
Ann. Henri Poincaré 1 (2000) 945 – 976
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On Static Stars in Newtonian Gravity and
Lane-Emden Type Equations

Urs M. Schaudt

Abstract. The equations governing static stellar models in Newtonian gravity are
equivalent to a Lane-Emden type equation. For such equations existence, unique-
ness, and regularity of global solutions is shown for a large class of right-hand sides,
including a subclass of non-Lipschitz continuous equations of state which is rele-
vant if e.g. phase transitions occur. Furthermore, it is shown that for a star of finite
radius the polytropic index of the equation of state is not necessarily bounded near
the star’s surface.

Résumé Les équations qui régissent les modèles stellaires statiques en gravité new-
tonienne sont équivalentes à une équation de type Lane-Emden. Pour de telles
équations, l’existence, l’unicité et la régularité de solutions globales sont montrées
pour une large classe de membres de droite, incluant une sous-classe d’équations
d’état continues et non lipschitziennes qui s’appliquent lorsque par exemple une
transition de phase a lieu. De plus, il est montré que pour une étoile de rayon fini,
l’indice polytropique de l’équation d’état n’est pas nécessairement fini près de la
surface.

1 Introduction

The field equations for equilibrium configurations of rotating stars, within general
relativity or Newtonian gravity, can be written in suitable coordinates as a system
of semilinear elliptic partial differential equations where the elliptic operators on
the left-hand side are equivalent to Laplacians in flat space (see [2], [19]). Due
to Poisson’s integral formulas this system (with a free boundary!) is equivalent
to a fixed point problem u = T u in suitable function spaces. The principal idea,
namely to start with “reasonable” functions u0 and iteratively apply the mapping
T in order to get approximate solutions of the fixed point problem, led to one
of the most efficient numerical solution techniques [2] for rotating stellar models
and for more general configurations. Therefore, it is a natural task (which is also
important for the reliability of such numerical solutions) to prove rigorously that
these approximate solutions converge to the solution of the original problem.

In this article the most simple case toward this goal is investigated, namely
static (i.e. non-rotating) stars within the framework of Newton’s theory of grav-
itation. In this case the above mentioned fixed point problem is equivalent to a
singular ordinary differential equation of second order of so-called Lane-Emden
type (see e.g. [8] and [7]). It turns out that, apart from “essentially” polytropic
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equations of state (see [8], [7], [11], [18] and [16]), there are still some interesting
open questions for this classical problem. For example, I have found in the litera-
ture no general existence or uniqueness results for global solutions if the equation
of state is not Lipschitz continous, as is the case if e.g. phase transitions occur (and
for realistic models such situations cannot be ruled out). Furthermore, the ques-
tion for which equations of state the stellar radius is finite is not yet completely
solved.

Below, it is shown that existence, uniqueness, and regularity of global so-
lutions of Lane-Emden type equations can be established (along the line of the
principal idea of the iterative scheme, and with some a priori error estimates) for
a large class of right-hand sides, including equations of state with phase transitions.
Moreover, it is shown that essentially polytropic behaviour with index strictly less
than five of the equation of state near the star’s surface is not necessary for the
star to be of finite size.

The article is organized as follows: In Sect. 2 the physical problem is brought
into an appropriate mathematical form. In Sect. 3 the existence, uniqueness, and
regularity results for global solutions of Lane-Emden type equations are presented.
In Sect. 4 the relation between the equation of state and the finiteness of the stellar
radius is investigated. Finally, in Sect. 5 the obtained results are summarized and
some generalizations are pointed out.

2 Mathematical Formulation of the Problem

A static star of ideal fluid has three physical degrees of freedom in Newtonian
gravity: the gravitational potential U , the mass density ε, and the pressure p. These
three quantities are scalar fields on 3-dimensional flat space R

3. The three basic
equations governing such an equilibrium configuration are (i) Poisson’s equation,
(ii) Euler’s equation, and (iii) an equation of state (EOS). Using the notations ∆
for the Laplacian and ∇ for the gradient in R

3, Poisson’s and Euler’s equation
read1:

∆U = 4π ε , (1)

∇p = −ε∇U , (2)

respectively. For most astrophysically interesting objects sufficiently close to equi-
librium it is permissible to presuppose an EOS of the form (see e.g. [7], [20])

ε = ε(p) . (3)

Basically, in this article it is assumed that the real-valued function p �→ ε(p),
defined on the interval [0, pmax] ⊂ R

+
0 , obeys the following properties:

1. ε(p) > 0 for all p > 0,

1Throughout this article “geometrized units” are used where the gravitational constant is set
equal to one.
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2. ε(0) = 0,

3. ε(p) is increasing,

4. ε(p) is piecewise continuous, and

5. the integral

F (p) :=
∫ p

0

1
ε(p̃)

dp̃ (4)

exists for all p ∈ [0, pmax].

Remark 1. Property 1. ensures that the mass density is positive. Property 2. is used
for convenience. In the following limp↓0 ε(p) > 0 is permissible (corresponding to
stiff matter at the star’s surface)! Property 3. implies that the matter described by
the EOS is “microscopically stable” (see e.g. [10]). The regularity property 4. will
be slightly strengthened below (see Definition 2). Since ε(0) = 0, property 5. is
essentially a condition on the behaviour of ε(p) as p→ 0.

Furthermore, it is presupposed that the pressure p, as a function on R
3, is at

least continuous everywhere. Let I := {x ∈ R
3 | p(x) > 0} be the interior of the

star2, S := ∂I (the boundary of I, i.e.) the star’s surface, and E := R
3 \ (I ∪ S)

the exterior of the star. Then Euler’s Eq. (2) can be integrated in I: To this end,
let Γ ⊂ I be any C1-path from a point xS in S to a point x in I. According to
the assumptions, p > 0 and ε = ε(p) > 0 in I, and p = 0 on S. Therefore

F (p(x)) =
∫

Γ
〈ε−1∇p, ds〉 = −

∫
Γ
〈∇U, ds〉 = U(xS)− U(x) (5)

if U is at least C1 on I ∪ S. This equation has immediate consequences:

1. U is constant on every connected component of S (since F , p, and U are
continuous, and F (0) = 0). Carleman [6] (for incompressible matter) and
Lichtenstein [14] (for the general case) proved that S consists of only one
component. Thus, let US := U(xS) be the gravitational potential on the
star’s surface S.

2. U(x) < US for all x ∈ I, since F (p) > 0 for p > 0.

3. Since F ′(p) exists almost everywhere (a.e.), and F ′(p) = 1
ε(p) > 0 a.e. (due

to the assumptions), the function [0, pmax] � p �→ F (p) ∈ R
+
0 is invertible.

Thus, for all x ∈ I ∪ S

p(x) = F−1(US − U(x)) , (6)

i.e. in the interior of the star and on the star’s surface the pressure can be
expressed in terms of the gravitational potential.

2Note that I = p−1(R+) is an open subset of R
3, for p is C0.
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For the following it is convenient to use

u(x) := US − U(x) (7)

as the basic potential3. Assuming at present that U(x) > US for all x ∈ E (this will
be shown below, see Corollary 2) relation (6) can be extended to all x ∈ I∪S∪E =
R

3:
p(x) = F−1(u(x)+) (8)

where the abbreviation u+ := sup{u, 0} is used for the restriction of u to its
positive part. Therefore, introducing the function

[0, F (pmax) =: umax] � u �→ µ(u) := ε(F−1(u)) ∈ [0, ε(pmax) =: εmax] , (9)

the three basic Eqs. (1)–(3) can be condensed into the single equation

∆u = −4π µ(u+) (10)

on R
3. Again, Carleman [6] and Lichtenstein [14] proved that every bounded

(i.e. physically relevant) solution of this equation is necessarily spherically symmet-
ric4. Remembering that in Eq. (10) one integration constant is free (corresponding
to US) it is convenient to fix this constant by demanding that u takes a given value
0 < uc ≤ umax at the center of symmetry. According to Eq. (8), this is equivalent
to fixing the pressure at the star’s center:

pc
!= F−1(uc)⇔ uc

!= F (pc) . (11)

It is shown below (see Corollary 2) that pc = pmax.

Convention: In the following, the center of symmetry is always chosen as the origin
of the particular coordinate system.

Due to its scaling property Eq. (10) can be transformed into a “standard
form”. To this end let a > 0 and x = a ξ. Then in the ξ-coordinates Eq. (10)
reads:

∆ξ

(
u(ξ)
uc

)
= −4πa2 µ(uc)

uc
·
µ(uc

(
u(ξ)
uc

)
+
)

µ(uc)
. (12)

Therefore, let a := ( uc

4π µ(uc)
)1/2, ũ := u/uc, and µ̃(ũ) := µ(ucũ)/µ(uc). Then the

problem takes the following form:

Given: An increasing function ũ �→ µ̃(ũ) with µ̃(0) = 0 and µ̃(1) = 1.

3Note that only such a difference of U has a physical invariant meaning, for if U is a solution
of Eqs. (1) and (2), so is U+c (c ∈ R). Usually, c is fixed by demanding that lim|x|→∞ U(x) = 0.

4If u ≤ 0, this is a consequence of Liouville’s theorem.
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Wanted: A bounded function ũ on R
3 satisfying ũ(0) = ũc = 1 and

∆ũ = −µ̃(ũ+) . (13)

Remark 2. From the mathematical point of view it is not necessary in the following
that the function µ̃(ũ) corresponds to an EOS according to Eq. (9).

Convention: For simplicity, the symbols “˜” on u and µ are omitted in the follow-
ing.

Remark 3. Considering that a solution for the above problem is necessarily spher-
ically symmetric Eq.(13) reads in spherical coordinates:

1
r2

d

dr

(
r2 du(r)

dr

)
= u′′(r) +

2
r
u′(r) = −µ(u(r)+) . (14)

For a polytropic EOS, i.e. µ(u) = uν with ν > 0 (see Lemma 5 below), this is the
so-called Lane-Emden equation5 (see [8], [7]).

