0. (2.13)

Associated to these operators we have a third representation that we shall fre-
quently use H̃ := l2(Zn;K), obtained by the inverse discrete Fourier transform :

F0 : l2(Zn;K)→ L2(Tn;K)
(F0ũ) (τ, ξ) := (2π)n/2

∑
α∈Zn

e−i2πα·τ ũ(α, ξ). (2.14)
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We shall also use the following unitary operator :

U := F−1
0 U0 : L2(Rn)→ l2(Zn;K), (Uf) (α, ξ) = f (α+ ξ)(

U−1f̃
)
(x) = f̃ ([x] , x) .

(2.15)

For any functions F : Z
n → B(K) and λ : T

n → B(K) we can define the multipli-

cation operators M̃F on H̃ and
◦
Mλ on

◦
H, with evident domains, given by :(

M̃F f̃
)
(α, ξ) :=

(
F (α)f̃

)
(α, ξ)(

◦
Mλ

◦
f

)
(τ, ξ) :=

(
λ(τ)

◦
f

)
(τ, ξ).

(2.16)

For λ : T
n → B(K) we can define its Fourier transform :

λ̂(α) := (2π)−n/2
∫

Tn

ei2πα·τλ(τ)dτ (2.17)

(with integrals defined in weak sense in B(K)) and we define the convolution
operator on H̃ :(

λ∗f̃
)
(α, ξ) :=

(
F−1

0
◦
Mλ F0f̃

)
(α, ξ) =

∑
β∈Zn

(
λ̂(α− β)f̃(β)

)
(ξ). (2.18)

Thus for any bounded function λ we have ‖λ∗‖B(H̃) = ‖λ‖L∞(Tn;B(K)) .
In order to simplify some formulae let us define the discrete translations in

H̃. For j = 1, ..., n let εj ∈ Z
n be given by (εj)k := δjk and :(
Vj f̃

)
(α, ξ) := f̃(α− εj , ξ). (2.19)

Due to the fact that {V1, ..., Vn} commute, for any α ∈ Z
n one can define :

V (α) ≡ V α =
n∏

j=1

V
αj

j (2.20)

so that :
λ∗ =

∑
β∈Zn

λ̂(β)V (β). (2.21)

In the sequel we shall frequently need to estimate the norm of the operator
λ∗ between spaces with weights (growing exponentially at infinity). Even the defi-
nition of the conjugate operator that we shall propose asks for the control of such
objects. Formally one has :(

M̃Fλ∗M̃F−1 f̃
)
(α, ξ) =

∑
β∈Zn

(
F (α)λ̂(α− β)F (β)−1f̃

)
(β, ξ). (2.22)
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Lemma 2.5. Let ρ : T
n → B(K) be an analytic function having a holomorphic

extension to a strip C
n
δ for some strictly positive constant δ. Then for κ ∈ [0, 2πδ)

we have :
‖ρ‖22,−κ :=

∑
β∈Zn

(
eκ|β| ‖ρ̂(β)‖B(K)

)2
<∞. (2.23)

Proof. Let us remark that for β ∈ Z
n and ν ∈ N

n :

βν ρ̂(β) = (2π)−n/2 (2πi)−|ν|
∫

Tn

ei2πβ·τ (∂νρ) (τ)dτ,

‖βν ρ̂(β)‖B(K) ≤ (2π)n−(|ν|+n/2)
(
sup
τ∈Tn

‖(∂νρ) (τ)‖B(K)

)
≤Mρ (2π)

n/2−|ν| ν!
δ|ν|

due to the analyticity assumption on ρ and the Cauchy inequalities. On the other
hand one has for any θ ∈ R+ and l ∈ N :

(θ |β|)l ≤ θl
∑
|ν|=l

|βν | l!
ν!

so that :

(θ |β|)l ‖ρ̂(β)‖B(K) ≤ Cn,ε
Mρ (2π)

n/2

(n− 1)!
l!
(
(1 + ε) θ
2πδ

)l

for any ε > 0. By summing up we get that for any θ > κ :

eθ|β| ‖ρ̂(β)‖B(K) ≤ Cn,ε
Mρ(2π)n/2

(n−1)!

∑
l∈N

(
(1+ε)θ

2πδ

)l
∑

β∈Zn

(
eκ|β| ‖ρ̂(β)‖B(K)

)2
≤ C

{ ∑
β∈Zn

e−2(θ−κ)|β|

}{∑
l∈N

(
(1+ε)θ

2πδ

)l}2 (2.24)

and this is finite for (1 + ε) θ < 2πδ. �

Definition 2.6. Let ρ : T
n → B(K) admit a holomorphic extension to the strip C

n
δ

(with respect to the uniform topology) for some δ > 0. Assume given a function
m : Z

n → R satisfying : m(α) ≥ 1, m(α + β) ≤ C1m(α)m(β). For any function
G : Z

n × Z
n → C such that for some κ ∈ [0, 2πδ) :

sup
α,β∈Zn

e−κ|α|m(β) |G(α, β)| ≡ ‖G‖∞,κ,m <∞ (2.25)

we define in H̃ the following operators :(
(ρ♦G) f̃

)
(α, ξ) :=

∑
β∈Zn

G(β, α)
(
ρ̂(β)f̃(α− β)

)
(ξ)(

(ρ♦G)† f̃
)
(α, ξ) :=

∑
β∈Zn

G(β, α− β)
(
ρ̂(β)f̃(α− β)

)
(ξ).

(2.26)
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If m(β) = 1 for every β we denote ‖G‖∞,κ,1 = ‖G‖∞,κ.

Proposition 2.7. For ρ,m and G as in Definition 2.6 let H̃m denote the domain of
the operator of multiplication with the function m provided with the graph-norm.
Then for any κ′ ∈ (κ, 2πδ) (for κ the exponent associated to the function G), we
have the estimation :

‖ρ♦G‖B(H̃;H̃m) ≤ C ‖G‖∞,κ,m ‖ρ‖2,−κ′ . (2.27)

Proof.

∥∥∥(ρ♦G) f̃∥∥∥2

H̃m

:=
∑
α∈Zn

m(α)2

∥∥∥∥∥∥
∑
β∈Zn

G(β, α)
(
ρ̂(β)f̃

)
(α− β, .)

∥∥∥∥∥∥
2

K

≤

≤ ‖G‖2∞,κ,m

∑
α∈Zn

∑
β∈Zn

eκ
′|β|

< β >n/2+ε
‖ρ̂(β)‖B(K)

∥∥∥f̃(α− β, .)
∥∥∥
K

2

≤

≤ C2 ‖G‖2∞,κ,m ‖ρ‖
2
2,−κ′

∥∥∥f̃∥∥∥
H̃
.

�
In computing commutators we use a slight generalization of the above result.

