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Non Exponential Law of Entrance Times
in Asymptotically Rare Events for Intermittent
Maps with Infinite Invariant Measure

Xavier Bressaud, Roland Zweimüller

Abstract. We study piecewise affine maps of the interval with an indifferent fixed
point causing the absolutely continuous invariant measure to be infinite. Consider-
ing the laws of the first entrance times of a point — picked at random according to
Lebesgue measure — into a sequence of events shrinking to the strongly repelling
fixed point, we prove that (when suitably normalized) they converge in distribution
to the independent product of an exponential law to some power and a one-sided
stable law.

Résumé Nous étudions une classe d’applications affines par morceaux de l’intervalle
avec un point fixe indifférent dont la mesure invariante absolument continue est in-
finie. Nous considérons les lois des premiers temps d’entrée d’un point — choisi au
hasard suivant la mesure de Lebesgue — dans une suite d’événements se concentrant
autour du point fixe fortement répulsif. Nous prouvons que, correctement renor-
malisés, ces temps convergent en distribution vers le produit indépendant d’une loi
exponentielle élevée à une certaine puissance et d’une loi stable unilatérale.

1 Introduction

There has been a recent interest in statistics of entrance - or return - times into
rare events for chaotic dynamical systems. Given a sequence of sets in the phase
space of some ergodic system with measures decaying to zero, one can ask about
the asymptotic behaviour of the sequence of entrance times in these sets.

In the case of hyperbolic systems preserving a probability measure, entrance
times typically converge to an exponential distribution when normalized by their
expectations. The lack of memory property of the limit distribution is often inter-
preted as “unpredictability” of the occurence of rare events. Results of this type
have been proved for different classes of systems and sequences of shrinking sets,
see for example the survey in [5]. One basic family of examples is that of uniformly
expanding maps of the interval. Interval maps with indifferent fixed points, fre-
quently referred to as intermittent maps, perhaps give the simplest models beyond
uniform hyperbolicity. For those situations where there still exists a finite abso-
lutely continuous invariant measure, precise results again giving exponential limit
laws have been given in [17].

The case of maps with an indifferent fixed point whose SRB measure is a
Dirac mass at the fixed point - and where the only absolutely continuous invariant
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measure is infinite - is somewhat different. We refer to [1] for general ergodic prop-
erties of infinite measure preserving systems, and to [19] for specific information
on interval maps with indifferent fixed points and further references. [8] considered
a particular piecewise affine, i.e. Markov chain model, and proved convergence to
an exponential distribution for entrance times close to the indifferent fixed point,
which however are not rare in the sense of the invariant measure respectively the
dynamics. The purpose of the present note is to similarly present a simple family
of piecewise affine examples for which the entrance times to a particular sequence
of sets, namely those shrinking to the strongly repelling fixed point, in general con-
verge to a non exponential law which depends on the fine local behaviour at the
fixed point. We also discuss what we expect to be the behaviour of these entrance
times for more general sequences of cylinders.

The only other results known to us where a limit law different from the
exponential distribution turns up are for systems of (very) low complexity, such as
rotations (see [4]) and substitutions (see [10]). In these cases, the limit distributions
are distributions of discrete random variables and the analysis has a different
flavour.

2 Statement of the result

Let (I, λ) be the interval I = [0, 1] endowed with Lebesgue measure λ. Let (cj)j≥0
be a sequence strictly decreasing to 0 with c0 = 1 satisfying cj+1/cj → 1. These
points yield a partition (mod λ) of I into the intervals Ij := (cj+1, cj), j ≥ 0. We
consider the map T on I which is affine and increasing on each Ij and maps I0
onto I (with slope s := (1− c1)−1) and Ij onto Ij−1 for all j ≥ 1, cf. Fig.1.