With Poisson’s integral, Eq. (13) is equivalent (at least in the distributional
sense; see e.g. [15], Theorem 6.21) to

u(ξ) = 1− 1
4π

∫
R3

µ(u(y)+)
|y| dy +

1
4π

∫
R3

µ(u(y)+)
|ξ − y| dy , ∀ξ ∈ R

3 . (15)

Using the spherical symmetry of u and the abbreviation u(r) instead of u(r ξ/|ξ|)
for any ξ �= 0 in R

3 and r ≥ 0, a straightforward computation of the integrals
in Eq. (15) yields the following (generally) nonlinear integral equation of Volterra
type:

u(r) = 1−
∫ r

0
g(r, s)µ(u(s)+) ds =: (T u)(r) , (16)

for all r := |ξ| ≥ 0, where

g(r, s) := s
(
1− s

r

)
(17)

(for r = 0 see Lemma 1 below). Note that 0 ≤ g(r, s) < s for all 0 < s ≤ r and g
is not symmetric.

In summary, it has been demonstrated that the global problem of a static
star in Newtonian gravity is equivalent to the fixed point problem (16) for a 1-
dimensional real-valued function u. The rest of this article is devoted to the in-
vestigation of this fixed point problem and its solutions. This investigation will be
similar to the treatment of Picard and Lindelöf of the initial value problem for a
non-singular ordinary differential equation of first order.

5Usually, this equation is considered only in the interior and it is understood that the interior
solution is matched to an exterior solution where the interior solution vanishes, i.e. the “+”-
subscript for u on the right hand side of the equation is omitted.
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Remark 4. A similar integral equation approach to static Newtonian stellar models
is taken in the work of Bucerius [3]–[5]. In contrast to this article, where the
pressure at the center of symmetry, pc, is fixed, Bucerius fixes the stellar radius.
However, if the stellar radius is fixed the solutions are not unique in general as
the linear case µ(u) = u shows: In this case the solutions are given in the interior
I ∼= [0, π) by u(r) = a sin(r)

r where a > 0 is arbitrary. Furthermore, only a few
explicit EOS are treated to obtain approximate solutions in form of truncated
series in terms of eigenfunctions of the corresponding linear problem.

3 Existence, Uniqueness, and Regularity Results

3.1 A Priori Properties

Definition 1. For v ∈ L∞(R+
0 ) let

(Qv)(r) :=
∫ r

0
g(r, s)v(s) ds , ∀r ≥ 0. (18)

Lemma 1 (Properties of Q). For all v,w ∈ L∞(R+
0 ):

1. The mapping v �→ Qv is linear.

2. If v ≤ w then Qv ≤ Qw.

3. (Qv)(r) = r2
∫ 1

0
g(1, σ)v(rσ) dσ.

4. limr↓0(Qv)(r) = 0.

5. r �→ (Qv)(r) is (at least) Hölder continuous differentiable on every compact
subset K ⊂ R

+
0 , i.e. Qv ∈ C1,α

loc (R+
0 ) with α ∈ (0, 1), and

(Qv)′(r) =
∫ r

0

(s
r

)2
v(s) ds = r

∫ 1

0
σ2 v(rσ) dσ , ∀r ≥ 0 . (19)

Especially (Qv)′(0) = 0.

6. Let δ > 0. If v ∈ C0([0, δ]) then the second derivative of Qv at r = 0 exists
and (Qv)′′(0) = v(0)/3. Especially for all r ∈ [0, δ]:

(Qv)(r) =
(
v(0)
6

+ qv(r)
)

r2 ,

with qv ∈ C0([0, δ]) and qv(0) = 0.
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Proof.

1. Distributive law and linearity of the integral.

2. Since g(r, s) ≥ 0 for all 0 < s ≤ r, the assertion follows from the analogous
property of the integral.

3. Substitute σ = s/r in (18).

4. Let δ0 > 0, and c0 := sups∈[0,δ0] |v(s)|. By assumption 0 ≤ c0 <∞. Then for
all 0 < r ≤ δ0

|(Qv)(r)| =
∣∣∣∣
∫ r

0
s
(
1− s

r

)
v(s) ds

∣∣∣∣ ≤ c0

∫ r

0
s
(
1− s

r

)
ds = c0

r2

6
.

Thus limr↓0(Qv)(r) = 0.

5. Since by assumption (Qv)(r := |ξ|) = 1
4π

∫
R3

v(|y|)
|y| dy− 1

4π

∫
R3

v(|y|)
|ξ−y| dy for all

ξ ∈ R
3 and v ∈ L∞(R) the regularity statement follows directly from the

regularity properties of the Poisson integral (see e.g. [15], Theorem 10.2).
Moreover in the previous equation, and thus in Eq. (18), differentiation
commutes with the integral sign. Hence for all r > 0: (Qv)′(r) = r(1 −
r/r)v(r)+

∫ r
0

d
drs(1−s/r)v(s) ds =

∫ r
0 (s/r)2v(s) ds = r

∫ 1
0 σ2v(rσ) dσ where

in the last step the substitution σ = s/r was used. An analogous argument
as for limr↓0Qv(r) = 0 shows that limr↓0(Qv)′(r) = 0.

6. Let r > 0. Then

(Qv)′(r)− (Qv)′(0)
r − 0

=
r
∫ 1
0 σ2v(rσ) dσ − 0

r
=
∫ 1

0
σ2v(rσ) dσ =: f(r) .

Note that f(0) = v(0)/3. Therefore, to prove the assertion it is sufficient to
show that the function f is continuous on [0, δ]. To this end let ε > 0. For v is
continuous on the compact interval [0, δ] (by assumption) it is even uniformly
continuous, i.e. ∃ηε > 0 such that |v(r1) − v(r2)| < ε for all r1, r2 ∈ [0, δ]
with |r1 − r2| < ηε. Since r1σ, r2σ ∈ [0, δ] and |r1σ − r2σ| ≤ |r1 − r2| < ηε
for all σ ∈ [0, 1], it follows that |f(r1)− f(r2)| ≤

∫ 1
0 σ2|v(r1σ)− v(r2σ)|dσ <

ε
∫ 1
0 σ2dσ = ε/3 < ε, i.e. f is continuous on [0, δ]. �

Corollary 1. Every solution u of the fixed point problem (16) has the following
properties:

1. limr↓0 u(r) = 1.

2. u ∈ C1,α
loc (R) with α ∈ (0, 1) and

u′(r) = −
∫ r

0

(s
r

)2
µ(u(s)+) ds , ∀r ≥ 0 . (20)

Especially u′(0) = 0 and if µ �≡ 0 a.e. then u′(r) < 0 for all r > 0 .
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3. Let µ1 := limu↑1 µ(u). Then u(r) = 1− µ1
6 r2 + o(r2) as r ↓ 0.

Proof. Since u = T u = 1 − Qµ(u+), 0 ≤ µ ≤ 1, and the function u �→ µ(u) is
increasing by assumption, the assertions are immediate consequences of Lemma 1.
Note: If µ �≡ 0 a.e. then µ(u+) > 0 at least on a neighbourhood of r = 0 (since u
is continuous and u(0) = 1.)

Corollary 2. Let u be a solution of the fixed point problem (16) and µ �≡ 0 a.e..
Then:

1. The functions u, p = F−1(u+), and ε = µ(u+) take their maximal values
only at r = 0, i.e. at the center of symmetry.

2. There is at the most one 0 < rS ≤ ∞ with u(rS) = 0. If such an rS exists it
is the stellar radius (otherwise let rS :=∞). If rS <∞ then u′(rS) < 0.

3. If rS <∞, the following holds for the gravitational potential U (correspond-
ing to u):

U(x)




<
=
>


US , for all x ∈



I
S
E


 . (21)

4. |u| is bounded.

Proof. 1.–3. are immediate consequences of u′(r) < 0 for all r > 0. To 4.: u ≤ 1
by 1. If rS =∞ then u ≥ 0. If rS <∞ then6 µ(u(r)+) ≤ 1[0,rS ](r) by assumption.
Hence u(r) ≥ 1−

∫ rS
0 s(1− s/r) ds ≥ 1−

∫ rS
0 s ds = 1− r2

S/2 > −∞ for all r > 0.

3.2 Existence, Uniqueness, and Regularity for Lipschitz Continuous µ

Lemma 2. For all v,w ∈ R: |v+ −w+| ≤ |v − w|.

Proof. Since v+ = 1
2 (v + |v|), it follows that |v+−w+| = 1

2 |(v + |v|)− (w + |w|)| =
1
2 |(v−w) + (|v| − |w|)| ≤ 1

2 (|v−w|+ ||v| − |w||) ≤ 1
2 (|v−w|+ |v−w|)| = |v−w|.

Lemma 3. Let 0 < r0 ≤ ∞, c, j ∈ R
+
0 , and R

+
0 � r �→ µ̂(r) :=

{
c rj : r < r0
0 : r ≥ r0

.

Then

0 ≤ (Qµ̂)(r) =




c
(j+2)(j+3) r

j+2 : r ∈ [0, r0)

≤ c
j+2 rj+2

0 : r ∈ R
+
0 .

(22)

Proof. Let r0 <∞. Evaluating the integral in Eq. (18) yields

(Qµ̂)(r) =




c
(j+2)(j+3) r

j+2 : 0 ≤ r ≤ r0

c
(j+2)(j+3) r

j+2
0 + c

j+3 rj+3
0

(
1
r0
− 1

r

)
: r ≥ r0 .

6Let 1X(x) := {1 if x ∈ X, 0 if x �∈ X} be the characteristic function of a set X.
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Since [r0,∞) � r �→ c
(j+2)(j+3) r

j+2
0 + c

j+3 rj+3
0

(
1
r0
− 1

r

)
is increasing and tends to

c
j+2 rj+2

0 as r →∞ the assertion follows. Eq. (22) still holds if r0 =∞. �

Lemma 4 (Contraction). Assume that:

1. The function µ is Lipschitz continuous on [0, 1]: µ ∈ C0,1([0, 1]), i.e. ∃& ∈ R
+
0

such that |µ(v)− µ(w)| ≤ &|v −w| for all v,w ∈ [0, 1].

2. ∃X ⊂ BR :=
(
C0([0, R)), ‖.‖R := supr∈[0,R) |.|

)
with R > 0 and T (X) ⊂ X.