Definition 2.8. Let λ : T
n → B(K) and ρ : T

n → B(K) admit holomorphic exten-
sions to C

n
δ (with respect to the uniform topology) for some δ > 0. Assume given

a function m : Zn → R satisfying : m(α) ≥ 1, m(α + β) ≤ Cm(α)m(β). For any
function Γ : Zn × Zn × Zn → C such that for some κ ∈ [0, 2πδ) :

sup
α,β,γ∈Zn

e−κ(|α|+|β|)m(γ) |Γ(α, β, γ)| ≡ ‖Γ‖∞,κ,m <∞ (2.28)

we define in H̃ the following operator :(
((λ 4 ρ)♦Γ) f̃

)
(α, ξ) :=

∑
β,γ∈Zn

(
λ̂(β)ρ̂(γ)M̃Γ(γ,β,.)V (β + γ)f̃

)
(α, ξ). (2.29)

Proposition 2.9. For λ, ρ,m and Γ as in Definition 2.8 let H̃m denote the domain
of the operator of multiplication with the function m provided with the graph-norm.
Then for any κ′ ∈ (κ, 2πδ) (with κ the exponent associated to the function Γ), we
have the estimation :

‖(λ 4 ρ)♦Γ‖B(H̃;H̃m) ≤ C ‖Γ‖∞,κ,m ‖λ‖2,−κ′ ‖ρ‖2,−κ′ . (2.30)

The proof is similar to the previous one. Let us give now the application of
this result in computing commutators. In the sequel we use the restriction to Z

n
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of functions defined on R
n and we need some bounds on their variation on Z

n. It
is convenient to express this variation by using the Leibnitz formula applied to the
initial function defined on R

n.

Corollary 2.10. Let λ : Tn → B(K) and ρ : Tn → B(K) admit holomorphic ex-
tensions to the strip Cn

δ (with respect to the uniform topology) for some δ > 0.
Let m : Z

n → R+ and G : R
n × R

n → C be given such that the restriction of
G to Z

n × Z
n satisfies the assumptions of Definition 2.6 and also the following

estimation :

sup
α,β∈Zn

e−κ|α|m′(β) |(∇G) (α, β)| ≡ ‖∇G‖∞,κ,m′ <∞ (2.31)

for a function m′ satisfying the same conditions as the function m. Then :

[λ∗, ρ♦G] = (λ 4 ρ)♦Γ (2.32)

with :

Γ (α, β, γ) := G (α, β − γ)−G (α, β) = −
∫ 1

0
ds
{
γ ·
(
∇G(2)

)
(α, β − sγ)

}
(here ∇(2) represents the gradient with respect to the second variable) so that we
can apply Proposition 2.9.
Proof.(

[λ∗, ρ♦G] f̃
)
(α, ξ) =

∑
β∈Zn

λ̂(β)

([
V (β),

∑
γ∈Zn

ρ̂(γ)G(γ, α)V (γ)

]
f̃

)
(α, ξ) =

=
∑

β,γ∈Zn

{G(γ, α− β)−G(γ, α)}
(
λ̂(β)ρ̂(γ)V (β + γ)f̃

)
(α, ξ) .

�
As it is well known [6], [7], [12],[13], the operator

◦
H is analytically decom-

posable, i.e.
◦
H may be viewed as a multiplication operator with a function

◦
H (τ)

defined on T
n with values self-adjoint operators on K, with compact resolvent

that depends analytically on τ ∈ T
n. We shall suppose that σ(H) = σ0 ∪ σ∞ with

(inf σ∞) − (supσ0) = d0 > 0 and consider the spectral projection P0 of H corre-
sponding to σ0. We denote : K := P0HP0, H∞ := H −K, P∞ := 1− P0. By our
Hypothesis 1.1 there exists a number N ∈ N∗ such that the operator

◦
K= U0KU−1

0
has the following expression :

◦
K=

N∑
a=1

◦
Mλa

◦
Mπa≡

N∑
a=1

◦
Ka≡

◦
Mk (2.33)

where :

k(τ) :=
N∑
a=1

λa(τ)πa(τ). (2.34)
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We shall sometimes use the notations: Pa := U−1
0

◦
Mπa U0, Λa := U−1

0
◦
Mλa U0.

Let us observe that
◦
P0:= U0P0U

−1
0 is an operator of multiplication with the

analytic function :

p0(τ) := −
1
2πi

∮
Γ

( ◦
H (τ)− ζ

)−1
dζ (2.35)

for any contour Γ separating σ0 from the rest of the spectrum. We remark that
p0(τ) and k(τ) are analytic functions of τ even without the condition (b) of our
Hypothesis 1.1. Moreover we have :

p0(τ) =
N∑
a=1

πa(τ), σ0 =
N⋃
a=1

λa(Tn),

πa(τ)πb(τ) = 0 for a �= b.
(2.36)

As in our previous paper [11], in order to define the conjugate operator we
shall need the derivatives of the function k(τ) (in the uniform topology). We shall
use the following notations :

la : Tn � τ → la(τ) := (∇λa) (τ) ∈ Rn

◦
L:=

N∑
a=1

◦
M la

◦
Mπa≡

N∑
a=1

◦
La .

(2.37)

An important difficulty in extending our previous results [11] from the case of
a scalar analytic function λ : T

n → R to an analytic operator valued function
k : T

n → B(K) of the form (2.34), comes from terms like : πa (∇πb)πc, appearing
when computing commutators. Nevertheless, a simple calculus shows that :

πa (∇πb)πa = 0, ∀ (a, b) ∈ {1, ..., N}2 . (2.38)

Thus in our developments a very important role will be played by the following
linear projection :

B(H) � S �→ PK(S) :=
N∑
a=1

PaSPa ∈ B(H). (2.39)

Proposition 2.11. Let PK be the projection defined above (2.39). Then :

1. PK(KS) = PK(SK) = KPK(S),

2. P
2
K = PK ,

3. PK(S∗) = PK(S)∗,

4. PK(SPK(T )) = PK(S)PK(T ),

5. PK([K,T ]) = [K,PK(T )] .
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We concentrate now on the study of the weight functions that we shall use.
In order to control the exponential growth of the weight we are interested in, we
shall need to use a cut-off procedure and work with a class of bounded weights for
which we shall prove estimations that are uniform with respect to the cut-off.

Definition 2.12. Given some constant κ > 0 we define Φκ as the class of functions
ϕ̃ : [1,∞)→ R+ that are of class C∞ and satisfy the properties :

|ϕ̃(t)| ≤ κt; 0 < (∂ϕ̃) (t) ≤ κ; |(∂pϕ̃) (t)| ≤ κ

t
, ∀p ≥ 2.

Notation 2.13.
ϕ(x) := ϕ̃ (< x >) ; w(x) := eϕ(x); X(x) := (∇ϕ) (x) ≡ xη(x);
W := w(Q); W0 := w([Q]).

Proposition 2.14. We have the estimations :

|X(x)| ≤ κ; |η(x)| ≤ κ

< x >
; |(∇η) (x)| ≤ κC

< x >2 .