Since T ′(x) → 1 as x → 0, transformations of this type frequently serve as
simplified models for smooth ’intermittent’ maps with an indifferent fixed point.
The piecewise affine version T in fact is just a renewal Markov chain in a sense
we shall make precise below. T is conservative ergodic and has a unique (up to
a constant factor) absolutely continuous invariant measure µ (whose density is
constant on each Ij) which is infinite if and only if

∑
j cj = +∞. Throughout

we shall assume that this is the case (i.e. that the chain is null recurent) and we
choose µ such that µ(I0) = λ(I0).

Example 1 Specific examples which are frequently studied in the literature are given
by cj := const · j−α, α ∈ (0, 1], which corresponds to Tx = x+ ax1+ 1

α + o(x1+ 1
α )

in the smooth setting.

We are interested in the asymptotic distributional behaviour of the (first)
entrance times to a sequence of asymptotically rare events. More precisely we
consider the sequence (dj) of the preimages of c1 under the rightmost branch of
T , i.e. dj := 1 − s−j and the sequence of intervals Bm := (dm+1, 1), m ≥ 0, with
λ(Bm) = µ(Bm) = s−m. The variables τm, m ≥ 0 we are interested in are the
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B4 · · ·

Figure 1: The map T.

numbers of steps needed to enter Bm, that is

τm(x) := min{i ≥ 1, T i(x) ∈ Bm}.

These entrance times obviously go to infinity almost surely and have infinite ex-
pectation with respect to λ. Still it is possible to understand their asymptotic
behaviour.

To state the result, we let E denote the exponential law of parameter 1, and
also use the same symbol for a generic random variable with this distribution,
independent of all other variables that may appear. Similarly, Gα denotes the
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(essentially unique) one-sided stable law of index α ∈ (0, 1), i.e. the distribution on
R+ = (0,∞) with Laplace transform Ĝα(t) = e−tα , see [12], pp.448, as well as the
generic random variable with this distribution. For example, G 1

2
(which naturally

arises in return time problems for the simple coin-tossing random walk, cf. [11],
p.90) is the law of 1

N2 , where N has a standard normal distribution. We shall say
more about how these laws arise after the statement of the theorem, and it will
become clear that it is natural to write G1 for the law with unit mass at 1.

The theorem below applies to the maps of Example 1, but we prefer to state
the result in full generality since this causes no additional difficulties in the proof,
and might turn the reader’s attention to a classical probabilistic theory which is
not particularly well known in the dynamics community.

When talking about asymptotic properties we shall identify a sequence (cj)
with its piecewise constant extension c(x) := c[x], x ∈ R+. Recall that a function
c : R+ → R+ is called regularly varying (at infinity) with index α ∈ R if it is of the
form c(x) = xαl(x) where l is slowly varying in that it satisfies limx→+∞

l(σx)
l(x) = 1

for all σ > 0 (e.g. if l is constant or l(x) = log x). A function b is asymptotically
inverse to c if b(c(x)) ∼ c(b(x)) ∼ x as x → ∞. Such functions exist and are unique
up to asymptotic equivalence if α > 0, see [2], pp.28.

Theorem 1 (Distributional convergence of the entrance times) If the sequence (cj)
is regularly varying of index −α for some α ∈ (0, 1) , or if (

∑n
j=0 cj)n≥1 is slowly

varying and α := 1 , then

1
b(sm)

· τm d=⇒ E 1
α · Gα

as m → ∞, where the τm are considered as random variables distributed accord-
ing to Lebesgue measure λ on I, and b is a function asymptotically inverse to
x �→ (c1Γ(1 − α)c(x))−1 in the first case, and asymptotically inverse to x �→
x/(c1

∫ x

0 c(y)dy) in the second. (Hence b is regularly varying with index 1
α and

satisfies x = o(b(x)) as x → ∞).

Example 2 In the case α = 1, which lies at the threshold between the finite and
the infinite measure regime, we still have an exponential distribution in the limit,
although the normalizing sequence can no longer be given by the expectations of
the τm which are already infinite. For the particular α = 1 map from the family of
example 1, we have (with κ a suitable constant)

κ ·m−1 · s−m · τm d=⇒ E .