Then for all v,w ∈ X:

‖T n(v)− T n(w)‖R ≤

(√
&R =: C(&,R)

)2n

(2n + 1)!
‖v − w‖R . (23)

If in addition R =∞ and

r∗ := sup
{
rv := sup{r ∈ R

+
0 | v(r) ≥ 0}

∣∣∣ v ∈ X
}

<∞

then for all v,w ∈ X:

‖T n(v)− T n(w)‖∞ ≤
C(&, r∗)2n

(2n)!
‖v −w‖∞ . (24)

Therefore, ∃n0 ∈ N such that T n0 is a contraction on X.

Proof. If R < ∞, let r∗ := R. To prove estimates (23) and (24) it is sufficient to
establish the inequality

|(T nv)(r)− (T nw)(r)| ≤




�n

(2n+1)! ‖v − w‖ r2n : r ∈ [0, r∗)(√
� r∗

)2n
(2n)! ‖v − w‖ : r ∈ [0, R) ,

(25)

where the index R of ‖.‖R is omitted for simplicity. By induction:

1. n = 0: Inequality (25) is true.

2. Step n→ n + 1: Assume that (25) is valid for an n, then

|T n+1(v)− T n+1(w)| = |T (T nv)− T (T nw)|
by (16), (18) = |Qµ((T nv)+)−Qµ((T nw)+)|

by Lemma 1(1.) =
∣∣∣Q(µ((T nv)+)− µ((T nw)+)

)∣∣∣
by Lemma 1(2.) ≤ Q |µ((T nv)+)− µ((T nw)+)|

µ Lipschitz7 ≤ Q (& |(T nv)+ − (T nw)+|)
by Lemma 2 ≤ Q (& |T nv − T nw|)

by (25) ≤ Qµ̂ ,

7Note that (T nv)(r)+, (T nw)(r)+ ∈ [0, 1], since T (X) ⊂ X by assumption.
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where µ̂(r) =
{

c rj : r < r0
0 : r ≥ r0

, with c = & �n

(2n+1)! ‖v − w‖, j = 2n, and

r0 = r∗. Hence, with (22):

|(T n+1v)(r)− (T n+1w)(r)| ≤


� �n

(2n+1)! ‖v−w‖
(2n+2)(2n+3) r2n+2 = �(n+1)

(2(n+1)+1)! ‖v − w‖ r2(n+1) : r ∈ [0, r∗)

� �n

(2n+1)! ‖v−w‖
2n+2 r2n+2

∗ =
(√

� r∗

)2(n+1)

(2(n+1))! ‖v − w‖ : r ∈ [0, R) ,

i.e. inequality (25) is valid for n + 1. �

Remark 5. In Lemma 4, µ is assumed to be continuous in particular. Since µ(0) = 0
and µ(1) = 1 by assumption, limv↓0 µ(v) = 0 and limv↑0 µ(v) = 1. Note that it is
not necessary that µ is increasing.

Proposition 1 (Existence, uniqueness, regularity).
Assume µ ∈ C0,1([0, 1]). Then the fixed point problem (16), u = T u, has a unique
solution u ∈ C2,α(R+

0 ) with α < 1. If in addition the trivially extended8 function
µ ∈ Ck,α((−∞, 1]) with k ≥ 1 then u ∈ Ck+2,α(R+

0 ).

Proof.

1. Let R > 0 and v ∈ XR := {w ∈ C0([0, R)) | w ≤ 1}. Then v(r)+ ∈ [0, 1] for
all r ∈ [0, R). Thus µ(v+) is defined, and µ(v+) ≥ 0. Hence Qµ(v+) ≥ 0 ⇒
T v = 1−Qµ(v+) ≤ 1, i.e. T v ∈ XR. Therefore by Lemma 4, there is an n0
such that T n0 is a contraction on XR which is a subset of the Banach space
BR := (C0([0, R)), ‖.‖R := supr∈[0,R) |.|). By virtue of the Banach fixed point
theorem (see e.g. [13], Theorem 5.1-2 & Lemma 5.4-3) v = T v has a (unique)
fixed point uR ∈ XR and limn→∞ T nu0 = uR for every u0 ∈ XR.

2. Let 0 < R1 ≤ R2 and uR1 , uR2 be the corresponding solutions, which exist
by 1. Then uR1 ≡ uR2 on [0, R1)∩[0, R2) = [0, R1): By assumption, T nuR1 ≡
uR1 and uR2 ≡ T nuR2 for all n ∈ N. Thus, due to the estimate (23) it
follows that ‖uR1−uR2‖R1 = ‖T nuR1−T nuR2‖R1 ≤ Cn‖uR1−uR2‖R1 with
limn→∞ Cn = 0. Hence ‖uR1 − uR2‖R1 = 0⇔ uR1 ≡ uR2 on [0, R1).

3. Since R1 > 0 is arbitrary in 2., there is a unique fixed point u ∈ C0(R+
0 ).

4. By Corollary 1, u ∈ C1(R+
0 ) and u ≤ 1. Since µ ∈ C0,1([0, 1]) and µ(0) = 0 it

follows that µ(u+) ∈ C0,1(R+
0 ) ⊂ C0,α(R+

0 ) with α < 1. Therefore, due to the
regularity properties of the Poisson integral u ∈ C2,α(R+

0 ) (cf. Corollary 1,
and see e.g. [15], Theorem 10.3). If k ≥ 1, the assertion follows by induction
using the above argument again. �

8I.e. µ(v) = 0 for all v < 0.
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Remark 6.

1. u is bounded by Corollary 2, i.e. ‖u‖∞ <∞.

2. Due to the regularity properties, differentiation commutes with the integral
sign for the solution u of the fixed point problem (16). Therefore, u is a
classical solution of Eq. (14).

3. If µ ≡ 0 a.e. then u ≡ 1 is the unique solution of the fixed point problem (16).

4. In case that r∗ < ∞ (cf. Lemma 4), only the analogue of steps 1. and 4. is
needed in the above proof. Furthermore, then the stellar radius rS is finite.
For more details on the question whether the stellar radius is finite or not
see Sect. 4 below.

Corollary 3 (A priori error estimates). Assumptions as in Proposition 1. Then
for every 1 ≥ u0 ∈ C0(R+

0 ) the sequence ui := T ui−1, ∀i ∈ N, converges uniformly
to the unique fixed point u on every intervall [0, R > 0) and

‖u− un‖R ≤ coshC(&,R) · C(&,R)2n

(2n + 1)!
· ‖u1 − u0‖R (26)

with C(&,R) =
√
&R (where & is the Lipschitz constant of µ). If r∗ <∞ then

‖u− un‖∞ ≤ coshC(&, r∗) ·
C(&, r∗)2n

(2n)!
· ‖u1 − u0‖∞ . (27)

Proof. Using the triangle inequality it follows that for all n,m ∈ N:

‖T n+mu0 − T nu0‖R ≤
m−1∑
k=0

‖T n+k+1u0 − T n+ku0‖R

by (23) ≤
m−1∑
k=0

C(&,R)2(n+k)

(2(n + k) + 1)!
‖u1 − u0‖R

≤ C(&,R)2n

(2n + 1)!
‖u1 − u0‖R ·

∞∑
k=0

C(&,R)2k

(2k)!
.

Since limm→∞ T n+mu0 = u by Banach’s fixed point principle and
∑∞

k=0
C(�,R)2k

(2k)! =
coshC(&,R) the first a priori estimate follows. If r∗ < ∞, the argument is analo-
gous.

Remark 7. Note that the estimates (26) and (27) imply that the convergence is
even faster than exponential.
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3.3 “Characteristic” Examples of EOS

A physically important class of EOS are the polytropes. In the literature, nearly
exclusively this class has been used for static stellar models in Newtonian gravity
(see e.g. [8], [7], [11]).

Lemma 5 (Polytropic EOS). Given a polytropic equation of state:

p(ε) = k εγ ⇐⇒ ε(p) =
(p
k

) 1
γ

, (28)

with k > 0 and γ > 1. Then

µ(u) = κuν , i.e. µ̃(ũ) = ũν , (29)

where ν := 1
γ−1 > 0 (⇔ γ = 1 + 1

ν ) is the index 9 of the polytropic EOS, and

κ = (νγ k)−ν ⇐⇒ k =
1

νγ κ(γ−1) . (30)

Proof. By definition (4):

F (p) =
∫ p

0
ε(p̃)−1dp̃ = k1/γ

(1− 1
γ ) p

1− 1
γ = νγ k1/γ p1/(νγ) .

The integral exists iff 1 − 1
γ > 0 ⇔ γ > 1, and the inverse of the function F is

given by

u = F (p) = νγ k1/γ p1/(νγ) ⇐⇒ p =
uνγ

(νγ)νγ kν
= F−1(u) .

Since µ(u) := (ε ◦ F−1)(u) (by definition (9)) it follows that

µ(u) =
(
F−1(u)

k

) 1
γ

=
uν

(νγ)ν k
ν+1
γ

=
1

(νγ k)ν
uν ,

and µ̃(ũ) = κuν/κuνc = (u/uc)ν = ũν . �
Therefore, Proposition 1 applies to a polytropic EOS only if the index ν ≥ 1
since for 0 ≤ ν < 1 the corresponding function [0, 1] � u �→ µ(u) = uν is no
more Lipschitz continuous at u = 0, i.e. at the star’s surface10. To include this
case ν < 1, and furthermore, to permit EOS with phase transitions, Proposition 1
must be generalized. This generalization will be developed in Sect. 3.4. It is helpful
to have an idealized EOS modeling matter with N phases:

9In the literature, the notation N or n is frequently used for the index of a polytropic EOS,
instead of ν.

10It is known, that this surface exists if ν ∈ [0, 5); see e.g. [7], [11].
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Lemma 6 (Step function EOS). Given an EOS being a step function:

ε(p) = {εi , if p ∈ (pi−1, pi), and i = 1, . . . , N} , (31)

with N ≥ 1, 0 < ε1 ≤ . . . ≤ εN , and 0 =: p0 < p1 < . . . < pN =: pmax. Then

µ(u) = {εi , if u ∈ (ui−1, ui), and i = 1, . . . , N} , (32)

with u0 = 0, and ui =
∑i

j=1
pj−pj−1

εj
for i = 1, . . . , N . Note that the values

of ε at pi, and µ at ui, are irrelevant for the fixed point problem (16).

Proof. Straightforward, following the proof of the preceding Lemma.