In the following we shall need to compare the weights W and W0.

Lemma 2.15. There exists a strictly positive constant C such that we have :

C−1w(x) ≤ w([x]) ≤ Cw(x), ∀x ∈ R
n.

Proof.

|ϕ(x)− ϕ([x])| =
∣∣∣∣x · ∫ 1

0
(∇ϕ) ([x] + sx) ds

∣∣∣∣ ≤ κ,

e−κw([x]) ≤ w(x) ≤ eκw([x]).
�

Lemma 2.16. There is a constant C such that ∀a ∈ {1, ..., N} :∥∥[Pa,W0]W−1
0

∥∥
B(H) ≤ Cκ.

Proof. We study the element [Pa,W0]W−1
0 f in the representation H̃. Denoting :

θα,β(s) :=
∫ s

0
β ·X (α− sβ) ds,

we have :
|θα,β(s)| ≤ sκ |β| ,(

[(πa)∗ ,W0]W−1
0 f̃

)
(α, ξ) = −

∑
β∈Zn

(θα,β(1)) eθα,β(s)
(
(̂πa) (β)V (β) f̃

)
(α, ξ) ,∥∥∥[(πa)∗ , w([Q])]w([Q])−1f̃

∥∥∥2

H̃
≤ κ2C2 ‖πa‖2,−κ′

∥∥∥f̃∥∥∥
H̃
.

�
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We come now to the problem of defining a conjugate operator for K.

Proposition 2.17. Pa (for a=1,...,N), K and L leave D(< Q >) invariant.

Proof. We have :

UD(< Q >) = UD(< [Q] >) = D(< ∇τ >)(
∇τ

(
◦
P a

◦
f

))
(τ, ξ) = (∇τπa) (τ)

◦
f (τ, ξ) + πa(τ)

(
∇τ

◦
f

)
(τ, ξ)

and all the functions λa(τ), la(τ) and πa(τ) are analytic on T
n. �

Definition 2.18. On D(< Q >) we define the following symmetric operator :

A0 :=
1
2
{[Q] · L+ L · [Q]} .

Once we have fixed E ∈ E0(H) (as in the statement of Theorem 1.3) let us
choose a bounded open interval I such that : E ∈ I ⊂ Ī ⊂ E0(H). We would like
to use the operator PK(A0) as a conjugate operator for K on I.

Proposition 2.19. With the above notations we have :

i [K,PK(A0)] = 1
2πL

2 ∈ B(H)
EK (I) i [K,PK(A0)]EK (I) = 1

2πEK (I)L2EK (I) ≥ ω2
IEK (I)

where EK (I) is the spectral projection of K corresponding to the interval I and

ωI :=
1
2π

min
a

(
inf

τ∈λ−1
a (I)

|(∇τλa) (τ)|
)
> 0. (2.40)

Proof. Using the properties of the projection PK we observe that :

i [K,PK(A0)] = i
2

N∑
a=1

{Pa [Ka, [Q]] · LPa + PaL · [Ka, [Q]]Pa}+

+ i
2

N∑
a=1

{Pa [Q] · [Ka, L]Pa + Pa [Ka, L] · [Q]Pa} ;

LPa =
N∑
b=1

(
U−1

0
◦
M lb U0Pb

)
Pa = Pa

(
U−1

0
◦
M la U0

)
Pa = PaL;

Pa [Ka, [Q]]Pa = i
2πU

−1
{( ◦

Mπa

[ ◦
Mλa ,∇τ

] ◦
Mπa

)
+

+
◦

Mλa

( ◦
Mπa

[ ◦
Mπa ,∇τ

] ◦
Mπa

)}
U = − i

2πLa;

[Ka, L] = [Ka, La] = 0

(in the last line both operators being multiplication with scalar functions in the
subspace corresponding to πa(τ)). �
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In order to derive a Hardy type inequality with exponential weights one has
to define a conjugate operator that is very intimately related to the commutator
of the Hamiltonian with the weight function. Thus we need a more complicated
conjugate operator for K on the interval I; the definition we propose is motivated
by the results of the Appendix. Let X : Rn → Rn be a vector field of class C∞(Rn)
satisfying :

|X(x)| ≤ κ; |(∂νxX) (x)| ≤ κ

< x >
, |ν| ≥ 1.

We shall denote by the same letter X its restriction to Z
n. Later we shall take X

to be the field defined in Definition 2.13.

Notation 2.20.

Z±(α, β) :=
∫ 1

0
e±sα·X(β)ds = ±e

±α·X(β) − 1
α ·X(β)

.

Let us observe that :

|Z±(α, β)| ≤ eκ|α|, ∀(α, β) ∈ Z
n × Z

n (2.41)

so that it satisfies the assumptions on the function G (with m(β) ≡ 1) made in
Definition 2.6. For any a = 1, ..., N we define now :

L+
X :=

N∑
a=1

Pa (la♦Z+)
†
Pa, L−

X :=
N∑
a=1

Pa (la♦Z−)Pa. (2.42)

Definition 2.21. On D(< Q >) we define the following symmetric operator :

AX :=
1
2
{
[Q] · L+

X + L−
X · [Q]

}
.

By Proposition 2.17, PK(AX) is well defined and symmetric on D(< Q >).

Proposition 2.22. On D(< Q >) we have the following equality :

[K,PK(AX)] = [K,PK(A0)] +RX

where for some constant C (independent of κ) : ‖RX‖B(H) ≤ Cκ.

Remark 2.23. For a given interval I as above, if κ is small enough, the operator
PK(AX) is still conjugate to K on I.

Proof. Let us observe that :

|Z±(α, β)− 1| ≤ |α ·X(β)|
∣∣∣∣∫ 1

0

∫ 1

0
e±stα·X(β)dsdt

∣∣∣∣ ≤ κ |α| eκ|α| ≤ κeκ
′|α|
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for any κ′ ∈ (κ, 2πδ). Moreover :

i [K,PK(AX)] = i
2

N∑
a=1

{
Pa [Ka, [Q]] · L+

XPa + PaL
−
X · [Ka, [Q]]Pa

}
+

+ i
2

N∑
a=1

{
Pa [Q] ·

[
Ka, L

+
X

]
Pa + Pa

[
Ka, L

−
X

]
· [Q]Pa

}
,

Pa [Q] ·
[
Ka, L

+
X

]
Pa = Pa [Q] · Pa

[
U−1 ◦

Mλa U, (la♦Z+)
†
]
Pa,

To compute this commutator we make use of the Corollary 2.10. We define :

Γ+(γ, α, β) := Z+(γ, α− β − γ)− Z+(γ, α− γ) (2.43)

and observe that it satisfies the estimation :

|Γ+(γ, α, β)| ≤
∫ 1
0 ds

∣∣esγ·X(α−β−γ) − esγ·X(α−γ)
∣∣ ≤

≤
∫ 1
0 ds

∫ 1
0 dts |γβ (∇X) (α− tβ − γ)| esγ·X(α−tβ−γ) ≤ κ < α >−1 eκ

′(|β|+|γ|).

