
Ann. Henri Poincaré 2 (2001) 101 – 108
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Uniform Singular Continuous Spectrum for
the Period Doubling Hamiltonian

David Damanik

Abstract. We consider the ergodic family of Schrödinger operators generated by the
period doubling substitution and we prove that every element of this family has
purely singular continuous spectrum.

1 Introduction

The discovery of quasicrystals by Shechtman et al. in 1984 [21] has motivated
continuing interest by both physicists and mathematicians in adequate models
describing these structures. A class of models that has attracted particular atten-
tion in this context is provided by one-dimensional Schrödinger operators with
potentials generated by so-called primitive substitution sequences, the Fibonacci
sequence being the most prominent example. A considerable amount of knowledge
about the spectral properties of these operators has since been accumulated, and,
from a mathematical point of view, their study is also motivated by the fact that
they exhibit rather unusual properties such as purely singular continuous spectral
measures which are supported on Cantor sets of Lebesgue measure zero. In partic-
ular the apparent tendency of the spectral measures to be always purely singular
continuous seems to reflect that substitution sequences give rise to potentials be-
ing intermediate between periodic (leading to absolutely continuous spectrum) and
random (leading to pure point spectrum). While absence of absolutely continuous
spectrum follows in full generality from works of Kotani [17] and Last-Simon [18],
the problem of excluding eigenvalues has not yet been solved in similar general-
ity. The spectral theory of substitution Hamiltonians is most conveniently studied
within the context of ergodic families of Schrödinger operators since primitive sub-
stitution sequences naturally induce strictly ergodic subshifts [20] which serve as
a family of potentials associated with a substitution model. One can then employ
the powerful general results from this framework; see [4] for the general theory
of ergodic Schrödinger operators and [7] for an introduction to one-dimensional
quasicrystal models and their spectral theory.

The results on absence of eigenvalues for ergodic families of Schrödinger op-
erators generated by primitive substitutions can be classified, in increasing gen-
erality, as generic (absence of eigenvalues for a dense Gδ set of elements of the
subshift), almost sure (absence of eigenvalues for almost every element with respect
to the unique ergodic measure µ on the subshift), and uniform results (absence of
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eigenvalues for all elements of the subshift). Generic results for certain classes of
substitution models were established in [3, 15], almost sure results can be found
in [5, 6, 8], and [9, 10] contain uniform results.

Essentially all the known results rely on criteria that deduce absence of �2-
solutions from the presence of local symmetries, namely, local repetitions [14] or
palindromes [15]. This explains why our current understanding of the problem is
limited to models that exhibit such symmetries. Explicit models are known (e.g.,
the Rudin-Shapiro substitution) which give rise to models that do not have the
required local symmetries. Moreover, from [14, 15] one can extract three common
criteria: the palindrome method of Hof et al. [15] (based on a criterion of Jito-
mirskaya and Simon [16] which was developed in the context of uniformly almost
periodic models) and the two-block [23] and three-block [13] versions of Gordon’s
method [14]. While the palindrome method is an excellent tool to establish generic
results for a large class of primitive substitution models [15], it was shown in [12]
that one cannot prove a stronger (i.e., almost sure or uniform) result — its scope
is always limited to a set of zero µ-measure. On the other hand, the three-block
version of Gordon’s method allows for a very simple proof of an almost sure re-
sult in the case where the substitution sequence contains a sufficiently high power
(slightly more than a third power is enough) [6, 8], whereas the criterion is not suf-
ficient to prove uniform results [8] — there are always elements in the subshift to
which one cannot apply the three-block criterion. The only uniform results that are
known so far have therefore been established by the two-block version of Gordon.
However, the two-block method requires an additional input, namely, sufficient
control on a dynamical system (the so-called trace map) that is naturally associ-
ated with a substitution model. Sufficient control essentially means that one has
to establish boundedness of its orbits (for energies from the spectrum). Unfortu-
nately, such a strong result is known only for a very small subclass of substitution
models, namely, those of minimal combinatorial complexity, that is, models which
are Sturmian (e.g., the Fibonacci case). This indicates that it might be hard to
establish uniform results outside this small subclass.