3.4 More General µ: Existence, Uniqueness, and Regularity

Definition 2 (Admissible µ). In the following µ : [0, 1]→ [0, 1] is called admissible
iff

1. µ(0) = 0 and µ(1) = 1.

2. µ is an increasing function.

3. Extend µ by µ(v) := 0 for all v < 0. Then, for every v ≤ 1 there are constants
δv(µ) > 0, &v(µ) ≥ 0, αv(µ) ∈ (0, 1] such that for all w, z in the open interval
(v − δv(µ), v) the inequality

|µ(w)− µ(z)| ≤ &v(µ)|(v − w)αv(µ) − (v − z)αv(µ)| (33)

holds.

4. D := {v ≤ 1 | µ is not continuous in v} ⊂ [0, 1] is a set of measure zero.

Since µ is increasing the left- and right-hand limit exist for all v ≤ 1:

0 ≤ lim
w↑v

µ(w) =: µ−(v) ≤ µ(v) ≤ µ+(v) := lim
w↓v

µ(w) ≤ 1 .

Especially
lim
v↓0

µ(v) =: µ0 ≥ 0 and lim
v↑1

µ(v) =: µ1 ≤ 1 .

Remark 8.

1. With the trivial extension of µ for negative values the index “+” (for the
positive part of a function) can be omitted in the definition of T (cf. (16)).
Furthermore, for all v ≤ 0 condition (33) is trivial. (This extension is only
introduced to simplify some of the following proofs.)

2. The functions µ corresponding to a polytropic (especially for ν ∈ [0, 1)) or a
step function11 EOS are admissible.

3. If µ corresponds to an EOS then µ(v) > 0 for all v ∈ (0, 1].
11Note that if µ is a step function, then �v(µ) = 0, for all v ≤ 1.
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Lemma 7. Assume that µ �≡ 0 a.e. is admissible. Then:

1. w ≤ v ≤ 1 ⇒ T v ≤ T w ≤ 1.

2. Let u0 :≡ 1 and ui := T ui−1 for all i ∈ N. Then:

(a) For all i ∈ N: ui ∈ C1,α<1
loc (R+

0 ) and u′
i(r) < 0 for all r > 0.

(b) For all i ∈ N0 := N ∪ {0}:

u2i+1 ≤ u2i+3 ≤ u2i+2 ≤ u2i ≤ 1 . (34)

Especially, the subsequence {u2i}i∈N0 is decreasing and the subsequence
{u2i+1}i∈N0 is increasing. Therefore, both subsequences converge (at
least pointwise on R

+
0 ):

lim
i→∞

u2i+1 =: u ≤ ū := lim
i→∞

u2i ≤ 1 .

(c) u = T ū and ū = T u , i.e. u and ū are fixed points of T 2.

(d) If v is a fixed point of T 2 then v ∈ C1,α<1
loc (R+

0 ) and v(r)′ < 0 for all
r > 0; i.e. u , ū ∈ C1,α<1

loc (R+
0 ) and u′(r), ū(r)′ < 0 for all r > 0.

Proof.

1. If w(r) ≤ v(r) ≤ 1 for all r ∈ R
+
0 then 0 ≤ µ(w(r)) ≤ µ(v(r)) ≤ 1 for all

r ∈ R
+
0 since 0 ≤ µ ≤ 1 is an increasing function. Thus by Lemma 1(2.),

1 ≥ T w = 1−Qµ(w) ≥ 1−Qµ(v) = T v.

2. (a) Since 0 ≤ µ ≤ 1 and µ �≡ 0 a.e., the assertion is an immediate conse-
quence of Lemma 1(5.).

(b) Since 0 ≤ u0 ≡ 1, it follows by 1. that u1 = T u0 ≤ T 0 = 1 = u0. Then
again by 1., u0 = 1 ≥ u2 = T u1 ≥ T u0 = u1, u1 = T u0 ≤ T u2 = u3,
and u3 = T u2 ≤ T u1 = u2. Therefore u1 ≤ u3 ≤ u2 ≤ u0. By induction
the assertion follows.

(c) For all r > 0 the sequence {vi(.) := g(r, .)µ(u2i(.))}i∈N0 of functions
on (0, r) is bounded: 0 ≤ vi ≤ r. Let D := {v ≤ 1 | µ is not contin-
uous in v} ⊂ [0, 1]. By assumption D is a set of measure zero. Since
u′

2i < 0 on (0, r) for all i ∈ N, the set D̃ :=
⋃
i∈N

u−1
2i (D) ⊂ R

+
0 has

measure zero and vi is continuous on R
+
0 \ D̃ for all i ∈ N. Therefore,

limi→∞ vi(.) = limi→∞ g(r, .)µ(u2i(.)) = g(r, .)µ(ū(.)) a.e. on (0, r). By
Lebesgue’s dominated convergence theorem (see e.g. [15], Theorem 1.8)
limit and integration sign commute. Thus for all r > 0:

u(r) = lim
i→∞

u2i+1(r) = lim
i→∞

(T u2i)(r)

= lim
i→∞

(1−
∫ r

0
g(r, s)µ(u2i(s)) ds)
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= 1−
∫ r

0
g(r, s)µ(ū(s)) ds

= (T ū)(r) ,

and ū = T u by analogy. Therefore, u = T ū = T (T u) = T 2u and
ū = T u = T 2ū.

(d) Again an immediate consequence of Lemma 1(5.). �

Remark 9. For all compact intervals [0, R > 0] the sequences of functions {u2i}i∈N,
{u2i+1}i∈N are subsets of C1([0, R]). These sequences and its derivatives are uni-
formly bounded since 1− 1

6R
2 ≤ u1 ≤ ui ≤ 1 and |u′

i(r)| = r
∫ 1
0 σ2µ(ui−1(rσ)+) dσ

≤ r
∫ 1
0 σ2 dσ = r

3 ≤
R
3 for all i ∈ N. Hence these sequences are equicontinuous (see

e.g. [12], Theorem 5.19). Thus by the Arzelà-Ascoli theorem (see e.g. [12], Theo-
rem 5.20) and by the monotonicity of both sequences it follows that u2i → ū and
u2i+1 → u uniformly on [0, R].

Lemma 8. Let 0 < R ≤ ∞. If T 2 has a unique fixed point on [0, R), so does T
and both fixed points are equal on [0, R).

Proof. Let u = T 2u. Then T 2(T u) = T (T 2(u)) = T (u). Hence T u is a fixed point
of T 2. Since the fixed point of T 2 is unique T u = u, i.e. u is a fixed point of T .
Let ũ be another fixed point of T . Then ũ is also a fixed point of T 2. However,
this fixed point is unique. Thus ũ = u. �
Remark 10. Note that the converse of Lemma 8 is not true in general.

Lemma 9. Assume that µ �≡ 0 a.e. is admissible. Let

X := T 2({ṽ : R
+
0 → R | ṽ ≤ 1}) ⊂ C1(R+

0 ) ,

and for all r0 > 0, w ∈ X

Xr0(w) := {v ∈ X | v(r) = w(r) , ∀r ∈ [0, r0]} .12

Then there exist injective mappings

q : X → C0(R+
0 ), v �→ q(v)

lwr0 : Xr0(w)→ C0(R+
0 ), v �→ lwr0(v)

such that:

1. ∀r ∈ R
+
0 :

v(r) = 1−
(µ1

6
+ q(v)(r)

)
r2 , ∀v ∈ X (35)

v(r0 + r) = w(r0)−
(
|w′(r0)|+ lwr0(v)(r)

)
r , ∀v ∈ Xr0(w) . (36)

12Note that Xr0(w) is the equivalence class containing w with respect to the equivalence
relation ∼r0 on X: v ∼r0 w :⇔ v = w on [0, r0].
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2. There are constants η > 0, H,Lw
r0 ∈ R

+, β ∈ (0, 2] such that ∀r ∈ [0, η]:

(a)
(b)

|q(v)(r)| ≤ H rβ , ∀v ∈ X (37)
|lwr0(v)(r)| ≤ Lw

r0 r , ∀v ∈ Xr0(w) . (38)

3. There are constants δ0, δ
z
r0

> 0, C0, C
z
r0
∈ R

+
0 , α0, α

z
r0
∈ (0, 2] such that

(a) ∀r ∈ [0, δ0] and ∀v,w ∈ X:

|q(T v)(r)− q(T w)(r)| ≤ C0

∫ r

0

1
s1−α0

|q(v)(s)− q(w)(s)| ds . (39)

(b) ∀r ∈ [0, δzr0 ], ∀z ∈ X, and ∀v,w ∈ Xr0(z):

|lT zr0 (T v)(r)− lT zr0 (T w)(r)| ≤ Cz
r0

∫ r

0

1
s1−αz

r0
|lzr0(v)(s) − lzr0(w)(s)| ds .

(40)

Proof.

1. If v ∈ X then (by Lemma 1) v ∈ C1(R+
0 ), v′(0) = 0, v′(r) < 0 for all r > 0,

and v′′(0) = limw↑1 µ(w)/3 = µ1/3 > 0. Therefore the mappings q and l
exist. These mappings are injective since Eq. (35) resp. (36) can be uniquely
solved for q resp. l.

2. (a) Let v ∈ X. By definition there is a v̂ ≤ 1 with v = T 2v̂. Let ṽ := T v̂,
then v = T ṽ and ṽ is bounded by 1 from above, and by r �→ 1− µ1

6 r2

from below. Let η :=
√

6δ1(µ)
µ1

> 0, i.e. ∀r ∈ (0, η): ṽ(r) ∈ (1− δ1(µ), 1).
Then, it follows that for all r ∈ (0, η):

|q(v)(r)| = r−2
∣∣∣v(r)− (1− µ1

6
r2
)∣∣∣

= r−2
∣∣∣(1− (Qµ(ṽ))(r)

)
−
(
1− (Qµ1)(r)

)∣∣∣
(by definition of T )

≤ r−2 lim
ε↓0

(Q|µ(ṽ)− µ(1− ε)|)(r)

(using Lemma 1)

≤ r−2 lim
ε↓0

&1(µ)
(
Q
∣∣∣(1− ṽ)α1(µ) − (1− (1− ε))α1(µ)

∣∣∣)(r)
(using inequality (33))

= r−2&1(µ)
(
Q
∣∣∣(1− ṽ)α1(µ)

∣∣∣)(r)
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≤ r−2&1(µ)
∫ r

0
g(r, s)

(µ1

6
s2
)α1(µ)

ds

(since 0 ≤ (1− ṽ(s)) ≤ µ1
6 s2)

=
&1(µ)µα1(µ)

1

6α1(µ)(2 + 2α1(µ))(3 + 2α1(µ))
r2α1(µ)

≤ &1(µ)µα1(µ)
1

61+α1(µ) r2α1(µ) .