Thus a direct use of the Corollary 2.10 gives us the expected result. �

3 The Exponential Weighted Estimation

In this Section we prove Theorem 1.3 and Theorem 1.4 of the Introduction. Our
strategy is to follow the procedure elaborated in [11] . Thus we shall make a cut-off
on the weight in order to make it bounded and also a cut-off on the support of the
test function. Our main technical result is an estimation for compactly supported
test functions, with bounded weights associated to the class Φκ, but with constants
depending only on κ (the upper bound on the derivative of the phase function from
Φκ). In dealing with this situation we shall separate a neighborhood of σ∞, for
which we shall apply the well-known Agmon method [1] and the neighborhood
of σ0 for which we shall extend our method [11] from a case of scalar analytic
functions to that of a function k : T

n → B(K) of the type (2.34).
From now on we shall use Definition 2.12 and Notation 2.13 assuming that :

ϕ̃ ∈ Φκ ∩ L∞ ([1,∞)) . (3.44)

Our first step is to prove the following estimation.

Proposition 3.24. For κ ∈ [0, 2πδ) and any E ∈ E0(H) there exists a constant C
such that for any f ∈ H2

comp(Rn) one gets :

‖Wf‖D(H) ≤ C
∥∥ψ(< Q >)−1W (H −E)f

∥∥
(the function ψ is defined by ψ(x) :=

√
κ < x >−2 +2η(x)).
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The proof of this estimation is based on the following two Propositions dealing
separately with P∞H and P0H.

Proposition 3.25. For E < inf σ∞ there exist two positive constants Cκ and C (the
second one being independent of κ) such that for any f ∈ H2

comp(Rn) the following
estimation holds :

‖P∞Wf‖2D(H) − κC ‖P0Wf‖2 ≤ Cκ ‖W (H −E)f‖2 .

Proof. Evidently, the fact that f ∈ H2
comp(Rn) implies thatWf ∈ H2

comp(Rn). Let
d := dist(E, σ∞). Let us observe that H∞ = P∞H = HP∞ so that by hypothesis
our value of E is beneath the spectrum of H∞ and we can follow [1].

2 < Wf, (H∞ −EP∞)Wf >≥ 2d ‖P∞Wf‖2 (3.45)

d ‖P∞Wf‖2 ≤ Re < P∞Wf,W (H −E)f > +Re < P∞Wf, [H,W ] f >

For the first term on the right-hand side we use the Schwartz inequality and for
any θ > 0 we write :

2Re < P∞Wf,W (H −E)f >≤ θ ‖P∞Wf‖2 + θ−1 ‖P∞W (H −E)f‖2 .

For the second term we observe that on D(H) :

[H,W ]W−1 = (−i∇ϕ) ·D +D · (−i∇ϕ) + (∇ϕ)2 ,

thus :
Re < P∞Wf,

(
[H,W ]W−1)P∞Wf >= ‖(∇ϕ)P∞Wf‖2 .

Using once again the Schwartz inequality we obtain that for θ0 > 0 :

2Re < P∞Wf,
(
[H,W ]W−1

)
P0Wf >≤

≤ θ0 ‖P∞Wf‖2 + θ−1
0

∥∥([H,W ]W−1
)
P0Wf

∥∥2
.

(3.46)

In order to estimate the second term above let us observe that for Imz �= 0 :

‖DP0g‖2 =
∥∥D(H + z)−1(H + z)P0g

∥∥2 ≤ C2 ‖P0g‖2 ,

due to the fact that D(H + z)−1 is a bounded operator and P0 projects on a
bounded spectral region of H. Moreover by Hypothesis 1.1 we have |∇ϕ| ≤ κ so
that choosing θ0 = 2C2κ we get :

θ−1
0

∥∥([H,W ]W−1)P0Wf
∥∥2 ≤ κ

(
1 +

κ2

2C2

)
‖P0Wf‖2 .

Choosing finally θ < κ2 we get :

2 (d− κC) ‖P∞Wf‖2 − 2κ ‖P0Wf‖2 ≤ d−1 ‖P∞W (H −E)f‖2 .
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Let us obtain now the graph norm of H on the left hand side :

‖g‖2D(H) = ‖g‖
2 + ‖Hg‖2 ,

‖P∞Wf‖2D(H) ≤
(
1 + 2E2

)
‖P∞Wf‖2 + 2 ‖(H −E)Wf‖2 ≤

≤
(
1 + 2E2

)
‖P∞Wf‖2 + 2 ‖W (H −E) f‖2 +

+2
∥∥∥[H,W ]W−1 (H + z)−1

∥∥∥2
‖Wf‖2D(H) ,∥∥∥[H,W ]W−1 (H + z)−1

∥∥∥ ≤ κ2C2,

‖Wf‖2D(H) = ‖P∞Wf‖2D(H) + ‖P0Wf‖2D(H) .

(3.47)

Putting all these together we get the result. �
For the neighborhood of σ0 we shall obtain an estimation for the operator K

with ”weight operator” PK (W0).

Proposition 3.26. Let E ∈ I ⊂ Ī ⊂ E0(H) , η be defined by Notation 2.13 and

ψ(x) :=
√
κ < x >−2 +2η(x).

Then there exists a constant C0 such that for any f ∈ H2
comp(Rn) one has :

‖PK (W0) f‖2 ≤ C0
∥∥ψ−1([Q])PK (W0) (K −E)f

∥∥2
.

Proof. Let us first remark that : PK (W0) (K −E) = PK (W0) (H −E). As in our
previous paper [11] we shall consider the following expression :

2Im < PK (AX)PK (W0) f, (H −E)PK (W0) f >=
= −i < PK (W0) f, [PK (AX) ,H]PK (W0) f > .

(3.48)

But (see Proposition 2.22) :

[PK (AX) ,H] = [PK (AX) ,K] = [PK(A0),K]−RX

‖RX‖B(H) ≤ Cκ.
(3.49)

Using now Proposition 2.19 we can write :

[PK(A0),K] = EH (I) i [PK(A0),K]EH (I)+
+(P0 −EH (I)) [PK(A0),K]EH (I) + P0 [PK(A0),K] (P0 −EH (I))

and [PK(A0),K] = i
2πL

2 ∈ B(H). We have the inequality : ‖EH (I) g‖ ≤ ‖P0g‖,
so that by using the Schwartz inequality we obtain :

|< PK (W0) f, (P0 −EH (I)) [PK(A0),K]EH (I)PK (W0) f > +
+ < PK (W0) f, P0 [PK(A0),K] (P0 −EH (I))PK (W0) f >| ≤
≤ 1

2π ‖L‖
2
{
θ ‖(P0 −EH (I))PK (W0) f‖2 + θ−1 ‖PK (W0) f‖2

}
.
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Let us observe that :

(P0 −EH (I)) = (P0 −EH (I))(K −E)−1(K −E),
‖(P0 −EH (I))PK (W0) f‖ ≤ CE {‖PK (W0) (K −E) f‖+ ‖[K,PK (W0)] f‖} .