Example 3 In the α ∈ (0, 1) cases of example 1, we have b(sm) = κ · sm
α . If, in

particular, α = 1
2 , we obtain

κ · s−2m · τm d=⇒
(

E
N

)2

.
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Remark 1. The distribution Hα := E 1
α · Gα of the independent product of the 1

α -
power of an exponential law of parameter 1 and the one-sided stable law of index
α can more explicitely be described by its Laplace transform which is easily seen
to be

Ĥα(t) =
1

1 + tα
.

Remark 2. A minor modification of our argument also gives the asymptotic dis-
tributional behaviour of the first return times ϕm(x) := min{i ≥ 1, T i(x) ∈ Bm},
x ∈ Bm, regarded as random variables on the respective sets Bm with normalized
Lebesgue measure λm := λ(Bm)−1 · λ. We have

1
b(sm)

· ϕm
d=⇒ s−1δ0 + (1− s−1) E 1

α · Gα,

where δ0 denotes unit point mass in zero. This is because {ϕm = 1} = Bm+1 ⊆ Bm

always has λm−measure s−1 while under the condition that it should be larger
than 1, ϕm behaves as τm above.

To get an intuitive understanding of the result we take a closer look at a
Markov chain equivalent to T . It is a simple renewal chain (Xn) with states Ij ,
the renewal state being I0, see Fig.2.

.

I1I2I4Ij I3 I0

Figure 2: The Markov chain model.

The transition probabilities are given by P(Xn+1 = Ij |Xn = I0) = λ(Ij)/λ(I \I0).
The precise relation to the interval map is as follows: if Y0 ∈ I is randomly chosen
according to some probability density

∑
j πj1Ij constant on each Ij , and Yn :=

Tn(Y0), n ≥ 1 , the resulting random sequence (Xn) with Xn := Ij if Yn ∈ Ij is
the renewal chain with initial distribution (πj).

Any sample path of the renewal chain consists of a sequence of excursions to
the left part. If we let Lk denote the time between the k− 1st and kth visit in I0,
then (Lk) clearly is an iid sequence, and, when starting in I0, the number of steps
until we return to I0 for the nth time is

∑n
k=1 Lk. This is where the stable laws

enter:
By classical results, arithmetical averages of nonnegative iid variables Lk

without expectation converge to some nondegenerate limit distribution iff the se-
quence of tail weights tj := P(Lk ≥ j) is regularly varying of index −α for some
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α ∈ (0, 1), in which case we have

1
b(n)

n∑
k=1

Lk
d=⇒ Gα, (1)

where b is asymptotically inverse to x �→ (Γ(1− α)t(x))−1, cf. [12], pp.448 or [2],
pp.343. The same conclusion holds with α := 1 provided (

∑n
j=0 tj)n≥1 is slowly

varying and b is asymptotically inverse to x �→ x/
∫ x

0 t(y)dy, cf. [2],pp.372 or [12],
pp.234. Observe that in the case α = 1, which is closest to the situation of finite
expectation (where the strong law of large numbers would give a.s. convergence of
the averages (E(L1) · n)−1 ∑n

k=1 Lk → 1), (1) with G1 = 1 still gives a weak law
of large numbers, while for α < 1 stronger fluctuations cause the limit to become
continuously distributed. In our particular situation we have tj = cj showing that
the conditions on (cj) are most natural from a probabilist’s point of view.

In fact (1) is essential for understanding how the limit law in the theorem
arises. We give a rough heuristical sketch of the argument: Recall (cf. [12], pp.169)
that α-stability of the law by definition means that the sum of n independent
random variables G1, · · · , Gn sharing this distribution has the same law as n

1
αG1.