Our goal here is to establish uniform absence of eigenvalues for a prominent
model, the family of Schrödinger operators generated by the period doubling sub-
stitution (see, e.g., [1, 5]), which indeed lies outside this small subclass and for
which the strong trace map result does not hold [2]. Namely, on the alphabet
A = {a, b}, consider the period doubling substitution S(a) = ab, S(b) = aa. Iterat-
ing on a, we obtain a one-sided sequence u = abaaabab . . . which is invariant under
the substitution process. Define the associated subshift Ω to be the set of all two-
sided sequences which have all their finite subblocks occurring in u. Choose some
non-constant function f : A → R and define for ω ∈ Ω, a discrete one-dimensional
Schrödinger operator Hω, acting in �2(Z), by

(Hωψ)(n) = ψ(n+ 1) + ψ(n− 1) + f(ωn)ψ(n).

We will prove the following theorem.
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Theorem 1 For every ω ∈ Ω, the operator Hω has empty point spectrum.

Remarks. (a) Note that the result is valid for all replacement functions f , that is,
it is robust with respect to variation of a potential coupling constant. This is a
general phenomenon in the spectral theory of one-dimensional substitution Hamil-
tonians which stems from the fact that the proofs are mostly combinatorial.
(b) If we combine Theorem 1 with the results of Kotani [17] and Last-Simon [18],
we get that for every ω ∈ Ω, the operator Hω has purely singular continuous spec-
trum.
(c) Theorem 1 extends [5] where purely singular continuous spectrum was estab-
lished for almost all ω ∈ Ω with respect to the unique ergodic measure µ on Ω (see
also [6]).
(d) Our proof of Theorem 1 uses a combination of the two-block and three-block
versions of Gordon’s criterion along with partitions of the elements in the hull Ω
and results for the trace map obtained by Bellissard et al. [1].

After recalling some more or less known concepts and results in Section 2, we
give a proof of Theorem 1 in Section 3. Since the result is somewhat surprising, by
virtue of our discussion preceding the statement of the theorem, we also discuss
in Section 3 to what extent the approach of the present paper is likely to apply to
other substitution models.

2 The Trace Map, Partitions, and Gordon’s Criterion

In this section we recall some useful results and methods that will be used in our
proof of Theorem 1. Among these are the trace map, a dynamical system which
is directly induced by the substitution rule, partitions of the elements of the hull
into products of canonical words, and criteria for absence of eigenvalues of general
one-dimensional Schrödinger operators which are based on Gordon’s work [14].

Let us first recall that the sequence u can be regarded as a limit of a sequence
of words sn which obey recursive relations. Namely, with sn = Sn(a) we have with
obvious notation and meaning, u = limn→∞ sn. Moreover, the words sn obey the
recursion sn = sn−1s

2
n−2. More transparently, we have with tn = Sn(b)

sn = sn−1tn−1, tn = sn−1sn−1. (1)

Notice that sn and tn both have length m = 2n. Moreover, the words sn and
tn are almost identical [6]:

Proposition 2.1 For every n ∈ N, the words sn and tn are the same except for
their respective rightmost symbol.

For sn = u1 . . . um and tn = v1 . . . vm with ui, vi ∈ A and E ∈ R, we define
the matrices Mn = Mn(E) and Nn = Nn(E) by

Mn = T (E, um)× · · · × T (E, u1), Nn = T (E, vm)× · · · × T (E, v1),
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where for c ∈ A and E ∈ R,

T (E, c) =
(

E − f(c) −1
1 0

)
.

Let xn = xn(E) = tr(Mn) and yn = yn(E) = tr(Nn). Bellissard et al. derived in
[1] the recursion

xn = xn−1yn−1 − 2, yn = x2
n−1 − 2 (2)

which is called the trace map. This dynamical system on R
2 is the central tool in

the investigation of the spectral properties of the operators Hω. Trace maps are
induced by all substitutions (see [3] and references therein) and their study in this
context is natural and very useful.

It is a standard result that there is a compact set Σ ⊆ R such that σ(Hω) = Σ
for every ω ∈ Ω. This follows essentially from the minimality of Ω which results
from the fact that u is almost periodic, that is, every finite subblock of u occurs
in u infinitely often and with bounded gaps. It follows from the analysis of the
trace map performed by Bellissard et al. in [1] that for every E ∈ Σ, we have the
following: If |xn(E)| > 2 for some n, then |xn+1(E)| ≤ 2. We can therefore state
the following proposition.

Proposition 2.2 For every E ∈ Σ and every n ∈ N, we have

min{|xn(E)|, |xn+1(E)|} ≤ 2.