For the last term on the right hand side we use Proposition 4.31 from the Appendix
and the Remark following it. This gives us the following estimation :

‖(P0 −EH (I))PK (W0) f‖ ≤ CE {‖PK (W0) (K −E) f‖+ κC ‖PK (W0) f‖} .

If we choose θ > κ−1, we obtain that the left hand side is bounded by :

‖L‖2
{
C ′
E ‖PK (W0) (K −E) f‖2 + (κCE)

2 ‖PK (W0) f‖2
}
.

Using the Mourre estimation (Proposition 2.19 and Proposition 2.22), we obtain :

2Im < PK (AX)PK (W0) f, (H −E)PK (W0) f >≥ ωI ‖PK (W0) f‖2−
−C ′′

E ‖L‖
2
{
‖PK (W0) (K −E) f‖2 + κ2 ‖PK (W0) f‖2

} (3.50)

(for the first term of the second line we used the same procedure as above). For
the first term in (3.50), we observe that HPK (W0) = KPK (W0) and commute K
with PK (W0). The Schwartz inequality gives :

2Im < PK (AX)PK (W0) f,PK (W0) (K −E)f >≤
≤ ‖ψ ([Q])PK (AX)PK (W0) f‖2 +

∥∥∥ψ ([Q])−1
PK (W0) (K −E)f

∥∥∥2
.

(3.51)

For the term with the commutator we use the Conclusion 4.35 of the Appendix :

2Im < PK (AX)PK (W0) f, (H −E)PK (W0) f > −

−
∥∥∥∥√ψ ([Q])2 − 2η ([Q]) PK (AX)PK (W0) f

∥∥∥∥2

≤

≤
∥∥∥ψ ([Q])−1

PK (W0) (K −E)f
∥∥∥2

+ κC ‖PK(W0)f‖2 .

(3.52)

If we chose now ψ(x) as in the statement of the theorem, we obtain the inequality

c

∥∥∥∥√ψ ([Q])2 − 2η ([Q]) PK (AX)PK (W0) f
∥∥∥∥2

=

= κ
∥∥< [Q] >−1

PK (AX)PK (W0) f
∥∥2 ≤ κC ‖PK (W0) f‖2 .

From this and (3.50) we get the expected result for κ small enough. �
Proof of Proposition 3.24

For f ∈ H2
comp(R

n) we get from the previous two propositions :

‖PK (W0) f‖2 ≤ C0
∥∥ψ−1([Q])PK (W0) (H −E)f

∥∥2
,

‖P∞Wf‖2D(H) − κC ‖P0Wf‖2 ≤ Cκ ‖W (H −E)f‖2 . (3.53)
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We shall begin with the first inequality and obtain an estimation for P0Wf .

PK (W0) f = P0W0f +
N∑
a=1

Pa [W0, Pa] f.

Using Lemma 2.16 for the terms of the sum on the right hand side we obtain :

‖P0W0f‖ − κNC ‖W0f‖ ≤ ‖PK (W0) f‖ . (3.54)

By Lemma 2.15 from Section 2 we have :

‖P0Wf‖ ≤ ‖WP0f‖+ ‖[P0,W ] f‖ ≤ C1 ‖W0P0f‖+ ‖[P0,W ] f‖ ≤

≤ C1 ‖P0W0f‖+C1 ‖[P0,W0] f‖+ ‖[P0,W ] f‖ .

Let us compute now the commutator : [P0,W ].

([Pa,W ] f) (x) =
∑

α∈Zn

U−1π̂a ([x]− α)
{
W̃ (α+ x)− W̃ (x)

}
f̃ (α+ x) ,

ϕ (x+ s (α− [x]))− ϕ (α+ x) = (α− [x]) ·
∫ s−1
0 dtX (α+ x+ t (α− [x])) .

Putting all these together we get the estimations :

‖[P0,W ] f‖ ≤ κC ‖Wf‖ ,
‖[P0,W0] f‖ ≤ κC ‖W0f‖ ≤ κC ′ ‖Wf‖ (3.55)

for some constants C, C ′ independent of κ. Our first estimation in (3.53) implies :

‖P0Wf‖ ≤ C ′
κ

∥∥∥ψ ([Q])−1
PK (W0) (H −E)f

∥∥∥ . (3.56)

Now we have to repeat the arguments above in order to treat the right hand side
and eliminate the projection PK . We shall use the following notations :

W̃0 := ψ ([Q])−1
W0; W̃ := ψ (Q)−1

W.

Then we have : ∥∥∥ψ ([Q])−1
PK (W0) (H −E)f

∥∥∥ ≤
≤ C ′

N∑
a=1

{∥∥∥PaW̃0(H −E)f
∥∥∥+ ∥∥∥Pa [W̃0, Pa

]
(H −E)f

∥∥∥ +
+
∥∥∥[ψ ([Q])−1

, Pa

]
W0Pa(H −E)f

∥∥∥} ,[
ψ ([Q])−1

, Pa

]
ψ ([Q]) =

∑
α∈Zn

U−1π̂a (α)
[
ψ ([Q])−1

, V (α)
]
ψ ([Q]) =

= −
∑

α∈Zn

U−1π̂a (α)
{∫

dsα ·
(
ψ−2∇ψ

)
([Q]− sα)

}
ψ ([Q]− α)V (α) .

(3.57)
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Let us recall the definition of the function ψ and observe that :∣∣(ψ−2∇ψ
)
(β − sα)ψ (β − α)

∣∣ ≤ κC
< α >

< β >
,

so that by using Proposition 2.7 we get the estimation :∥∥∥[ψ ([Q])−1
, Pa

]
ψ ([Q])

∥∥∥ ≤ κC. (3.58)

By similar arguments we obtain the bound
∥∥∥[W̃0, Pa

]
W̃0

−1∥∥∥ ≤ κC. Putting all
these estimations together we obtain the following inequality :

‖P0Wf‖ ≤ C
′′

κ

∥∥∥W̃ (H −E)f
∥∥∥ (3.59)

and combining with the inequality (3.53) we finally obtain :

‖Wf‖D(H) ≤ C
∥∥∥W̃ (H −E)f

∥∥∥ . (3.60)

�
In view of our Theorem 1.4 we shall now obtain a similar “local estimation”

for the perturbed Hamiltonian HI = H + VI , where VI satisfies the conditions of
Theorem 1.4. We have for f supported outside the ball of radious R :

‖W̃VIf‖ ≤ ‖ < Q > χRVI(H + i)−1‖‖Wf‖D(H) ≤ θC‖W̃ (H −E)f‖

for any chosen θ > 0, once we take R large enough. Thus :