The target event Bm is to stay at I0 for at least m steps. This can happen only at
the end of an excursion when we are back at I0, where we have a certain probability
pm (with pm → 0) for Bm to occur. If it does not, we are given another chance
at our next return to I0. The number θm of trials (and hence excursions) we need
therefore will roughly have a geometric distribution and should thus converge to
an exponential law as m → ∞. On the other hand, the total number of steps done
during that time will be given by the random sum L1 + · · · + Lθm . Assume for
the moment that the Lk were distributed according to Gα (which they are not,
but they share the same tail behaviour) and that they were independent of θm (in
fact we shall see below that in a sense the major part of them is). Then, by the
defining property of an α-stable law, this sum is distributed like θm

1
α ·L1, so that

τm � L1 + · · ·+ Lθm � θm
1
α · Gα,

where θm (when normalized by its expectation) is close to an exponential distri-
bution.

3 Proof of the theorem

The adequate framework for proving a probabilistic result about a dynamical sys-
tem metrically isomorphic to a Markov chain should be that of the latter. Instead
of working with the simple renewal chain mentioned before, we shall find it more
convenient to use a slightly refined Markov chain model in which the target events
Bm appear explicitely. We let Jj := (dj , dj+1), j ≥ 0, and consider the Markov
chain (Xi)i≥0 whose states are the Ij , j ≥ 1 and Jj , j ≥ 1, with the obvious
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transition probabilities P(Xn+1 ∈ Ij |Xn = J1) = λ(Ij)/λ(J0) = (cj − cj+1)/c1,
and P(Xn+1 ∈ Jj |Xn = I1) = λ(Jj)/λ(I0) = s−j(s− 1), cf. Fig.3.

J1 J2 J3 J4 Jj

I1I2I4Ij I3

Figure 3: The refined Markov chain.

The relation between the chain and the map T is analogous to what we said
before, the target event Bm is

⋃
j>m Jj .

For convenience we shall first consider the chain starting with an initial dis-
tribution that in the interval map setting corresponds to normalized Lebesgue
measure on I0, that is, P(X0 = Jj) = λ(Jj)/λ(I0) = (1− s−1)s−j+1, j ≥ 1. Again
we consider

τm := min{i ≥ 1,Xi ∈ Bm}.

To get an easy understanding of paths that enter Bm for the first time at a
certain step we shall focus on the states J1 and I1 to separate excursions to the
left and to the right. We let Θm denote the number of passages through J1 (and
hence through I1) before time τm:

Θm :=
τm−1∑
i=0

1J1(Xi).

Whether or not we hit Bm between two passages through J1 depends on the
edge we choose from I1. Now, pm := P(Xi+1 ∈ Bm|Xi = I1) = s−m → 0 as
m → +∞, and P(Θm = 0) = P(X0 ∈ Bm+1) = pm+1, while P(Θm = r) =
(1 − pm+1)pm(1 − pm)r−1 for r ≥ 1. Consequently, the Θm normalized by their
expectations E[Θm] = (1−pm+1)(1−pm)

pm
∼ sm, converge to an exponential law of

parameter 1:
1

E[Θm]
·Θm

d=⇒ E . (2)

Turning back to τm we are going to decompose it into the successive excursion
times spent on either side. To formalize this, we set S0 := 0, and for k ≥ 1 let

Tk := min{i ≥ Sk−1 : Xi = J1}, and Sk := min{i ≥ Tk : Xi = I1}.
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The lengths of the kth excursion to the left and to the right are then respectively
given by

Lk := Sk − Tk, k ≥ 1 and Rk := Tk+1 − Sk, k ≥ 0.

(These Lk correspond morally - though not precisely - to those from the sketch
above.) We can then represent the entrance time τm as

τm =
Θm∑
k=1

Lk +
Θm−1∑
k=0

Rk + 1. (3)

This decomposition is useful because the sequences (Lk) and (Rk) are iid, and -
most important for our purposes - the sequence (Lk) is independent of each Θm:
the number of excursions to the left is independent of their lengths. Moreover we
shall see later that the contribution of the Rk vanishes asymptotically, and we
therefore concentrate on the first of the sums in (3).