Therefore, with H := �1(µ)µα1(µ)
1

61+α1(µ) ∈ R
+, and β := 2α1(µ) ∈ (0, 2] in-

equality (37) follows. Note that H and β are independent of v.

(b) Let r0 > 0, w ∈ X, and v ∈ Xr0(w). Then by definition, v(r) = w(r) for
all r ∈ [0, r0], v′(r0) = w′(r0) < 0, and ∃w̃ ≤ 1 such that w = T w̃. Thus,
the function R

+
0 � r �→ v(r+r0) is bounded by w(r0) from above. Since

µ(w̃) ≤ µ1 ≤ 1 a.e., it is bounded from below by the strictly monotone
function

r �→ hwr0(r) := 1−
(
Q
(
µ(w̃) · 1[0,r0) + µ1 · 1[r0,∞)

) )
(r0 + r)

= w(r0) + w′(r0)r0 +
µ1

2
r2
0

−w′(r0)
r2
0

r0 + r
− µ1

3
r3
0

r0 + r
− µ1

6
(r0 + r)2 . (41)

Therefore

|lwr0(v)(r)| =
∣∣∣r−1

(
w(r0)− v(r0 + r)

)
− |w′(r0)|

∣∣∣
(by (36))

≤
∣∣∣r−1

(
w(r0)− hwr0(r)

)
+ w′(r0)

∣∣∣
(since hwr0(r) ≤ v(r0 + r) ≤ w(r0), and w′(r0) < 0)

=
∣∣∣∣µ1(3r0 + r) + 6w′(r0)

6(r0 + r)

∣∣∣∣ r =: Lw
r0

(r) r .

Hence, with 0 ≤ Lw
r0

:= supr∈[0,η] L
w
r0

(r) <∞ for η > 0, inequality (38)
follows. Note that Lw

r0
is independent of v.

3. (a) Let v,w ∈ X. Then T v, T w ∈ X by definition. Furthermore, the func-
tions v,w, T v, T w are bounded by 1 from above and from below by

r �→ 1 − µ1
6 r2. Let δ̃0 :=

√
6δ1(µ)
µ1

> 0. Hence ∀r ∈ (0, δ̃0): v(r), w(r),
(T v)(r), and (T w)(r) ∈ (1− δ1(µ), 1).
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Therefore, due to the properties of µ it follows ∀v,w ∈ X and r ∈ (0, δ̃0):

|q(T v)(r)− q(T w)(r)| r2 =
= |(T v)(r)− (T w)(r)|

(by (35))

=
∣∣∣∣
∫ r

0
g(r, s)

(
µ(v(s))− µ(w(s))

)
ds

∣∣∣∣
≤ &1(µ)

∫ r

0
s
∣∣∣(1− v(s))α1(µ) − (1− w(s))α1(µ)

∣∣∣ ds
(g(r, s) ≤ s, and property (33))

= &1(µ)
∫ r

0
s1+2α1(µ)

∣∣∣(µ1

6
+ q(v)(s))α1(µ) −

− (
µ1

6
+ q(w)(s))α1(µ)

∣∣∣ ds
(by (35)).

Due to estimate (37) and µ1
6 > 0, for every 0 < λ < µ1

6 there is a
δ0 = δ0(λ) ∈ (0, δ̃0] (independent of v, w !) such that µ1

6 + q(v)(s) and
µ1
6 + q(w)(s) are in (µ1

6 − λ, µ1
6 + λ) for all s ∈ [0, δ0). Since |(c+ x)α −

(c+y)α| ≤ α
(c−d)1−α |x−y|, ∀α < 1, c > 0, and |x|, |y| ≤ d < c, it follows

that for all r ∈ (0, δ0):

|q(T v)(r)− q(T w)(r)| r2 ≤

≤ �1(µ)α1(µ)
(µ1

6 −λ)1−α1(µ)

∫ r

0
s1+2α1(µ) |q(v)(s) − q(w)(s)| ds .

Thus, with C0 := �1(µ)α1(µ)
(µ1

6 −λ)1−α1(µ) <∞, α0 := 2α1(µ) ∈ (0, 2], and r−2 ≤
s−2 estimate (39) follows.

(b) Let r0 > 0, z ∈ X, and v,w ∈ Xr0(z). Then T v, T w ∈ Xr0(T z).
Furthermore as in 2.(b), the functions R

+
0 � r �→ v(r + r0), w(r +

r0) are bounded by z(r0) from above and from below by the strictly
monotone function r �→ hzr0(r) (see Eq. (41)). Let δ̃zr0 := (hzr0)

−1(z(r0)−
δz(r0)(µ)) > 0, then v(r0 + r), w(r0 + r) ∈ (z(r0) − δz(r0)(µ), z(r0)) for
all r ∈ (0, δ̃zr0). Therefore, due to the properties of µ it follows for all
v,w ∈ Xr0(z) and r ∈ (0, δ̃zr0):

|lT zr0 (T v)(r)− lT zr0 (T w)(r)| r =
= |(T v)(r0 + r)− (T w)(r0 + r)|

(by (36))

=
∣∣∣∣
∫ r0+r

r0

g(r0 + r, s)
(
µ(v(s))− µ(w(s))

)
ds

∣∣∣∣
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(since v = w on [0, r0])

≤ (r0 + δ̃zr0)
∫ r

0
|µ(v(r0 + s))− µ(w(r0 + s))| ds

(s→ r0 + s, and g(r0 + r, r0 + s) ≤ (r0 + s) ≤ (r0 + δ̃zr0))

≤ (r0 + δ̃zr0)&z(r0)(µ)
∫ r

0

∣∣∣(z(r0)− v(r0 + s))αz(r0)(µ)−

− (z(r0)−w(r0 + s))αz(r0)(µ)
∣∣∣ ds

(by (33))

= (r0 + δ̃zr0)&z(r0)(µ)
∫ r

0
sαz(r0)(µ)

∣∣∣(|z′(r0)|+ lzr0(v)(s))
αz(r0)(µ) −

− (|z′(r0)|+ lzr0(w)(s))αz(r0)(µ)
∣∣∣ ds

(by (36)).

In analogy to (a): Due to estimate (38) and |z′(r0)| > 0, for every
λ ∈ (0, |z′(r0)|) there is a δzr0 = δzr0(λ) ∈ (0, δ̃zr0 ] (independent of v, w !)
such that |z′(r0)| + lzr0(v)(s) and |z′(r0)| + lzr0(w)(s) are in (|z′(r0)| −
λ, |z′(r0)|+λ) for all s ∈ [0, δzr0). Since |(c+x)α−(c+y)α| ≤ α

(c−d)1−α |x−
y|, ∀α < 1, c > 0, and |x|, |y| ≤ d < c, it follows that for all r ∈ (0, δzr0):

|lT zr0 (T v)(r)− lT zr0 (T w)(r)| r ≤

≤ (r0+δ̃zr0 )�z(r0)(µ)αz(r0)(µ)

(|z′(r0)|−λ)1−αz(r0)(µ)

∫ r

0
sαz(r0)(µ)

∣∣lzr0(v)(s) − lzr0(w)(s)
∣∣ ds .

Thus, with Cz
r0 :=

(r0+δ̃zr0 )�z(r0)(µ)αz(r0)(µ)

(|z′(r0)|−λ)
1−αz(r0)(µ) < ∞, αzr0 := αz(r0)(µ) ∈

(0, 1] ⊂ (0, 2], and r−1 ≤ s−1 estimate (40) follows. �

Lemma 10 (Contraction). Let R > 0, X ⊂ C0([0, R]), and R : X → X. If there
are constants K ∈ R

+
0 , α > 0 such that for all x, y ∈ X and r ∈ [0, R]

|(Rx)(r)− (Ry)(r)| ≤ K

∫ r

0

1
s1−α |x(s)− y(s)| ds ,

then for all n ∈ N0 and r ∈ [0, R]:

|(Rnx)(r)− (Rny)(r)| ≤
(
K
α

)n
n!

rnα‖x− y‖R ≤
(
KRα

α

)n
n!

‖x− y‖R . (42)

Proof. By induction :

1. n = 0: Since x, y are continuous functions on the compact interval [0, R] the
supremum norm ‖x − y‖R := supr∈[0,R] |x(r) − y(r)| is finite and inequal-
ity (42) is true.
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2. Step n→ n + 1:

|(Rn+1x)(r)− (Rn+1y)(r)| =
= |(R(Rnx))(r)− (R(Rny))(r)|

≤ K

∫ r

0

1
s1−α |(R

nx)(s)− (Rny)(s)| ds

≤ K

(
K
α

)n
n!

‖x− y‖R
∫ r

0

snα

s1−α ds

=

(
K
α

)n+1

(n + 1)!
r(n+1)α‖x− y‖R .

Proposition 2 (Existence, uniqueness, regularity).
For every admissible µ the fixed point problem (16), u = T u, has a unique solution
in C1,α<1

loc (R+
0 ). If µ �≡ 0 a.e. the solution u is a strictly decreasing function.

Moreover, if for 0 ≤ r1 < r2 ≤ ∞ the function µ ∈ Ck,α<1(u((r1, r2))) with k ≥ 0
then u ∈ Ck+2,α((r1, r2)).

Proof. If µ ≡ 0 a.e., then due to the definition of T (see (16)) u ≡ 1 is the unique
fixed point. Therefore, let µ �≡ 0 a.e. in the following.