‖W̃ (HI −E)f‖ ≥ (1− θC)‖W̃ (H −E)f‖ ≥ 1− θC

C
‖Wf‖D(H). (3.61)

We present now the cut-off procedure that allows us to obtain our main
result (Theorem 1.3) from Proposition 3.24. We fix κ > 0 and the phase function
ϕ̃0(t) = κt for t ∈ [1,∞). Let f belong to :

M :=
{
f ∈ D(H) |

√
< Q >eϕ0(<Q>)(H −E)f ∈ L2( R

n)
}
. (3.62)

We shall approximate the function f with functions with compact support, but in
order to control the limit we shall need to work first with bounded phase functions
ϕ̃ ∈ Φκ that converge to ϕ̃0. Let us fix χ ∈ C∞

0 (R) such that :

0 ≤ χ(t) ≤ 1, χ(t) = 0 for |t| ≥ 1, χ(t) = 1 for |t| ≤ 1/2. (3.63)

For f ∈M, x ∈ R
n and θ ∈ (0, 1] we set :

χθ(x) := χ(θ < x >); fθ := χθf. (3.64)
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Let :

j(t) :=

{ (∫
R
e
− 1

1−t2 dt
)−1

e
− 1

1−t2 , for |t| < 1
0, for |t| ≥ 1

. (3.65)

For N ∈ N let :

η̃N(t) :=
{

κ , for t ≤ 2N
0 , for t > 2N , (3.66)

jN (t) :=
1
N
j(t/N), ηN := jN ∗ η̃N , ϕN (t) :=

t∫
0

ηN(s)ds, ∀t ≥ 0. (3.67)

Lemma 3.27. The following relations are true :

1. j ∈ C∞
0 (Rn), 0 ≤ j(t),

∫
R
j(t)dt = 1, j(−x) = j(x),

2.
∫
R

jN (t)dt = 1, jN (t) = 0 for |t| ≥ N ,

3. ηN ∈ C∞(R), ηN(t) ≤ κ, |t(∂ηN)(t)| ≤ C1κ,∣∣(∂kηN)(t)
∣∣ ≤ Ckκ ∀t ∈ R , for k ∈ N and with Ck independent of κ,

4. ϕN (t) ≤ ϕ0(t), lim
N→∞

ϕN (t) = ϕ0(t), ∀t ∈ R.

Proof. We shall prove only those estimations that are not completely obvious.
First we observe that 0 ≤ ηN(t) ≤ κ and that for t ≤ N we get ηN(t) = κ and for
t ≥ 3N we get ηN(t) = 0. For the first derivative of ηN(t) we see that :

t(∂ηN)(t) = tκ

N∫
t−2N

(∂jN )(τ)dτ = −κ t

N
j(t/N − 2); (3.68)

but j(τ − 2) �= 0 implies that 1 < τ < 3 so that |t(∂ηN)(t)| ≤ 3cκ. For the higher
derivatives we observe that :

(∂kηN)(t) = −κ(∂k−1jN )(t− 2N) = −κ 1
Nk

(∂k−1j)(t/N − 2), (3.69)

so that
∣∣(∂kηN)(t)

∣∣ ≤ Ckκ for any k > 1, with Ck independent of κ. �

Corollary 3.28. For any N ∈ N the phase function ϕN defined by (3.67 ) belongs
to the class Φκ′ for some κ′ > κ.

We fix now the value of κ small enough (as in the statement of Proposition
3.24), f ∈M, θ ∈ (0, 1] and N ∈ N large enough so that we can apply Proposition
3.24 with the phase function ϕN for the function fθ (with compact support). Thus :

‖eϕN fθ‖2D(H) ≤ Cκ

∥∥ψN (Q)−1eϕN (H −E)fθ
∥∥2

, (3.70)
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where ψN is given by the same formula as in Proposition 3.26 but with ϕ replaced
by ϕN . We remove the cut-off in f by letting θ → 0 and we use Fatou Lemma
on the left hand side of the inequality (3.70) and the Dominated Convergence
Theorem on the right hand side (the boundedness of eϕN is crucial at this step).
This leads us to an estimation for any f ∈M with phase function ϕN . A similar
procedure allows us to control the limit N →∞ and to finish the proof of Theorem
1.3. Let us consider the limit of the right hand side of (3.70) when θ → 0.

ψ−1
N eϕN (H −E)fθ = χθψ

−1
N eϕN (H −E)f + ψ−1

N eϕN [H,χθ] f. (3.71)

When θ → 0 the first term converges in L2-norm to ψN (Q)−1eϕN (H −E)f . Con-
cerning the second term, we observe that for any N ∈ N we can find a finite
constant CN (diverging with N) such that :

∥∥eϕNψ−1
N (Q) < Q >−1

∥∥ ≤ CN . For a
fixedN we study the family {< Q > [H,χθ(Q)] f}θ>0 of L

2 -functions. We denote :

ζθ(x) := −2iθxχ′(θ < x >), ζ̃θ = −i∇
(

1
2 < x >

ζθ

)
(3.72)

and observe that we can write :

< Q > [H,χθ(Q)] f = ζθ(Q)Df + ζ̃θ(Q)f (3.73)

We shall now estimate the norm ‖ < Q > [H,χθ(Q)] f‖. If we take into account
that χ′(t) has support in the set {1/2 ≤ t ≤ 1} and if we denote hθ the characteris-
tic function of the set

{
τ ∈ R+ | 1

2θ ≤ τ ≤ 1
θ

}
(that evidently converges pointwise

to 0 for θ → 0) we finally get that :

|ζθ(x)| ≤ Chθ(< x >);
∣∣∣ζ̃θ(x)∣∣∣ ≤ Cθ. (3.74)

We use the fact that for f ∈ D(H) the vector Df belongs to L2(Rn) in order to
show that the second term in (3.71) converges to zero for θ → 0. We have thus
proved that :

lim
θ→0

‖< Q > [H,χθ(Q)] f‖ = 0. (3.75)

In conclusion, for a fixed N ∈ N, the cut-off in f on the right hand side of (3.70)
can be removed. For the left hand side we observe that for any y ∈ R :

lim
θ→0

eϕN (y)fθ(y) = eϕN (y)f(y). (3.76)

Let us point out that in the left hand side of (3.70) we have to control the behavior
of the graph norm ‖eϕNχθf‖D(H) when θ → 0. For that we commute H with
χθ and use once again the calculus done above (where now the factor < z >
in the definition of ζθ is absent so that the convergence to zero with θ follows
immediately).

We still have to study the behavior of the inequality (3.70) with fθ replaced
by f , when N →∞. For this we prove the following lemma.
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Lemma 3.29. There exists a constant C such that for any N ∈ N we have :

eϕN (<x>)

ψN (x)
≤ C

√
< x >eκ<x>.