The next crucial concept we want to recall is the fact that for every n, every
ω ∈ Ω can be uniquely decomposed into an infinite product of blocks of the form
sn or tn. Let us call this decomposition the n-partition of ω. We summarize the
properties we shall need in the following proposition.

Proposition 2.3 For every n, every ω ∈ Ω has a unique n-partition. In this product
representation, a tn-block is always isolated, and between two consecutive tn-blocks
there are either one or three sn-blocks.

Proof. By definition, u can be written as a product of blocks of the form s0 and
t0. Moreover, by the self-similarity property S(u) = u, we have, for every n ∈ N,
an analogous decomposition into blocks of the form sn and tn. It is easily checked
for u that tn-blocks are isolated and that sn-blocks have multiplicity either one
or three. It is then a result of [19] (see [22] for an extension to higher dimensions)
that these properties are inherited by the subshift elements ω ∈ Ω and that their
canonical decompositions are in fact unique (this follows from aperiodicity of u).

�
Finally, we discuss Gordon-type criteria which establish a link between com-

binatorial properties of the sequences ω ∈ Ω and non-decay properties of the
solutions to

(Hω −E)φ = 0. (3)
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We do not provide proofs and refer the reader to [7, 13, 23] for proofs, discussions,
and applications. Fix some ω ∈ Ω and some E ∈ R. Let φ be a two-sided sequence
that solves (3) and obeys the normalization condition

|φ(−1)|2 + |φ(0)|2 = 1. (4)

Denote Φ(n) = (φ(n), φ(n− 1))T . Then we have the following proposition.

Proposition 2.4 (a) If for some m ∈ N, we have ω−m+j = ωj = ωm+j, 0 ≤ j ≤
m− 1, then

max (‖Φ(−m)‖, ‖Φ(m)‖, ‖Φ(2m)‖) ≥ 1
2
.

(b) If for some m = 2n ∈ N, we have that ω0 . . . ω2m−1 is a cyclic permutation of
snsn, then

max (|xn(E)| · ‖Φ(m)‖, ‖Φ(2m)‖) ≥ 1
2
.

Analogous conclusions hold if the assumptions in (a) and (b) are reflected at the
origin.

We see that we obtain useful estimates for the solutions φ of (3) if we exhibit
appropriate squares and cubes in ω.

3 The Proof of Theorem 1

Let us turn to the proof of Theorem 1. Fix ω ∈ Ω, E ∈ Σ, and a solution φ to (3)
obeying (4). We want to prove that φ is not square-summable. We shall show that
given any k ∈ N, there exists m ∈ Z with |m| ≥ k such that ‖Φ(m)‖ ≥ 1

4 . From
this the assertion clearly follows.

So let k ∈ N be fixed and pick n ∈ N such that 2n ≥ k. Consider the
n-partition of ω.

Case 1: The site 0 ∈ Z is contained in an sn-block and this sn-block is followed
to the right by an sn-block. Because of Proposition 2.3 there are two subcases.

Case 1.1: The n-partition looks at the origin locally like tnsnŝnsntn. Here
and in the following, the hat-symbol marks the block that contains the site 0 ∈ Z.
Because of Proposition 2.1 we can conclude by applying Proposition 2.4 (a) with
m = 2n.

Case 1.2: We have tnŝnsnsntn. Then either |xn(E)| ≤ 2, and we are done
in this case by Proposition 2.4 (b), or |xn(E)| > 2 and then |xn+1(E)| ≤ 2 by
Proposition 2.2. Let us therefore consider the (n + 1)-partition where we must
have sn+1t̂n+1sn+1. Note that the origin is not the rightmost site in t̂n+1.

Case 1.2.1: We have sn+1sn+1t̂n+1sn+1. In this case we can conclude im-
mediately by applying Proposition 2.1 and Proposition 2.4 (b) (reflected at the
origin) because we have |xn+1(E)| ≤ 2.

Case 1.2.2: We have tn+1sn+1t̂n+1sn+1. We pass to the (n + 2)-partition
where we must have sn+2ŝn+2.
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Case 1.2.2.1: We have sn+2sn+2ŝn+2tn+2. In this case we can apply Propo-
sition 2.4 (a) (reflected at the origin) with m = −2n+2 using Proposition 2.1.

Case 1.2.2.2: We have tn+2sn+2ŝn+2sn+2tn+2. Again using Proposition 2.1
we can apply Proposition 2.4 (a) with m = 2n+2. This closes Case 1.