1. Existence and uniqueness: Due to Lemma 7 and Lemma 8 it is sufficient to
show that T 2 has at the most one fixed point on R

+
0 since then u = ū =: u

is the unique solution of u = T u. To this end, let v,w ∈ F2 := {z ∈
C0(R+

0 ) | z = T 2z on R
+
0 } and A := {r ∈ R

+
0 | v(s) = (T v)(s) = w(s) =

(T w)(s) , ∀s ∈ [0, r]}. A �= ∅ because 0 ∈ A by Lemma 1. Furthermore, A
is closed since v,w and T v, T w are continuous. Moreover A is open in R

+
0 :

Let r0 ∈ A. By definition of A, T nv, T nw ∈ Xr0(v) = Xr0(w) for all n ∈ N0.
Then due to Lemma 9 :

(a) If r0 = 0: Let X :=
⋃
n∈N0

{q(T nv), q(T nw)} ⊂ q(X) ⊂ C0(R+
0 ) and

R := q ◦ T ◦ q−1. Then R(X) ⊂ X and for all x, y ∈ X:

|(Rx)(r)− (Ry)(r)| ≤ K

∫ r

0

1
s1−α |x(s)− y(s)| ds

∀r ∈ [0, R] by (39), with R := δ0 > 0, K := C0 ∈ R
+
0 , α := α0 > 0.

(b) If r0 > 0: Then lvr0 = lT vr0 = lwr0 = lT wr0 since T v, T w ∈ Xr0(T v) =
Xr0(v). Let X :=

⋃
n∈N0

{lvr0(T nv), lvr0(T nw)} ⊂ lvr0(Xr0(v)) ⊂ C0(R+
0 )

and R := lvr0 ◦ T ◦ (lvr0)
−1. Then R(X) ⊂ X and for all x, y ∈ X:

|(Rx)(r)− (Ry)(r)| ≤ K

∫ r

0

1
s1−α |x(s)− y(s)| ds

∀r ∈ [0, R] by (40), with R := δvr0 > 0, K := Cv
r0 ∈ R

+
0 , α := αvr0 > 0.
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Therefore, in both cases Lemma 10 applies: Let x := q(v), y := q(w) if r0 = 0
and x := lvr0(v), y := lvr0(w) if r0 > 0. Then by estimate (42):

‖x− y‖R = ‖R2nx−R2ny‖R ≤ c2n‖x− y‖R

where v = T 2v, w = T 2w ⇒ x = R2x, y = R2y was used. Since c2n → 0
as n→∞ it follows that ‖x− y‖R = 0, i.e. v = w on [0, r0] ∪ [r0, r0 + R] =
[0, r0 + R]. Then by Lemma 8, T v = v = w = T w on [0, r0 + R]. Thus, the
set A is open because R > 0. In summary, A is open, closed, and not empty.
Hence, A = R

+
0 , i.e. if v,w ∈ F2 then v ≡ w on R

+
0 .

2. The conditional higher regularity properties follow as in Propositon 1.

Remark 11.

1. The proof shows that

(a) the sequence ui = T ui−1 with u0 ≡ 1 converges to the unique fixed
point u and due to (34) the following a posteriori estimates hold for all
i ∈ N:

u2i+1 ≤ u ≤ u2i . (43)

(b) there is (at least) a neighbourhood [0, δ0 > 0] of r0 = 0 such that the
uniform convergence of ui on [0, δ0] is even faster than exponential.

2. If there is an rS <∞ with u(rS) = 0, i.e. the stellar radius rS is finite, then
u ∈ C∞((rS ,∞)). More precisely, then Eq. (16) implies u(r) = a + b/r for
r ≥ rS with a < 0 and b = M :=

∫ rS
0 µ(u(s))s2 ds > 0.

3. If µ is “merely” continuous, then it is straightforward to prove existence of
solutions of Eq. (16) in analogy to the Peano existence theorem for non-
singular ordinary differential equations: The set X := {v ∈ C0([0, R]) |
v ≤ 1} is closed and convex13. Furthermore, the mapping X � u �→ T u ∈ X
is continuous14, T (X) ⊂ X, and T (X) ⊂ C1,α<1([0, R]) ⊂ C1([0, R]) is
precompact by the Arzelà-Ascoli theorem15. Hence, Schauder’s fixed point
theorem (see e.g. [9], Corollary 11.2) guarantees that T has a fixed point in
X. However, such a fixed point is not necessarily unique.

Corollary 4. If µ is a step function with N “phases”16 then the sequence u0 :≡ 1,
ui≥1 := T ui−1 coincides(!) with the unique fixed point u = T u for all i ≥ 2N + 2.

13Since for all v,w ∈ X, and λ ∈ [0, 1]: λv + (1− λ)w ≤ λ+ (1− λ) = 1.
14Note that µ is uniformly continuous for it is continuous on the compact interval [0, 1] by

assumption.
15Because 1 − R2

6 ≤ v ≤ 1 and |v′| ≤ R
3 for all v ∈ T (X), it follows that T (X) is a set of

uniformly bounded and equicontinuous functions (see e.g. [12], Theorem 5.19).
16Here, it is not necessary that µ corresponds to a step function EOS, i.e. limv↓0 µ(v) = 0 is

allowed.
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Proof. Due to Proposition 2, u = T u exists and is unique. If µ ≡ 0 a.e. then ui ≡
1 = T 1 for all i ∈ N. Therefore let µ(v) �≡ 0 a.e. in the following, i.e. µ(v) = {εk,
if v ∈ (vk−1, vk), k = 1, . . . , N} with −∞ =: v−1 < 0 =: v0 < v1 < . . . < vN := 1
and 0 =: ε0 ≤ ε1 < . . . < εN ≤ 1. By Lemma 7, the functions ui≥1 are strictly
decreasing. Thus, for every k = 0, . . . , N and i ∈ N there is a unique 0 < rki ≤ ∞
such that either ui(rki ) = vk or ui > vk on [0,∞ =: rki ). Especially rNi = 1 for all
i ≥ 1. Since u2i+1 ≤ u2i+3 ≤ u2i+2 ≤ u2i, it follows that rk2i+1 ≤ rk2i+3 ≤ rk2i+2 ≤
rk2i.

Assumption : ∃k0 ∈ {1, . . . , N} and j0 = 2i0 + 1 ≥ 1 such that rk0
j0

<∞ and
uj = uj0 on [0, rk0

j0
] for all j ≥ j0 (⇒ rk0

j = rk0
j0

, ∀j ≥ j0). Then uj≥j0 ∈ (vk0−1, vk0)
(⇒ µ(uj) = εk0) on (rk0

j0
, rk0−1
j ). Since rk0−1

j ≤ rk0−1
j+2 ≤ rk0−1

j+3 ≤ rk0−1
j+1 for all

j ≥ j0 + 2n (with n ∈ N0), it follows that µ(uj≥j0+1) = εk0 on (rk0−1
j0

, rk0−1
j0+2 ).

Hence, µ(uj≥j0+1) = µ(uj0+1) on [0, rk0−1
j0+2 ). This implies (since ui+1 = 1−Qµ(ui))

that for all j ≥ j0+2: uj = uj0+2 on [0, rk0−1
j0+2 ). If rk0−1

j0+2 =∞, then uj0+2 is already
the (unique) fixed point u. If rk0−1

j0+2 <∞, then (by continuity) uj≥j0+2 = uj0+2 on
[0, rk0−1

j0+2 ]. In summary, either uj0+2 is the fixed point u or the assumption holds
for k0 − 1 ∈ {0, . . . , N − 1} and j0 + 2 ≥ 3. If the assumption is true for k0 = 0,
then uj≥j0+1 = uj0+1 on R

+
0 (i.e. the fixed point is reached) because µ(uj) = 0

on (r0
j0
,∞) for all j ≥ j0. Since ui≥1(0) = 1, the assumption is true for k0 = N

and j0 = 1. Therefore (note that k0 ∈ {0, . . . , N}) it follows that at the most after
1 + N · 2 + 1 = 2N + 2 iterations the fixed point of T is reached.

Remark 12.

1. It can be shown by similar arguments that even for any u0 ≤ 1 the sequence
ui = T ui−1 coincides with the fixed point after finite steps of iterations. This
“amazing” convergence property is closely related to the fact that in (33) the
constants &v(µ) = 0 for all v ≤ 1.

2. If µ is a step function, the fixed point u can be constructed explicitly (at
least in principe): If u(r) ∈ (vk−1, vk) then u must have the form

u(r) = ak +
bk
r
− εk

6
r2

(because u′′(r) + 2
r u′(r) = −εk, cf. Eq. (14)). Since u ∈ C1(R+

0 ), the con-
stants ak, bk ∈ R are uniquely determined by the condition that u and u′ are
continuous on R

+
0 . Starting with u(0) = 1 and u′(0) = 0, i.e. u(r) = 1− εN

6 r2

as long as u(r) ≥ vN−1, these conditions lead at the most to cubic equations.
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4 Relations between µ and Finiteness of rS

For physical applications, one of the most important question is whether there is
a finite rS with u(rS) = 0 for a given admissible µ or not17, i.e. in the context of
static stars in Newtonian gravity whether for a given EOS the stellar radius rS is
finite or not. This question will be investigated in this section. The following facts
are known about this question in the literature: For a polytropic EOS the stellar
radius is finite if the index ν ∈ [0, 5) and it is infinite if ν ≥ 5 (see [7] and [11]).
If µ behaves “essentially” polytropic near µ = 0, then the stellar radius is finite if
the polytropic index ν ∈ [0, 3]. And if ν ∈ (3, 5) the radius can be finite or infinite
(see [18], [16], and [17], p. 20). Rendall and Schmidt [18] raised the question:
Is it necessary for a finite stellar radius that the function µ behaves essentially
polytropic with index strictly less than five near µ = 0 (i.e. at the star’s surface)?
Below (see Remark 15 ), it is shown that the answer for Newtonian gravity is: No.

Lemma 11 (A priori criteria). Assume that µ is admissible. By Proposition 2 the
corresponding fixed point problem (16) has a unique solution u. Then the following
holds:

1. If limv↓0 µ(v) =: µ0 > 0 then rS is finite.

2. Let u0 :≡ 1 and ui≥1 := T ui−1. If ∃ j = 2i with i ≥ 1 such that ∃ rj < ∞
with uj(rj) = 0 then rS ≤ rj, i.e. rS is finite.

Proof.