Proof. For N ∈ N we define the function :

gN (t) :=
eϕ̃N (t)√

κt−2 + 2t−1ϕ̃′
N (t)

=
teϕ̃N (t)√

κ+ 2tϕ̃′
N (t)

. (3.77)

We have :

ϕ̃′
N (t) = ηN (t) =

κ

N

2N∫
−∞

j((t− s)/N)ds = κ

1∫
t
N −2

j(τ)dτ. (3.78)

Since ϕ̃′
N is decreasing and ϕ̃′

N (2N) = κ/2, one has : ϕ̃′
N (t) ≥ κ/2 for t ≤ 2N and

ϕ̃′
N (t) ≤ κ/2 for t ≥ 2N . Hence, for t ≤ 2N we have {κ + 2tϕ̃′

N (t)}1/2 ≥ (κt)1/2,
which implies gN (t) ≤ (t/κ)1/2eϕ̃0(t). For t ≥ 2N we get ϕN (t) ≤ κt/2, which
gives gN (t) ≤ ω

√
teϕ̃0(t), with ω :=sup

t≥1

(√
te−κt/2

)
. �

Using this result we see that the right hand side of (3.70) (with fθ replaced
by f) is uniformly bounded by :

∥∥ψN (Q)−1eϕ̃N (H −E)f
∥∥2 ≤ C

∥∥∥√< Q >eκ<Q>(λ(D)−E)f
∥∥∥2

,∀N ∈ N (3.79)

with C independent of N , the right hand side being finite due to the hypothesis
f ∈M. But evidently :

ψN (x)−1eϕ̃N (x) →
N→∞

√
< x >eκ<x>, (3.80)

so that we can use the Dominated Convergence Theorem. For the first term on the
left hand side one can immediately use the Fatou Lemma in a way similar to the
argument we gave for the θ → 0 limit. Thus we obtain the expected inequality :∥∥eκ<Q>f

∥∥
D(H) ≤ Cκ

∥∥∥√< Q >eκ<Q>(H −E)f
∥∥∥ (3.81)

and this finishes the proof of Theorem 1.3.

Proof of Theorem 1.4

First let us consider the set MI defined as in (3.62) but with HI replacing
H. Let us fix some f ∈MI with support far enough from the origin (so that after
a cut-off to a compact support we can apply the estimation in (3.61)). Then we
can repeat the above cut-off procedure. Due to the fact that VI commutes with
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all the cut-off functions, it follows that all the above procedure of removing cut-
offs extends to the perturbed case without any modification. We thus obtain (see
(3.61)) : ∥∥eκ<Q>f

∥∥
D(H) ≤ Cκ

∥∥∥√< Q >eκ<Q>(HI −E)f
∥∥∥ .

Suppose HI has an eigenvalue E belonging to E0(H) with eigenfunction g. Denot-
ing by χ the smoothed characteristic function of a ball of sufficiently large radius
R in R

n, by χ⊥ = 1− χ and by f = χ⊥g we see that :∥∥eκ<Q>g
∥∥ ≤ C

∥∥√< Q >eκ<Q>(HI −E)f
∥∥+ ∥∥eκ<Q>χg

∥∥ ,
(HI −E)f = (HI −E)g − (HI −E)χg = −(HI −E)χg

so that :∥∥eκ<Q>g
∥∥ ≤ C

∥∥∥√< Q >eκ<Q>(HI −E)χg
∥∥∥+ ∥∥eκ<Q>χg

∥∥ <∞,

due to the fact that HI is a differential operator. �

4 Appendix

In this appendix we shall study the commutator [K,PK(W0)] and show that it
can be written in a special form that allows one to compare it with the conjugate
operator PK(AX). We have :

[K,PK(W0)] =
N∑
a=1

Pa [ΛaPa,W0]Pa =
N∑
a=1

Pa [Λa,W0]Pa. (4.82)

Let us observe that :

Pa [Λa,W0]Pa = Pa [Λa,W0]W−1
0 PaW0Pa+Pa

[
Pa, [Λa,W0]W−1

0

]
W0Pa. (4.83)

Lemma 4.30. The operator [Λa,W0]W−1
0 defines a bounded operator in H and∥∥[Λa,W0]W−1
0

∥∥
B(H) ≤ κC.

Proof. We have :
[Λa,W0]W−1

0 = U−1 (λa♦F )U,

where we denoted :

F (α, β) := −
∫ 1

0
dsα ·

∫ 1

0
dtX (β − tα) exp

{
sα ·

∫ 1

0
dtX (β − tα)

}
. (4.84)

We observe that we have the estimation : |F (α, β)| ≤ κ < α > eκ|α| ≤ κeκ
′|α| for

any κ′ ∈ (κ, 2πδ). Using now Proposition 2.7 we get the expected result. �
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An important difficulty in our technical developments comes from the fact
that we have to consider the product of the operator [Λa,W0]W−1

0 with some
unbounded operator and the above lemma does not give sufficient information in
order to control this product. More precisely, our method of obtaining Hardy type
inequalities from a Mourre estimation relies heavily on the study of the following
object :

2Im < PK(AX)PK(W0)f, [K,PK(W0)] f > . (4.85)

The next proposition gives a technical result concerning the structure of the com-
mutator of K with PK(W0), that will allow us to treat the expression (4.85).

Proposition 4.31. The following relation holds :

[K,PK(W0)] = − i
2πη ([Q])PK(AX)PK(W0) + TPK(W0)+

+R0PK(W0) +
N∑
a=1

RaW0Pa

where T = T ∗ ∈ B(H), Ra ∈ B(H;Hm) for m(x) :=< x >, a=0,...,N and :

‖T‖B(H) + max
a=0,1,...,N

‖Ra‖B(H;Hm) ≤ κC,

for some constant C independent of κ.

Proof. We consider once again (4.82) and (4.83) and we observe that :[
Pa, [Λa,W0]W−1

0

]
= U−1 [(πa)∗ , (λa♦F )]U =: U−1 ((πa 4 λa)♦Ψ)U

where :

Ψ(α, β, γ, ) := −
∫ 1

0
dsβ ·

(
∇(2)F

)
(α, γ − sβ). (4.86)

We denote :

Y (α, β) := α ·
∫ 1

0
dtX (β − tα) , Y1(α, β) := α ·

∫ 1

0
dt (∂X) (β − tα) , (4.87)

so that : (
∇(2)F

)
(α, β) = −

∫ 1
0 dsY1(α, β) exp {sY (α, β)}−

−
∫ 1
0 dsY (α, β) (sY1(α, β)) exp {sY (α, β)} ,

hence we have the estimation (with κ′ > κ) :∣∣(∇(2)F
)
(α, β)

∣∣ ≤ κ

{∫ 1

0
dt

|α|
< β − tα >

}
eκ|α| ≤ κ

< 2β >
eκ

′|α|. (4.88)

In order to treat the first term in (4.83) we have to make a more detailed analysis
of the factor [Λa,W0]W−1