Case 2: In the n-partition we have snŝn. This case can be treated analogously
to Case 1.2.2. This closes Case 2.

Case 3: In the n-partition we have tnŝntn. We pass to the (n + 1)-partition
where we must have sn+1ŝn+1 and we can then proceed analogously to Case 1.2.2.
This closes Case 3.

Case 4: In the n-partition we have t̂n. Thus in the (n+ 1)-partition we have
ŝn+1 and we are in one of the Cases 1–3 with all indices increased by one. In
particular, we obtain a sufficient solution estimate. This closes Case 4 and hence
concludes the proof. �
Remark. Let us briefly discuss the result of this paper and the obstacles one en-
counters when one tries to tackle related questions. We have shown that despite
the absence of a uniform trace map bound, which was a crucial tool in the corre-
sponding proof in the Fibonacci (and, more generally, Sturmian) case [10], we can
nevertheless prove absence of eigenvalues for all elements in the hull. This raises
two questions: Can we carry over some of the other uniform results that were
proven in the Fibonacci case [9, 11], all of which relied heavily on the uniform
trace map bound as well, and is it feasible that we can prove uniform absence of
eigenvalues for non-Sturmian substitution models other than the period doubling
substitution?
(a) Virtually all further results in [9, 11] require power-law upper bounds on the
solutions to the difference equation (3) for energies E in the spectrum. A proof
of this property, uniformly in the energy, seems to be out of reach in the period
doubling case since one only has the weak trace map bound

|xn(E)| ≤ c exp(dγn) (5)

for E ∈ Σ, where γ is any number greater than
√
2 and c, d are constants depending

on γ [1]. While this bound is sufficient to prove that the Lyapunov exponent
vanishes on the spectrum (see [1]), it is clearly insufficient to prove power-law upper
bounds on the solutions. One may try to improve this bound within certain energy
ranges in order to study, for example, local α-continuity, but this requires a more
detailed understanding of the trace map dynamics in the period doubling case.

(b) While [6, 8] established purely singular continuous spectrum for almost all
elements in the hull, the three-block version of the Gordon argument used there is
not capable of proving uniform results [8]. The proofs of uniform results in [10] and
the present paper therefore made essential use of the two-block version of Gordon
along with suitable trace map bounds. Since boundedness of trace map orbits for
energies from the spectrum is only known for Sturmian models, any uniform result
outside the class of Sturmian models has to be considered somewhat surprising.
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What came to our rescue in the period doubling case, beside the weak uniform
bound given in Proposition 2.2, is essentially Proposition 2.1 which says that for
every n, any element in Ω is almost 2n-periodic with the only “defects” being the
rightmost symbols in the tn-blocks in the n-partition. Such a property is of course
a very special feature of the period doubling case (one can certainly construct
other examples with this property, such as a �→ akb, b �→ aka for k ∈ N, but this is
not really the point), so that it is currently not obvious how to extend the result
of this paper to other non-Sturmian models.
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[11] D. Damanik and D. Lenz, Uniform spectral properties of one-dimensional
quasicrystals, II. The Lyapunov exponent, Lett. Math. Phys. 50 (1999), 245–
257

[12] D. Damanik and D. Zare, Palindrome complexity bounds for primitive sub-
stitution sequences, Discrete Math. 222 (2000), 259–267

[13] F. Delyon and D. Petritis, Absence of localization in a class of Schrödinger
operators with quasiperiodic potential, Commun. Math. Phys. 103 (1986),
441–444

[14] A. Gordon, On the point spectrum of the one-dimensional Schrödinger oper-
ator, Usp. Math. Nauk 31 (1976), 257–258

[15] A. Hof, O. Knill, and B. Simon, Singular continuous spectrum for palindromic
Schrödinger operators, Commun. Math. Phys. 174 (1995), 149–159

[16] S. Jitomirskaya and B. Simon, Operators with singular continuous spectrum:
III. Almost periodic Schrödinger operators, Commun. Math. Phys. 165 (1994),
201–205

[17] S. Kotani, Jacobi matrices with random potentials taking finitely many values,
Rev. Math. Phys. 1 (1989), 129–133

[18] Y. Last and B. Simon, Eigenfunctions, transfer matrices, and absolutely con-
tinuous spectrum of one-dimensional Schrödinger operators, Invent. Math.
135 (1999), 329–367
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