1. Assume, in contrary to the assertion that rS is not finite, i.e. u > 0 on R
+
0 .

Therefore, µ(u) ≥ µ0 > 0 on R
+
0 by assumption. Hence u(r) = (T u)(r) =

1− (Qµ(u))(r) ≤ 1− (Q(µ0 · 1[0,∞)))(r) = 1− µ0
6 r2 =: u1(r), for all r ∈ R

+
0 ,

which is a contradiction since u1(r) < 0 for r >
√

6/µ0 <∞.

2. Since limi→∞ ui = u by the proof of Proposition 2 and u ≤ u2i≥0 due to the
estimates (34) in Lemma 7 the assertion follows (because u2i is decreasing). �

Lemma 12 (General sub- and supersolution). For every admissible µ and corre-
sponding fixed point u the following holds:

1. Let ǔ : R
+
0 → R, r �→ ǔ(r) := 1− µ1

6 r2. Then ǔ ≤ u, i.e. ǔ is a subsolution.

2. Let µ �≡ 0 a.e., D̂ := {v ∈ (0, 1] | µ(v) > 0} � 1, and

D̂ � v �→ r̂(v) :=
√

6(1−v)
µ(v)

R
+
0 � r �→ ûv(r) :=

{
1− µ(v)

6 r2 ≥ v : r ≤ r̂(v) <∞
v : r ≥ r̂(v)

R
+
0 � r �→ û(r) := inf

v∈D̂
ûv(r) ≥ 0 .

Then u ≤ u+ ≤ û, i.e. û is a supersolution.
17Note that rS is unique if it exists (if not, let rS := ∞), since u is strictly monotone.
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Proof.

1. µ(u+) ≤ µ1 a.e. because u(0) = 1, u is decreasing (by Corollary 1), and
µ : [0, 1] → [0, 1] is increasing with µ ≤ µ1 a.e. (by assumption). Hence by
Lemma 1, u(r) = (T u)(r) = 1 − (Qµ(u+))(r) ≥ 1 − (Q(µ1 · 1[0,∞)))(r) =
1− µ1

6 r2 =: ǔ(r) for all r ∈ R
+
0 .

2. D̂ ⊂ u(R+
0 )+. For assume this is false, i.e. ∃v0 ∈ D̂ with v0 �∈ u(R+

0 )+.
Then by definition, r̂(v0) <∞ and u > v0 on R

+
0 (because u is decreasing).

Therefore (since µ is increasing) 0 ≤ v0 < u(r) = (T u)(r) ≤ 1 − (Q(µ(v0) ·
1[0,∞)))(r) = 1 − µ(v0)

6 r2 → −∞ as r → ∞, which is a contradiction. It
remains to show that ûv ≥ u+ for all v ∈ D̂. To this end let v0 ∈ D̂.
Hence by the preceding v0 ∈ u(R+

0 )+, i.e. ∃r0 ∈ R
+
0 with u(r0) = v0 > 0.

Since u is strictly decreasing, r0 is unique and u(r)><v0 for all r<>r0. Thus
µ(u+) ≥ µ(v0) on [0, r0]. Then for all r ∈ [0, r0]: 0 < v0 ≤ u(r)+ = u(r) =
(T u)(r) ≤ 1− (Q(µ(v0) · 1[0,r0]))(r) = 1− µ(v0)

6 r2 = ûv0(r) (⇒ r0 ≤ r̂(v0)).
Since ûv0 ≥ v0 > 0 on R

+
0 and v0 ≥ u(r)+ ≥ u(r) for all r ≥ r0, it follows

that ûv0 ≥ u+ ≥ u on [0, r0] ∪ [r0,∞) = R
+
0 . �

Corollary 5. If µ(v) > 0 for all v > 0 and limv↓0 µ(v) ≥ 0 for an admissible
function µ, then

lim
r→∞

u(r)+ = 0

for the corresponding fixed point u of T .

Proof. Let ε > 0 and vε := min{ε, 1} ∈ (0, 1]. By assumption vε ∈ D̂. Then by
Lemma 12(2.), 0 < r̂(vε) < ∞ and u(r)+ ≤ û(r) ≤ ûvε(r) = vε ≤ ε for all
r ≥ r̂(vε), i.e. limr→∞ u+(r) = 0. �
Remark 13. For instance, the Corollary applies to all EOS, especially to polytropic
with index ν > 5.

Lemma 13 (Necessary and sufficient condition). Let u be the unique fixed point of
T for an admissible µ. Equivalent are:

1. rS is finite.

2. ∃ r0 ∈ (0,∞) such that
u(r0)
r0

< |u′(r0)| = −u′(r0)

3. ∃ r0 ∈ (0,∞) such that 1 <

∫ r0

0
sµ(u(s)+) ds .

Proof.

(1. ⇒ 2.): Assume rS is finite. Then r0 := rS > 0 since u(0) = 1 and u ∈ C0.
Hence u(r0) = 0 and u′(r0) < 0 by Corollary 1. Thus inequality 2. holds.
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(2. ⇒ 1.): Assume inequality 2. holds, i.e. ∃ r0 ∈ (0,∞) such that u(r0) +
r0u

′(r0) < 0. Let 0 ≤ v := u+ · 1[0,r0]. Then v ≤ u+ and µ(v) ≤ µ(u+) (since
µ is increasing by assumption). Therefore (by Lemma 1) T v = 1−Qµ(v) ≥
1−Qµ(u+) = T u = u and ∀r ≥ r0 (using Eqs. (16) and (20)):

(T v)(r) = 1−
∫ r0

0
s
(
1− s

r

)
µ(u(s)+) ds

=
(
1−

∫ r0
0 sµ(u(s)+) ds

)
+

∫ r0
0 s2µ(u(s)+) ds

r
=: a +

b

r

(T v)′(r) = −
∫ r0

0

(s
r

)2
µ(u(s)+) ds = − b

r2 .

Since T v = T u = u on [0, r0] and T v, u ∈ C1(R+
0 ), it follows that u(r0) =

(T v)(r0) = a + b
r0

and u′(r0) = (T v)′(r0) = − b
r20

. Thus

0 > u(r0) + r0u
′(r0) = a .

Therefore limr→∞ u ≤ limr→∞ T v = limr→∞ a + b/r = a < 0. Because
u(0) = 1 and u is decreasing there is an rS ∈ (0,∞) with u(rS) = 0,
i.e. 1. holds.

(2. ⇔ 3.): 0 > u(r0) + r0u
′(r0) = a = 1−

∫ r0
0 sµ(u(s)+) ds. �

Remark 14.

1. Note that limr0↓0
u(r0)
r0

=∞ and limr0↓0 u′(r0) = 0.

2. If u(r0) > 0, then r0 < rS and the knowledge of the fixed point u(r) for
r > r0 is not needed in order to guarantee the finiteness of the stellar radius
rS !

3. For the polytropic EOS with index ν = 5 (i.e. µ(u) = u5): u(r) = (1 +
1
3 r2)−1/2 (⇒ rS =∞) and

∫∞
0 sµ(u(s)+) ds =

∫∞
0 s (1 + 1

3 s2)−5/2 ds = 1.

Corollary 6. Let u be the unique fixed point of T for an admissible µ. Then

lim
r→∞

u′(r) = 0 .

Proof. If rS < ∞, then Eq. (16) implies that u(r) = a + b/r for all r > rS with
a, b ∈ R. Hence the assertion follows. If rS = ∞ then u ≥ 0. Thus u+ = u
and

∫ r
0 sµ(u(s)) ds ≤ 1 for all r ∈ R

+
0 by Lemma 13(3.). Therefore |u′(r)| =∫ r

0 (s/r)2 µ(u(s)) ds ≤ r−1
∫ r
0 sµ(u(s)) ds ≤ 1/r. Hence the assertion follows. �

Corollary 7 (Sufficient conditions). Assume µ is admissible and u is the corre-
sponding fixed point of T .
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1. If there is ũ ≤ u and r0 <∞ with 1 <
∫ r0
0 sµ(ũ(s)+) ds ⇒ rS is finite.

2. If µ1
3 <

∫ 1
0 µ(v) dv ⇒ rS is finite.

3. If there is ũ ≥ u with
∫∞
0 sµ(ũ(s)+) ds ≤ 1 ⇒ rS is infinite.

Proof.

1. Since µ is increasing by assumption, µ(ũ+) ≤ µ(u+) and therefore 1 <∫ r0
0 sµ(ũ(s)+) ds ≤

∫ r0
0 sµ(u(s)+) ds. Hence by Lemma 13(3.) the assertion

follows.

2. If 0 < µ1 ≤ 1, then by Lemma 12(1.) ǔ(s) = 1− µ1
6 s2 ≤ u(s) and ǔ ≥ 0 on

[0, r0 :=
√

6/µ1 <∞]. Thus, using the substitution v = ǔ(s)

∫ r0
0 sµ(ǔ(s)+) ds = 3

µ1

∫ 1
0 µ(v) dv > 1 .

Hence by 1. the assertion follows. If µ1 = 0 then µ ≡ 0 a.e. by definition,
i.e. the assumption does not hold.

3. µ(ũ+) ≥ µ(u+) since µ is increasing by assumption. Therefore, it follows
that 1 ≥

∫∞
0 sµ(ũ(s)+) ds ≥

∫∞
0 sµ(u(s)+) ds, i.e. 1 ≥

∫ r0
0 sµ(u(s)+) ds for

all r0 ∈ (0,∞). Hence by Lemma 13(3.) the assertion follows. �

Remark 15.

1. Note that statement 2. in Corollary 7 is an a priori criterion. Furthermore,
this criterion answers (within Newtonian gravity) the mentioned question
raised by Rendall and Schmidt: Since there are admissible µ having poly-
tropic behaviour with index ν ≥ 5 near µ = 0 and satisfying this crite-
rion 2. (e.g. µ(u) = uν≥5 · 1[0,v< 2

3 ) + 1[v,1]), the answer to their question is:
The essentially polytropic behaviour with index strictly less than five near
µ = 0 is not necessary for a finite stellar radius. Joseph and Lundgren remark
(see [11], p. 243, Footnote :) that Lebovitz made a similar observation.