0 and separate it into its hermitian and antihermitian
parts :

1
2
{
2Λa −W0ΛaW

−1
0 −W−1

0 ΛaW0
}
+

1
2
{
W−1

0 ΛaW0 −W0ΛaW
−1
0

}
,
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2Λa −W0ΛaW
−1
0 −W−1

0 ΛaW0 = U−1 (λa♦G+)U,

where :

G+(α, β) :=
(
1− e(ϕ(β)−ϕ(β−α))

)
+
(
1− e(ϕ(β−α)−ϕ(β))

)
. (4.89)

Some algebra, using the Leibnitz formula, shows that G+ satisfies :

|G+(α, β)| ≤ κ < α >2 eκ|α| ≤ κeκ
′|α|

for any κ′ ∈ (κ, 2πδ). Then :

W−1
0 ΛaW0 −W0ΛaW

−1
0 (4.90)

= U−1
∑
α∈Zn

λ̂a (α)
{
V (α) e(ϕ([Q])−ϕ([Q]+α)) − e(ϕ([Q])−ϕ([Q]−α))V (α)

}
U.

Let us observe that :

e(ϕ(β)−ϕ(β±α)) =
(
e(ϕ(β)−ϕ(β±α)) − e∓α·X(β)

)
+
(
e∓α·X(β) − 1

)
+ 1,

ϕ (β) − ϕ (β ± α) ± α ·X (β)

= −
n∑

j,k=1

∫ 1

0
tdt

∫ 1

0
du {αjαk∂jXk (β ± utα)} ≡ Y±(β, α). (4.91)

Let us introduce the notations :

G1(α, β) := −1
2

n∑
j,k=1

∫ 1

0
dsαjαk (∂kXj) (β − sα)e−sα·X(β−α),

G2(α, β) := −1
2

∫ 1

0
dsα · (∇η) (β − sα), (4.92)

G−(β, α) :=
1
2

∫ 1

0
ds
{
Y+(β, α)e−α·X(β) exp {sY+(β, α)}

− Y−(β, α)eα·X(β) exp {−sY−(β, α)}
}
.

We have the estimations :

|G1(α, β)| ≤ κC
< α >3

< β >
eκ|α| ≤ κC

< β >
eκ

′|α|,

|G2(α, β)| ≤ κC
< α >3

< β >2 ≤ κC

< β >2 e
κ′′|α|, (4.93)

|G−(α, β)| ≤ κC
< α >3

< β >
e2κ|α| ≤ κC

< β >
e2κ

′|α|.
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for any strictly positive constants κ′′ and κ′ > κ. Then we can write :

1
2
Pa
{
W−1

0 ΛaW0 −W0ΛaW
−1
0

}
Pa = − i

2π
η ([Q])Pa(AX)Pa

+PaU−1 (λa♦(G1 +G−))UPa + U−1 (πa♦G2)UPa(AX)Pa.

In conclusion we obtain :

[K,PK(W0)] = η ([Q])
N∑
a=1

PaAXPaPK(W0)+

+
N∑
a=1

{
PaU

−1 (λa♦(G1 +G−))UPa + U−1 (πa♦G2)UPaAXPa
}

PK(W0)+

+1
2

N∑
a=1

PaU
−1 (λa♦G+)UPK(W0) +

N∑
a=1

PaU
−1 ((πa 4 λa)♦Ψ)UW0Pa.

We introduce now the notations :

T := 1
2

N∑
a=1

PaU
−1 (λa♦G+)UPa,

R0 :=
N∑
a=1

{
PaU

−1 (λa♦(G1 +G−))UPa + U−1 (πa♦G2)UPaAXPa
}
,

Ra := PaU
−1 ((πa 4 λa)♦Ψ)U.

(4.94)

Taking into account Proposition 2.7, Proposition 2.9 and the estimations proved
above for G+, G1, G2, G− and Ψ we get the stated result. �

Remark 4.32. Let us finally remark that for a=1,...,N :

W0Paf = PaW0Paf +
(
[W0, Pa]W−1

0

)
W0Paf,

[W0, Pa]W−1
0 = −U−1 (πa♦F )U,∥∥[W0, Pa]W−1

0

∥∥
B(H) ≤ κ ‖πa‖2,κ′ ,

‖W0Paf‖H ≤
(
1− κ ‖πa‖2,κ′

)−1
‖PaW0Paf‖H .

Summing upon a ∈ {1, ..., N} we re-obtain the term PK(W0)f .

Remark 4.33. We have the following relations :

2 Im < PK(AX)PK(W0)f, [K,PK(W0)] f >

+ 2 < PK(AX)PK(W0)f, η ([Q])PK(AX)PK(W0)f >

≤ 2Im < PK(AX)PK(W0)f, TPK(W0)f > + κC ‖PK(W0)f‖2

= (−i) < PK(W0)f, [PK(AX), T ]PK(W0)f > + κC ‖PK(W0)f‖2 .

Lemma 4.34. We have [PK(AX), T ] ∈ B(H) and ‖[PK(AX), T ]‖ ≤ κC.
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Proof. Let us remind that :

T :=
N∑
a=1

PaU
−1 (λa♦G+)UPa (4.95)

so that the commutator takes the form :

[PK(AX), T ] = −
1
2

N∑
a=1

PaU
−1
[{

[Q] (la♦Z+)
† + (la♦Z−) [Q]

}
, λa♦G+

]
UPa.

[{
[Q] (la♦Z+)

† + (la♦Z−) [Q]
}
, λa♦G+

]
=

= [[Q] , λa♦G+] (la♦Z+)
† + (la♦Z−) [λa♦G+, [Q]] +

+ [Q]
[
(la♦Z+)

†
, λa♦G+

]
+ [la♦Z−, λa♦G+] [Q] ,

[[Q] , λa♦G+] = i
2π (la♦G+) ,

[la♦Z−, λa♦G+] =
∑

β,γ∈Zn

[
l̂a(γ)M̃Z−(γ,[Q])V (γ), λ̂a(β)M̃G+(β,[Q])V (β)

]
=

=
∑

β,γ∈Zn

l̂a(γ)λ̂a(β)
{∫ 1

0 dsβ · ∇(2)Z− (γ, [Q]− sβ) −

−
∫ 1
0 dsγ · ∇(2)G+ (β, [Q]− sγ)

}
V (β + γ),∣∣(∇(2)G+

)
(α, β)

∣∣ ≤ κC
<β> < α >2 eκ|α| ≤ κC

<β>e
κ′|α|

(by some obvious calculations). Proposition 2.7 gives the expected estimation. �

Conclusion 4.35. Putting together the above results we get the following relation :

2Im < PK(AX)PK(W0)f, [K,PK(W0)] f > +

+
∥∥∥√2η ([Q])PK(AX)PK(W0)f

∥∥∥2
≤ κC ‖PK(W0)f‖2 .
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