As the the tail weights tj = P(Lk > j) are now given by cj
c1
, our assumptions

on (cj) ensure that (1) holds with b as in the theorem. Therefore the correct order
of magnitude of

∑Θm

k=1 Lk is that of the random sequence (b(Θm)) which in view
of (2) we might hope to be given by (b(E[Θm])). We therefore write

1
b(sm)

·
Θm∑
k=1

Lk =
b(E[Θm])
b(sm)

· b(Θm)
b(E[Θm])

· 1
b(Θm)

Θm∑
k=1

Lk. (4)

The scalar factor in front converges to 1 because of the regular variation of b. The
second factor exhibits good limiting behaviour, too: we have

b(Θm)
b(E[Θm])

d=⇒ E 1
α , (5)

which is immediate from the following lemma.

Lemma 1 Assume that E and Em, m ≥ 0, are random variables taking values in

R+ = (0,∞), such that 1
γm

Em
d=⇒ E, for suitable normalizing constants γm → ∞.

If b : R+ → R+ is regularly varying at infinity with index β �= 0, then

b(Em)
b(γm)

d=⇒ Eβ.

Proof. Writing

b(Em)
b(γm)

=
(
Em

γm

)β

·
l
(

Em

γm
γm

)
l(γm)

,

l being the slowly varying part of b, this is an easy application of the uniform
convergence theorem for slowly varying functions which ensures that l(σx)

l(x) →
1, as x → +∞, uniformly in σ ∈ [Σ−1,Σ], for any Σ > 1. See [2], p.6. �
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Let us return to (4). Since we know that Θm → ∞ in probability and each
is independent of (Lk) it is easy to see that the rightmost term will converge in
law to a stable distribution Gα. However, as both random terms contain the Θm,
they are not independent and we have to be careful about the distribution of their
product. The reason why we will still have convergence to the independent product
E 1

α ·Gα is that the only thing that matters for the last term is that Θm is large. The
precise distribution of Θm has hardly any effect on the distribution of the sum.
This is made precise in the following lemma, the easy proof of which we omit.

Lemma 2 Assume that Qn, Q,Hm,H, and Tm are random variables such that

1. Qn take values in R+ and Qn
d=⇒ Q,

2. Tm take values in N and Tm → ∞ in probability,

3. Hm
d=⇒ H,

4. Each of Tm,Hm, and H is independent of the sequence (Qn) and of Q.

Then
Hm ·QTm

d=⇒ H ·Q.

Of course, the important point here is that Hm and Tm need not be indepen-
dent. Taking Hm := b(Θm)

b(E[Θm]) , Tm := Θm and Qn := 1
b(n)

∑n
k=1 Lk we obtain

1
b(sm)

Θm∑
k=1

Lk
d=⇒ E 1

α · Gα. (6)

To get the asymptotics of τm we still have to take care of the Rk, cf. (3). Recall
that (Rk) is an iid sequence and that the Rk have finite expectation. Therefore
n−1 ∑n−1

k=0 Rk → E[R1] ∈ R+ almost surely. Since also Θm → ∞ a.s., we have
Θ−1

m

∑Θm−1
k=0 Rk → E[R1] a.s. as m → ∞. In view of x/b(x) → 0 (which is clear

from (1) as E[Lk] = ∞) and (2), this implies

1
b(sm)

Θm−1∑
k=1

Rk → 0 in probability. (7)

We therefore end up with

1
b(sm)

· τm d=⇒ E 1
α · Gα, (8)

which shows that the distribution of the first entrance time in the small events
Bm have the asserted limiting behaviour if we start our chain on the righthand
half with the measure specified in the beginning.
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To finally obtain the result for the case of the initial distribution which cor-
responds to Lebesgue measure for the interval map is almost trivial now: It is
enough to notice that the shifted chain (X̄i)i≥0 defined by X̄i := Xi+1 has this
initial distribution, thus giving a realization of the process we are interested in,
and to observe that for τ̄m := min{i ≥ 0, X̄i ∈ Bm} we have τ̄m − (τm − 1) → 0
almost surely, so that (8) holds just as well with τm replaced by τ̄m. �

4 A more general pattern

The following heuristic considerations suggest that the same limit laws should arise
for a larger class of asymptotically rare events defined by prescribing the durations
k1, k2, . . . ∈ N of m consecutive excursions from I0 and letting m → ∞. (That is,
we consider the nested sequence of cylinders around some point x ∈ (0, 1).) The
situation is more intricate than before, since the excursions required to continue
a successful attempt may change from step to step, and if we fail, we still need
not necessarily start from scratch, as the last few excursions may well fit a shorter
initial segment of (ki).

We start from the Markov chain (Xn)n≥0 with states Ij , j ≥ 0, cf. Fig.2,
and P(X0 = I0) = 1. Li, i ≥ 1, will denote the duration of the ith excursion
from I0, and we let Sn :=

∑n−1
k=0 1I0(Xk). To keep track of how many consecutive

excursions of the prescribed lenghts we have done up to step n, we set D0 := 0 and
define Dn := max({0} ∪ {r ≥ 1 : LSn−r+1 = k1, . . . , LSn = kr}), n ≥ 1. Observe
then that Zn := (Xn,Dn), n ≥ 0, again is a Markov chain. At step n we complete
a series of m excursions of lengths k1, . . . , km iff Zn = (I0,m). The waiting time
for this event is given by τm := inf{n ≥ 1 : Zn = (I0,m)}. We decompose paths
according to the visits of (Zn) to (I0, 0). Let L∗

k, k ≥ 1, denote the time between
the k−1st and kth visit, and Θm :=

∑τm
k=0 1(I0,0)(Zk). Then τm is essentially given

by
∑Θm

k=1 L
∗
k.

Θm is the waiting time until the first success (meaning that - with probability
pm → 0 - we reach (I0,m) before returning to (I0, 0)) in a sequence of Bernoulli
trials performed at each visit to (I0, 0). Hence pm Θm

d=⇒ E as m → ∞. Notice
now that

∑Θm

k=1 L
∗
k has the same distribution as

∑Θm

k=1 E
(m)
k , where (E(m)

k )k≥1 is
an iid sequence independent of Θm, E(m)

k having the first return distribution F (m)

of (Zn) to (I0, 0) under the condition that we do not pass through (I0,m). If the
F (m) are uniformly in the domain of attraction of Gα in the sense that both the
L∞-convergence of the distribution functions of b(m)(n)−1 ∑n

k=1 E
(m)
k to Gα, and

the regular variation of the b(m) are uniform in m, then easy generalizations of the
Lemmas above show that

1
b(m)(p−1

m )

Θm∑
k=1

E
(m)
k

d=⇒ E 1
α · Gα, as m → ∞.

We are however not going to rigorously discuss this question here.
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Finally we notice that this pattern does not include the interesting case of cylin-
ders shrinking to the indifferent fixed point x = 0. As remarked earlier, they do
not constitute events which are asymptotically rare w.r.t. the invariant measure.
A rough analysis suggests that the entrance times should behave rather differ-
ently. In effects, these entrance times can be written τm =

∑Θm−1
i=1 Li where (Li)

is the sequence of iid random variables describing the durations of the excursions
from I0 and Θm is the first index i for which Li is larger than m. For each m,
we can consider an iid sequence (E(m)

i )i≥1, independent of Θm, having the dis-
tribution of Li given {Li < m}. The random variable τm has the distribution of∑Θm−1

i=1 E
(m)
i . Our point is that, at least in the simplest cases, one can use the

theorem in Section IX.7 of [12] to identify the limit distribution of the triangular
array b(m)−1 ∑E[Θm]−1

i=1 E
(m)
i for suitable normalizing sequences b. It has finite

expectation but is not trivial. So we believe that another class of limit laws may
arise in this situation.
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