2. Criterion 2. in Corollary 7 reads for polytropic EOS with index ν ∈ R
+
0 :∫ 1

0 vν dv = 1
ν+1 > 1

3 , which is valid for ν ∈ [0, 2). Since it is known that
for all polytropic EOS with ν < 5 the stellar radius rS is finite (see [7]
and [11]), this shows that the criterion 2. in Corollary 7 is not necessary.
Another sufficient a priori criterion for finite radius, which is sharp in the
polytropic case, was given by Simon [21], Eq. (14) : F (p) =

∫ p
0

dp̃
ε(p̃) ≤ 6 p

ε(p)
for all p ∈ (0, pc). Since for polytropic EOS this (“pointwise”) condition is
valid only if the index ν ≤ 5, the argument in 1. shows that this conditon is
not necessary either.
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3. An illuminating example for the general case is the following: For the poly-
tropic EOS µ(v) = vν with index ν ≥ 5 the stellar radius is infinite. However,
for all µδ(v) = δν · 1[δ,1](v) (note that µδ ≤ µ) with 0 < δ < 2

3 the stellar
radius is finite!

4. The supersolution û in Lemma 12 is too weak in order to give (together with
condition 3. in Corollary 7) a reasonable (sufficient) criterion for an (realistic)
EOS so that the radius is infinite. However, if µ is admissible and of the form
µ = 0 on [0, v0] with 0 < v0 < 1 and 0 < µ0 := µ+(v0) ≤ µ ∈ C1((v0, 1))
on (v0, 1], then

∫∞
0 sµ(û(s)+) ds =

∫ 1
v0

r̂(v)µ(v)| r̂′(v)| dv = 3
∫ 1
v0

(1 + (1 −
v)µ

′(v)
µ(v) ) dv = 3(1−v0)(1+ | lnµ0|)−3

∫ 1
v0
| lnµ(v)| dv, where the substitution

s = r̂(v) =
√

6(1−v)
µ(v) and û(r̂(v)) = v was used. For example, if µ = µ0 ·1[v0,1]

then
∫∞
0 sµ(û(s)+) ds = 3(1− v0). Hence, if v0 ≥ 2

3 then 3(1− v0) ≤ 1 and
rS is infinite by condition 3. in Corollary 7, which is the optimal result in
this special case.

5. Since the subsolutions u2i+1 and the supersolutions u2i (cf. (43)) converge
monotonically to the unique solution u as i→∞, these sub- and supersolu-
tions can be used (at least in principle) in condition 1. and 3. of Corollary 7
in order to provide sequences of (sufficient) conditions of increasing sharp-
ness for a given admissible µ. Since criterion 3. in Lemma 13 is sufficient and
necessary these sequences of conditions are optimal in the “limit” i → ∞
(e.g. for the polytropic EOS with “critical” index ν = 5 it was already men-
tioned that

∫∞
0 s u(s)5ds = 1).

Lemma 14 (Gronwall type). Let d ∈ C0([0, R)) with

d(r) ≤ a r2 + b

∫ r

0
g(r, s)d(s) ds , ∀r ∈ [0, R)

and 0 < R ≤ ∞, a ∈ R, b ≥ 0. Then for all r ∈ [0, R):

d(r) ≤ 6a
b

(
sinh(

√
b r)√

b r
− 1

)
= a r2 (1 + 1

20b r
2 + O(b2r4)

)
. (44)

Proof. For every ε > 0 let fε(r) := (ε + 6a
b ) sinh(

√
b r)√

b r
− 6a

b . Then, an elementary
integration shows that for all r ∈ R

+
0 :

fε(r) = ε + a r2 + b
∫ r
0 g(r, s)fε(s) ds . (45)

Hence, in order to prove estimate (44) it is sufficient to show that d(r) < fε(r) for
all r ∈ [0, R): Since d(0) ≤ 0 < ε = limr↓0 fε(r) this inequality is true for r = 0.
Assume r0 := inf{r ∈ [0, R) | d(r) = fε(r)} > 0. Since d, fε ∈ C0, it follows that
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d(r0) = fε(r0) and d ≤ fε on [0, r0] (otherwise, the intermediate value theorem
yields a contradiction). Therefore,

d(r0) ≤ a r2
0 + b

∫ r0

0
g(r0, s) d(s) ds

(by assumption)

< ε + a r2
0 + b

∫ r0

0
g(r0, s) fε(s) ds

(since ε > 0, b ≥ 0, and ∀s ∈ [0, r0]: g(r0, s) ≥ 0, d(s) ≤ fε(s))
= fε(r0)

(by (45)) ,

which is a contradiction. �
Remark 16. Since g(r, s) ≤ s, Gronwall’s Lemma (see e.g. [1], p. 99) can be used
to obtain a similar estimate. However, this estimate is weaker than (44).

Corollary 8 (“Approximation”). Assume µ1, µ2 are admissible functions and
u1, u2 are the corresponding unique fixed points due to Proposition 2. Let δ :=
‖µ1 − µ2‖1 := supv∈[0,1] |µ1(v) − µ2(v)| ∈ [0, 1]. If in addition µ1 is Lipschitz
continuous on [0, 1], with Lipschitz constant & > 0, then for all r ∈ R

+
0 :

|u1(r)− u2(r)| ≤
δ

&

(
sinh(

√
& r)√

& r
− 1

)
= δ r2 (1

6 + 1
120& r

2 + O(&2r4)
)

. (46)

Proof. Let d(r) := |u1(r)− u2(r)| (note that d ∈ C0(R+
0 )). Then

d(r) =
∣∣∣∣
∫ r

0
g(r, s)

(
µ2(u2(s)+)− µ1(u1(s)+)

)∣∣∣∣
(by Eq. (16)

≤
∫ r

0
g(r, s)|µ2(u2(s)+)− µ1(u2(s)+)| ds

+
∫ r

0
g(r, s)|µ1(u2(s)+)− µ1(u1(s)+)| ds

≤ δ

∫ r

0
g(r, s) ds + &

∫ r

0
g(r, s)d(s) ds

=
δ

6
r2 + &

∫ r

0
g(r, s)d(s) ds .

By Lemma 14 the assertion follows. �
Remark 17. If, for example, µ2 is a step function with finite “stellar radius” (note
that this can be explicitly decided, at least in principle), then estimate (46) implies
that all Lipschitz continuous µ1 with ‖µ1 − µ2‖1 ≤ δ ( 1 have also finite stellar
radius.



Vol. 1, 2000 On Static Stars in Newtonian Gravity and Lane-Emden Type Equations 973

4.1 Relation between EOS and Surface Potential

In the following, the omitted symbols “˜” on µ and u are restored for accuracy
(see Eq. (12) and the following convention). Let Ã := {µ̃ admissible | ∃ pc > 0 and
∃ EOS ε such that µ = ε ◦ F−1 and r̃S(µ̃) < ∞}. If µ̃ ∈ Ã, it follows that the
support of the positive part of the corresponding solution ũ = ũ(µ̃) and the mass
density ε̃ = µ̃(ũ+), viewed as spherically symmetric functions on R

3, is a ball with
radius r̃S <∞. Then, due to Poisson’s equation (1) the corresponding Newtonian
gravitational potential U(x) ∝ −

∫
R3

ε̃(y)
|x−y| dy vanishes at infinity. Therefore, by

Eq. (7) it follows that limr→∞ ũ(r) = ŨS := U(rS ξ/|ξ|)/uc (for every 0 �= ξ ∈ R
3).

Since the solution ũ is unique, the mapping

φ̃ : Ã −→ (−∞, 0) = R
− , (47)

µ̃ �−→ φ̃(µ̃) := lim
r→∞

ũ(µ̃, r) = 1−
∫ ∞

0
s µ̃(ũ(µ̃, s)+) ds

(by Eq. (16) ,

which assigns to every admissible µ̃ ∈ Ã the corresponding normalized Newtonian
surface potential ŨS , is well-defined.
Remark 18. The following diagram holds :

(pc, ε) �−→ (uc, µ) �−→ µ̃
φ̃�−→ ŨS .

Note that all symbols “�→” represent well-defined mappings. It is known that φ̃
restricted to polytropic EOS with index ν ∈ (0, 5) is injective.

Lemma 15. The mapping φ̃ : Ã → R
− is not injective, i.e. in general the value

of the normalized surface potential of a solution does not uniquely determine the
standard form of the EOS.

Proof. Let µ̃ε := ε · 1[0,1] with ε ∈ (0, 1]. Then, it is straightforward to show that
φ̃(µ̃ε) = −2 for all ε ∈ (0, 1]. �
Remark 19. Another more interesting example, which shows that φ̃ is not injective
in general, is the following: Let µ̃1(ũ) = ũ, and µ̃2 = 9−

√
33

18 · 1[0, 12 ) + 1[ 12 ,1]
(where

9−
√

33
18 ≈ 0.18). Again, it is straightforward to show that φ̃(µ̃1) = φ̃(µ̃2) = −1.

(Note that ũ(µ̃1, r) = sin(r)
r for r ∈ (0, π].)
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5 Conclusions

It was shown that existence, uniqueness, and regularity of global solutions for
Lane-Emden type equations can be established using a simple iterative scheme
for quite general right-hand sides, including equations of state with phase transi-
tions. The iteration converges uniformly for Lipschitz continuous right-hand sides
at a rate even faster than exponential (at least on every compact set). For a large
subclass of the non-Lipschitz continuous right-hand sides, the same convergence
behaviour could be established only near the center of symmetry. Whether this
rate of convergence still holds outside a neighbourhood of the center of symmetry
or not remains an open question (apart for step function, where the solution is
reached after finite steps of iteration!). Furthermore, two equivalent criteria were
given which are necessary and sufficient so that the stellar radius is finite. These
criteria lead to a sufficient (however not necessary) a priori condition on the equa-
tion of state which shows that essentially polytropic behaviour with index strictly
less than five of the equation of state near the star’s surface is not necessary in
order to have a star of finite size. Still, the question for a “practicable” sufficient
and necessary a priori criterion is open. Moreover, it was shown that the relation
between the equation of state and the surface potential is not injective in general.

Since the field equations for equilibrium states of rotating stars in Newton’s
as well as in Einstein’s theory of gravitation have essentially the same structure
as the field equations in the static Newtonian case (as was pointed out in the
introduction), the numerical results obtained with the method [2] give hope that
some of the main ideas in this article can be generalized to obtain existence results
for realistic models of rotating stars within general relativity.
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